Ό-lacunary x3auvw-convergence defined by musielak orlicz ... · sequence spaces in -metric spaces...

14
Available online at www.worldscientificnews.com ( Received 10 September 2019; Accepted 27 September 2019; Date of Publication 28 September 2019 ) WSN 136 (2019) 52-65 EISSN 2392-2192 -lacunary -convergence defined by Musielak Orlicz function Ayten Esi 1 , Nagarajan Subramanian 2 and Ayhan Esi 1 1 Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey 2 Department of Mathematics, SASTRA University, Thanjavur - 613 401, India 1-3 E-mail address: [email protected], [email protected] , [email protected] ABSTRACT We study some connections between -lacunary strong 3 - convergence with respect to a sequence of Musielak Orlicz function and -lacunary 3 - statistical convergence, where is a sequence of four dimensional matrices () = ( 1 
 ℓ 1 
ℓ 1 
 1 
 ()) of complex numbers. Keywords: Analytic sequence, x 2 space, difference sequence space, Musielak-modulus function, p- metric space, mn-sequences 2010 Mathematics Subject Classification: 40A05, 40C05, 40D05 1. INTRODUCTION Throughout , and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write 3 for the set of all complex triple sequences ( ), where , , ∈ ℕ, the set of positive integers. Then, 3 is a linear space under the coordinate wise addition and scalar multiplication.

Upload: others

Post on 09-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

Available online at www.worldscientificnews.com

( Received 10 September 2019; Accepted 27 September 2019; Date of Publication 28 September 2019 )

WSN 136 (2019) 52-65 EISSN 2392-2192

𝝁-lacunary 𝝌𝑚𝒖𝒗𝒘𝟑 -convergence defined by Musielak

Orlicz function

Ayten Esi1, Nagarajan Subramanian2 and Ayhan Esi1

1Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey

2Department of Mathematics, SASTRA University, Thanjavur - 613 401, India

1-3E-mail address: [email protected], [email protected] , [email protected]

ABSTRACT

We study some connections between 𝜇-lacunary strong 𝜒𝐎𝑢𝑣𝑀3 - convergence with respect to a

𝑚𝑛𝑘 sequence of Musielak Orlicz function and 𝜇-lacunary 𝜒𝐎𝑢𝑣𝑀3 - statistical convergence, where 𝐎 is

a sequence of four dimensional matrices 𝐎(𝑢𝑣𝑀) = (𝑎𝑘1 𝑘𝑟ℓ1 ℓ𝑠𝑚1 𝑚𝑟𝑛1 𝑛𝑠(𝑢𝑣𝑀)) of complex numbers.

Keywords: Analytic sequence, x2 space, difference sequence space, Musielak-modulus function, p-

metric space, mn-sequences

2010 Mathematics Subject Classification: 40A05, 40C05, 40D05

1. INTRODUCTION

Throughout 𝑀, 𝜒 and Λ denote the classes of all, gai and analytic scalar valued single

sequences, respectively. We write 𝑀3 for the set of all complex triple sequences (𝑥𝑚𝑛𝑘), where

𝑚, 𝑛, 𝑘 ∈ ℕ, the set of positive integers. Then, 𝑀3 is a linear space under the coordinate wise

addition and scalar multiplication.

Page 2: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-53-

We can represent triple sequences by matrix. In case of double sequences we write in the

form of a square. In the case of a triple sequence it will be in the form of a box in three

dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence spaces is

found in Hardy [9], Deepmala et al. [10, 11] and many others. Later on investigated by some

initial work on triple sequence spaces is found in Esi [2], Esi et al. [3-8], Şahiner et al. [12],

Subramanian et al. [13], Prakash et al. [14] and many others.

Let (𝑥𝑚𝑛𝑘) be a triple sequence of real or complex numbers. Then the series

∑∞𝑚,𝑛,𝑘=1 𝑥𝑚𝑛𝑘 is called a triple series. The triple series ∑∞𝑚,𝑛,𝑘=1 𝑥𝑚𝑛𝑘 give one space is said

to be convergent if and only if the triple sequence (𝑆𝑚𝑛𝑘) is convergent, where

𝑆𝑚𝑛𝑘 = ∑

𝑚,𝑛,𝑘

𝑖,𝑗,𝑞=1

𝑥𝑖𝑗𝑞 (𝑚, 𝑛, 𝑘 = 1,2,3, . . . ).

A sequence 𝑥 = (𝑥𝑚𝑛𝑘) is said to be triple analytic if

sup𝑚,𝑛,𝑘

|𝑥𝑚𝑛𝑘|1

𝑚+𝑛+𝑘 < ∞.

The vector space of all triple analytic sequences are usually denoted by Λ3. A sequence

𝑥 = (𝑥𝑚𝑛𝑘) is called triple entire sequence if

|𝑥𝑚𝑛𝑘|1

𝑚+𝑛+𝑘 → 0 as 𝑚, 𝑛, 𝑘 → ∞.

A sequence 𝑥 = (𝑥𝑚𝑛𝑘) is called triple gai sequence if ((𝑚 + 𝑛 + 𝑘)! |𝑥𝑚𝑛𝑘|)1

𝑚+𝑛+𝑘 → 0

as 𝑚, 𝑛, 𝑘 → ∞. The triple gai sequences will be denoted by 𝜒3.

2. DEFINITIONS AND PRELIMINARIES

A triple sequence 𝑥 = (𝑥𝑚𝑛𝑘) has limit 0 (denoted by 𝑃 − lim𝑥 = 0) (i.e)

((𝑚 + 𝑛 + 𝑘)! |𝑥𝑚𝑛𝑘|)1/𝑚+𝑛+𝑘

→ 0 as 𝑚, 𝑛, 𝑘 → ∞. We shall write more briefly as 𝑃 −𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑡𝑜 0.

Definition 2.1 An Orlicz function (see [15]) is a function M: [0,∞) → [0,∞) which is

continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞

as x → ∞. If convexity of Orlicz function M is replaced by M(x + y) ≀ M(x) + M(y), then this

function is called modulus function.

Lindenstrauss and Tzafriri (see [16]) used the idea of Orlicz function to construct Orlicz

sequence space.

A sequence 𝑔 = (𝑔𝑚𝑛) defined by

Page 3: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-54-

𝑔𝑚𝑛(𝑣) = sup{|𝑣|𝑢 − (𝑓𝑚𝑛𝑘)(𝑢): 𝑢 ≥ 0},𝑚, 𝑛, 𝑘 = 1,2, 


is called the complementary function of a Musielak-Orlicz function 𝑓. For a given Musielak-

Orlicz function 𝑓, (see [17]) the Musielak-Orlicz sequence space 𝑡𝑓 is defined as follows

𝑡𝑓 = {𝑥 ∈ 𝑀3: 𝐌𝑓(|𝑥𝑚𝑛𝑘|)

1/𝑚+𝑛+𝑘 → 0 as 𝑚, 𝑛, 𝑘 → ∞},

where 𝐌𝑓 is a convex modular defined by

𝐌𝑓(𝑥) = ∑

∞

𝑚=1

∑

∞

𝑛=1

∑

∞

𝑘=1

𝑓𝑚𝑛𝑘(|𝑥𝑚𝑛𝑘|)1/𝑚+𝑛+𝑘, 𝑥 = (𝑥𝑚𝑛𝑘) ∈ 𝑡𝑓 .

We consider 𝑡𝑓 equipped with the Luxemburg metric

𝑑(𝑥, 𝑊) = ∑

∞

𝑚=1

∑

∞

𝑛=1

∑

∞

𝑘=1

𝑓𝑚𝑛𝑘 (|𝑥𝑚𝑛𝑘|

1/𝑚+𝑛+𝑘

𝑚𝑛𝑘)

is an extended real number.

Definition 2.2 Let mnk(≥ 3) be an integer. A function x: (M × N × K) × (M × N × K) ×⋯×(M × N × K) × (M × N × K) [m × n × k − factors] → ℝ(ℂ) is called a real or complex mnk-

sequence, where ℕ, ℝ and ℂ denote the sets of natural numbers and complex numbers

respectively. Let m1, m2, 
mr, n1, n2, 
 , ns, k1, k2, 
 , kt ∈ ℕ and X be a real vector space of

dimension w, where m1, m2, 
mr, n1, n2, 
 , ns, k1, k2, 
 , kt ≀ w. A real valued function

𝑑𝑝(𝑥11, 
 , 𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡)

=∥ (𝑑1(𝑥11, 0), 
 , 𝑑𝑛(𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 , 0)) ∥𝑝

on 𝑋 satisfying the following four conditions:

(i) ∥ (𝑑1(𝑥11, 0), 
 , 𝑑𝑛(𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 , 0)) ∥𝑝= 0 if and and only if

𝑑1(𝑥11, 0), 
 , 𝑑𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠(𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 , 0) are linearly dependent,

(ii) ∥ (𝑑1(𝑥11, 0), 
 , 𝑑𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡(𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 , 0)) ∥𝑝 is

invariant under permutation,

(iii) For 𝛌 ∈ ℝ,

∥ (𝛌𝑑1(𝑥11, 0), 
 , 𝑑𝑚1,𝑚2, 𝑚𝑝,𝑛1,𝑛2,
,𝑛𝑞,𝑘1,𝑘2,
,𝑘𝑡(𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 , 0)) ∥𝑝

= |𝛌| ∥ (𝑑1(𝑥11, 0), 
 , 𝑑𝑛(𝑥𝑚1,𝑚2, 𝑚𝑝,𝑛1,𝑛2,
,𝑛𝑞,𝑘1,𝑘2,
,𝑘𝑡 , 0)) ∥𝑝

(iv) For 1 ≀ 𝑝 < ∞,

𝑑𝑝((𝑥11, 𝑊11), (𝑥12, 𝑊12)
 (𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 , 𝑊𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡))

Page 4: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-55-

= (𝑑𝑋(𝑥11, 𝑥12, 
 𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡)𝑝 +

𝑑𝑌(𝑊11, 𝑊12, 
 𝑊𝑚1,𝑚2, 𝑚𝑝,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡)𝑝)1/𝑝

(or)

(v) 𝑑((𝑥11, 𝑊11), (𝑥12, 𝑊12),
 (𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠 , 𝑊𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡))

: = sup{𝑑𝑋(𝑥11, 𝑥12, 
 𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡),

𝑑𝑌(𝑊11, 𝑊12, 
 𝑊𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡)},

for 𝑥11, 𝑥12, 
 𝑥𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 ∈ 𝑋, 𝑊11, 𝑊12, 
 𝑊𝑚1,𝑚2, 𝑚𝑟,𝑛1,𝑛2,
,𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡 ∈ 𝑌

is called the 𝑝-product metric of the Cartesian product of 𝑚1, 𝑚2,  𝑚𝑟 , 𝑛1, 𝑛2, 
 ,𝑛𝑠, 𝑘1, 𝑘2, 
 , 𝑘𝑡 metric spaces is the 𝑝-norm of the 𝑚× 𝑛 × 𝑘-vector of the norms of the

𝑚1, 𝑚2,  𝑚𝑟 , 𝑛1, 𝑛2, 
 , 𝑛𝑠, 𝑘1, 𝑘2, 
 , 𝑘𝑡 subspaces.

Definition 2.3 The triple sequence ξi,ℓ,j = {(mi, nℓ, kj)} is called triple lacunary if there exist

three increasing sequences of integers such that

𝑚0 = 0, ℎ𝑖 = 𝑚𝑖 −𝑚𝑟−1 → ∞ as 𝑖 → ∞

and

𝑛0 = 0, ℎℓ = 𝑛ℓ − 𝑛ℓ−1 → ∞ as ℓ → ∞.

𝑘0 = 0, ℎ𝑗 = 𝑘𝑗 − 𝑘𝑗−1 → ∞ as 𝑗 → ∞.

Let 𝑚𝑖,ℓ,𝑗 = 𝑚𝑖𝑛ℓ𝑘𝑗, ℎ𝑖,ℓ,𝑗 = ℎ𝑖ℎℓℎ𝑗, and 𝜃𝑖,ℓ,𝑗 is determine by

𝐌𝑖,ℓ,𝑗 = {(𝑚, 𝑛, 𝑘):𝑚𝑖−1 < 𝑚 < 𝑚𝑖 and 𝑛ℓ−1 < 𝑛 ≀ 𝑛ℓ and 𝑘𝑗−1 < 𝑘 ≀ 𝑘𝑗},

𝑞𝑘 =𝑚𝑘𝑚𝑘−1

, 𝑞ℓ =𝑛ℓ𝑛ℓ−1

, 𝑞𝑗 =𝑘𝑗

𝑘𝑗−1.

Let 𝐹 = (𝑓𝑚𝑛𝑘) be a 𝑚𝑛𝑘-sequence of Musielak Orlicz functions such that

lim𝑢→0+sup𝑚𝑛𝑘𝑓𝑚𝑛𝑘(𝑢) = 0. Throughout this paper 𝜒𝐎𝑢𝑣𝑀3 -convergence of 𝑝-metric of 𝑚𝑛𝑘-

sequence of Musielak Orlicz function determinated by 𝐹 will be denoted by 𝑓𝑚𝑛𝑘 ∈ 𝐹 for every

𝑚, 𝑛, 𝑘 ∈ ℕ.

The purpose of this paper is to introduce and study a concept of triple lacunary strong

𝜒𝐎𝑢𝑣𝑀3 -convergence of 𝑝-metric with respect to a 𝑚𝑛𝑘-sequence of Musielak Orlicz function.

We now introduce the generalizations of triple lacunary strongly 𝜒𝐎𝑢𝑣𝑀3 -convergence of

𝑝-metric with respect a 𝑚𝑛𝑘-sequence of Musielak Orlicz function and investigate some

inclusion relations.

Page 5: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-56-

Let 𝐎 denote a sequence of the matrices 𝐎𝑢𝑣𝑀 = (𝑎𝑘1 𝑘𝑟ℓ1 ℓ𝑠𝑚1 𝑚𝑟𝑛1 𝑛𝑠,𝑘1,𝑘2,
,𝑘𝑡(𝑢𝑣𝑀)) of

complex numbers. We write for any sequence 𝑥 = (𝑥𝑚𝑛𝑘),

𝑊𝑖𝑗(𝑢𝑣) = 𝐎𝑖𝑗𝑢𝑣𝑀(𝑥) = ∑

∞

𝑚1 𝑚𝑟

∑

∞

𝑛1 𝑛𝑠

∑

∞

𝑘1,𝑘2,
,𝑘𝑡

(𝑎𝑘1 𝑘𝑟ℓ1 ℓ𝑠𝑚1 𝑚𝑟𝑛1 𝑛𝑠(𝑢𝑣𝑀)) ⋅

((𝑚1 𝑚𝑟 + 𝑛1 𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)! |𝑥𝑚1 𝑚𝑟𝑛1 𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|)1/𝑚1 𝑚𝑟+𝑛1 𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡

if it exits for each 𝑖𝑗𝑞 and 𝑢𝑣𝑀. We 𝐎𝑢𝑣𝑀(𝑥) = (𝐎𝑖𝑗𝑞𝑢𝑣𝑀(𝑥))

𝑖𝑗𝑞, 𝐎𝑥 = (𝐎𝑢𝑣𝑀(𝑥))

𝑢𝑣𝑀.

Definition 2.4 Let ÎŒ be a valued measure on ℕ × ℕ × ℕ and F = (fm1
mrn1
nsk1,k2,
,ktijq

) be a

mnk-sequence of Musielak Orlicz function , A denote the sequence of four dimensional infinte

matrices of complex numbers and X be locally convex Hausdorff topological linear space whose

topology is determined by a set of continuous semi norms η and

(X, ‖(d(x111, 0), d(x122, 0), 
 , d(xm1,m2,
mr−1n1,n2,
ns−1k1,k2,
,kt−1 , 0))‖p) be a p-metric

space, q = (qijq) be triple analytic sequence of strictly positive real numbers.

By w3(p − X) we denote the space of all sequences defined over

(X, ‖(d(x111, 0), d(x122, 0), 
 , d(xm1,m2,
mr−1n1,n2,
ns−1k1,k2,
,kt−1 , 0))‖p)ÎŒ

.

In the present paper we define the following sequence spaces:

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111), 𝑑(𝑥122),
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1))‖𝑝]𝜇

= 𝜇lim𝑟𝑠𝑡[𝑓𝑖𝑗𝑞(‖𝑁𝜃

𝛌(𝑥), , (𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝)]𝑞𝑖𝑗𝑞

≥ 𝜖 = 0,

where

𝑁𝜃𝛌(𝑥) =

1

ℎ𝑟𝑠𝑡𝛌 ∑

𝑖∈𝐌𝑟𝑠𝑡

∑

𝑗∈𝐌𝑟𝑠𝑡

∑

𝑞∈𝐌𝑟𝑠𝑡

𝜂𝐎𝑖𝑗𝑢𝑣𝑀 (((𝑚1 𝑚𝑟 + 𝑛1 𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)!

|𝑥𝑚1 𝑚𝑟𝑛1 𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|)1/𝑚1 𝑚𝑟+𝑛1 𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡

),

uniformly in 𝑢, 𝑣, 𝑀

[Λ𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

Page 6: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-57-

= 𝜇sup𝑟𝑠𝑡[𝑓𝑢𝑣𝑀(‖𝑁𝜃

𝛌(𝑥), (𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝)]𝑞𝑖𝑗𝑞

≥ 𝑘 = 0,

where 𝑒 =

(

1 1 ⋯11 1 ⋯1...1 1 ⋯1

)

.

The main aim of this paper is to introduce the idea of summability of triple lacunary

sequence spaces in 𝑝-metric spaces using a three valued measure. We also make an effort to

study 𝜇-of lacunary triple sequences with respect to a sequence of Musielak Orlicz function in

𝑝-metric spaces and three valued measure 𝜇. We also plan to study some topological properties

and inclusion relation between these spaces.

3. MAIN RESULTS

Proposition 3.1 Let Ό be a three valued measure,

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

and

[Λ𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

are linear spaces.

Proof. It is routine verification. Therefore the proof is omitted.

The inclusion relation between

[𝛘𝐀𝐟𝐍𝛉

𝛂𝟑𝐪𝛈

, ‖(𝐝(𝐱𝟏𝟏𝟏, 𝟎), 𝐝(𝐱𝟏𝟐𝟐, 𝟎), 
 , 𝐝(𝐱𝐊𝟏,𝐊𝟐, 𝐊𝐫−𝟏𝐧𝟏,𝐧𝟐, 𝐧𝐬−𝟏𝐀𝟏,𝐀𝟐,
,𝐀𝐭−𝟏 , 𝟎))‖𝐩]𝛍

and

[𝚲𝐀𝐟𝐍𝛉

𝛂𝟑𝐪𝛈

, ‖(𝐝(𝐱𝟏𝟏𝟏, 𝟎), 𝐝(𝐱𝟏𝟐𝟐, 𝟎),
 , 𝐝(𝐱𝐊𝟏,𝐊𝟐, 𝐊𝐫−𝟏𝐧𝟏,𝐧𝟐, 𝐧𝐬−𝟏𝐀𝟏,𝐀𝟐,
,𝐀𝐭−𝟏 , 𝟎))‖𝐩]𝛍

Page 7: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-58-

Theorem 3.1 Let Ό be a three valued measure and A be a mnk-sequence the four dimensional

infinite matrices Auv = (ak1
krℓ1
ℓsm1
mrn1
nsk1,k2,
,kt(uvw)) of complex numbers and F = (fmnk

ijq) be

a mn-sequence of Musielak Orlicz function. If x = (xmnk) triple lacunary strong Auvw-

convergent of orer α to zero then x = (xmnk) triple lacunary strong Auvw-convergent of order

α to zero with respect to mnk-sequence of Musielak Orlicz function, (i.e)

[𝜒𝐎𝑁𝜃

𝛌3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

⊂ [𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

Proof. Let F = (fmnkijq) be a mnk-sequence of Musielak Orlicz function and put supfmnk

ijq (1) =T. Let

𝑥 = (𝑥𝑚𝑛𝑘) ∈ [𝜒𝐎𝑁𝜃𝛌

2𝑞𝜂, ‖(𝑑(𝑥11, 0), 𝑑(𝑥12, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

and 𝜖 > 0. We choose 0 < 𝛿 < 1 such that 𝑓𝑚𝑛𝑘𝑖𝑗𝑞 (𝑢) < 𝜖 for every 𝑢 with 0 ≀ 𝑢 ≀

𝛿 (𝑖, 𝑗, 𝑞 ∈ ℕ). We can write

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

= [𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

+

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

where the first part is over ≀ 𝛿 and second part is over > 𝛿. By definition of Musielak Orlicz

function of 𝑓𝑚𝑛𝑘𝑖𝑗𝑞

for every 𝑖𝑗𝑞, we have

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

≀ 𝜖𝐻2 + (3𝑇𝛿−1)𝐻2 ⋅ [𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

Therefore

𝑥 = (𝑥𝑚𝑛𝑘) ∈ [𝜒𝐎𝑓𝑁𝜃𝛌

3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

Page 8: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-59-

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

Theorem 3.2 Let Ό be a three valued measure and A be a mnk-sequence of the four dimensional

infinite matrices Auvw = (ak1
krℓ1
ℓsm1
mrn1
ns(uvw)) of complex numbers, q = (qijq) be a mnk-

sequence of positive real numbers with 0 < infqijq = H1 ≀ supqijq = H2 > ∞ and F = (fmnkijq)

be a mnk-sequence of Musielak Orlicz function. If limmu,v,w→∞infijqfijq(uvw)

uvw> 0, then

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

= [𝜒𝐎𝑁𝜃

𝛌3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0),⋯ , 𝑑(𝑥𝑚1,𝑚2,⋯𝑚𝑟−1𝑛1,𝑛2,⋯𝑛𝑠−1𝑘1,𝑘2,⋯,𝑘𝑡−1 , 0))‖

𝑝]𝜇

.

Proof. If lim𝑢,𝑣,𝑀→∞inf𝑓𝑖𝑗𝑞𝑓𝑖𝑗𝑞(𝑢𝑣𝑀)

𝑢𝑣𝑀> 0, then there exists a number 𝛜 > 0 such that

𝑓𝑖𝑗𝑞(𝑢𝑣𝑀) ≥ 𝛜𝑢 for all 𝑢 ≥ 0 and 𝑖, 𝑗, 𝑞 ∈ ℕ. Let

𝑥 = (𝑥𝑚1  𝑚𝑟𝑛1 𝑛𝑠𝑘1, 𝑘2, 
 , 𝑘𝑡) ∈ [𝜒𝐎𝑓𝑁𝜃𝛌

3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

Clearly

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

≥ 𝛜 [𝜒𝐎𝑁𝜃

𝛌3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

.

Therefore

𝑥 = (𝑥𝑚1  𝑚𝑟𝑛1 𝑛𝑠𝑘1, 𝑘2, 
 , 𝑘𝑡) ∈ [𝜒𝐎𝑁𝜃𝛌

3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

By using Theorem 3.1, the proof is complete.

We now give an example to show that

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

≠ [𝜒𝐎𝑁𝜃

𝛌3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

Page 9: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-60-

in the case when 𝛜 = 0. Consider 𝐎 = 𝐌, unit matrix,

𝜂(𝑥) = ((𝑚1⋯𝑚𝑟 + 𝑛1⋯𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)!

|𝑥𝑚1 𝑚𝑟𝑛1 𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|)1/𝑚1⋯𝑚𝑟+𝑛1⋯𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡

, 𝑞𝑖𝑗𝑞 = 1

for every 𝑖, 𝑗, 𝑞 ∈ ℕ and

𝑓𝑚𝑛𝑘𝑖𝑗𝑞 (𝑥) =

|𝑥𝑚1 𝑚𝑟𝑛1 𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|1/((𝑚1 𝑚𝑟+𝑛1 𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡)(𝑖+1)(𝑗+1)(𝑞+1))

((𝑚1 𝑚𝑟 + 𝑛1 𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)!)1/𝑚1 𝑚𝑟+𝑛1 𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡

(𝑖, 𝑗, 𝑞 ≥ 1, 𝑥 > 0)

in the case 𝛜 > 0. Now we define 𝑥𝑖𝑗𝑞 = ℎ𝑟𝑠𝑡𝛌 if 𝑖, 𝑗, 𝑞 = 𝑚𝑟𝑛𝑠𝑘𝑡 for some 𝑟, 𝑠, 𝑡 ≥ 1 and 𝑥𝑖𝑗𝑞 =

0 otherwise. Then we have,

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

→ 1

as 𝑟, 𝑠, 𝑡 → ∞

and so

𝑥 = (𝑥𝑚1 𝑚𝑟𝑛1 𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡) ∉ [𝜒𝐎𝑁𝜃𝛌

3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

In this section we introduce natural relationship between 𝜇 be a three valued measure of

triple lacunary 𝐎𝑢𝑣𝑀- statistical convergence of order 𝛌 and 𝜇 be a three valued measure of

triple lacunary strong 𝐎𝑢𝑣𝑀-convergence of order 𝛌 with respect to 𝑚𝑛𝑘-sequence of Musielak

Orlicz function.

Definition 3.1 Let Ό be a three valued measure and Ξ be a triple lacunary mnk-sequence. Then

a mnk-sequence x = (xm1
mrn1
nsk1,k2,
,kt) is said to be Ό-lacunary statistically convergent of

order α to a number zero if for every ϵ > 0, ÎŒ(limmrst→∞hrst−α|KΞ(ϵ)|) = 0, where |KΞ(ϵ)|

denotes the number of elements in

𝐟𝜃(𝜖) = 𝜇 {(𝑖, 𝑗, 𝑞) ∈ 𝐌𝑟𝑠𝑡: ((𝑚1⋯𝑚𝑟 + 𝑛1⋯𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)! ⋅

|𝑥𝑚1 𝑚𝑟𝑛1 𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|)1/𝑚1⋯𝑚𝑟+𝑛1⋯𝑛𝑠+𝑘1,𝑘2,⋯,𝑘𝑡

≥ 𝜖 = 0}.

The set of all triple lacunary statistical convergent of order 𝛌 of 𝑚𝑛𝑘 − sequences is

denoted by (𝑆𝜃𝛌)𝜇.

Page 10: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-61-

Let 𝜇 be a three valued measure and 𝐎𝑢𝑣𝑀 = (𝑎𝑘1⋯𝑘𝑟ℓ1⋯ℓ𝑠𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡(𝑢𝑣𝑀)) be an four

dimensional infinite matrix of complex numbers. Then a 𝑚𝑛𝑘-sequence 𝑥 =

(𝑥𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡) is said to be 𝜇-triple lacunary 𝐎-statistically convergent of order 𝛌 to

a number zero if for every 𝜖 > 0, 𝜇(lim𝑟𝑠𝑡→∞ℎ𝑟𝑠𝑡−𝛌|𝐟𝐎𝜃(𝜖)|) = 0, where |𝐟𝐎𝜃(𝜖)| denotes the

number of elements in

𝐟𝐎𝜃(𝜖) = 𝜇 {(𝑖, 𝑗, 𝑞) ∈ 𝐌𝑟𝑠𝑡: ((𝑚1⋯𝑚𝑟 + 𝑛1⋯𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)! ⋅

|𝑥𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|)1/𝑚1⋯𝑚𝑟+𝑛1⋯𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡

≥ 𝜖 = 0}.

The set of all triple lacunary 𝐎-statistical convergent of order 𝛌 of 𝑚𝑛𝑘-sequences is

denoted by (𝑆𝜃𝛌(𝐎))

𝜇.

Definition 3.2 Let Ό be a three valued measure and A be a mnk-sequence of the four

dimensional infinite matrices Auvw = (ak1⋯krℓ1⋯ℓsm1⋯mrn1⋯nsk1,k2,
,kt(uvw)) of complex numbers and

let q = (qijq) be a mnk-sequence of positive real numbers with 0 < infqijq = H1 ≀ supqijq =

H2 < ∞. Then a mnk-sequence x = (xm1⋯mrn1⋯nsk1,k2,
,kt) is said to be ÎŒ-lacunary Auvw-

statistically convergent of order α to a number zero if for every ϵ > 0,

ÎŒ(limrst→∞hrst−α|KAΞη(ϵ)|) = 0, where |KAΞη(ϵ)| denotes the number of elements in

𝐟𝐎𝜃𝜂(𝜖) = 𝜇 {(𝑖, 𝑗, 𝑞) ∈ 𝐌𝑟𝑠𝑡: ((𝑚1⋯𝑚𝑟 + 𝑛1⋯𝑛𝑠 + 𝑘1, 𝑘2, 
 , 𝑘𝑡)! ⋅

|𝑥𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡|)1/𝑚1⋯𝑚𝑟+𝑛1⋯𝑛𝑠+𝑘1,𝑘2,
,𝑘𝑡

≥ 𝜖 = 0}.

The set of all 𝜇-lacunary 𝐎𝜂-statistical convergent of order 𝛌 of 𝑚𝑛𝑘-sequences is

denoted by (𝑆𝜃𝛌(𝐎, 𝜂))

𝜇.

The following theorems give the relations between 𝜇-lacunary 𝐎𝑢𝑣𝑀-statistical

convergence of order 𝛌 and 𝜇-lacunary strong 𝐎𝑢𝑣𝑀-convergence of order 𝛌 with respect to a

𝑚𝑛𝑘-sequence of Musielak Orlicz function.

Theorem 3.3 Let Ό be a three valued measure and F = (fijq) be a mnk-sequence of Musielak

Orlicz function. Then

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

⊆ [𝜒𝐎𝑆𝜃

𝛌3𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2,⋯𝑚𝑟−1𝑛1,𝑛2,⋯𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

if and only if 𝜇 (lim𝑖𝑗𝑞→∞𝑓𝑖𝑗𝑞(𝑢)) > 0, (𝑢 > 0).

Page 11: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-62-

Proof. Let 𝜖 > 0 and 𝑥 = (𝑥𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡) ∈ [𝜒𝐎𝑓𝑁𝜃𝛌

3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

. If 𝜇 (lim𝑖𝑗𝑞→∞𝑓𝑖𝑗𝑞(𝑢)) > 0, (𝑢 > 0), then

there exists a number 𝑑 > 0 such that 𝑓𝑖𝑗𝑞(𝜖) > 𝑑 for 𝑢 > 𝜖 and 𝑖, 𝑗, 𝑞 ∈ ℕ. Let

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

≥ ℎ𝑟𝑠𝑡−𝛌𝑑𝐻1𝐟𝐎𝜃𝜂(𝜖).

It follows that

[𝜒𝐎𝑓𝑆𝜃

𝛌3𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

Conversely, suppose that 𝜇 (lim𝑖𝑗𝑞→∞𝑓𝑖𝑗𝑞(𝑢)) > 0 does not hold, then there is a number

𝑡 > 0 such that 𝜇 (lim𝑖𝑗𝑞→∞𝑓𝑖𝑗(𝑡)) = 0. We can select a lacunary 𝑚𝑛-sequence 𝜃 =

(𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1, 𝑘2, 
 , 𝑘𝑡) such that 𝑓𝑖𝑗𝑞(𝑡) < 3−𝑟𝑠𝑡 for any 𝑖 > 𝑚1⋯𝑚𝑟 , 𝑗 >

𝑛1⋯𝑛𝑠, 𝑘 > 𝑘1, 𝑘2, 
 , 𝑘𝑡. Let 𝐎 = 𝐌, unit matrix, define the 𝑚𝑛𝑘-sequence 𝑥 by putting 𝑥𝑖𝑗𝑞 =

𝑡 if

𝑚1, 𝑚2, ⋯𝑚𝑟−1𝑛1, 𝑛2, ⋯𝑛𝑠−1𝑘1, 𝑘2, 
 , 𝑘𝑡−1 < 𝑖, 𝑗, 𝑞 <

𝑚1, 𝑚2,  𝑚𝑟𝑛1, 𝑛2, 
 𝑛𝑠𝑘1, 𝑘2, 
 , 𝑘𝑡 +𝑚1,𝑚2,  𝑚𝑟−1𝑛1, 𝑛2, 
 𝑛𝑠−1𝑘1, 𝑘2, 
 , 𝑘𝑡−12

and 𝑥𝑖𝑗𝑞 = 0 if

𝑚1, 𝑚2,  𝑚𝑟𝑛1, 𝑛2, 
 𝑛𝑠𝑘1, 𝑘2, 
 , 𝑘𝑡 +𝑚1,𝑚2,  𝑚𝑟−1𝑛1, 𝑛2, 
 𝑛𝑠−1𝑘1, 𝑘2, 
 , 𝑘𝑡−1

2

≀ 𝑖, 𝑗, 𝑞 ≀ 𝑚1,𝑚2, ⋯𝑚𝑟𝑛1, 𝑛2, ⋯𝑛𝑠𝑘1, 𝑘2, 
 , 𝑘𝑡.

We have

𝑥 = (𝑥𝑚1⋯𝑚𝑟𝑛1⋯𝑛𝑠𝑘1,𝑘2,
,𝑘𝑡) ∈ [𝜒𝐎𝑓𝑁𝜃𝛌

3𝑞𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 ,

𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

but 𝑥 ∉ [𝜒𝐎𝑆𝜃

𝛌3𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

.

Theorem 3.4 Let Ό be a three valued measure and F = (fijq) be a mnk-sequence of Musielak

Orlicz function. Then

Page 12: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-63-

[𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

⊇ [𝜒𝐎𝑆𝜃

𝛌3𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

if and only if 𝜇 (sup𝑢sup𝑖𝑗𝑞𝑓𝑖𝑗𝑞(𝑢)) < ∞.

Proof. Let

𝑥 ∈ [𝜒𝐎𝑆𝜃

𝛌3𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

.

Suppose that ℎ(𝑢) = sup𝑖𝑗𝑞𝑓𝑖𝑗𝑞(𝑢) and ℎ = sup𝑝𝑢ℎ(𝑢). Since 𝑓𝑖𝑗𝑞(𝑢) ≀ ℎ for all 𝑖, 𝑗, 𝑞

and 𝑢 > 0, we have for all 𝑢, 𝑣, 𝑀

[𝜒𝐎𝑆𝜃

𝛌3𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

≀ ℎ𝐻2ℎ𝑟𝑠𝑡−𝛌|𝐟𝐎𝜃𝜂(𝜖)| + |ℎ(𝜖)|

𝐻2 .

It follows from 𝜖 → 0 that

𝑥 ∈ [𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

Conversely, suppose that 𝜇 (sup𝑢sup𝑖𝑗𝑞𝑓𝑖𝑗𝑞(𝑢)) = ∞. Then we have

0 < 𝑢111 < ⋯ < 𝑢𝑟−1𝑠−1𝑡−1 < 𝑢𝑟𝑠𝑡 < ⋯, such that 𝑓𝑚𝑟𝑛𝑠𝑘𝑡(𝑢𝑟𝑠𝑡) ≥ ℎ𝑟𝑠𝑡𝛌 for 𝑟, 𝑠, 𝑡 ≥ 1. Let

𝐎 = 𝐌, unit matrix, define the 𝑚𝑛𝑘-sequence 𝑥 by putting 𝑥𝑖𝑗𝑞 = 𝑢𝑟𝑠𝑡 if 𝑖, 𝑗, 𝑞 =

𝑚1𝑚2⋯𝑚𝑟𝑛1𝑛2⋯𝑛𝑠 for some 𝑟, 𝑠, 𝑡 = 1,2, 
 and 𝑥𝑖𝑗𝑞 = 0 otherwise. Then we have

𝑥 ∈ [𝜒𝐎𝑆𝜃

𝛌3𝜂, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖

𝑝]𝜇

but

𝑥 ∉ [𝜒𝐎𝑓𝑁𝜃

𝛌3𝑞𝜂

, ‖(𝑑(𝑥111, 0), 𝑑(𝑥122, 0), 
 , 𝑑(𝑥𝑚1,𝑚2, 𝑚𝑟−1𝑛1,𝑛2, 𝑛𝑠−1𝑘1,𝑘2,
,𝑘𝑡−1 , 0))‖𝑝]𝜇

.

4. CONCLUSION

In this paper we have studied study some connections between 𝜇-lacunary strong 𝜒𝐎𝑢𝑣𝑀3 -

convergence with respect to a 𝑚𝑛𝑘 sequence of Musielak Orlicz function and 𝜇-lacunary

𝜒𝐎𝑢𝑣𝑀3 -statistical convergence, where 𝐎 is a sequence of four dimensional matrices 𝐎(𝑢𝑣𝑀) =

Page 13: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-64-

(𝑎𝑘1 𝑘𝑟ℓ1 ℓ𝑠𝑚1 𝑚𝑟𝑛1 𝑛𝑠(𝑢𝑣𝑀)) of complex numbers. The results of this of this paper are more general

than earlier results.

References

[1] T. Apostol, Mathematical Analysis, Addison-Wesley, London, 1978.

[2] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions,

Research and Reviews: Discrete Mathematical Structures, 1(2) (2014) 16-25.

[3] A. Esi, N. Subramanian and M.K.Ozdemir, Riesz triple probabilistic of almost lacunary

Cesaro C111 statistical convergence of 3 defined by a Musielak-Orlicz function. World

Scientofic News 116 (2019) 115-127.

[4] A. Esi, N.Subramanian and A.Esi, On triple sequence spaces of X3 of rough -statistical

convergence in probability defined by Musielak-Orlicz function of p-metric space.

World Scientofic News 132 (2019) 270-276.

[5] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global

Journal of Mathematical Analysis, 2(1) (2014) 6-10.

[6] A. Esi and E. Savas, On lacunary statistically convergent triple sequences in

probabilistic normed space. Appl. Math. and Inf. Sci. 9(5) (2015) 2529-2534.

[7] A. Esi, N. Subramanian and A. Esi, On triple sequence space of Bernstein operator of

rough λ-convergence Pre-Cauchy sequences. Proyecciones Journal of Mathematics,

36(4) (2017) 567-587.

[8] A. Esi, N. Subramanian and A. Esi, Triple rough statistical convergence of sequence of

Bernstein operators. Int. J. Adv. Appl. Sci. 4(2) (2017) 28-34.

[9] G. H. Hardy, On the convergence of certain multiple series. Proc. Camb. Phil. Soc. 19

(1917) 86-95.

[10] Deepmala, N. Subramanian and V. N. Mishra, Double almost (λmÎŒn) in χ2-Riesz space.

Southeast Asian Bulletin of Mathematics, 41(3) (2017) 385-395.

[11] Deepmala, L. N. Mishra and N. Subramanian, Characterization of some Lacunary χAuv2 -

convergence of order α with p-metric defined by mn sequence of moduli Musielak.

Appl. Math. Inf. Sci. Lett. 4(3) (2016) 111-118.

[12] A. Sahiner, M. Gurdal and F. K. Duden, Triple sequences and their statistical

convergence. Selcuk J. Appl. Math. 8(2) (2007) 49-55.

[13] N. Subramanian and A. Esi, Some New Semi-Normed Triple Sequence Spaces Defined

By A Sequence Of Moduli. Journal of Analysis & Number Theory, 3(2) (2015) 79-88.

Page 14: ÎŒ-lacunary X3Auvw-convergence defined by Musielak Orlicz ... · sequence spaces in -metric spaces using a three valued measure. We also make an effort to study 𝜇-of lacunary triple

World Scientific News 136 (2019) 52-65

-65-

[14] T. V. G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, Lacunary Triple

sequence 3 of Fibonacci numbers over probabilistic p-metric spaces. International

Organization of Scientific Research, 12(1), Version IV (2016), 10-16.

[15] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. Israel J. Math. 10 (1971)

379-390.

[16] P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and

Applied Mathematics, 65 Marcel Dekker, Inc. New York, 1981.

[17] J. Musielak, Orlicz Spaces, Lectures Notes in Math., 1034, Springer-Verlag, 1983.