-lamplran - repository.wima.ac.idrepository.wima.ac.id/1620/7/lampiran.pdf · program form menu...

65
-LAMPlRAN

Upload: dinhdung

Post on 03-Mar-2019

222 views

Category:

Documents


0 download

TRANSCRIPT

-LAMPlRAN

RANGKAXAN SOLENOID

+12V ... 12V

r-----~ " ~ " n'R'~"N"O Ie] L-!'1 N._:::-. L-'---.

u; I F640Nrro L-l ~ ..,.-

r" ~'''''" ___ < ~ '''''"''0 '~ I "

-----<IJ "

RANGKAIAN LIMIT SWITCH M ,~~'--------------

~---,

I RF540NfTO - L~_~ -rv

" • .....,.. -, '-.'f ...... ....,-

/'< (/'<,;,<"" RPACK ««<, -""\.

~'l' l11Ll11 ''''O_0J', l ;;::;::-.:tj~--:--:-.:--:-!--:--:-.:iiiiiii'i'i'i'i'i'i'i'i'i'i'i-::--:--:-':--:~-':~~~~"I.~!!!!~!!!!~Pi'WT2 P1.1fT2·EX ] 1 ~:L

Pi ,41St:! P1,&lIIAOST ----, =:~~

I r- "'f,~q -a ~W; C4 .-----u eANPP

I ~V' "p "9" + 5 V AT8tG61

r~ HEAOER e

cf,-:] ~IL

b.v PUSf-IBUTTON-SPST IS ~ r-' ? R2

~8'2k

r /7«-;'77< R PACK -.>«««

RANOItA.:tAN ROMUNIltAS I SERXAL

Lampiran A-I

Port 2.0

PortP2.1

Port P2.2

Port p2.3

U'A

U"A

,; R2 i .> 1 k

-,$.-

r '> -;- RESISTOR VAR ]:1<.

<'F!'"

<=:] T <" ..,.) ikES'ISTOR VAR

U7A

:~ R2

~_lk

'F."

RANGKAIAN SENSOR

•• V

ik! R5 DO

PHOTOCIOOE

+'V

! R5 1k>

.,,-

.5V

09 PHOTODIODE

L, 1k ~'>

-09

PHOTOOIODE

.'V ~ :> R5

"1.09 1 PHQ"TODIOOE

=.-

PortP2.4

Port P2.5

Port P2.6

Port P2.7

R2

...L" .,..

r 1 3 ~"> RESI$TOR VAR

I'

"""'"

U7. r ----, 0:::"

'"3"-'1 .,..

.5V

~ lk ~ R5

.,,-

0, PHOTODIODE

"'

"" PHOTaDIODE

t'¢.""

"'"

.5

09

PHOTODIODE

Lampiran A-2

Program Form Menu

procedure TForm2.BitBtn1 Click(Sender: TObject); begin formI.show; with form I do edit2.clear; end;

procedure TForm2.BitBtn2Click(Sender: TObject); begin form3.show; with form3 do edit2. Clear; end;

procedure TForm2.BitBtn3Click(Sender: TObject); begin form4.show; with form4 do edit2.Clear; end;

procedure TForm2.FormCreate(Sender: TObject); begin

n:=O; x: =64; end;

procedure TForm2. SpeedButton I Click(...';;ender: TObject); begin application. Terminate; end;

procedure TForm2.SpeedButton2Click(Sender: TObject); begin form5. QUickRep I.Preview; end;

procedure TForm2.SpeedButton3Click(Sender: TObject); begin form5. QuickRepI print; end;

Lampiran B-1

procedure TForm2.FormShow(Sender: TObject); begin forml.Hide; end;

end.

Listing Program Form Masuk

procedure TFormi.BitBtni Click(Sender: TObject); begin application. Terminate; end;

procedure TFormi.Timer2Timer(Sender: TObject); begin label5. Caption: =datetostr(date); end;

procedure TFormi.Timer3Timer(Sender: TObject); begin label6. Caption: =timetostr(time); end;

procedure TFormi.ComPortlRxChar(Sender: TObject; Count: integer); var s: string; begin

comportl.ReadStr(s, I); editl. Text: =s; if editl. Text= '9' then begin MessageDlg(LOCKER PENUH!II', mtlnformation, [mbOkj,O);

end else

begin fable I. First; table I. Edit; table I.Insert; table i.Fields [OJ.AsString: =edit2. Text; table 1. Fie Ids {l j.AsString: =table 2.Fields [1 j .AsString; fable i. Fields [2 j AsString: =timetostr(time); table i.Fields [3 j.AsString: =datetostr(date); table I. Fields [4 j.AsString: = 'Masuk'; table i.fields [5 j.asstring: =s; table I . Post; table i.Refresh; MessageDlg(Pintu Locker Ke '+ s + 'Telah TERBUKA "I', mtlnformation, [mbOkj,O);

Lampiran B-2

edit2.Clear; begin

with form4 do tablel.Refresh; with form3 do tablel.Refresh; with form5 do tablel.Refresh;

end; end;

end;

procedure TFormIFormClose(Sender: TObject; var Action: TCloseAction); begin comportl.Connected:=false; end;

procedure TForml.FormShow(Sender: TObject); begin tablel.Refresh; end;

procedure TForml.Edit2KeyPress(Sender: TObject; var Key: Char); var ada,ketemu: boolean; labellompat,lompat2;

begin ada: =false;

table2.First; while not (table2.Eoj) and not (ada) do

begin if table2.Fields[0 j.AsString=edit2. Text then

begin ada:=true; MessageDlg(' Anda sudah terdaftarl I', mtln/ormation, [mbOkj,O); end

else begin table2.next; end;

end; llwhile II end; Ilifkey

il goto lompat2;

ifada then begin ada:~alse;

ketemu: =false;

Lampiran B-3

table] .First; while not (tableI.Eoj) and not(ada) do

begin if ((tableI.Fields[O j.AsString=edit2. Text)) then begin

ada:=trne; if (table 1. Fields[ 4 ).AsString= 'Mas uk') then

begin MessageD/g(' Anda sudah punya loker! I', mtInformation, [mbOkj,O); ketemu:= true;

end else

begin

end else begin

MessageDIg(,Anda mall kelllar1f', mtlnformation, [mbOkj,O); ketemll:= false;

end

tableI.next; end;

end; j1while if not(ketemu) then

begin

end; end;

end.

messageDIg(' Anda Belum AKSESII', mtlnformation, [mbOkj,O); comportl. WriteStr(#65);

end;

Listing Program Form Perpanjangan

procedure TForm3. Timer 1 Timer(Sender: TObject); begin labell . Caption: =datetostr(date); end;

procedure TForm3. Timer2Timer(Sender: TObject); begin label2. Caption: =timetostr(time); end;

procedure TForm3.Edit1KeyPress(Sender: TObject; var Key: Char); begin edit2. Text: =copy(editl. Text, 1 ,1 0); end;

Lampiran B - 4

procedure TForm3.Edit2Change(Sender: TObject); begin table i.First; while not (tablei.Eof) do

begin if table i.Fields[0j.AsString=edit2. Text then

begin 15. Caption: =table1.Fields[5 j.AsString; label5. Caption: =table1.Fields [1 J .AsString; comport2. WriteStr(chr(strtoint(l5.Caption) + 48)); table i.First; table 1. Edit; table] .Insert; table i.Fields[Oj.AsString: =edit2. Text; tablei.Fields[l j.AsString: =labeI5.Caption; table 1. Fields[2 j.AsString: =timetostr(time); table 1. Fields [3 j.AsString: =datetostr(date); table1.Fields[4j.AsString:='Perpanjangan'; table 1. Fields [5 j.AsString: =15.Caption; tablei.Post; table i.Refresh;

Lampiran B - 5

MessageDlg(Locker Ke '+ 15.caption +' Telah TERBUKA!!!.'. mt1nformation. [mbOkJ.O);

end;

edit2.Clear; break;

end else begin

table i.Next; end;

begin withform1 do table i.Refresh;

withform4 do table i.Refresh;

withform5 do table] .Refresh;

end; end;

procedure TForm3.FormClose(Sender: TObject; var Action: TCloseAction): begin comport2.Connected: =false; end;

procedure TForm3.FormShow(Sender: TObject); begin tablel.Refresh; end;

end.

Listing program Form Keluar

procedure TForm4.TimerITimer(Sender: TObject); begin label3. Caption: =datetostr(date); end;

procedure TForm4.Timer2Timer(Sender: TObject); begin label4. Caption: =timetostr(time); end;

procedure TForm4.Edit2Change(Sender: TObject); begin

table I.First; while not (tablel.Eof) do

begin if table 1. Fields [0 j.AsString=edit2. Text then

begin

labeI5.Caption: =tableJ .Fields[5 j.AsString; label6. Caption: =table 1. Fields [I j.AsString; comport3. WriteStr(chr(strtoint(labeI5. Caption) +48)); tablel·first; tablel.Insert; table 1. Fields[Oj.A sString: =edit2. Text; table 1. Fields[I j.AsString: =labeI6.Caption; table 1. Fields [2 j.AsString: =timetostr(time); table I. Fields [3 j .AsString: =datetostr(date); table 1. Fields [4 j.AsString: = 'Keluar'; table I. Fields[5 j.AsString: =labeI5.Caption; tableI.Post; table I. Refresh;

Lampiran B - 6

MessageDlg('Pintu Locker Ke '+ label5.Caption + 'Telah TERBUKA I,,', mtlnformation.[mbOkj, 0); edit2.Clear; {close;} break; end else begin

end;

tableI.Next; end; end; begin withformI do table I.Refresh; withform3 do table] .Refresh; with form5 do tableI.Refresh; end;

procedure TForm4.FormClose(Sender: TObject; var Action: TCloseAction); begin comport3. Connected: ~false; end;

procedure TForm4.FormShow(Sender: TObject); begin tableI.Refresh; end;

Lampiran B - 7

Lampiran C- I

$incIude(reg51.inc) '*********************************************************************** , ;PROGRAM ASSEMBLY PERANCANGAN DAN PEMBUATAN LOKER OTOMATIS .*********************************************************************** ,

mulai:

org OOh ajmp mulai org 60h

;Program dimulai pada alamat OOh

mov pO,#OOOOOOOOb mov pI ,#Offh acall inisial

ulang: mov jnb clr mov cjne ajmp

a,#OOh ri,cekl ;cek ke limit switch n a,sbuf a,#41h,lopl pintul

,--------------------------------------------;ini uutuk mengecek limit switch ;--------------------------------------------------------.--------------------------------------------------cekl: jub pl.O,cek2

cJrpO,O

cek2: jub pl.l,cek3 elr pO. I

~ek3: jnb p 1.2,cek4 clrpO.2

!k4: jub p1.3,cek5 clr pOJ

k5: jub p 1.4,eek6 elr pOA

I

I

I

I

I

I

I

I

I

I

cek6: jnb pl.S,cek7 c1rpO.5

cek7: jnb pl.6,cek8 clrpO.6

cek8: jnb p 1.7 ,balik clrpO.7

balik: ajmp ulang

pintul: jnb p2.0,bukal ajmppintu2

bukal: setb pO.O mov a,#3lh acall kirim ajmp ulang

pintu2: jnb p2.1 ,buka2 ajmp pintu3

buka2: setb pO. 1 mova,#32h acall kirim ajmp ulang

pintu3: jnb p2.2,buka3 ajmppintu4

buka3: setb pO.2 mova,#33h acall kirim ajmp ulang

lopl: ajmp doorl

Lampiran c- 2

;cek sensor apa p2.0 ada barang kalau tidak ada lompat ke bukal ;tidak ada barang lompat ke pintu2

;buka solenoidl ; pindah isi 3lh ke A ;panggil kirim ;lompat keulang

;cek sensor apa p2.1 ada barang kalau tidak ada lompat ke buka2 ;tidak ada barang lompat ke pintu3 ;aktifkan solenoid2 ;pindahkan isi32h ke A

;cek sensor apa p2.2 ada barang kalau tidak ada lompat ke buka3

pintu4: jnb p2.3,buka4 ;cek sensor apa p2.3 ada barang kalau tidak ada lompat ke buka4 ajmp pintuS

buka4: setb pO.3 mova,#34h acall kirim ajmp ulang

pintuS: jnb p2.4,bukaS ;cek sensor apa p2.4 ada barang kalau tidak ada \ompat ke buka5

ajmp pintu6

buk:aS: setb pO.4 mova,#3Sh acall kirim ajmp ulang

Lampiran C- 3

pintu6: jnb p2.5,buka6 ;cek sensor apa p2.S ada barang kalau tidak ada lompat ke buk:a6 ajmppintu7

buka6: setb pO.S mova,#36h acall kirim ajmp ulang

pintu7: jnb p2.6,buka7 ;cek sensor apa p2.6 ada barang kalau tidak ada lompat ke buka7 ajmp pintu8

buka7: setb pO.6 mova,#37h acall kirim ajmp ulang

pintu8: jnb p2.7,buka8 ;cek sensor apa p2.7 ada barang kalau tidak ada lompat ke buka8 ajmp kirim_berita ;mengirim data ke delphi

buka8: setb pO. 7 mov a,#38h acall kirim ajmp ulang

-------------------------------------------------------------------------------------------------------------, ; Perintah untuk mengirim data ke Delphi ,-------------------------------------------------------------------------------------------------------------

kirim _ berita: mov a,#39h acall kirim ;mengirim data ajmp ulang

jauh: aJmp ulang

"-------------------------------------------------------------------------------------------------------------, ;perintah untuk keluar atau memperpanjang loker -------------------------------------------------------------------------------------------------------------,

doorl: CJne a,# 31 h,door2 setb pO.O aJmp ulang

door2: CJne a,#32h,door3

Lampiran C- 4

setb pO.1 aJmp ulang

door3: CJne a,#33h,door4 setb pO.2 aJmp ulang

door4: cJne a,#34h,door5 setb pOJ aJmp ulang

door5: cJne a,#35h,door6 setb pO.4 aJmp ulang

door6: CJne a,#36h,door7 setb pO.5 aJmp ulang

door7: cJne a.#37h,door8 setb 90.6 aJmp ulang

door8: CJne a,#38hjauh setb pO.7 aJmp ulang

,-------------------------------------------------------------------------------------------------------------;Mengirim data ke delphi ,-----------------------------------------------------------------.-------------------------------------------kirim: mov

jnb elf ret

sbuf,a ti,$ ti

,-------------------------------------------------------------------------------------------------------------;inisialisasi port serial ,-------------------------------------------------------------------------------------------------------------inisial: anI tmod,#Oth

orl tmod,#20h mov th I ,#Ofab mov tll ,#Ofah mov scon,#50h mov pcon,#80h setb trl elf ti

clr ri ret end

Lampiran C- 5

1~23; Rev 11; 2/03

~~I"'JXI~~I +5V-Powered, Multichannel RS-232

Drivers/Receivers ____________ ~GeneraIOescription The MAX220--MAX249 family of line drivers/receivers is intended for all EINTIA-232E and V.28/V.24 communica­tions interfaces, particularly applications where ± 12V is not available. These parts are especially useful in battery-powered sys­tems, since their low-power shutdown mode reduces power dissipation to less than 5/lW. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for appli­cations where printed circuit board space is critical.

__________________ AppHcations Portable Computers

Low-Power Modems

Interface Translation

Sattery-Powered RS-232 Systems

Multidrop RS-232 Networks

Power No. 01 Nominal stiCH

______________________ Features Superior to Bipolar • Operate from Single +5V Power Supply

(+5V and +12V-MAX231JMAX(39) • Low-Power Receive Mode in Shutdown

(MAX22l1MAX242)

• Meet All EIAITlA.-232E and V.28 Specifications • MuHlple Drivers and Receivers • 3-State Driver and Receiver OUtputs • Open-Line Detection (MAX243)

Ordering 'aformation PART TEMP RANGE PIN-PACKAGE

MAX220CPE O°C to +70°C 16 Plastic DIP

MAX220CSE OOC to +70°C 16 Narrow SO

MAX220CWE OOC to +70°C 16 Wide SO

MAX220C/D O°C to + 70"C Dice'

MAX220EPE -400C to +85°C 16 Plastic DIP

MAX220ESE -40°C to +85°C 16 Narrow SO

MAX220EWE -40"C to +85°C 16 Wide SO

MAX220EJE -40°C to +85°C 16CERDIP

MAX220MJE -55°C to +125°C 16CERDIP

Ordering Information continued at end of data sheet. 'Contact factory for dice specifICations.

Selection Table Ax

'art ~oppI)' flS.232 No. 01 Cap. Value a_ _ in Data Ra1e

DoiventlRx Ext. Ca~ 1I,f} lumber SIa1e SHDH (kbps) features IAX220 +5 212 4 0.1 No 120 UItra-Iow-jlOWer, induslrJ'-S..tandard oinout 1= +5 212 4 0.1 Yes 200 LOoN-power shutdown IAXm (MAX213) +5 4/5 4 1.0(0.1) Yes t/' 120 WJ<241 and receivers active in shlJtda.Nn IAX225 +5 5/5 0 - Yes t/' 120 Available in SO IAX230 (MAX200) +5 5/0 4 1.0 (0.1) Yes - 120 5 drivers with shutdoYin 1AX231 (MAX201) +5 and 212 2 1.0(0.1) No - 120 Standard +S/+ 12V or battery supplies;

+7.5 to + 13.2 same functions as MAX232 IAX232 (MAX202) +5 212 4 1.0(0.1) No - 120(64) Industry standard AX232A +S 212 4 0.1 No - 200 Higher slew rate, small caps AX233 (MAX203) +5 212 0 - No - 120 No external caps AX233A +S 212 0 - No 200 No external caps high slew rate AX234 (MAX204) +5 4!tl 4 1.0(0.1) No 120 Replaces 1488 1\)(235 (MAX20S) +S 5/5 0 - Yes - 120 No extemal caps 'IX236 (MAX206) +5 413 4 1.0(0.1) Yes - 120 Shutdown, three state '1)(237 (MAX207) +5 S!3 4 1.0(0.1) No - 120 Complements IBM PC serial port 'IX238 (MAX208) +S 4/4 4 1.0(0.1) No - 120 Replaces 1488 and 1489 'IX239 (MAX200) +S and 3/5 2 10(0.1) No - 120 Standard +5/+ 12V or battery &Jpplies;

+7.5 to + 13.2 single-package solution for IBM PC serial port \)(240 +5 5/5 4 1.0 Yes - 120 DIP or "a!pack package \)(241 (MAX211) +5 4/5 4 1.0 (0.1) Yes - 120 Com.Jllete IBM PC serial port 1)(242 +S 212 4 0.1 Yes t/' 200 Separate shutdown and enable \X243 +5 212 4 0.1 No - 200 Open-line detectlor1 simplifies cabling 0(244 +5 8110 4 1.0 No - 120 High slew rate '><245 +S 8110 0 - Yes t/' 120 f-figh slew rate, lnt caps, two shutcfolM1 modes .><246 +5 8110 0 - Yes t/' 120 High slew rate, lnt caps, ttlree shutdown modes X247 +5 8!9 0 - Yes t/' 120 High slew rate, int caps, nine operating modes X24B +S B/8 4 1.0 Yes t/' 120 High slew rate, selective half-chip enables X249 +5 6/10 4 1.0 Yes t/' 120 Available in quad flatpack: package

".AXIAIII _________________________ Maxim Integrated Products

'r pricing, delivery, and ordering information, please contact Maxim/Dallas Direct/ at UlB-629-4642, or visit Maxim's website at www.maxim-ic.com.

+5V·Powered, Multichannel RS·232 Drivers/Receivers

ABSOLUTE MAXIMUM RATINGS-MAX22012221232A1233A12421243 Supply Voltage (Vee) .. Input Voltages

.. ..... ·0.3V to +6V 20-Pin Plastic DIP (derate 8.00mW/"C above +70OC) ..44OmW

TIN .......... .. RIN (Except MAX220) . RIN (MAX220) ... TOUT (Except MAX220) (Note 1). TOUT (MAX220) ....

Output Voltages

.... -0.3V to (Vee - 0.3V) .. ............ ±30V

. ................. ±2SV .............. ±1SV ............ ±13.2V

16-Pin NarrON SO (derate 8.7OmW/"C above +700c) ... 696mW 16-Pin Wide SO (derate 9.S2mWfC above +70OC) ...... 762mW 18-Pin Wide SO (derate 9.52mWfC above +70OC) .... ..762mW 20-Pin Wide SO (derate 10.0OmW/"C above + 70"C) ... .8oOmw 20-Pin SSOP (derate 8.00mW/"C above +70°C) .......... 64OmW 16-Pin CERDIP (derate 10.00mW/"C above + 70°C) ..... 80OmW 18-Pin CERDIP (derate lO.S3mW/"C above + 70"C) ..... B42mW

TOUT.... .. .. ±1SV Operating Temperature Ranges ROUT.. .. ......................................... -0.3V to (Vee + 0.3V) MAX2... ..AC __ . MAX2 __ C __ ............................. O"C to +70°C

Driver/Receiver Output Short Circuited to GND ......... Continuous MAX2... _AE __ . MAX2 __ E __ .......................... -40"C to +85°C Continuous Power Dissipation (T A = +70°C) MAX2.....AM __ . MAX2 __ M __ ....................... -55°C to +12SoC

16-Pin Plastic DIP (derate 10.53mW/"C above +70"C) .... B42mW Storage Temperature Range .................... ..·65°C to + 160°C 18-Pin Plastic DIP (derate 11.11mWrC above +70OC) .... 889mW Lead Temperature (soldering. 108).............. . .. +300°C

Note 1: Input voltage measured with TOUT in high-impedance state. SHDN or Vee = OV. Note 2: For the MAX220. V+ and V- can have a maximum magnitude of 7V. but their absolute difference cannot exceed 13V. Stresses beyond those listed under ~ Absolute Maximum Ratings" may cause permanent damage to the deVice. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periCKis may affect device reliability.

ELECTRICAL CHARACTERISTICS-MAX22OI222I232A1233A12421243 Vee = +sv ±10%. C1-C4 = 0.1~F. MAX220. C1 = a.a47~F. C2~4 = a.33~F. TA = TMIN to TMAX. unless otherwise noted.)

PARAMETER CONDITIONS MIN TYP MAX UNITS

RS-232 TRANSMITTERS

Output Voltage Swing All transmitter outputs loaded wtth 3ill to GND ±S ±8 V

Input Logic Threshold Low 1.4 0.8 V

I nput Logic Threshold High All devices except MAX220 2 1.4

MAX220: Vee = S.OV V

2.4

Logic Pull-Up/Input Current All except MAX220. normal operation S 40

SHDN ~ av. MAX222/242. shutdown. MAX220 ±0.01 ±1 ~A

Jutput Leakage Current Vee = S.5V. SHDN = OV. VOUT = ±15V. MAX222/242 ±0.01 ±10

Vee = SHDN = OV. VOUT = ± 15V ±0.01 ±10 jJA

Jata Rate 200 116 kbps

ransmitter Output Resistance Vee ~ V+ ~ V- = OV. VOUT = ±2V 300 10M n Jutput Short-Circuit Current VOUT = OV ±7 ±22 mA

18-232 RECEIVERS

IS-232 Input Voltage Operating Range ±30 V

S-232 Input Threshold Low Vee = SV All except MAX243 R21N 0.8 1.3

V MAX243 R21N (Note 2) ·3

S-232 Input Threshold High Vee~SV All except MAX243 R21N 1.8 2.4

V MAX243 R21N (Note 2) -O.S -0.1

,·232 Input HystereSis All except MAX243. Vee ~ SV. no hysteresis in shdn. 0.2 O.S 1

V MAX243 1

,-232 Input Resistance 3 5 7 kU

'L/CMOS Output Voltage Low lOUT = 3.2mA 0.2 0.4 V

L/CMOS Output Voltage High lOUT - -1 .omA 3.S Vee - 0.2 V

Sourcing Your ~ GND -2 -10 L/CMOS Output Short-Circurt Current mA

Shrinking Vour = Vee 10 30

________________________ .MAXI""

+5V-Powered!l Multichannel RS-232 Drivers!Receivers

ELECTRICAL CHARACTERISnCs-MAX22012221232A1233A12421243 (continued) (Vee=+5V±10% Cl--C4=O.I~F,MAX220,Cl =0.047~F C2-C4=033~F TA=TMINtoTMAX unlessotherwisenoted)

PARAMETER CONDITIONS MIN TYP MAX UNITS

TT[JCMOS Output Leakage Current SHDN = Vee or EN = Vee (SHDN = OV for MAX222), ±0.05 ±1D ~A OV" VOUT " Vee

EN Input Threshold Low MAX242 1.4 0.8 V

EN Input Threshold High MAX242 2.0 1.4 V

Operating Supply Vokage 4.5 5.5 V

No load MAX220 0.5 2

Vee Supply Current (SHDN = Vee), MAX222/232A/233A/242/243 4 10 rnA

Figures 5. 6.11.19 3k1110ad MAX220 12 both inputs MAX222J232A/233A/242J243 15

TA = +25°C 0.1 10

Shutdown Supply Current MAX222J242 TA = DoC to +70°C 2 50

TA = -400C to +85°C 2 50 ~A

TA = -55°C to + 125°C 35 100

SHDN Input Leakage Current MAX222J242 ±1 ~A

SHDN Threshold Low MAX222/242 1.4 0.8 V

SHDN Threshold High MAX222/242 2.0 1.4 V

CL = 50pF to 2500pF, MAX222J232A/233A/242/243 6 12 30 RL = 3kU to 7k.u.

Transition Slew Rate Vee = 5V. TA = +25OC. V/~s measured from +3V MAX220 1.5 3 30 to -3V or -3V to +3V

MAX222/232A/233A/242/243 1.3 3.5 Transmrtter Propagation Delay tpHLT

MAX220 4 10 TLL to RS-232 (Normal Operation).

MAX222/232A/233A/242/243 1.5 3.5 ~s

Figure 1 tpLHT MAX220 5 10

MAX222/232A/233A/242/243 0.5 1 Receiver Propagation Delay tpHLR

MAX220 0.6 3 RS-232 to TLL (Normal Operation).

MAX222J232A/233A/242J243 0.6 1 ~s

Figure 2 tpLHR MAX220 0.8 3

Receiver Propagation Delay tpHLS MAX242 0.5 10

~S-232 to TLL (Shutdown). Figure 2 MAX242 2.5 10 ~s

tpLHS

~eceiver-Output Enable Time. Figure 3 tEA MAX242 125 500 ns

~eceiver-Output Disable Time. Figure 3 tDR MAX242 160 500 ns

-ransrnrtter-Output Enable Time tET

MAX222/242, O.I~F caps 250 ~s SHDN Goes High). Figure 4 (includes Charge-pump start-up)

'ransmrtter-Output Disable Time tDT MAX222/242. O. 1 ~F caps 600 ns

SHDN Goes Low), Figure 4

ransmrtter + to - Propagation MAX222/232A/233A/242/243 300 tpHL T - tPLHT ns

lelay Difference (Normal Operation) MAX220 2000

eceiver + to - Propagation MAX222/232A/233A/242/243 100 tpHLR - tPLHR ns

'elay Difference (Normal Operation) MAX220 225

,te 3: MAX243 R20UT is guaranteed to be low when R21N is;, OV or is floating

3

+5V.Powered, Multichannel RS·232 Drivers/Receivers _________________ 'JYpical Operating Characteristics

MAX2201MAX222JMAX232A1MAX233A1MAX2421MAX243

10

8

6

~ 2 g 0 ~

~ -2 ~

a -4

-6

-8

-10

UUl'PUT VtllTASE YS. LOAD CU1111E1T

l~FJ

E1lHER Y+ OR vlOADED

vcc=t5V o.l~ '-NO LOAD ON I IHANSMlmn OUlPlJTS (EXCEPT MAX22Il, MAX233A)

I I I v- LOADED, NO LOAD ON v+ ,

o~ ~-~

V+ LOADED, NO LOAD ON V

o 10 15 20 25

LOAD CURRENT (mA)

11

10

'" .s 9 ~

i5 8 or or ~ u ~ 7 ~ ~ ~ ~ a 6

AVAUIU OUTPUT ClllIIBIT YS. DATA RATE

10 20 m ~ ~ 00

DATA RAIf (kbils/",,)

+lOV

+5V 2+5V ~

'" OV ;5

~ OV 0< .->

-lOV

V+ I-

v-

MAX222IIIAX242 U .. nME EXm. SIIUTOOWI

.....,. -'1~CAPi V+

~ ~ol~C~ i ID[

\-0 - 1ri \ t+ ~OJ~FCAPS

v-'-f-r-+-.L

5OO~S/div

.MAXIAt

+5V.Powered, Multichannel RS·232 Drivers/Receivers

ABSOLUTE MAXIMUM RATINGS-MAX2231MAX23o-MAX241 Vee ................ _ ................................ · ............ _ .. -0.3V to +6V

... (Vee - O.3V) to + 14V V+ V- ............ .. Input Voltages TIN .. RIN .......... ..

Output Voltages

.. ............ +0.3Vto -14V

. ......... -0.3V to (Vee + 0.3V) .. ............. ±30V

TOUT ... .. ............................. (V+ + 0.3V) to (V- - 0.3Y) ROUT.. ...... ........... .. ... -O.3V to (Vee + O.3Y)

Short-Circutt Duration, TOUT ...... .. ....... Continuous Continuous Power Dissipation (T A ~ + 70°C)

20-Pin Wide SO (derate 10 OOmWfC above + 70°C) ...... 80OmW 24-Pin Wide SO (derate 11.76mWfC above +70"C) ....... 941mW 28-Pin Wide SO (derate 12.5OmWfC above +70°C) ....... _ ..... lW 44-Pin Plastic FP (derate 11.11mWfC above +700C) ..... 889mW 14-Pin CERDIP (derate 9.00mwfC above +70°C) .......... 727mW 16-Pin CERDIP (derate 10.00mWfC above +700C) ........ 800mW 20-Pin CERDIP (derate 11.11mWfC above +700C) ........ B89mW 24-Pin Narrow CERDIP

(derate 12.5OmWfC above +700C) .............. 1W 24-Pin Sidebraze (derate 20 OmW/"C above +70°C) .......... 1.6W 2B-Pin SSOP (derate 9.52mW/oC above +70"C) ....... _ ..... 762mW

14-Pin Plastic DIP (derate 10.00mwfC above +700C) .... 800mW Operating Temperature Ranges 16-Pin Plastic DIP (derate 10.53mWfC above +70'C) ... .B42mW MAX2 __ C __ ...................... . ................... O°C to +70°C 2O-Pin Plastic DIP (derate 11.11mWfC above +700C) .... BB9mW MAX2 E ............. -40°C to +B5°C 24-Pin Narrow Plastic DIP MAX2 __ M __ ................ . ............... -55°C to +125'C

(derate 13.33mWfC above +70°C) ......... 1.07W Storage Temperature Range ........................... _65°C to +l60°C 24-Pin Plastic DIP (derate 9.09mWfC above +70°C) ..... 500mW Lead Temperature (soldering, lOs) ................................ +300°C 16-Pin Wide SO (derate 9.52mWI'C above +70°C) ....... 762mW

Stresses be}OOd those listed under "Absolute Maximun Ranngs" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications ;s not implied. Exposure to absofute ma>dmum rating CfX1ditions for extended pericx:Js may affect device reliability.

ELECTRICAL CHARACTERISTICS-MAX2231MAX23O-MAX241 (MAX223/230/232/234/236/237/238/240/241, Vee ; +5V ±10; MAX233/MAX235, Vee ~ 5V ±5%, Cl-C4 ~ 1.0~F; MAX231/MAX239, Vee ~ 5V ±10%; v+ ~ 7.5V to 13.2V; TA ~ TMIN to TMAJC unless otherwise noted.)

PARAMETER CONDITIONS MIN TYP MAX UNITS

Output Voltage Swing All transmitter outputs loaded wtth 3k.O. to ground ±5.0 ±7.3 V

MAX232/233 5 10

Vee Power-Supply Current No load,

MAX223/230/234-23B!240/241 7 15 rnA TA ~ +25°C

MAX231/239 0.4 1

V+ Power-Supply Current MAX231 1.B 5

rnA MAX239 5 15

Shutdown Supply Current MAX223 15 50

TA = +25'C MAX230/235/236/240/241

~A 1 10

Input Logic Threshold Low TIN; EN, SHDN (MAX233); EN, SHDN (MAX230/235-241) O.B V

TIN 2.0

Input Logic Threshold High EN, SHDN (MAX223); V

EN, SHDN (MAX230/235/236/240/241) 2.4

Logic Pull-Up Current TIN=OV 1.5 200 ~A

Receiver Input Voltage -30 30 V

Operating Range

MAXIM 5

+5V.Powered, Multichannel RS·232 Drivers!Receivers

ELECTRICAL CHARACTERISTICS-MAX2231MAX23O-MAX241 (continued) (MAX223/230/232/234/236/237/238/240/241. Vee = +5V ±10; MAX2331MAX235. Vee = 5V ±5%. C1-C4 = 1.0~F; MAX231IMAX239. Vee = 5V ±10%; v+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.)

PARAMETER CONDITIONS MIN TYP MAX UNITS

Normal operation SHDN = 5V (MAX223) 0.8 1.2

TA = +25°C. SHDN = OV (MAX235/236/240/241) RS-232 Input Threshold Low

Vee = 5V V Shutdown (MAX223)

SHDN =OV. 0.6 1.5 EN = 5V (R4IN. R5IN)

Normal operation SHDN = 5V (MAX223) 1.7 2.4

TA = +25°C. SHDN = OV (MAX235/236/240/241) RS-232 Input Threshold High V

Vee = 5V Shutdown (MAX223) SHDN =OV. 1.5 2.4 EN = 5V (R4IN. R5IN)

RS-232 Input Hysteresis Vee = 5V. no hysteresis in shutdown 0.2 0.5 1.0 V

RS-232 Input Resistance TA = +25°C. Vee = 5V 3 5 7 k.Q

nUCMOS Output Vo~age Low lOUT = 1.6mA (MAX231/232/233. lOUT = 3.2mA) 0.4 V

nUCMOS Output Vo~age High lOUT = -1mA 3.5 Vee - 0.4 V

nUCMOS Output Leakage Current OV 5 ROUT 5 Vee; EN = OV (MAX223);

0.05 ±10 IJA EN = Vee (MAX235-241 )

Normal MAX223 600 Receiver Output Enable Time

operation ns

MAX235/236/239/240/241 400

Normal MAX223 900 Receiver Output Disable Time ns

operation MAX235/236/239/240/241 250

RS-232IN to Normal operation 0.5 10

Propagation Delay nUCMOSOUT. SHDN=OV tpHLS 4 40 IJs CL = 150pF (MAX223) tpLHS 6 40

MAX223/MAX230/MAX234-241. TA = +25°C. Vee = 5V. RL = 3k.Q to 7k.Q. CL = 50pF to 2500pF. measured from 3 5.1 30 +3V to -3V or -3V to +3V

V/~s Transition Region Slew Rate MAX231/MAX232/MAX233. TA = +25°C. Vee = 5V. RL = 3k.Q to 7k.Q. CL = 50pF to 2500pF. measured from 4 30 +3V to -3V or -3V to +3V

Transmitter Output Resistance Vee = V+ = V- = OV. VOUT = ±2V 300 n

Transmitter Output Short-Circuit Current

±1D mA

6

+5V-Powered, Multichannel RS-232 Drivers/Receivers

________________ l'ypical Operating Characteristics

MAX223JMAX23~MAX241

8.5

8.0

~ ~ 75 g

7.0

6.5

-6.0

-6.5

-7.0

~

~ -7.5

-8.0

-8.5

-9.0

4.5

4.5

T1IAIISMITTER OUTPUT VOLTAIE (v1IIII 15. Vee

5.0 Vee (V)

TRAIISMITTER OUTPUT VOLTAIE (Va) I$. Vee

5.0

VeeM

.M.AXI.M

7.4

7.2

7.0

~ 6.8 ~

g 6.6

6.4

6.2

6.0 5.5

-6.0

-6.2

-6.4

·6.6 ~

:!" -6.8

-7.0

-72

-7.4

-7.6 5.5

T1IAIISMITTBI OUTPUT VOLTAIE (vUIII I$. LOAD CAPACITAICE AT

DIFFERUT DATA RATES

......... 1"-- V

l»<-v-< 1"-.... 1601<bilslsec / V f\. 6OI<bilsisec 2Okbi~sec

\ I TA:+25°C vee =+5V 1\ 3 TRANSMITT£RS lOADED At dkll I CH4:1111' \

i

500 1000 1500 2000 2500

lOAD CAPACITANCE (pF)

TRAlSlllTTEII OUTPUT VOLTAGE (Va) , I$. lOAD CAPACITAIICE AT

DlFFEREIT DATA RATES

T,:+25°C ~

f-Vee =+5V / f- ~ TRANSMITT£RS lOADED

Rl=3kn I / C1-C4-1111'

1~bilSIsec I / f-- 8Okbilslsoc ~ ./ ~ 2VKkbils/sec

/~ V ...... V./ V "'" ~ o 500 1000 1500 2000 2500

lOAD CAPACITANCE (pF)

V+, V· WHEI EXm .. SIRITDDWI 11!!F CAPACl11IIIS)

500msJdiv

·SHUIDOWN POlARITY IS REVERSED FOR NON MAX241 PARTS

12.0

11.0

10.0

~ ~ 9.0

~ 8.0

~ 7.0 w

~ 0> +' >

6.0

5.0

4.0

10

4

2

-2

-4

-6

-8

-10

TRAlSlllTTER Sl£W RATE IS. LOAD CAPACITAICE

o 500 1000 1500 2000 2500 lOAD CAPACITANCE (pF)

T1IAIISMITTBI OUTPUT VOL TAlE (V+, V·) IS. LOAD CIIRIIEIT

I ~

~ T-+-.:j T,_+25°C if f..

I- VCC=+5V C1-C4= 1~F

V+ANOV· V-lOADED, V+ lOADED,

EQUAllY - NO lOAD I-ONV+ NO lOAD

lOADED ON V- -~ I

1/ tI.- l. J.,.

~ ~ I-..... AlllllANSMlTTERS UM.OADED

o 5 10 15 m ~ ~ ~ ~ ~ ~ CURRENT (mA)

7

+SV·Powered, Multichannel RS·232 Drivers!Receivers

ABSOLUTE MAXIMUM RA TINGS-MAX225IMAX244-MAX249 Supply Voltage (Vee) .................... . ..... -0.3V to +6V Continuous Power Dissipation (T A = + 70°C) Input Volla~ _____ _

T,N, ENA, ENB, ENR, ENT, ENRA. 28-Pin Wide SO (derate 12.5OmWf'C above +7QOC) ............. IW

ENRB, ENTA. ENTB..... . .. ... -0.3V to (Vee + 0.3V) 40-Pin Plastic DIP (derate 11.llmWrC above +700C) ... 611mW

R'N ..................... ................................. .. ........... ±25V 44-Pin PLCC (derate 13.33mWf'C above +70°C) .......... 1.07W

Operating Temperature Ranges TOUT (Note 3)..... .. ............ ± 15V MAX225C __ , MAX24_C __ . . .... O°C to +70°C ROUT ...................................................... -0.3V to (Vee + 0.3V) MAX225E __ , MAX24_E __ .............................. -40°C to +85°C

Short Circuit (one output at a time) TOUT to GND.. . .... Continuous

Storage Temperature Range ............................ -65°C to + 1600C Lead Temperature (soldering, 1 Os) ... .. +300°C

ROUT to GND.. .. .. Continuous

Note 4: Input vo~age measured with transmitter output in a high-impedance state, shutdown, or Vee = OV.

Stresses beyond those listed under ~Abso/ute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of ItJe device at (fJese or any o(fJer conditions be}<Jnd lhose indicated in ItJe operalionaf sections of ItJe specificaffons is not implied. Exposure to absoltJte maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS"""-MAX225/MAX244-MAX249 MAX225, Vee = 5.0V ±5%; MAX244-MAX249, Vee = +5.0V ±10%, external capaCITors Cl-C4 = lJ.lF; TA = TMIN to TMAX; unless oth­lrwise noted.)

PARAMETER CONDITIONS MIN TYP MAX Ut,!rrs R5-232 TRANSMITTERS

Input Logic Threshold Low 1.4 0.8 V

Input Logic Threshold High 2 1.4 V

Normal operation 10 50 Logic Pull-Up/lnput Current Tables la-ld

Shutdown ±0.01 ±1 J.lA

Data Rate Tables la-ld, normal operation 120 64 kbps

Output Vollage Swing All transmitter outputs loaded wrth 3k.Q to GND ±5 ±7.5 V

ENA, ENB. ENT, ENTA. ENTB = ±0.01 ±25

Output Leakage Current (Shutdown) Tables la-ld Vee, VOUT = ±15V

J.lA Vee = OV, ±0.01 ±25 VOUT = ±15V

r ransmitter Output Resistance Vee = V+ = V- = OV, Your = +2V (Note 4) 300 10M Q

)utput Short-Circuit Current VOUT= OV ±7 ±30 mA

15-232 RECEIVERS

~S-232 Input Voltage Operating Range ±25 V

lS-232 Input Threshold Low Vee =5V 0.8 1.3 V

IS-232 Input Threshold High Vee=5V 1.8 2.4 V

IS-232 Input HystereSiS Vee = 5V 0.2 0.5 1.0 V

IS-232 Input Resistance 3 5 7 k.Q

TUCMOS Output Vo~age Low lOUT = 3.2mA 0.2 0.4 V

TUCMOS Output Vo~age High lOUT = -1.0mA 3.5 Vee - 0.2 V

Sourcing VOUT = GND -2 -10 Tl/CMOS Output Short-Circuit Current mA

Shrinking VOUT = Vee 10 30

rUCMOS Output Leakage Current Normal operation, outputs disabled,

±0.05 ±0.10 J.lA Tables la-ld, av,; VOUT'; Vee, ENR_ = Vee

NIAXI.hI

+5V.Powered, Multichannel RS·232 Drivers/Receivers

ELECTRICAL CHARACTERISnCs-MAX2251MAX244-MAX249 (continued) (MAX225, Vee = 5.0V ±5%; MAX244-MAX249, Vee = +5.0V ± 1 0%, external capacitors C 1-C4 = 1 ~F; T A = T MIN to TMAX; unless oth­erwise noted.)

PARAMETER CONDmONS MIN TYP MAX UNITS

POWER SUPPLY AND CONTROL LOGIC

Operating Supply Vonage MAX225 4.75 5.25

V MAX244-MAX249 4.5 5.5

No load MAX225 10 20

Vee Supply Current MAX244-MAX249 11 30 rnA

(Normal Operation) 3kO loads on MAX225 40

all outputs MAX244-MAX249 57

Shutdown Supply Current TA = +25°C 8 25

~A TA = TMINto TMAX 50

Leakage current ±1 ~A

Control Input ThreshOld low 1.4 0.8 V

Threshold high 2.4 1.4

AC CHARACTERISTICS

Transition Slew Rate CL = 50pF to 2500pF, RL = 3k.Q to 7kQ, Vee = 5V, 5 10 30 V/~s

TA = +25OC, measured from +3V to -3V or -3V to +3V

Transmitter Propagation Delay tpHLT 1.3 3.5 TLL to RS-232 (Normal Operation), ~s

Figure 1 tpLHT 1.5 3.5

Receiver Propagation Delay tpHLR 0.6 1.5 TLL to RS-232 (Normal Operation), ~s

Figure 2 tPLHR 0.6 15

• Receiver Propagation Delay tpHLS 0.6 10 TLL to RS-232 (Low-Power Mode), ~s

Figure 2 tPLHS 3.0 10

Transmitter + to - Propagation tpHL T - tpLHT 350 ns Delay Difference (Normal Operation)

Receiver + to - Propagation tpHLR - tPLHR 350 ns

Delay Difference (Normal Operation)

Receiver-Output Enable Time, Figure 3 tER 100 500 ns

Receiver-Output Disable Time, Figure 3 tDR 100 500 ns

MAX246-MAX249 5

(excludes charge-pump startup) ~s

Transmitter Enable Time tET MAX225/MAX245-MAX249

10 ms (includes charge-pump startup)

Transmitter Disable Time, Figure 4 tDT 100 ns

'kite 5: The 300n minimum specification complies wtth E/AlTIA-232E. but the actual resistance when in shutdown mode or Vee = OV is 1 OMIl as is implied by the leakage specification.

MAXIAt 9

+SV-Powered, Multichannel RS-232 Drivers!Receivers

________________ l'ypical Operating Characteristics

MAX2251MAX244-MAX249

18

16 ]: C 14 ~ ~ 12

~ 10 f5 ~ 8 ~ ~

~ 6

10

\.

TllAllSlllTTEII Sl£W RATE IS. LOAD CAPACITAKE

• Vcc=5V ~

\. ~

EXTB!NAL POWER SUPPLY

~CAPACIlURS

"- :-... ~~OATARATE TRANSMIlTERS

" LONlElJ WITH 3I<n

" r-"

4

lOAD CAPACfTANCf (nF)

-

10

8

~ 4 ~

~ 2 §i 0 ~

K -2 to; o -.!

-6

~

-10

OIITPUT VIIlTAGE IS. LOAD CUlI1IElIT filii Y+ AID y.

I I ~ v+ ANJ V-LOAOOJ ~ERl(Jl- i Vcc~5V L I V-lOADED _

EXTB!NAL C!W«PlM' 1¢' CAPACIlURS 8 TRANSMITTERS 0RIVINi 5k11 ANJ 2(IXif AT ~ts/S8:

ViL V++V-~~ ~ I V+LOAOfO

10 15 20 25 30 3S

LOAD CURRENT (mA)

9.0

8.5

8.0

75 ~ ~ 7.0

6.5

6.0

5.5

5.0

TlIAISIIIITTEII OIITPUT VllLTAIE (y+, y., IS.. LOAD CAPACITAKE AT

DIfFEREJIT DATA RATES

LOAD CAPACfTANCE (nF)

At.AXIAt

+5V-Powered, Multichannel RS-232 Drivers!Receivers

+'JV

INPUT ).,-_...!!!rJV ____ I

;::OUT:::.;.:PU:.:..T_....:.-..i-!----mmmh-m-fmE ~ , , , , ,

, ,

tpoo.- _ --: i+-- tPHLT

Figure 1. Transmitter Propagation-Delay Timing

Rx lN ')o ..... J\J'l.Ar-4t-.. Vee- 2V

01 TEST CIRCUIT l~F

ENINPUT~ ov 11-· ~:-:~--- EN

--+i ;-- OUTPUT EN.ABLE TIME (tER)

:--- ------- +3.SV RECEIVER __ ~ OUTPUTS

bl ENABLE nMING

+O.BV

~ __ "':::V,--__ EN

ENINPUT~ -: ;.- OUTPUT OISABLE TIME (tDR)

VOH

RECEIVER OUTPUTS

.-; ------- VDH-OSV

VOL ___ -'.-: ------- VOL + OSV

cl DISABLE nMING

Vee - 2V

Figure 3. Receiver -Output Enable and Disable Timing

.M.AXI.M

, +3V _~ ___ h 50%

INPUT D'r 1----- 50%

, h~: hUV-;;-, __ 50% Vee OUTPUT -+-\ 50% 7--::::

: : '------t-: ..J __ ;- __ Gt>Il , , , , , ,

trHLR : \-- _~, :_, ttPlHSPLHfl tPHI.S-' ~

'EXCEPT FOR R2 ON THE MAX243 WHERE -3V IS UOfD.

Figure 2. Receiver Propagation-Delay Timing

SHDN _-'t3:e.V'----,1

OV

_: :.-- OUTPUT DISABLE TIME (tOT)

ji~. :--~ v- -------"1'----' !

al nMING DIAGRAM

10RO

bl TEST CIRCUIT

Figure 4. Transmitter-Output Disable Timing

11

+SV-Powered, Multichannel RS-232 Drivers/Receivers Table 1a. MAX245 Control Pin Configurations

ENT ENR OPERATION STATUS TRANSMITTERS RECEIVERS

0 0 Normal Operation All Active All Active

0 1 Normal Operation All Active AlI3-State

1 0 Shutdown AlI3-State All Low-Power Receive Mode

1 1 Shutdown AII3-State AlI3-State

Table 1 b. MAX245 Control Pin Configurations

ENT ENR OPERATION TRANSMITTERS RECEIVERS

STATUS TA1-TA4 TB1-TB4 RA1-RA5 RB1-RB5

0 0 Normal Operation All Active All Active All Active All Active

0 1 Normal Operation All Active All Active RA l-RA4 3-State. RB l-RB4 3-State. RA5 Active RB5 Active

1 0 Shutdown AlI3-State AlI3-State All Low-Power All Low-Power Receive Mode Receive Mode

RA l-RA4 3-State. RB1-RB43-State. 1 1 Shutdown AlI3-State AlI3-State RA5 Low-Power RB5 Low-Power

Receive Mode Receive Mode

Table 1 c. MAX246 Control Pin Configurations

ENA ENB OPERATION TRANSMmERS RECEIVERS

STATUS TA1-TA4 TB1-TB4 RA1-RA5 RB1-RB5

0 0 Normal Operation All Active All Active All Active All Active

0 1 Normal Operation All Active AlI3-State All Active RB1-RB4 3-State. RBSActive

1 0 Shutdown AlI3-State All Active RA l-RA4 3-5tate.

All Active RA5 Active

RA1-RA4 3-5tate. RB1-RB43-51ale. 1 1 5hutdown A1I3-51ate AlI3-5tate RA5 Low-Power RA5 Low-Power

Receive Mode Receive Mode

12

+5V-Powered, Multichannel RS-232 Drivers!Receivers

Table 1d. MAX247IMAX2481MAX249 Control Pin ~nlnfif1I1rAtl'\nlii:

OPERATION STATUS

0 AlI3-State

0 0 Shutdown AlI3-State Al13-State Low-Power Low-Power Receive Mode Receive Mode

Low-Power All 3-State, except

0 Shutdown AlI3-State AlI3-State Receive Mode

RBS stays active on MAX247

0 Shutdown AlI3-State AlI3-State AlI3-State Low-Power Receive Mode

All 3-State, except Shutdown AlI3-State AlI3-State AlI3-State RBS stays active on

MAX247

13

+5V.Powered, Multichannel RS·232 Drivers!Receivers

______ Detailed Description The MAX220-MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 dri­vers, RS-232 receivers, and receiver and transmitter enable control inputs.

Dual Charge-Pump Voltage Converter The MAX22~MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to dou­ble the +5V input to +1 OV on C3 at the V + output. The second converter uses capacitor C2 to invert + 1 OV to -10V on C4 at the V- output.

A small amount of power rnay be drawn from the + 10V (V+) and -10V (V-) outputs to power extemal Circuitry (see the Typical Operating Characteristics section), except on the MAX225 and MAX245-MAX247, where these pins are not available. V+ and V- are not regulated, so the output voltage drops with increasing load current. Do not load V+ and V- to a point that violates the mini­mum ±5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry.

When using the shutdown feature in the MAX222, MAX225, MAX230, MAX235, MAX236, MAX240, MAX241 , and MAX245-MAX249, avoid using V+ and V­to power external circuitry. When these parts are shut down, V- falls to OV, and V+ falls to +5V. For applica­tions where a + 10V external supply is applied to the V+ pin (instead of using the internal charge pump to gen­erate + 10V), the C1 capacitor must not be installed and the SHDN pin must be tied to Vee. This is because V+ is internally connected to Vee in shutdown mode.

RS-232 Drivers The typical driver output voltage swing is ±8V when loaded with a norninal 5kU RS-232 receiver and Vee = +5V. Output swing is guaranteed to meet the EIAffIA-232E and V.28 specification, which calls for ±5V mini­mum driver output levels under worst-case conditions. These include a minimum 3kn load, Vee = +4.5V, and maximum operating temperature. Unloaded driver out­put voltage ranges from (V+ -1.3V) to (V- +O.5V).

Input thresholds are both TIL and CMOS compatible. The inputs of unused drivers can be left unconnected since 400kO input pull-up resistors to Vee are built in (except for the MAX220). The pull-uP reSistors force the outputs of unused drivers low because all drivers invert. The intemal input pull-up reSistors typically source 121JA, except in shutdown mode where the pull-ups are dis­abled. Driver outputs turn off and enter a high-imped­ance state-where leakage current is typically microamperes (maximum 25iJA)-when in shutdown

14

mode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The power­supply current typically drops to 81JA in shutdown mode. The MAX220 does not have pull-up resistors to force the outputs of the unused drivers low. Connect unused inputs to GND or Vee.

The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236 , MAX240, and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver three­state control on the receiver outputs.

The receiver TIL/CMOS outputs are in a high-imped­ance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239-MAX241), and are also high-impedance whenever the shutdown control line is high.

When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1iJA \..,ith the driver output pulled to ground. The driver output ~eakage remains less than 1iJA, even if the transmitter output is backdriven between OV and (Vee + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1kO series impedance. The transmitter is also zener clamped to approximately Vee + 6V, with a series impedance of 1 kO.

The driver output slew rate is limited to less than 30V /iJS as required by the EINTIA-232E and V.28 specifica­tions. Typical slew rates are 24V/iJs unloaded and 10V/iJs loaded with 30 and 2500pF.

R5-232 Receivers EIAffIA-232E and V.28 specifications define a VOltage level greater than 3V as a logic 0, so all receivers invert. Input thresholds are set at 0.8V and 2.4V, so receivers respond to TIL level inputs as well as EIAffIA-232E and V.28 levels.

The receiver inputs withstand an input overvoltage up to ±25V and provide input terminating resistors with

Table 2. Three-State Control of Receivers PART SHDN SHDN EN EN(R) RECEIVERS

Low X High Impedance MAX223 - High Low - Active

High High High Impedance

MAX225 Low High Impedance

- - - High Active

MAX235 Low Low High Impedance MAX236 Low - - High Active MAX24D High X High Impedance

NI.AXINI

+5V.Powered, Multichannel RS·232 Drivers!Receivers

nominal 5k.Q values. The receivers implement Type 1 interpretation of the fault conditions of Y.28 and EINTIA-232E.

The receiver input hysteresis is typically 0.5Y with a guaranteed minimum of 0.2Y. This produces clear out­put transitions with slow-moving input signals. even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.

Low-Power Receive Mode The low-power receive-mode feature of the MAX223. MAX242. and MAX245-MAX249 puts the IC into shut­down mode but still allows it to receive information. This is important for applications where systems are periodi­cally awakened to look for activity. Using low-power receive mode. the system can still receive a Signal that will activate it on command and prepare it for communi­cation at faster data rates. This operation conserves system power.

Negative Threshold-NIAX243 The MAX243 is pin compatible with the MAX232A. differ­ing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment.

The input threshold of the receiver without cable fault protection is -0.8Y rather than + 1 .4Y. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven. it defaults to the 0 or "OK to send" state. Normally. the MAX243's other receiver (+ 1.4Y threshold) is used for the data line (TO or RD). while the negative threshold receiver is con­nected to the control line (DTR. DTS. CTS. RTS. etc.).

Other members of the RS-232 family implement the optional cable fault protection as specified by EINTIA-232E specifications. This means a receiver output goes high whenever its input is driven negative. left floating. or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this. the control lines must either be driven or connected with jumpers to an appropriate positive voltage level.

AII.AXIAII

Shutdo~22-MAJC242 On the MAX222. MAX235. MAX236. MAX240. and MAX241. all receivers are disabled during shutdown. On the MAX223 and MAX242. two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions. the propagation delay increases to about 2.5/Js for a high-to-Iow input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices, SHDN (SHDN for MAX241) also disables the receiver outputs.

The MAX225 provides five transmitters and five receivers, while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply cur­rent drops to less than 25/JA anp the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225, all five receivers are controlled by the ENR input. On the MAX245, eight of the receiver out­puts are controlled by the ENR input. while the remain­ing two receivers (RA5 and RB5) are always active. RA1-RA4 and RB1-RB4 are put in a three-state mode when ENR is a logic high.

Receiver and TransmiHer Ena"Ie Control Inputs

The MAX225 and MAX245-MAX249 feature transmitter and receiver enable controls.

The receivers have three modes of operation: full-speed receive (normal active), three-state (disabled), and low­power receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown.

15

+5V.Powered, Multichannel RS·232 Drivers/Receivers Tables 1a-1d define the control states. The MAX244 has no control pins and is not included in these tables.

The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA) causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX24S, one A­side and one B-side receiver (RAS and RBS) remain active at all times. The entire device is put into shut­down mode when both the A and B sides are disabled (ENA = ENB = +SV).

The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRS receiver enable inputs each control four receiver outputs. The ENT A and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RSS) is always active. The device enters shutdown mode with a logic high on both ENTA and ENTB.

The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and trans­mitte~into a three-state mode with a logic high on both ENT A and ENTB.

16

The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRS receiver enable inputs each control five receiver outputs. The ENT A and ENTB transmitter enable inputs control three dri­vers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB. In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec.

____ Applications Information Figures S through 2S show pin configurations and typi­cal operating circuits. In applications that are sensitive to power-supply noise, VCC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device.

+5V-Powered, Multichannel RS-232 Drivers!Receivers

iSV INPUT

TOP VIEW

Vee

V+ GND

C1- T10UT -1OV

C2+ R1~

R10UT

r nIH T10UT

"} TllJCMOS iSV

RS-232 T21H INPUTS 400kn OUTPUTS

R2'N R20UI 10 T2IN T20UT 7

DJP/sO 12 RloUT

"}~m TllJCMOS { OUTPUTS INPUTS

Figure 5. MAX22o;MAX232/MAX232A Pin Configuration and Typical Operating Circuit

TOP VIEW ~ +5V INPUT C3 ALL CAPACITORS, 0 1!'f

cs... +

SHDN C1

INC) EN 1 SHDN Cl+ Vee -1OV C2

C1+ Vee V+ GND

v+ GNC T10UI

T10UT N.C. 12 T10UT "} RlrN TI~MOS{ RS 232 R10UT R10UT INPUTS OUTPUTS

11 T20UT 8 nN T20m N.C.

R2,. T1,. 13 R11N 14 R21N R20UT T2'H

TIliCMOS { } RS-232 OUTPUTS 9 INPUTS

DIP/sO SSOP

I ) AREFOR MAX222 ONLY. PIN NUMBERS IN TYPICAL OPERATING CIRCUIT ARE FOR DIPiSO PACKAGES ONLY.

Figure 6. MAX222/MAX242 Pin Configurations and Typical Operating Circuit

.hIAXI.hI 17

E ~ ~ cp E ~ ,. U)

+SV.Powered, Multichannel RS·232 Drivers!Receivers

TOP VIEW

R,OUT

R:JIN

R:/IN

R,IN

T,OUT

so

MAX225 FUNCTIONAL DESCRIPTION 5 RECEIVERS 5 TRANSMITTERS 2 CONTROL PINS

1 RECEIVER ENABLE (ENR) 1 TRANSMITTER ENABLE (ENT)

Vee

Vee

ENT

T31N

T,IN

T51N

R,OUT

RsOUT

RsIN

R,IN

T30UT

T,OUT

PINS lENA, GND, Vee, T50UT) ARE INTERNALLY CONNECTED. CONNECT EITHER OR BOTH EXTERNALLY T50UT IS A SINGLE DRIVER

Figure 7, MAX225 Pm Configuration and Typical Operating Circuit

18

+5'1

3 T,IN

4 T21N

25 T31N

24 T,IN

23 T51N

26 00

11

12

18

17

16

15

R,IN 10

5kn

9

8

19

5kn

20

5kn

.M.AXI.M

+5V.Powered, Multichannel RS·232 Drivers!Receivers

TOP VIEW

T10ur

T20ur

Wide SOl SSOP

-R4 AND R51N MAX223 REMAIN ACTIVE IN SHUTDOWN

NOTE: PIN lABELS IN ( ) ARE FOR MAX241

T"N

RSour-

10¢

10¢

nUCMOS INPUTS

LOGIC OUTPUTS

Figure 8. MAX223/MAX241 Pin Configuration and Typical Operating Circuit

.MAXIAt

20 131H

8 R10ur

;fN INPUT

~+ 11

Vee ;fNTO+1OV

VOLTAGE DOUBLER

+10VTO-IOV VOLTAGE INVERTER

It 10¢

T10ur 2

T20ur 3

RS-232 OUTPUTS

T30ur 1

T40ur 28

RIIN 9

5kn

R2IN 4

5kn

R3,N 27 R5-232 INPUTS

5kO

R4N 23

5kn

R~N 18

5kn SIilN 25

-= (SHON)

-

19

E ~ ~

~ ~

~ .. U»

+5V·Powered, Multichannel RS·232 Drivers!Receivers

TOP VIEW

130Ul

nOUl

n,. GMJ

Vee

C1+

OIPISO

HOUl

T5iN

N.C.

SHDN

1'5oUl

T4,.

131N

C2-

C2+

7gure 9. MAX230 Pin Configuration and Typical Operating Circuit

TOP VIEW

V+ V+

Vee C- Vee

GND GMJ

nOUl

RllN R2,. R1,.

R10UT R20Ul R1001

T1,. 11,. N.C. N_C.

DIP SO

PIN NUMBERS IN ( ) ARE FOR SO PACKAGE

"re 10. MAX231 Pin Configurations and Typical Operating Circuit

1.0!1F

1.0!1F

nuCMOS INPUTS

~C INPUTS

~C RtOUT

OUTPUTS

6 R20Ul

1.0!1F

':»="'-t2 .... \ RS-232 OUTPUTS

SHDN

+5V INPUT

-TlOUl

'l~ OUTPUTS T2001 4

'"}m RllN

INPUTS

R2JN 5

~.AXI.NI

+5V.Powered!l Multichannel RS·232 Drivers/Receivers

TOP VIEW

Tl,. RloUT

Rl,.

( ) AREFDR SO PACKAGE ONLY.

DIPISO

R20UT

R2,.

120UT

v-C2-

C2+

V+(Cl-)

C1-(Ch}

V- (C2+)

C2+(C2-)

2 TlIH

~{ INPUTS

12,. Rl0UT

=L R20UT , DO NOT MAKE 8 (13) C1+

CONNECTIONS TO {13 (14) Cl-

THESE PINS 12 (10)

INTERNAL -10 { V-POWER SUPPlY 17

INTERNAL +10V 14 (8) POWER SUPPlY

~jgure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit

TOP VIEW

1.0~F

10~F

T2001 HOUl

12,. T4,. 4 n!H

Tl,. 13,.

GNO V-

Vee C2- 3 12,.

C2+ TTL/CMOS INPUTS

Cl-13 13'N

DIPISO

14 H,.

lure 12. MAX234 Pin Configuration and Typical Operating Circuit

-

GND GNO

-

TloUT 5

}~m OUTPUTS 120UT 18

· }~m R11N

OUTPUTS

R2,. 19

11 (12)

e2-C2-

nOUT

T20ur 3

130ur 16

T40ur 15

RS-232 OUTPUTS

21

E ~ ~

* • ~ • U)

+5V.Powered~ Multichannel RS·232 Drivers!Receivers

TOP VIEW

ffilCMOS INPUTS

R3'N

/l3oUT

nom T5'N

SHDN

EN

RZauT TSoUT

R41N

Tl,. R40UT

R10UT T41N

Rl" TI'N

R50UT

Vee R5~

DIP ffilCMOS OUTPUTS

11

'gure 13. MAX235 Pin Configuration and Typical Operating Circuit

TlOUT 3

120UT 4

T30Ul 2 R5-232 OUTPUTS

T40Ul 1

TSoUT 19

R5-232 INPUTS

TOP VIEW

T10UT

T2IH

GNO

+5V·Powered, Multichannel RS·232 Drivers/Receivers

DIPISO

R2"

R20Ul

SHDN

EN T41N

T3JN

R30uT

R31N

C2+

1.0pF

TTlJCMOS INPUTS

TIVCMOS OUTPUTS

,sVINPUT

1-L ...--------, 9

Vee ,sVTO+1DV

VOLTAGE DOUBLER

V-

7 nlN nOUl 2

18

GNO

8

RS-232 OUTPUTS

1\$-232 INPUTS

re 14. MAX236 Pin Configuration and Typical Operating Circuit

IAXI.hI 23

+SV.Powered, Multichannel RS.232 Drivers!Receivers

lure 15. MAX237 Pin Configuration and Typical Operating Circuit

~AXI.NI

TOP VIEW

DIP/SO

+5V.Powered, Multichannel RS·232 Drivers!Receivers

T30lJT

R3'N

R30lJT

T41N

T40lJT

13'N

T2'N

R40lJT

R4'N

v-C2-

C2+

1.il!lF

TTUCMOS INPUTS

TTUCMOS OUTPUTS

5 111N

18 12'N

19 T3'N

21 T41N

6 R10lJT

4 R20lJT

22 R30lJT

17 R40lJT

+5VINPUT

~cL..-_____ -, - 9

Vee +5VTO+1OV

V0l1AG£DOllBlER

HOlJT 2

T20lJT 1

T30lJT 24

T40lJT 20

RS-232 OUTPUTS

R5-232 INPUTS

~igure 16. MAX238 Pin Configuration and Typical Operating Circuit

M.AXIAII 25

+5V-Powered, Multichannel RS-232 Drivers!Receivers

TOP VIEW 7.5'1 TO 132V

101lf

T11N

R11N T21N

R20llf nUCMOS INPUTS

R2w

T20llf

110llf

R31N

R30llf

T31N

N.C

EN

DlP/so nUCMOS

OUTPUTS

Figure 17. MAX239 Pin Configuration and TYPical Operating Circuit

26

+5V INPUT INPUT

:P+ - 4

Vee V+

+1OVTD -1OV VOlTAGE INVERTER

V- 8

110llf 19

T20lfT 20

T30llf 13

RS-232 OUTPUTS

RS-232 INPUTS

N.C.

Vee N.C N.C N.C.

TOP VIEW

+5V.Powered, Multichannel RS·232 Drivers!Receivers

AIIAXIAII MAX240

Plastic FP

N.C. SHlN EN

11:;;==TSour R4w R40ur T4,. 13'N R50ur RStN N.C

to¢'

nUCMOS INPUTS

nUCMOS OUTPUTS

15

14

42 EN

+5V INPUT

~ +.-------, 19

Vee +5VTO +1OV

VOLTAGE DOUBLER

T10ur 7

R4'N 40

RS-232 OUTPUTS

R&-232 INPUTS

Figure 18. MAX240 Pin Configuration and Typical Operating Circuit

AI'I.AXI.AIi 27

+SV.Powered, Multichannel RS·232 Drivers!Receivers

TOP VIEW

C2+

C2-

T20llT

. DIP/SO

o

REtEIVER INPUT ~-3V

OPEN >+3V

R11N

R10llT

T11N

T21"

R1 OUTPUT HIGH HIGH LOW

R20UTPUT HIGH LOW LOW

Figure 19. MAX243 Pin Configuration and Typical Operating Circuit

28

+SV INPUT 0:r +

- 16 Vee

01!1f +SV TO +1OV VOLTAGE DOUBLER

0.1!1f

r T11"

TTUCMOS INPUTS

10 T21N

{" R10llT

TTl/CMOS OUTPUTS

9 R20IlT

GND 15

-

T10llT

.. } RS-232 OUTPUTS

T20llT 7

" } RS-232 INPUTS

R2IN 8

.hI..AXI.hI

+5V-Powered, Multichannel RS-232 Drivers/Receivers

TOP VIEW

~AXI~ MAX244

PLCC

MAX249 FUNCTIONAL DESCRIPTION 10 RECEIVERS

5 A-SIDE RECEIVER 58-SIDE RECEIVER

B TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 8-SIDE TRANSMITTERS

NO CONTROL PINS

Ife 20. MAX244 Pin Configuration and Typical Operating Circuit

IAXI~

+5V

Vee t5V TO + lOY VOLTAGE DCXJBlER

GND 19

-TS1DUT 44

TIl1IN 30

T.,OUT 43

T.,IN 29

TB3DUT 42

TB3IN 28

TB40UT 41

TB4IN 27

RSllN 36

RB3IN 38

RB30UT 33

RB4IN 39

RB5IN 4D

29

+SV.Powered* Multichannel RS.232 Drivers!Receivers

TOP VIEW

ENR

T"IN

TA3IN

TMIN

R"OUT

ilM~Yf

R"OUT

RA1 0UT

R"IN

RA3IN

RAAIN

R"IN

TAl OUT

T"oUT

TA30UT

TAAoUT

GNO

DIP

MAX245 FUNCTIONAL DESCRIPTION 10 RECEIVERS

5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE) 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE)

B TAANSMITITERS 4 A-SIDE TAANSMITIERS

2 CONTROL PINS 1 RECEIVER ENABLE (ENR) 1 TAANSMITIER ENABLE (ENT)

Vee

ENT

TB1IN

T62IN

TrolN

T"IN

~Yf

RroOUT

RS1 0UT

RSlIN

R62IN

RrolN

R"IN

RsslN

TSloUT

T620UT

TrooUT

TB40UT

Figure 21. MAX245 Pin Configuration and Typical Operating Circuit

30

¥5V

l~F :::r:: - 40

16 TAl OUT

2 TA1IN

17 T"oUT

3 T"IN

18 TA30UT 4 TA3IN

19 TMOUT

S TMIN

1 ENR

11 RAllN

10 RA10UT

12 R"IN

Sku

9 R"OUT

13 RA3IN

GNO 20

TB10UT 24

TB1IN 38

T62DlIT 23

T62IN 37

TroOUT 22

TrolN 36

T"OUT 21

T"IN 35

ENT 39

RSllN 29

R"OUT 30

R"IN 28

R"OUT 31

RrolN 27

.MAXI.M

+SV-Powered, Multichannel RS·232 Drivers/Receivers

TOP VIEW ;5V

40

ENA Vee ;5V Vee ;5V

TA,IN ENB 16 TA'OUT TB10UT 24

T"IN TB1IN 2 TA,IN TB1IN 38

T",IN

TI!3IN 17 T"oUT T",OUT 23

RASOUT TS4IN 3 T"IN T",IN 37

RssOUT

RA30UT RS40UT 18 TA30UT TI!30UT 22

RI!30UT 4 TA3IN

RA'OUT TI!3IN 36

RB'OUT 19 TAAOUT TS40UT 21

R"IN RB,IN TB4IN 35 5 TAAIN

RA3IN R",IN 1 ENA ENB 39

RMJN RI!3i>1 11 R..,IN RBlIN 29

RASIN RB4IN

TA'OUT RsslN

T"OUT TB10UT R..,OUT RB10UT 30 10

TA30UT T",OUT 12 R"IN R",IN 28

TA40UT TI!30UT

GND TB40UT

DIP 9 R"OUT R",OUT 31

13 RA3IN RI!3IN 27

MAX246 FUNCTIONAL DESCRIPTION 10 RECEIVERS

B RA3DUT R"OUT 32 5 ~-SIOE RECEIVERS (RA5 ALWAYS ~CTIVE)

14 RAAIN RS4IN 26 58-SIDE RECEIVERS IR85 ALWAYS AcnVE)

8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 8-SIDE TRANSMITTERS 7 RAAOUT RMOUT 33

2 CONTROL PINS 15 RASIN RsslN 25 ENABLE A-SIDE lENA) ENABLE 8-SIDE IEN8)

34

-

Figure 22. MAX246 Pin Configuration and Typical Operating Circuit

.MAX.AII 31

E ~ ~ E ~ 6 CD

+5V.Powered, Multichannel RS·232 Drivers!Receivers

+5V

TOP VIEW

- 4lJ

1 ENTA Vee Vee +5V +5V

16 T.,OUT TAl IN ENTB

T"IN TBlIN 2 TAllN

T"IN TMIN TB3IN

17 T"OUT

RBsOUT T84IN 3 T"IN R840UT

R",OUT RB30UT 18 T",OUT

R"OUT R"oUT 4 T",IN R.,OUT RBlOUT

ENRA ENRB 19 TMOUT

RAllN RBlIN 5 TMIN

R"IN R"IN 6 RasOUT

R",IN RB3IN

RMIN R84IN

TA,OUT RaslN

T"OUT TBlOUT 12 RA,IN

T",OUT T",OUT

TMOUT TB3DUT

GNO 10 RA10UT

13 R"IN DIP

MAX247 FUNCTIONAL DESCRIPTION 9 RECEIVERS 9 R"OUT

4 A~SIDE RECEIVERS 14 R",IN 5 B~SIDE RECEIVERS (RB5 ALWAYS ACTIVE)

8 TRANSMITTERS 4 A~SIDE TRANSMITTERS

4 B~SIDE TRANSMITTERS 8 R",OUT

4 CONTROL PINS 15 RMIN

ENABLE RECEIVER A~SIOE (ENRA)

ENABLE RECEIVER B-SIDE (ENRB)

ENABLE RECEIVER A~SIOE (ENTA) 7 RMOUT

ENABLE RECEIVERr B~SIDE (ENTB) 11 ENRA

GNO 20

-

Figure 23. MAX247 Pin Configuration and Typical Operating Circuit

32

ENTB 39

RaslN 25

RBlIN 29

RB10UT 31

R"IN 28

R"OUT 32

RB3IN 27

RB30UT 33

RB4IN 26

R840UT 34

ENRB 30

AlI.AXI.hI

+SV.Powered, Multichannel RS·232 Drivers/Receivers

TOP VIEW

..NIAXI..NI MAX248

PLCC

MAX248 FUNCTIONAL DESCRIPTION 8 RECEIVERS

4 A-SIDE RECEIVERS 4 B-SIDE RECEIVERS

8 TRANSM ITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS

4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVER B-SlDE (ENTS)

RB3IN

R82IN

RSlIN

ENRB

R"OUT

RWlUT RB3DUT

R"OUT

T82IN

TB3IN

-e 24_ MAX248 Pin Configuration and Typical Operating Circuit

I.AXI.M

18 ENTA

8 RAllN

+f;V

1j1f 1j1f...,

20

Vee +fiV TO +lOVVDLTAGE DOUBLER

+lOV TO-1OV VOLTAGE INVERTER

ENTB 27

TB10UT 44

T"IN 31

T82DUT 43

T82IN 30

TB3DUT 42

TB3IN 29

T"OUT 41

T"IN 28

R81IN 37

19

33

E ~ , E ~ 6 CO

+SV·Powered, Multichannel RS·232 Drivers!Receivers

TOP VIEW

R,..,OUT

RA20UT 11 .JMAXI.JM MAX249

R"OUT

RMOUT

PLCC

MAX249 FUNCTIONAL DESCRIPTION 10 RECEIVERS

5 A-SIDE RECEIVERS 5 B-SIDE RECEIVERS

6 TRANSMITIERS 3 A-SIDE TRANSMITIERS 3 8-SIDE TRANSMITIERS

4 CONTROL PINS ENABLE RECEIVER A-SIDE {ENRAl ENABLE RECEIVER B-SIDE {ENRBl ENABLE RECEIVER A-SIDE {ENTAl ENABLE RECEIVER B-SIDE (ENTS)

Figure 25. MAX249 Pin Configuration and Typical Operating Circuit

34

Vee +5V TO +1OV VOLTAGE OOUBLfR

+1OV TO -1OV VOLTAGE INVERTER

+9/ +5V 1 TA10UT

15 TA1IN

2 T"OUT

16 T"IN

3 T"OUT

17 TA3IN

8 RA1IN

10 ""OUT

9 ENRA GNO

19

-ENTB 27

T.,OUT 44

Tm lN 30

TB20UT 43

TB2IN 29

TB30UT 42

TB3IN 28

R"IN 37

Rs4IN 40

RB40UT 32

RsslN 41

RssOUT 31

.hIAXI.hI

+5V.Powered, Multichannel RS·232 Drivers/Receivers

_________________ Ordering Information (continuedJ

PART TEMP RANGE PIN-PACKAGE PART TEMP RANGE PIN-PACKAGE

MAX222CPN O"C to + 70"C 18 Plastic DIP MAX232AC/D O°C to + 70"C Dice"

MAX222CWN DoC to + 70"C 18 Wide SO MAX232AEPE -40°C to +85°C 16 Plastic DIP

MAX222C/D DoC to +70°C Dice" MAX232AESE -40"C to +85°C 16 Narrow SO

MAX222EPN -40°C to +85°C 18 Plastic DIP MAX232AEWE -40°C to +85°C 16 Wide SO

MAX222EWN -40°C to +85°C 18 Wide SO MAX232AEJE -40°C to +85°C 16CERDIP

MAX222EJN -40°C to +85°C 18 CERDIP MAX232AMJE -55°C to +125°C 16 CERDIP

MAX222MJN -55°C to + 125°C 18CERDIP MAX232AMLP -55°C to + 125°C 20LCC

MAX223CAI O"C to + 70°C 28SS0P MAX233CPP O"C to + 70DC 20 Plastic DIP

MAX223CWI O"C to + 70°C 28 Wide SO MAX233EPP -40°C to +85°C 20 Plastic DIP

MAX223C/D O"C to + 70°C Dice" MAX233ACPP OOC to + 70"C 20 Plastic DIP

MAX223EAI -40°C to +85°C 28SS0P MAX233ACWP O°C to +70°C 20 Wide SO

MAX223EWI -40°C to +85°C 28 Wide SO MAX233AEPP _40DC to +85°C 20 Plastic DIP

MAX225CWI DOC to +7DoC 28 Wide SO MAX233AEWP -40°C to +85°C 20 Wide SO

MAX225EWI -40°C to +85°C 28 Wide SO MAX234CPE O"C to + 70°C 16 Plastic DIP

MAX23OCPP" DoC to +70°C 20 Plastic DIP MAX234CWE DoC to +70DC 16 Wide SO

MAX230CWfll O"C to + 7D"C 20 Wide SO MAX234C/D O°C to + 70"C Dice"

MAX23DC/D DoC to +7DoC Dice' MAX234EPE _40DC to +85DC 16 Plastic DIP

MAX23DEPP -40°C to +85°C 20 Plastic DIP MAX234EWE -40°C to +85°C 16 Wide SO

MAX23DEWP -40°C to +85°C 20 Wide SO MAX234EJE -40DC to +85DC 16 CERDIP

MAX230EJP -40°C to +85°C 20CERDIP MAX234MJE -55°C 10 + 125DC 16CERDIP

MAX230MJP -55°C to + 125°C 20CEROIP MAX235CPG DOC to +70°C 24 Wide Plastic DIP

MAX231CPD DoC to +70°C 14 Plastic DIP MAX235EPG -40°C to +85°C 24 Wide Plastic DIP

MAX231CWE DoC to +70°C 16 Wide SO MAX235EDG -40"C to +85°C 24 Ceramic S8

MAX231CJD DoC to +70°C 14 CERDIP MAX235MDG -55°C to + 125°C 24 Ceramic S8

MAX231C/D O"C to + 70DC Dice" MAX236CNG DoC to +70°C 24 Narrow Plastic DIP

MAX231EPD -40°C to +85°C 14 Plastic DIP MAX236CWG O°C to +70°C 24 Wide SO

MAX231 EWE -40°C to +85DC 16 Wide SO MAX236C/D O°C to +70°C Dice"

MAX231EJD -40°C to +85DC 14 CERDIP MAX236ENG -40°C to +B5°C 24 Narrow Plastic DIP

MAX231MJD -55°C to + 125°C 14 CERDIP MAX236EWG _40DC to +85DC 24 Wide SO

MAX232CPE DoC to +70°C 16 Plastic DIP MAX236ERG -40"C to +85°C 24 Narrow CERDIP

MAX232CSE O°C to +70°C 16 Narrow SO MAX236MRG -55DC to + 125°C 24 Narrow CERDIP

MAX232CWE DoC to +70°C 16 Wide SO MAX237CNG DoC to +70DC 24 Narrow Plastic DIP

MAX232C/D O"C to + 70"C Dice" MAX237CWG DoC to +70DC 24 Wide SO

MAX232EPE -40°C to +85°C 16 Plastic DIP MAX237C/D DoC to +70°C Dice"

MAX232ESE -40°C to +85°C 16 Narrow SO MAX237ENG -40°C to +85°C 24 Narrow Plastic DIP

MAX232EWE -40°C to +85°C 16 Wide SO MAX237EWG -40°C to +85°C 24 Wide SO

MAX232EJE -40°C to +85°C 16 CERDIP MAX237ERG -40°C to +8SDC 24 Narrow CERDIP

MAX232MJE -55°C to + 125°C 16 CERDIP MAX237MRG -SSDC to + 12SoC 24 Narrow CERDIP

MAX232MLP -55°C to + 125°C 20LCC MAX238CNG O°C to +70"C 24 Narrow Plastic DIP

MAX232ACPE O°C to + 70"C 16 Plastic DIP MAX238CWG O°C to + 70"C 24 Wide SO

MAX232ACSE DoC to +70°C 16 Narrow SO MAX238C/D ODC to +70°C Dice'

MAX232ACWE O°C to +70°C 16Wide SO MAX238ENG -40°C to +BSoC 24 Narrow Plastic DIP

• Contact factory for dice specifications .

.M~XI.M 35

+SV-Powered, Multichannel RS-232 Drivers/Receivers

_________________ Ordering Information (continued]

PART TEMP RANGE PIN-PACKAGE

MAX238EWG -40°C to +85°C 24 Wide SO

MAX238ERG -40°C to +85°C 24 Narrow CERDIP

MAX238MRG -55°C to +125°C 24 Narrow CERDIP

MAX239CNG O°C to +70°C 24 Narrow Plastic DIP

MAX239CWG O°C to +70°C 24 Wide SO

MAX239C/D OOC to +70OC Dice-

MAX239ENG -40°C to +85°C 24 Narrow Plastic DIP

MAX239EWG -40°C to +85°C 24 Wide SO

MAX239ERG -40°C to +85°C 24 Narrow CERDIP

MAX239MRG -55°C to +125°C 24 Narrow CERDIP

MAX240CMH O°C to +70°C 44 Plastic FP

MAX24DC/D DOC to +7DoC Dice*

MAX241CAI DoC to +70°C 28SS0P

MAX241CWI DoC to +70°C 28 Wide SO

MAX241C/D DoC to +70°C Dice* .

MAX241EAI -40°C to +85°C 28 SSOI'

MAX241EWI -40°C to +85°C 28 Wide SO

MAX242CAP DoC to +70°C 20SS0P

MAX242CPN DoC to +70°C 18 Plastic DIP

MAX242CWN DoC to +70°C 18WideSO

MAX242C/D DoC to +70°C Dice'"

MAX242EPN -40°C to +85°C 18 Plastic DIP

MAX242EWN -40°C to +85°C 18Wide SO

MAX242EJN -40°C to +85°C 18CERDIP

MAX242MJN -55°C to + 125°C 18 CERDIP

PART TEMP RANGE PIN-PACKAGE MAX243CPE DOC to +70°C 16 Plastic DIP

MAX243CSE DoC to +70°C 16 Narrow SO

MAX243CWE DoC to +70OC 16WideSO

MAX243C/D DoC to +70°C Dice*

MAX243EPE -40°C to +85°C 16 Plastic DIP

MAX243ESE -40"C to +85°C 16 Narrow SO

MAX243EWE -4DoC to +85°C 16Wide SO

MAX243EJE -40°C to +85°C 16 CERDIP

MAX243MJE -55°C to + 125°C 16 CERDIP

MAX244COH O°C to +70°C 44PLCC

MAX244C/D DOC to +7DoC Dice'" MAX244EOH -40°C to +85°C 44PLCC

MAX245CPL O°C to +70°C 40 Plastic DIP

MAX245C/D DoC to +70°C Dice"

MAX245EPL -40°C to +85°C 40 Plastic DIP

MAX246CPL DOC to +70°C 40 Plastic DIP

MAX246C/D DoC to +70°C Dice*

MAX246EPL -40°C to +85°C 40 Plastic DIP

MAX247CPL DoC to +70°C 40 Plastic DIP

MAX247C/D DoC to +70°C Dice*

MAX247EPL -40°C to +85°C 40 Plastic DIP

MAX248COH DoC to +70°C 44 PLCC

MAX248C/D DoC to +70°C Dice*

MAX248EOH -40°C to +85°C 44 PLCC

MAX249COH DoC to +70°C 44 PLCC

MAX249EOH -40°C to +85°C 44 PLCC

• Contact factory for dIce speCIfIcations.

______ Paclcage Information For the latest package outline information, go to www.maxim-ic.com/packaaes.

Maxim cannot assume responsibility far use of any Circuitry other than Circuitry entirety embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

36 _______ Maxim Integrated Products, 120 San Gabriel Drive, Sunnpale, CA 94086 (408} 737·7600

© 2003 Maxim Integrated Products Printed USA .NUIXIAII is a registered trademark of Maxim Integrated Products.

November 1997

Features

• 25A and 28A, SOV and 100V

• rDS(ON) = O.077n and 0.100n

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

25A and 28A, 80V and 100V, 0.077 and 0.100 Ohm, N-Channel Power MOSFETs

Description

• Single Pulse Avalanche Energy Rated

These are N-ChanneJ enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching conver­tors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

• Nanosecond Switching Speeds

• Linear Transfer Characteristics

• High Input Impedance

• Related Literature • TB334 "Guidelines for Soldering Surface Mount

Components to PC Boards" Formerly developmental type TA17421.

Ordering Information Symbol PART NUMBER PACKAGE BRAND

IRF540 T0-220AB IRF540

IRF541 T0-220AB IRF541

IRF542 T0-220AB IRF542

IRF543 T0-220AB IRF543

RF1S540 T0-262AA RF1S540

RF1S540SM T0-263AB RF1S540SM

NOTE: When ordering, use the entire part number.1Idd the suffix 9A to obtain the T0-263AB variant in the tape and reel, i.e., RF1 S540SM9A

Packaging

JEDEC TO-220AB

SOURCE DRAIN

GATE

JEDEC T0-263AB

~DRAlN (FLANGE)

GATE SOURCE

G

s

JEDEC T0-262AA

SOURCE DRAIN

/'-4~~"" GATE

AUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESO Handling Procedures. File Number 2309.3 opyright © Harris Corporation 1997

5-1

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Absolute Maximum Ratings T c = 25°C. Unless Otherwise Specified

IRF540. RF1S540. RF1S54DSM IRF541 IRF542 IRF543 UNITS

Drain to Source Breakdown Voltage (Note 1) .......... VOS 100 SO 100 80 V

Drain to Gate Voltage (RGS = 20k!2) (Note 1) ....... VOGR 100 BO 100 80 V

Continuous Drain Current. ......................... 10 28 28 25 25 A

T C = 1000C ................................... 10 20 20 17 17 A

Pulsed Drain Current (Note 3) ..................... 10M 110 110 100 100 A

Gate to Source Voltage .......................... V GS ±20 ±20 ±20 ±20 V

Maximum Power Dissipation ....................... Po 150 150 150 150 W

Dissipation Derating Factor .......................... 1 1 1 1 Wf'C

Siegle Pulse Avalanche Energy Rating (Note 4) ......... EAS 230 230 230 230 mJ

Operating and Storage Temperature ............ T J. T STG -55 to 175 -55 to 175 -55 to 175 -55 to 175 °c

Maximum Temperature b- Soldering Leads at 0.063in (1.6mm) from Case for lOs ......... T L 300 300 300 300 °c

Package Body for lOs. See Techbrief 334 ......... T pkg 260 260 260 260 °c

CAUTION: Stresses abo"" those listed in ~AbsoIut" Maximum Ratings- may cause permanent damage to the device. This;s 8 stress only rating and optH'Blion of the device at these or any other conditions above those indicated in the operational sections of this specffication is not implied.

NOTE:

1. TJ = 25°C to TJ = 15O"C.

Electrical Specifications T C = 2SOC. Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

Drain to Source Breakdown Voltage BVOSS 10 = 250JiA, VGS = OV (Figure 10) . IRF540. IRF542, 100 - -, V RFl S540. RF1 S540SM

IRF541,IRF543 80 - - V

Gate to Threshold Voltage VGS(TH) VGS = VOS' 10 = 25O!IA 2 - 4 V

Zero Gate Voltage Drain Current loss VOS = Rated BVOSS, VGS = OV - - 25 IlA

VOS = 0.8 x Rated BVOSS, VGS = OV - - 250 IlA TJ=15O"C

OM3tate Drain Current (Note 2) ID(ON) VOS> 10(ON) x rOS(ON) MAX. VGS = 10V

IRF540, IRF541, (Figure 7) 28 - - A RF1S540, RF1S540SM

IRF542, IRF543 25 - - A

Gate to Source Leakage Current IGSS VGS =±20V - - ±100 nA

Drain to Source On Resistance (Note 2) rOS(ON) 10 = 17A. VGS = 10V (Figures 8, 9)

IRF540, IRF541. - 0.060 0.077 0 RF1S540. RF1S540SM

IRF542. IRF543 - 0.080 0.100 0

Forward Transconductance (Note 2) 9ts VOs " 50V. 10 = 17A (Figure 12) 8.7 13 - S

Tum-On Delay Time t.l{ON) Voo = 50V.lo ~28A. % ~ 9.10. RL = 1.70 - 15 23 ns

Rise Time tr (Figures 17. 18) MOSFET Switching Times are - 70 110 ns Essentially Independent of Operating

Tum-Off Delay Time !"(OFF) Temperature - 40 60 ns

Fall Time tf - 50 75 ns

T olal Gate Charge Og(TOT) VGS = 10V. 10 = 28A. VOS = 0.8 x Rated - 38 59 nC (Gate to Source + Gate to Drain) BVOSS. Ig{REF) = 1.5mA (Figures 14. 19.20)

Gate to Source Charge Qgs Gate Charge is Essentially Independent of Op- - 8 nC erating Temperature -

Gate to Drain "Miller" Charge Qgd - 21 - nC

5-2

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Electrical Specifications T c = 25"C, Unless Otherwise Specified (Continued)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

Input Capacitance CISS VOS = 25V, VGS = OV, f -1MHz - 1450 - pF

Output Capacitance COSS (Figure 11) - 550 - pF

Reverse Transfer Capacitance CRSS - 100 - pF

Internal Drain Inductance Lo Measured From the Modified MOSFET - 3.5 - nH Contact Screw on Tab Symbol Showing the To Center of Die Internal Devices

Measured From the Inductances

4.5 nH 'tD - -Drain Lead, 6mm

.~ (0.25in) from Package to Center of Die

Internal Source Inductance Ls Measured From the - 7.5 - nH Source Lead, 6mm (0.25in) From Header to h Source Bonding Pad

Thermal Resistance Junction to Case ReJc - - 1 °CIW

Thermal Resistance RaJA Free Air Operation - - 80 0eJW Junction to Ambient

ReJA RF1S540SM Mounted on FR-4 Board with 62 °CIW - -Minimum Mounting Pad

Source to Drain Diode Specifications

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

Continuous Source to Drain Current ISO Modified MOSFET Sym-

~ - - 28 A

Pulse Source to Drain Current boI Showing the Integral

ISOM Reverse - - 110 A (Note 3) P-N Junction Diode

G~~ S

Source to Drain Diode Voltage (Note 2) VSO T J = 25°C. Iso = 27 A, VGS = OV (Figure 13) - - 2.5 V

Reverse Recovery Time Irr T J = 25°C, ISO = 28A, dlSo'dt = 100AlJIs 70 150 300 ns

Reverse Recovery Charge ORR TJ = 25°C, ISO = 28A, dlSo'dt = 100NJIs 0.44 1.0 1.9 JIC

NOTES:

2. Pulse test pulse width <; 300~, duty cycle S 2%.

3. Repetttive rating: pulse width limited by maximum junction temperature. See Transient Therrnallmpedance curve (Figure 3).

4. Voo = 25V, starting TJ = 25°C, L = 44O!!H, % = 250, peak lAS = 28A. (Figures 15,16).

5-3

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Typical Performance Curves Unless Otherwise Specified

IX W :::; "-is ::J :E z g

~ 0; !!2 Q IX W

~ ...

1.2

1.0

~ 0.8

0.6

0.4

0.2

o o 25

"-~ " ~ .......

~ ~

50 75 100 125 150 175

Te. eASE TEMPERATURE ("C)

FIGURE 1. NORMALIZED PONER DISSIPATION vs CASE TEMPERATURE

-------

~0.01"-0.01 ...... 1-"

10""

30

g24

... z lii! 18 IX ::>

'" 3l 12 ~ c .E

6

0 25 50 75 100 125 150

T c. CASE TEMPERATURE ("C)

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

," RECTANGUlAR PULSE DURATION (5)

FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE

IRF54{j~ '. RF1~s40: ~~ Te = 25°C

IRF542, 3 10us :±= 100 50

IlOjJS pULSE TEST

:r..

175

g IRF540. 1. RF·"~540. ~M

100jJS - g ry-:::. VGS= lOY VGS =: 7V ..

IRF542, 3 .. , ...

z w IX IX

... 40 z W IX IX

VGS= BV

. i I~ ~ .. 1ms ::J

'" 10 ::J 30

'" VGS= 6V-

OPERATION IN THIS 10ms :E AREA MAY BE ro.. ., LIMITED BY restON} ~~ TJ = MAX RATED

IRF541.3 DC -!;

SINGLE PULSE ...... I I I-II -...-~~

, "

z :;;: IX C

.9

1 1 10 100

z < IX 20 Q

.9 10

0 0

VGS= 5V

VGS= 4V

12 36 46 24 60 Vas. DRAIN TO SOURCE VOLTAGE M Vas. DRAIN TO SOURCE VOLTAGE M

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS

5-4

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Typical Performance Curves Unless Otherwise Specified (Continued)

~r-------------,------,~~--~----~ 80jls PULSE TEST

VGS= 5V

VGS=4V

1.0 2.0 3.0 4.0 5.0

VOS. DRAIN TO SOURCE VOLTAGE M

FIGURE 6. SATURATION CHARACTERISTICS

1.0 8O~s PULSE DURATION

VGS= 10V

1,1 -o -' VGS -20V

o 25 ~ 75 100 125

I", DRAIN CURRENT (A)

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

1.25 ID=2~~

w t>

1.15 '" ~w 00 "'0( O!j

1.05 ~g <tZ "'~ 00 0.95 00 w>< ~< -,w <'" :li 1D 0.85

r" ,.. .....

i,.....-,..

i--"" ". ~ ~ ......

I ..... -'" 0 z

0.75 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ. JUNCTION TEMPERATURE ("C)

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

~ ... z ll! '"

100

~ 10 z ~ o w lc ~ z o

1 0.1

o

3.0

w u

'" 2.4 OJ 0 "w 00 I-z 1.8 ~~ ~~ ~m 1.2 W z ':lo < :Ii 0.6 a: 0 z

0.0

80jls PULSE TEST VOS:>SOV DUTY CYCLE = 0.5% MAX

.Jt.~

/"

/ 17s"c I I 2SoC

I

I J 2 4 6 8 10

VGS. GATE TO SOURCE VOLTAGE (V)

FIGURE 7. TRANSFER CHARACTERISTICS

VGS = 10V. 10 = 26A

V ,/

",. V ",. ,.. "

...... ...... ...-

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

5-5

T J. JUNCTION TEMPERATURE ("C)

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

3000 V~= Ov, f= lMH

II

z C,ss - CGS + Coo

2400 CRSS=CGO

ii:' .eo ... 1800 u z i! ~ 1200 <

~ Coss "" Cos + eGD

I'-..

"'I'. 1'00 C'SS

..... I'

0 c.i

600 " ~oss

r--. .... CRSS -o

1 10

Vos. DRAIN TO SOURCE VOLTAGE (V)

100

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Typical Performance Curves Unless Otherwise Specified (Continued)

~r------------------.-----r-----' Vos ~ 5OV,80j.lS PULSE TEST

~ 16r------r------r_--~~~~--r_----~ w u z ~ g 12r------t~~--r---_=~~--~~----~ Q z o u

~ 8r-.F--~~----r_----_+------r_----~

4~~--+_----4_----~----_+----~

O~ ____ ~ ____ _L ____ _L ____ ~ ____ ~

o 10 30 40

1000

~ !z ~ '" ~ 100 z ~ Q

g w 10 ~ :::> o /II

C .!!'

1

175"c -'"

//2soc

I

I I o 0.6 1.2

~

1.8

... ...

2.4 ID, DRAIN CURRENT (A) Vso. SOURCE TO DRAIN VOLTAGE M

FIGURE 12. TRANSCONDUCTANCe vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

20

~ lo=28A

w Vos= 50V

" ~ 16

g w I.J

12

'" :::> 0 III a g w !;(

4 " .. ~

0 0 12 24 36 48 60

ag. TOTAL GATE CHARGE (nC)

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

5-6

3.0

IRF540, IRF541, IRF542, IRF543, RF1S540, RF1S540SM

Test Circuits and Waveforms

VARY tp TO OBTAIN

REQUIRED PEAK lAS

VGS

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

+

FIGURE 17. SWITCHING TIME TEST CIRCUIT

0.2)lf

O~(REFI

Vos (ISOLATED SUPPLy)

SAME TYPE ASDUT

OUT

Vos _ IOCURRENT - SAMPLING

RESISTOR

FIGURE 19. GATE CHARGE TEST CIRCUIT

5-7

o

BVoss

- tp

lAS / ----,/ Voo / \

/ \

FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

-- to(ONI

Vos -!-'--..! 90% ,

0--

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

IG(REF)

, .. .... Vos .. , .. ,,------------

O~ FIGURE 20. GATE CHARGE WAVEFORMS

(J1National Semiconductor August 2000

LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers General Description The lM124 series consists of four independent, high gain, intemally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of votlages. Operation from split power supplies is also possible and the low power sup­ply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply sys­tems. For example, the lM124 series can be direcUy oper­ated off of the standard +5V power supply votlage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±lSV power supplies.

Unique Characteristics • In the linear mOde the input common-mode voltage

range indudes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage

• The unity gain cross frequency is temperature compensated

• The input bias current is also temperature compensated

Connection Diagram

Advantages • Eliminates need for dual supplies • Four intemaNy compensated op amps in a single

package • Allows direCtly sensing near GND and VOUT also goes

toGND • Compatible with an forms of logic • Power drain suitable for battery operation

Features • Intemally frequency compensated for unity gain • large DC voltage gain 100 dB • Wide bandwidth (unity gain) 1 MHz

(temperature compensated) • Wide power supply range:

Single supply 3V to 32V or dual supplies ± 1.SV to ± 16V

• Very low supply current drain (700 ~A)-essentially independent of supply voltage

• Low input biasing current 45 nA (temperature compensated)

• low input offset voltage 2 mV and offset curren!: 5 nA

• Input common-mode voltage range indudes ground • Differential input voltage range equal to the power

supply voltage • large output voltage swing OV to V· - 1.SV

Dual-In-Line Package

OUTPUT' 'ltPUT4- INf"UT4~ GNO IlIl'lJfl+

OUTPUT 1 Il\Ipur ,- INPUT 1+ v" INPUT l" IMPUT r OUTPUT 2

DS00929G-i

Top View Order Number lM124J, lM124AJ, lM124J/883 (Note 2), LM124AJ/883 (Note 1), LM224J,

lM224AJ, lM324J, lM324M, lM324MX, lM324AM, lM324AMX, lM2902M, lM2902MX, lM324N, lM324AN, lM324MT, LM324MTX or LM2902N LM124AJRQML and LM124AJRQMLV{Nofe 3)

lote1: LM124A available perJM38510111006

lote2: LM124 available per JM3851 0111005

See NS Package Number J14A, M14A or N14A

JOO National Semiconductor Corporation 08009299 www.natiOnal.com

Connection Diagram (Continued)

_ 3: _ sm MI DWG 5962R99504 for Radiation Tolerant Device

OI.lTPtJT I

!/iPIlT1-

INPUT 1+

v. IIiPUT 2+

INPUT 2-

OlIJPUT2 --'-___ ...r-

OUTPUT .01-

INPUT4-

INPUT -4+ ... INPUT 3+

INPUT 3-

OOTPtJT.5

Order Number LM124AW/883, LM124AWGI883, LM124W1883 or LM124WG/883 LM124AWRQML and LM124AWRQMLV(Nole 3)

See NS Package Number W148 LM124AWGRQML and LM124AWGRQMLV(Noie 3)

See NS Package Number WG14A

Schematic Diagram (Each Amplifier)

v'

INPUTS

www.national.com 2

Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V'

Differential Input Voltage

Input Voltage

I nput Current

(V,N < -0.3V) (Note 6)

Power Dissipation (Note 4)

Molded DIP

Cavity DIP

Small Outline Package

o utput Short-Circu~ to GND

(One Amplifier) (Note 5)

V' s 15V and TA = 25'C

o perating Temperature Range

lM324/lM324A

lM2241lM224A

lM124/lM124A

S

l

S

torage Temperature Range

ead Temperature (Soldering, 10 seconds)

oldering Information

Dual-In-line Package

Soldering (10 seconds)

Small Outline Package

Vapor Phase (60 seconds)

Infrared (15 seconds)

. D

LM1241LM2241LM324

LM124A1LM224A1LM324A

32V

32V

-0.3V to +32V

SO rnA

1130 mW

1260 mW

800mW

Continuous

O'C to +70'C

-2S'C to +85'C

-55'C to +125'C

-6S'C to +150'C

260'C

260'C

21S'C

220'C

LM2902

26V

26V

-0.3V to +26V

SO rnA

1130 mW

1260mW

800mW

Continuous

-4Q'C to +85'C

-6S'C to +150'C

260'C

260'C

21S'C

220'C

See AN-4S0 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

::SD Tolerance (Note 13) 2S0V 250V

:Iectrical Characteristics ,. = +S.OV, (Note 7), unless otherwise stated

LM124A LM224A LM324A Parameter Conditions Units

Min Typ Max Min Typ Max Min Typ Max luI Offset Voltage (Note 8) T. = 25'C 1 2 1 3 2 3 mV .ut Bias Current I'N(of-) or I'N(-J' V CM = fN,

20 50 40 80 45 100 nA )Ie 9) T. = 25'C

lut Offset Current I'N(-") or IIN(-), VCM = OV, 2 10 2 15 5 30 nA

TA = 25'C

ut Common-Mode y+ = JOV, (LM2902, y+ = 26V), 0 Y+-l.5 0 Y+-l.5 0 Y+-l.5 V

!age Range (Note 10) T, = 25'C

)pty Current OVer Full Temperature Range

RL = = On All Op Amps rnA

y+ = JOV (LM2902 y+ = 26V) 1.5 3 1.5 3 1.5 3

Y+=5V 0.7 1.2 0.7 1.2 0.7 1.2 ge Signal y+ = 15V, Rc~ 2k!2, 50 100 50 100 25 100 VlmV

tage Gain f% = 1V 10 l1V), TA = 25'C -'--'-'-~-------. -- ---

omon-Mode DC, VCM = OV 10 y+ - 1.5V, 70 85 70 85 65 85 dB

ection Ratio TA = 25'C

3 'IM'W.national.com

Electrical Characteristics (Continued)

y+ ~ +5.0V, (Note 7), unless otherwise stated

LMl24A LM224A LM324A Parameter CondItions Units

Min Typ Max Min Typ Max Min Typ Max

Power Supply V' = 511 to 30V

Rejection Ratio (lM2902, V' = 511 to 26V), 65 100 65 100 65 100 dB

TA = 25'C

Amplifier-to-Amplifier f = 1 kHz to 20 kHz, TA = 25'C -120 -120 -120 dB

Coupflng (Nota 11) (Input Referred)

Output Current Source VIN+::: 1V. VIN = OV. 20 40 20 40 20 40

V' = 1511, Va = 2V, TA = 25'C rnA

Sink VIN ::: 1V, VIN + = av. 10 20 10 20 10 20

V' = 15V. Va = 2V, TA = 25'C

Y,N = 1V. VIN· = OV, 12 50 12 50 12 50 IlA V' = 15V. Va = 200 mY, TA = 25'C

Short Circuit to Ground (Nola 5) V' = 1511, T. = 25'C 40 60 40 60 40 60 rnA

Input Offset Voltage (Nota 8) 4 4 5 mV . -~--- ~. --_ .. .. --~.-- . ---. .........

Vas Drift Rs = on 7 20 7 20 7 30 ~vrc

Input Offset Current IIN(+) - "N(-)' V CM = fJV 30 30 75 nA

los Drift Rs = on 10 200 10 200 10 300 plV'C

Input Bias Current IIN(+) or IIN(-) 40 100 40 100 40 200 nA

Input ComlTlOn-Mode V' = +30V 0 V'-2 0 V'-2 0 V'-2 V

Voltage Range (Nota 10) (lM2902, V' = 26V)

large Signal V' = +15V (VoSwing = 1V to llV)

Voltage Gain Rl2:2k!l 25 25 15 V/mV

Output Voltage VOH V' = 30V Rt.=2kQ 26 26 26 V

Swing (lM2902, V' = 26V) Rt. = 10 kQ 27 28 27 28 27 28

Val V' = 511. Rt. = 10 kQ 5 20 5 20 5 20 mV

Output Current Source Va = 2V VIN+ = +1V, 10 20 10 20 10 20

~~~~~. rnA

Sink VIN = +1V, 10 15 5 8 5 8

V l' = (]V VV' = 15V'

Electrical Characteristics y+ ~ +5.0V, (Note 7), unless otherwise stated

lM1241LM224 LM324 LM2902 Parameter Conditions UnHs

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage (Note 8) T. = 25'C 2 5 2 7 2 7 mV

Input Bias Current IIN(+) or I'N{-I' VCM = OV, 45 150 45 250 45 250 nA

(Note 9) T. = 25'C

Input Offset Current IIN(+) or "NH' VCM = OV, 3 30 5 50 5 50 nA

TA = 25'C

Input Common-Mode V' = 3OV. (lM2902. V' = 26V). 0 V' -1.5 0 V'-1.5 0 V' 1.5 V

Voltage Range (Nota 10) TA = 25'C

Supply Current Over Full Temperature Range

Rl = ~ On All OpAmps mA

V' = 30V (LM2902 V' = 26V) 1.5 3 1.5 3 1.5 3

V'=511 0.7 1.2 0.7 1.2 0.7 1.2

large Signal V' - 15V. Rt.o> 2kn. 50 100 25 100 25 100 VlmV

Voltage Gain (VA = 1V to llV), TA = 25'C

Common-Mode ~C. VCM = OV to V' - 1.511. 70 85 65 85 50 70 dB

Rejection Ratio TA = 25'C

Prmer Supply V' = 511 to 30V

Rejection Ratio (LM2902. V' = 5V to 26V). 65 100 65 100 50 100 dB

www.national.com 4

Electrical Characteristics (Continued)

v+ = +5.0V, (Note 7), unless otherwise stated

LM1241LM224 LM324 LM2902 Parameter Conditions Units

Min Typ Max Min Typ Max Min Typ Max

TA = 25'C

I\mplifier -II>-Amplifier f = 1 kHz 10 20 kHz. TA = 25'C -120 -120 -120 dB

::OOpling (No'" 11) (Input Referred)

:Jutput Current Source Y,N + = lV, Y,N = (N, 20 40 20 40 20 40

y+ = 15V, Vo = 2V, TA = 25'C rnA

Sink V'N- = lV, V,N+ = W, 10 20 10 20 10 20

y+ = 15V, Vo = 2V, TA = 25'C

Y,N = lV, V,tt = w, 12 50 12 50 12 50 IIA y+ = 15V, Vo = 200 mV, TA = 25'C

SIlort arcu~ 10 Ground (No'" 5) y+ = 15V, T A = 25'C 40 60 40 60 40 60 mA

nput Offset Voltage (No"'8) 7 9 10 mV

'os Drift Rs = on 7 7 7 ~vrc

nput Offset Current I'N(+) - I'N(-). V CM = OV 100 150 45 200 nA

os Drift Rs = on 10 10 10 pArC

nput Bias Current I'N(+) or I'N(-) 40 300 40 500 40 500 nA

nput Common-Mode y+ = +JOV 0 Y+-2 0 Y+-2 0 Y+-2 V

tollage Range (No'" 10) (LM2902, y+ = 26V)

.arge Signal y+ - +15V (VoSWing = lV to l1V)

toltage Gain RL~2kil 25 15 15 VlmV

)utput Vollage VOH y+ = JOV RL = 21<!l 26 26 22 V

~wing (LM2902, V· = 26V) I Rc = 10 kQ 27 28 27 28 23 24

VOL y+ = 5V, Rc = 10 kQ 5 20 5 20 5 100 mV

)utput Current Source Vo = 2V V,N+ - +1V, 10 20 10 20 10 20

V - = (N, \l' = 15V

rnA

Sink Y,N = +1V, 5 8 5 8 5 8

V + = ov, \l' = 15V

Note4: For operating at high temperatures. the LM3241LM324A1LM2902 must be derated based on a +125"C maximum junction temperature and a thennal rests-tance of sa"C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224J1...M224A and LM1241LM124A can be de-rated based on a +150'C maximum junction temperature. The dissipation is the total of all four amplifiers-use external resistors, where possible. to allow the am-plifier to saturate of to reduce the power which is dissipated in the integrated circuit

Note 5: Short circuits from the output to y+- can cause excessive heating and eventua.t destruction. When considering short drcuits to ground, the ma.ximum output current is approximately 40 rnA independent of the magnitude of y+. At values of suppty voltage in excess of +15V, continuous short-cin::uits can exceed the power

dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all ampflfiers.

Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the rollector--base jwlction of the input PNP tran-sistors beroming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the Ie chip. This: transistor action can cause the ou1put voftages of the op amps to go to the v+voftage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and nonnal output states wiD re-establish when the input voltage, which was negative, again returns to a value greater than -O.3V (at 25"C).

Note 7: These specifications are limited to -55"C s: T AS: +12S"C forthe LM124/LM124A With the LM2241LM224A, aU temperature specifications are limited to -25-C :5 TA :5 +B5'C, the LM3241lM324A temperature specifications are limited to O'C s TA S +70·C, and the LM2902 spedfications are limited to -40·C:s TA s +SS·C.

Note 8: Vo "" 1.4V, Rs = on wrth y+ from 5V to 3OV; and over the full input rommon~mode range (OV to y+ - 1.5V) for LM2902, y+ from 5V to 26V.

Note 9: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant. independent of the state of the output so

no loading change exists on the input lines.

Note 10: The input cornmon-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 2S·C). The upper end of the common~rnode voftage range is y+ - 1.5V (at 25'C), but either or both inputs can geta +32V without damage (+26V forLM29(2), independent of the magnitude of

V'. Note 11: Due to proximity of external components, insure that ooupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 12: Refer to RETS124AX for LM124A military spedfications and refer to RETS124X for LM124 military specifications.

Note 13: Human body modet, 1.5 k.Q in series wrth 100 pF.

5 www.national.com

Typical Performance Characteristics

Input Voltage Range 15r-----,------.-----n

0

:? ~ w <:> < ~ ~ 0 > ~

=> ~

~

z >--H

10

5

o 5 10 15

v+ OR V- - POWER SUPPLY VOLTAGE (tVoc) DSIJ092ll9.34

Supply Current

~ 1 ~ TA' oo~ TO +125 OC

I P T. I -55;C--

ID 20

v+ - SUPPLY VOLTAGE (VI)() 0S009299-36

Open Loop Frequency Response

z '< '-' w <:> ~ ~ o >

www.natlonal.com

10 100 l.Ok 10k lOOk 100M 10~

f - FREQUENCY (Hz) DSOOI2!I9-J8

Input Current 90

80

Jl 70 -5

60

50

40

30

O 0

o

I I Ivcw=OVoc I I I

v+ = +30 Voc I I

v+ = +15 Voc f--- t-

v+ = '5VoC I I 1

I I I -55 -35 -15 5 25 45 65 85 105125

Voltage Gain

~ .. '-' w

160

120

~ 80 '::; o >

o

T. - TEWPERATURE (oc) 0&I092!l<>35

Rc = 20kll

". ~ Rc = 2 kll

10 20 30 40

V+ - SUPPLY VOLTAGE (Voc ) DSOO9299-37

Common Mode Rejection Ratio

= ~ 120

0 >= ;:, 100 z 0 >= 8 ;:J ~

w 0 0

'" , z 0

'" '" 0 0

~ ~

'" 100 1. u 10k lOOk 1M

f - FREQUENCY (Hz)

6

BIODATA

Nama Y ohanes Pandu A.

NRP 5103099059

Tempat, Tgl. Lahir Surabaya, 14-05- 1979

Agama Katolik

Alamat rumah Jl. Mastrip Warugunung

IX /51 Surabaya

Riwayat Pendidikan :

• Tahun 1992 Lulus SDK Indriyasana VII, Surabaya.

• Tahun 1995 Lulus SL TK Santo Yosef, Surabaya.

• Tahun 1998 Lulus SMUK. St. Loui.s U, SUIabaya

PER PUS T A ~ A A N l Universitas Kato.k \'y 1,,'.1 1i'J.Cl •• !.l..lla

l SUKAllAYA )