lsw experiments with pulsed magnets +vacuum …...k

27
LSW experiments with pulsed magnets +Vacuum Magnetic Birefringence (VMB) HIMAFUN 30 th May 2017 Toshiaki Inada Magnet/bank: T.Yamazaki et al, NIM A 833, 122 (2016) VMB: X.Fan et al, arXiv: 1705.00495 Xray LSW: T.I. et al, PRL. 118, 071803 (2017) 1

Upload: others

Post on 24-May-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LSW experiments with pulsed magnets +Vacuum …...k

LSW experiments with pulsed magnets+Vacuum Magnetic Birefringence (VMB)

HIMAFUN  30th  May  2017

Toshiaki  Inada

•  Magnet/bank:  T.Yamazaki  et  al,  NIM  A  833,  122  (2016)  

•  VMB:  X.Fan  et  al,  arXiv:  1705.00495  

•  X-­‐ray  LSW:  T.I.  et  al,  PRL.  118,  071803  (2017)  

1

Page 2: LSW experiments with pulsed magnets +Vacuum …...k

Fundamental  physics  in  vacuum

Be Be

a

Be Be

a

Be

a

Be

Light-­‐by-­‐light  interac0on   VMB

VMB

LSW

Nonlinear  QED              Axions,  ALPs        

We  are  studying  both  of  these  nonlinear  QED  and  axions 2

Haloscope,  Helioscope

Page 3: LSW experiments with pulsed magnets +Vacuum …...k

Pump-­‐probe  scheme  for  vacuum  physics

Laser  (~1  PW) Pulsed  magnet  

Laser  (op^cs)

X  rays  (XFEL)

Laser  LSW  VMB

X-­‐ray  LSW  Laser-­‐induced  diffrac^on/birefringence

Light-­‐by-­‐light  sca`ering  Four-­‐wave  mixing

We  use  pulsed  pump  to  get  a  high  field  

Probe Pump

3

Page 4: LSW experiments with pulsed magnets +Vacuum …...k

Pump-­‐probe  scheme  for  vacuum  physics

Probe Pump Laser  

(~1  PW) Pulsed  magnet  

X  rays  (XFEL)

Laser  LSW  VMB

Light-­‐by-­‐light  sca`ering  Four-­‐wave  mixing

X-­‐ray  LSW  

4

XFEL PW  laser  

Diffracted  x  rays  (with  flipped  pol.)

A  0.5-­‐PW  laser  will  be  available  from  2018  à Now  tes^ng  with  2.5  TW  (link:  h`p://tabletop.icepp.s.u-­‐tokyo.ac.jp/Tabletop_experiments/VB__SACLA+laser_files/seino-­‐lnpc17.pdf)

Laser  (op^cs)

Laser-­‐induced  diffrac^on/birefringence

Page 5: LSW experiments with pulsed magnets +Vacuum …...k

Pulsed  magnets Magnet  types  •  Solenoid:  good  symmetry  à  80-­‐100  T  -­‐  We  need  a  transverse  field  over  large  length  •  Racetrack:  bad  symmetry  à  31.7  T  (XXL-­‐coil)    Merits  -­‐  Intensity:  LSW:  B×L,  VMB:  B2×L  -­‐  VMB  with  IZ  scheme:  temporal  field  modula^on    Drawback  Low  duty:  fast  repe^^on  -­‐  Power  supply:  charging  ^me  of  capacitors,  0.1  Hz  -­‐  Magnet:  hea^ng  <-­‐>  cooling  efficiency  (LN2)  à as  high  as  possible,  hopefully  to  0.1  Hz  

5

Page 6: LSW experiments with pulsed magnets +Vacuum …...k

Light  Magne^c  field

Current

Coil  structures

Bobin

Lem  pole Right  pole  (rewound)

Dipole

Single  coil

Minimalized  field-­‐volume  

Crack  at  9  T

6 No  a`rac^ve  force  with  a  single  coil

Page 7: LSW experiments with pulsed magnets +Vacuum …...k

20  cm

20%

Field  map  along  the  beam  path •  Transverse  field  along  the  pipe  center  (inner  diameter  5.3  mm)  •  Tilted  path  (2.75°)  à  smaller  for  the  edges  

20  cm

Beam  pipe Bobin

Dot:  measurement  Line:finite  element  simula^on  in  3D  (ANSYS)  

7

Page 8: LSW experiments with pulsed magnets +Vacuum …...k

Conven^onal  backup  metal

Coil

(Lem)  fipng  the  coil  into  a  backup  ring,  (right)  pressing  it  with  plates                      Drawbacks  •  Expansion  force  (Maxwell  stress)  concentrates  on  the  ring  corners  •  Large  eddy  current  runs  in  the  ring  and  plates  to  cancel  the  field  

Expansion

Eddy  current1  (ring)

Eddy  current2  (top/bo`om  plates)

8

Page 9: LSW experiments with pulsed magnets +Vacuum …...k

Position (mm)-150 -100 -50 0 50 100 150

B/I (

T/kA

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Dividing  the  metal  into  20  pieces 積層補強を被せる前の,裸のコイル(5号機)

•  Avoid  the  concentra^on  of  the  expansion  force  •  Divide  the  backup  metal  where  eddy  current  runs  

Reducing  materials  with  small  thermal  conduc^vity  à  Cooling  efficiency

Number  of  divisions  ―  3          ―  7  

 ―  20        ―  40  

9

Page 10: LSW experiments with pulsed magnets +Vacuum …...k

time [ms]0.5 1 1.5 2 2.5

I [kA

]

0

2

4

6

8

10

time [ms]0 1 2 3 4 5

I [kA

]-6-4-202468

10

Power  supply    for  high-­‐rep.  opera^on •  Lem:  conven^onal  single-­‐shot  circuit  •  Right:  energy  recycling  circuit  

 

One  cycle  •  Frist  pulse  (SCR1)  à  posi^ve  field  •  Second  pulse  (SCR2)  à  nega^ve  field  •  Re-­‐charge  the  capacitor  by  the  energy  lost  by  the    two  pulses  

First

Second

10

Page 11: LSW experiments with pulsed magnets +Vacuum …...k

12  capacitors  in  total:  3mF,  1.9t    à Dividing  them  into  4  units  for  transportability  Max.  voltage:  4.5kV  (30  kJ)  

2m

1.7m

② ③

④ Capacitor  units  

Discharge  sec^on  Control  panel

11

Page 12: LSW experiments with pulsed magnets +Vacuum …...k

# of shots0 2 4 6 8 10 12 14 16

[T]

peak

, cen

ter

B

8.6

8.8

9

9.2

9.4

9.6 / ndf 2 2.047e-05 / 11

p0 0.0005752± 8.722 p1 0.5002± 0.6619 p2 1.775± -0.8172 p3 0.03466± 2.334

/ ndf 2 2.047e-05 / 11p0 0.0005752± 8.722 p1 0.5002± 0.6619 p2 1.775± -0.8172 p3 0.03466± 2.334

Con^nuous  opera^on Opera^onal  condi^on  •  4  magnets  à  0.8  m  •  4  kV  -­‐  3  kV:  9.2  T  –  6.0  T  cycle  •  cycle  repe^^on:  0.1  Hz  •  Heat  loss:  2.4  kW  for  4  magnets  

Pulse  interval  is  adjustable:  30  Hz  in  this  case  Fields  are  stable(±  0.5%)  amer  reaching  equilibrium

Decay  of  peak  field  of  the  first  pulse

12

732  pulses

Page 13: LSW experiments with pulsed magnets +Vacuum …...k

Summary:  current  status  of    the  field-­‐genera^on  system

Development  of  a  field-­‐genera^on  system  suited  for  repe^^ve  opera^on  -­‐  Mul^ple  racetracks  à small  field-­‐volume,  small  hea^ng,  high  cooling  efficiency  -­‐  Power  supply  for  a  high-­‐rep.  use  à energy  recycling  scheme    9  T  over  0.8  m  with  0.1  Hz  (cycle)  has  been  achieved  à B2×L  =  54  T2  m  -­‐  NIM  A  833,  122  (2016)  

13

Page 14: LSW experiments with pulsed magnets +Vacuum …...k

Pump-­‐probe  scheme  for  vacuum  physics

Probe Pump Laser  

(~1  PW) Pulsed  magnet  

Laser

X  rays  (XFEL)

Laser  LSW  VMB

X-­‐ray  LSW  Laser-­‐induced  diffrac^on/birefringence

Light-­‐by-­‐light  sca`ering  Four-­‐wave  mixing

 PD Laser    

14

Page 15: LSW experiments with pulsed magnets +Vacuum …...k

The  OVAL  experiment Observing  VAcuum  with  Laser  -­‐  Tes^ng  setup  with  one  magnet  -­‐  B2×L  =  13.8  T2  m

Electrode

Magnet

2.4  m

Vacuum  chamber

Mirror

Polarizer

15

Page 16: LSW experiments with pulsed magnets +Vacuum …...k

Con^nuous  DAQ large  gamma:  two  possibili^es  1.  laser  not  hipng  

the  center  of  the  mirrors  

16

shields  for  leakage  fields

Side  view

To  observe  VMB,  a  long-­‐term  run  is  necessary  -­‐  Cavity  resonance  has  to  survive  pulsed  fields    We  must  remove  the  disturbance  of  mechanical  shocks  -­‐  The  disturbance  is  decoupled  by  these  bellows?  

Page 17: LSW experiments with pulsed magnets +Vacuum …...k

At  present,  it  works

It

Typical  response  of  PDt

During  the  pulse  -­‐  No  mechanical  shock  was  observed  at  9  T  

ARer  the  pulse  Acous^c  shock:  arrives  at  4  ms à Resonance  survives

17

Page 18: LSW experiments with pulsed magnets +Vacuum …...k

N2  measurement

18

Pressure (Pa)0 50 100 150 200 250 300 350 400

)-2

) (T

2(N

CM

k

14

12

10

8

6

4

2

01510×

/ndf 2.825 / 22

8.6e-16±) 1.3e-15 -2 (TCM, vack 4.1e-18±) -3.7e-17 -1Pa-2)(T

2(NCM

Pressure (Pa)0 50 100 150 200 250 300 350 400

)-1) (

T2

(N Fk

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1210×

/ndf 3.855 / 22

7.3e-14±) -8.3e-14 -1 (TF, vack 3.8e-16±) 4.5e-15 -1Pa-1)(T

2(NF

We  also  measured  kCM  and  kF  of  N2  gas  (100-­‐350  Pa)

Preliminary  

Page 19: LSW experiments with pulsed magnets +Vacuum …...k

Vacuum  measurement

Fi`ed for  100  cycles

Preliminary kCM = -0.5±1.1×10-18 (T-2)

As  a  test,  we  applied  100  cycles  of  9.0  T  and  -­‐4.5  T  à  15  min

19

Page 20: LSW experiments with pulsed magnets +Vacuum …...k

Future  steps

This  measurement Target  value Gain   Upgrade  plan/Status

Magne7c  filed 9[T] 15[T] 2 Changing  wound  wire  from  Cu  to  Ag-­‐Cu  

Field  length   0.2[m] 0.8[m] 4 Preparing  for  loading  4m  op7cal  bench  now

Pulse  width 1.2[ms] 4.8[ms] 2 The  Modifica7on  of  the  power  supply  unit.

DAQ  7me 15[min] 180[days] 130 Building  a  stable  DAQ  system  is  on  going

Finesse 350,000 650,000 2 Upgrade  is  succeeded

Intensity 0.03[mW] 5[mW] 40 Upgrade  is  succeeded

Intensity  noise

1×10-­‐4                          [1/√Hz]

1×10-­‐5                      [1/√Hz]

3 Upgrade  is  succeeded

Improvements  of  op^cs  have  almost  finished  We  need  to  combine  it  with  magnets  -­‐  Work  in  progress!

Table  of  improvements  to  observe  QED  with  a  6-­‐month  run

20

Page 21: LSW experiments with pulsed magnets +Vacuum …...k

Pump-­‐probe  scheme  for  vacuum  physics

Probe Pump Laser  

(~1  PW) Pulsed  magnet  

Laser

X  rays  (XFEL)

Laser  LSW  VMB

X-­‐ray  LSW  Laser-­‐induced  diffrac^on/birefringence

Light-­‐by-­‐light  sca`ering  Four-­‐wave  mixing

21 Pioneering  work  at  ESRF:  PRL  105:250405  (2010  )

Page 22: LSW experiments with pulsed magnets +Vacuum …...k

X-­‐ray  LSW  search  for  ALPs •  First-­‐phase  experiment:  -­‐  DC  x  rays  at  SPring-­‐8  BL19LXU:  3×1013  photon/s  at  9.5  keV  -­‐  using  4  magnets  -­‐  2  days  for  DAQ  in  Nov.  2015  à  27,676  pulses!  

12  vessels  (LN2  100  l)

XFEL  SACLA

SPring-­‐8

22

Page 23: LSW experiments with pulsed magnets +Vacuum …...k

Opt.  hutch Exp.  hutch  1 Exp.  hutch  2

XPD1

S2 LSW  setup

BL19LXU  undulator

DCM TRM Slit

W1 W2

W3 RL LPD S1

Ge  crystal

3  m

Setup

23

Page 24: LSW experiments with pulsed magnets +Vacuum …...k

Time-­‐energy  distribu^on  of  events

Tim

e (s

)2

4

6

8

Energy (keV)2 4 6 8 10 12 14 16

Tim

e (m

s)

05

10

Signal region

0Time (ms)0 1 2

(T)

0B

-5

0

5

10

First pulse

Second pulse

•  Time  window:  2.1  ms  (lem)  •  Energy  window:  beam  energy  (9.5  keV)  ±2σ(detector  resolu^on)

Signal  region

No  events!

Energy  threshold Beam  energy

Monotonic  environmental  BG

Zoom  around  the  ^me  window

24

Page 25: LSW experiments with pulsed magnets +Vacuum …...k

Limits  on  the  coupling  constant

(eV)am-210 -110 1

)-1

(GeV

ag

-410

-310

-210

ESRF (2010)

SPring-8 (2017)

SACLA,  4  magnets  (expected)

SACLA,  8  magnets  (expected)

•  Next  target:  XFEL  +  8  magnets  -­‐  4×1011  photon/pulse,  30  pulse/s,  2-­‐day  run  •  Also,  keep  improving  the  magnet

5.2 PRL.  118,  071803  (2017)  

25

Page 26: LSW experiments with pulsed magnets +Vacuum …...k

Test  of  8  magnets  at  SPring-­‐8

Upstream  4  magnets

Downstream  4  magnets  in  LN2

Capacitor  bank

26

Page 27: LSW experiments with pulsed magnets +Vacuum …...k

Summary

We  develop  racetrack  pulsed  magnets  and  study  vacuum  physics  (nonlinear  QED,  ALPs)  with  combina^on  of  x  rays  and  op^cal  lasers.    We  keep  improving  our  magnet  toward  higher  fields.    Using  the  present  version  of  magnets  and  XFEL,  -­‐  VMB  -­‐  x-­‐ray  LSW  -­‐  vacuum  diffrac^on/birefringence  experiments  have  started  and  begun  to  obtain  results  in  their  first  phase.  

27