rf transceiver design condensed course for 3tu students peter baltus eindhoven university of...

34
RF Transceiver Design RF Transceiver Design Condensed course for 3TU students Condensed course for 3TU students Peter Baltus Peter Baltus Eindhoven University of Technology Eindhoven University of Technology Department of Electrical Engineering Department of Electrical Engineering 20070607 / 20070608 20070607 / 20070608

Upload: karissa-savell

Post on 02-Apr-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1

// RF Transceiver Design Condensed course for 3TU students Peter Baltus Eindhoven University of Technology Department of Electrical Engineering 20070607 / 20070608 Slide 2 // Agenda Day 1 Thursday June 7 th 2007 10:00-11:15 lecture 1 Systems, specs Technologies & FOMS Architectures + finding subblock parameters 11:15-12:00 instruction 1 12:00-13:00 lunch 13:00-14:15 lecture 2 Amplifiers & Mixers 14:15-15:30 instruction 2 15:30-16:30 lecture 3 Oscillators & Filters 16:30-17:00 instruction 3 Slide 3 // Agenda Day 2: Friday June 8 th 2007 9:00-10:15 lecture 4 Block interaction: substrate xtalk coupling of inductors Packaging thermal effects multi-mode non-linear input/output impedance 10:15-11:00 instruction 4 11:00-12:00 lecture 5 Multiple-antenna OFDM systems: overview, system build-up, digital signal processing 12:00-13:00 lunch 13:00-14:00 lecture 6 Influence and digital compensation of Phase Noise and Carrier frequency offset 14:00-14:30 instruction 14:30-15:30 lecture 7 Influence and digital compensation of IQ imbalance and nonlinearities, generalized error model 15:30-16:00 instruction Slide 4 // Lecture 1: RF Systems & Specifications Slide 5 // Instruction Slide 6 // Question 1 Design a simple mass-market WLAN system: - f = 5..6GHz - BW = 20MHz - SNRmin = 11dB - Range = 100m LOS Find a consistent (but not unique) set of parameters: - Transmit power - Receive noise figure - Receiver IP3 - Receiver selectivity Make any reasonable assumption required Slide 7 // Question Calculate required transmit power if: Frequency = 2.5GHz range = 10m sensitivity = -70dBm omnidirectional antennas LOS Slide 8 // Solution PRX=-70dBm GRX= GTX=0dB Wavelength=0.12m PTX =0.11mW Low power! Cheap AA NiCd battery: 1.5Wh => 14000 hr! Slide 9 // Question: -10 dBm frequency 2 -40 dBm P out What is IIP2 and OIP2 assuming a power gain of 7 dB Slide 10 // Two signals at the input of a non-linear system Yield a lot! of other frequency components 11 22 Slide 11 // A forest of frequencies Slide 12 // Graphical overview of inter-modulation products Slide 13 // Calculation of IP2 IIP2: input power where wanted power = second order power (extrapolated point). Slide 14 // Formula for OIP2 (small signal extrapolation!) P fund,out P frequency P out (dBm) 2 Slide 15 // Answer The input IIP2 is OIP2 divided by the power gain (so -7 dB) Slide 16 // Calculation of IP3 IIP3: input power where wanted power = the third order power (extrapolated point). Slide 17 // Formula for OIP3 (when not in compression) P fund,out P freq. P out (dBm) 2 Slide 18 // RX NF Exercise: Calculate RX minimum NF for: Psensitivity = -70dBm BW = 20MHz SNRmin=15dB Slide 19 // RX NF Solution: P RX =-70dBm BW=20MHz SNR min 15dB Equivalent input noise: -85dBm Equivalent input noise density: -158dBm/Hz Thermal noise density (kT) : -174dBm/Hz Total transceiver NF=16dB Note: need to include losses for antenna filter, switches, antenna loss (total e.g. 3dB) and baseband implementation loss to get RX IC NF Slide 20 // RX ADC Exercise Bandwidth = 1MHz max signal = -20dBm min signal = -70dBm SNRmin = 11dB Calculate ADC minimum sampling rate & minimum # bits assuming perfect analog channel selectivity but no AGC, and ADC noise contribution less than 1dB Slide 21 // RX ADC Solution: Bandwidth = 1MHz, sample rate >=2Msps Resolution: max signal = -20dBm min signal = -70dBm equivalent input noise = -81dBm equivalent ADC input noise = -91dBm Dyn range: 71dB Effective resolution: >= 12bit Slide 22 // Lecture 2: Amplifiers & Mixers Slide 23 // Instruction Slide 24 // Question 1 For a simple mass-market WLAN system: - select a (very simple) LNA topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 25 // Question 2 For a simple mass-market WLAN system: - select a (very simple) Mixer topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 26 // Lecture #3: VCOs and Filters Slide 27 // Instruction Slide 28 // Question 1 For a simple mass-market WLAN system: - select a (very simple) VCO topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 29 // Question 2 For a simple mass-market WLAN system: - select a (very simple) IF filter topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 30 // The End for today! Thanks for your attention ! Tomorrow: Block interaction or Why it still doesnt work Slide 31 // Lecture #4: Why it still doesnt work Slide 32 // Instruction Slide 33 // Question Design: -Floorplan -Pin-out -For a 4x4 MIMO WLAN transceiver for the mass- market Slide 34 // The End for my contribution today Thanks for your attention !