ρ () tdv$$$$scienide2.uwaterloo.ca/~nooijen/chem356/chem+356+pdf/ch_1.pdf ·...

14
Fall 2014 Chem 356: Introductory Quantum Mechanics 8 Chapter 1 – Early Quantum Phenomena ..................................................................................................... 8 Early Quantum Phenomena..................................................................................................................... 8 Photoelectric effect .............................................................................................................................. 11 Emission Spectrum of Hydrogen............................................................................................................ 13 Bohr’s Model of the atom...................................................................................................................... 14 De Broglie Waves ................................................................................................................................... 17 Double slit experiment .......................................................................................................................... 18 Chapter 1 – Early Quantum Phenomena Early Quantum Phenomena Blackbody Radiation 1900 (Planck) the first evidence of quantization Tiny hole, emits radiation Body at temperature T (in equilibrium) Approximate black bodies: stars, a stove, flame or furnace () v T dv ρ in Jm 3

Upload: others

Post on 18-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

  8    

 

 Chapter  1  –  Early  Quantum  Phenomena  .....................................................................................................  8  

Early  Quantum  Phenomena  .....................................................................................................................  8  

Photo-­‐electric  effect  ..............................................................................................................................  11  

Emission  Spectrum  of  Hydrogen  ............................................................................................................  13  

Bohr’s  Model  of  the  atom  ......................................................................................................................  14  

De  Broglie  Waves  ...................................................................................................................................  17  

Double  slit  experiment  ..........................................................................................................................  18  

 

Chapter  1  –  Early  Quantum  Phenomena  

Early  Quantum  Phenomena    Blackbody  Radiation  1900  (Planck)    

 the  first  evidence  of  quantization  

                    Tiny  hole,  emits  radiation  

 Body  at  temperature  T (in  equilibrium)  

 Approximate  black  bodies:  stars,  a  stove,  flame  or  furnace  

                        ( )v T dvρ        in          J  m-­‐3  

Page 2: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   9    

 radiant  energy  density  (intensity)  between    v  and   v + dv  

 -­‐ Same  for  any  material  -­‐ Maximum  in  distribution  shifts  to  higher  v  with  increasing  T  

 

Wien:                 λmaxT = 2.9 ⋅10−3

   m  K  

    Stefan-­‐Boltzman  (see  McQuarrie):  

      R = c

4Ev (T ) = c

4ρν (T )dv

0

∫  

              =σT 4 ,           σ ≈ 5.6697 ⋅10−8 J  m-­‐2  k-­‐4  s-­‐1  

 Planck  took  experimental  curves  and  fitted  them  to  a  formula:        

ρv (T )dv = 8πh

c3 ⋅ v3

ehv/kBT −1dv  

 c :      speed  of  light      ~        3  x  108  m  s-­‐1  

      h :      Planck’s  constant      ~      6.6  x  10-­‐34  J  s           Bk :    Boltzmann    ~      1.4  x  10-­‐23  J  k-­‐1  

 Works  Perfectly.  Planck’s  problem:  How  can  one  derive  it  from  known  classical  physics?  

Classical  Physics  →     ρv (T ) =

8πkBTc3 v2                     Exact  as   v  →  0  

Disaster  as  v  large    Something  was  VERY  WRONG  with  classical  physics    

Planck  made  a  quantum  hypothesis,  a  particular  oscillator  of  frequency  v  could  only  have  energies  nhv  quantized:  n  is  an  integer.    With  this  ad  hoc  assumption,  he  could  derive  his  formula.  Nobody  understood  what  this  meant.    Some  more  details:         ρ(ν ,T )  can  be  converted  to   ρ(λ,T )dλ  

        v = c

λ                

dv = − c

λ 2 dλ  

Page 3: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   10    

     

8πhc3 ⋅ v3

ehv/kBT −1dv        →              

8πhc3 ⋅

⎛⎝⎜

⎞⎠⎟

3

ehc/kBTλ −1− cλ 2

⎛⎝⎜

⎞⎠⎟

dλ  

also            2

1

v

v

dv∫      →    2

1

λ

λ∫        →          1

2

λ

λ−∫  

      2 1v v>        →         2 1λ λ<             (exercise)  

             

ρ(λ,T )dλ = 8πhcλ5

1

ehc

λkBT −1

⎝⎜⎜

⎠⎟⎟

dλ  

 Einstein  later  on  (1915)  gave  an  insightful  derivation.  Let  us  discuss:    Consider  equilibrium  between  any  2  quantum  levels  (micro-­‐balance)  

 

2

1

2

1

~

~

B

B

Ek T

Ek T

N e

N e

−  

                                             

 

BN1ρ(ν ,T )− BN2ρ(ν ,T )− AN2 = 0         Stimulated    ~ ρ(v,T )            spontaneous    

        ρ(ν ,T )[

N1

N2

−1]= AB  

 

   2 1

1

2

B B

E E hvk T k TN

e eN

= =     33

8A h vB c

π= ⋅       Property  of  radiation    

i.e.  does  not  depend  on  material.    [Derived  much  later  by  Dirac,  Quantum  electrodynamics]  

 

       

ρν (T ) = 8πhc3 ⋅ v3

ehv

kBT −1

 

 Black  body:  all  quantum  levels  in  equilibrium    

Page 4: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   11    

 Black:  To  every  frequency  there  is  a  set  of  levels   2 1E E hv− →  (dense)  all   hv  occur.  

 Planck  was  first,  but  it  is  hard  to  see  that  Blackbody  radiation  implies  quantization  of  energy  levels.  Few  people  understood  the  implications.  Einstein  did!      Photo-­‐electric  effect  (Einstein  1905)  

 

 Light:  oscillating  electromagnetic  field  jiggles  electrons  →  provides  kinetic  energy,  enough  such  that  electron  can  leave  the  metal.    Classically  one  expects:  

-­‐ Kinetic  energy  of  electron  depends  on  the  intensity  of  the  light  -­‐ Electrons  can  be  ejected  for  any  frequency  of  light,  if  intensity  is  high  enough.  

 What  is  observed  (Lenard,  Millikan,  later  on)  

-­‐ Kinetic  energy  of  electron  does  not  depend  on  intensity  of  light  -­‐ Only  above  threshold  frequency  do  you  see  any  electrons  -­‐ #  of  ejected  electrons  depends  on  the  intensity  of  field  -­‐ Kinetic  energy  depends  linearly  on   v  

 Einstein:        light  is  absorbed  in  discrete  packets  of  energy  that  depend  on  the  frequency  (called  photons,  much  later).  The  photon  density  is  proportional  to  intensity  of  the  light.    

Page 5: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   12    

 

Ephoton = hv  

Ekin = hv −φ  

                  = hv − hv0                

              φ :  workfunction:  energy  to  liberate  electron  from  the  metal  

 Intensity  of  light  ~  number  of  photons  

 This  picture  explains  all  aspects  of  the  experiment.       Some  aspects  were  predicted  by  Einstein,  and  verified  later.    →  Wave  nature  of  light  was  well  established.  Now  light  looks  like  particles!  Modern  version  of  photoelectric  effect:            

Photoelectron  Spectroscopy  

 Molecular  orbital  picture  

   

Different  binding  energies  →  different  onsets  for  kinetic  energy                

Page 6: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   13    

Emission  Spectrum  of  Hydrogen  

 Consists  of  discrete  lines,  sharp  frequencies  with  a  regular  pattern.    Balmer  (a  school  teacher)  found  the  first  set  of  lines  

    !v         wavenumber     !v = v

c= 1λ   in  cm-­‐1  

The  number  of  crests  in  per  cm  

   

Balmer       !vn = R( 1

22 −1n2 )         3,4,5...n =  

 

Lyman       !vn = R( 1

12 −1n2 )         2,3,4n =  

 

  Paschen     !vn = R( 1

32 −1n2 )         4,5,6n =  

 

       

Picture:     Hydrogen  atom  has  discrete  set  of  energy  level   2

Rn

−  

Page 7: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   14    

         

−R( 1

ni2 −

1nf

2 ) = R( 1nf

2 −1ni

2 )  

ni = 1,2,3   etc.       f in n>  

 Simple  convincing  picture  

   

Why  do  energy  levels  go  as   2

1n

??     What  do  integers  have  to  do  with  it??  

   

Bohr’s  Model  of  the  atom  (1913)    

A  first  attempt.  The  concept  was  not  quite  right,  but  the  numbers  came  out  very  well.    Let  us  see  what  he  did:         Electron  moves  in  circle  around  nucleus  

 

Page 8: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   15    

 

!r =   x(t) = Rcosωt    

!v = dr

dt=     −ωRsinωt  

    ( ) siny t R tω=         cosR tω ω+    

!a = dv

dt=   −ω

2Rcosωt       !F = m!a        directed  inwards  

    −ω2Rsinωt  

 

F = mRω 2 = mv2

R   v = Rω  

F = e2

4πε0R2   Coulomb  Attraction  

 Bohr’s  vital  insight  concerned  the  angular  momentum  

       

!L = !r × !p = !r × m!v  

    !Lz = m(rxvy − ryvx ) = mωR2(cos2ωt + sin2ωt)  

                      = mωR2 = mvR               ( v =ωR )    

Bohr  postulated  that  the  angular  momentum  is  quantized…        

        Lz = mvR = n! = n h

2π  

 ....and  that  electrons  can  move  in  stationary  orbits.  [glaring  conflict  with  classical  physics:  accelerating  charge  radiates  and  loses  energy  →  Falls  into  the  nucleus]    Let  us  put  it  together..    

       

mv2

R= e2

4πε0R2   (1)  

          mvR = n!     (2)  

Page 9: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   16    

 

En =

12

mv2 − e2

4πε0R(kinetic energy + Coulomb potential)  

      = 1

2e2

4πε0R− e2

4πε0R= − 1

2e2

4πε0R (3)

   

 

Use  (1)    

       

(mvR)2

R⋅ 1mR2 = e2

4πε0R2  

      (n!)2 = e2m

4πε0

⋅R            

1R= e2m

4πε0n2!2  

      En = − 1

2e4m

(4πε0 )2!2 ⋅1n2   (use  in  (3))

   

      (Ek − En ) = hv = hc !v = − 1

8me4

ε02h2 ( 1

k 2 −1n2 )

 

        RH = 1

8me4

ε0ch3 ! 109757 cm−1

   Bohr  later  found  that   em m= the  mass  of  the  electron  should  be  replaced  by  the  reduced  mass  

          µ = me

mp

me + mp

 

              …  then   HR  is  even  closer  to  experiment.  

Repeating  the  analysis  for  a  nuclear  charge  of   Z  (change  Coulomb  potential  term)  

RH = Z 2e4µ

8ε02ch3    

µ = me

mp

me + mp

 

 This  gave  excellent  agreement  for  He+,  Li+  etc.,  using  the  appropriate  mass  

mp → mnucleus  

    He+  measured  from  the  solar  spectrum  (was  assigned  using  Bohr’s  formula)  

   

Page 10: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   17    

 

De  Broglie  Waves    

In  1923  de  Broglie  proposed  that  particles  have  a  wave  length   λ = h

p  

His  line  of  thought  (more  or  less)  of  photons  (light  particles)  is  that  they  have  no  mass,  but  they  do  have  momentum.                          

Scattered  light  imparts  momentum  to  electron  (Compton)      

Relativistically  (see  problem  assignment)  

E = hv = pc             λ = c

v= h

p  

De  Broglie:          Generalize  to  all  particles,  not  only  

photons:     λ = h

p  

We  can  even  assign  direction    

!k is  wave  number  

      2kπλ =   ,   2 2 2

x y zk k k k= + +  

            k = 2π

λ      

2πh!p =!k    

 

      2kπλ =  

!p = "!k    

! = h

2π  

   Wavelength  electron:           319 10m −= ⋅    kg    

v ~

3kBTm

    from   21 32 2 Bmv k T=  

            4~ 10  m  s-­‐1                thermal  energy  (translational)    

      p = mv   ,   λ = h

mv~ 6.00−8 m 60 nm=  

 

Page 11: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   18    

One  can  use  electrons,  speed   v ,  to  diffract  like  a  wave         Electron  microscopy      Shorter  wavelengths  then  visible  light.  Larger  wavelengths  than  x-­‐rays.    All  of  this  is  well  confirmed  by  experiment:  

-­‐ Today  Zeilinger  (Vienna)  confirmed  wave-­‐character  of  C60  Bucky  balls!  -­‐ Electron  microscopy  widely  used  

 De  Broglie  relation  sheds  light  on  Bohr  quantization  rate  

          L = mvR = pR = n! = nh

2π    

        Or   2πR = n h

p= nλ  

How  to  interpret?          

   If  wavelength  fits  on  circle  2 Rπ  →  constructive  interference                                                

        Otherwise  mismatch  →  not  a  stationary  solution.  

De  Broglie  opened  up  the  perspective  to  view  electron  as  a  wave.      Double  slit  experiment  (take  1)    a.1   Shine  light  through  a  small  hole  and  detect  beam.  

        Big  hole  →  ‘straight  line’      

Page 12: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   19    

   a.2     do  the  same  experiment  with  tiny  bullets            

             

individual  holes  in  screen  collect  #  of  bullets  in  buckets  

   

Now  repeat  the  experiment  with  2  holes:                          

   Bullets:   individual  bullets  sum  of  patterns  

 Repeat  with  light:      

 Dark  and  light  bands.  Interference  effect  

Page 13: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   20    

     What  is  the  explanation  see  McQuarrie:  

   Extra  length     d sinθ = nλ  →    constructive  interference    

d sinθ = (n+ 1

2)λ  →  destructive  interference  

How  do  electrons  behave?  a) Like  bullets  in  that  they  hit  the  screen  as  discrete  units  b) As  a  wave:  electrons,  (and  neutrons,  bucky  balls)  show  dispersion  and  

interference  effect    How  do  light/photons  behave?    

Lower  intensity  of  the  light:  photons  will  hit  the  screen  as  isolated  specks!    

→  photons  (moving  at  the  speed  of  light)  and  electrons  (quantum  particles)  behave  very  alike.    Even  if  one  electron  or  one  photon  at  a  time  goes  through  →  interference  pattern  builds  up  (no  prediction  for  individual  particles,  only  statistics  is  predicted)    

Page 14: ρ () Tdv$$$$scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_1.pdf · Fall$2014$Chem%356:%Introductory%Quantum%Mechanics$ $8$ $!! Chapter$1$–$Early$Quantum$Phenomena$.....$8$

Fall  2014   Chem  356:  Introductory  Quantum  Mechanics    

Chapter  1  –  Early  Quantum  Phenomena   21    

Electron  propagates  like  wave,  is  detected  like  particle  when  visualized  macroscopically.    

Through  which  slit  does  the  electron  go?       Measure  it!  

   Experiment  works  beautifully.  Each  electron  passes  through  one  hole,  only  and  then  hits  the  screen  (also  for  photon!)    →  Correlate  slit  ↔  spot  on  the  screen.  Pattern  builds  up  over  time,  but…it  is  like  a  bullet  pattern,  no  interference.  Looking  at  which  slit  the  electron  takes  destroys  the  interference  pattern.