€¦  · web viewphysical science milestones study guide. sps1:

18
Physical Science Milestones Study Guide SPS1: Students will investigate our current understanding of the atom. a. Examine the structure of the atom in terms of proton, electron, and neutron locations. o Proton has a charge of +1 and is located in the nucleus of the atom. Protons are also the elements Atomic number and define the identity of the element, so protons are found by looking at the atomic number o Neutron has a charge of 0 and is located in the nucleus of the atom. Neutrons are found by subtracting the Atomic Number from the Atomic Mass or the BIG # - SMALL #. o Electron has a charge of -1 and is located in the electron cloud of the atom, outside of the nucleus. Electrons are equal to the number of Proton sin a neutral atom. o The nucleus is made up of these 2 particles Protons and Neutrons. o The electron cloud is divided in to energy levels or energy shells, the first level will hold 2 electrons electrons and the second level will hold 8 electrons. o The valence shell or valence level is the Outer energy shell of the atom. The valence electrons determine the reactivity of an atom!!! Atoms will gain, lose, or share electrons in order to have a full valence of electrons which will make them more STABLE. o In an uncharged atom, the number of Protons equals the number of Electrons. o Atoms, compounds and molecules have a Neutral charge. o The nucleus of an atom has a Positive charge. atomic mass and atomic number. o Atomic number is equal to the number of Protons in the atom and is also the atoms identity—it’s the small number of the periodic table. o Atomic mass is equal to the average mass of all the isotopes of a particular element—it the big number on the periodic table. Atomic Mass = Protons + Neutrons atoms with different numbers of neutrons (isotopes). They also have a different atomic mass. o Ex. Carbon-12 and Carbon-14 The -12 and -14 are the atomic MASSES. Carbon 12 has 6 Protons 6 Neutrons 6 Electrons Carbon 14 has 6 Protons 8 Neutrons 6 Electrons explain the relationship of the proton number to the element's identity. o The Atomic number is equal to the number of protons in the atom which is how the element is identified. o Ex. Nitrogen has an atomic number of 7 which means that is has 7 protons. 1

Upload: others

Post on 30-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Physical Science Milestones Study Guide

SPS1: Students will investigate our current understanding of the atom.a. Examine the structure of the atom in terms of proton, electron, and neutron locations.

o Proton has a charge of +1 and is located in the nucleus of the atom. Protons are also the elements Atomic number and define the identity of the element, so protons

are found by looking at the atomic numbero Neutron has a charge of 0 and is located in the nucleus of the atom.

Neutrons are found by subtracting the Atomic Number from the Atomic Mass or the BIG # - SMALL #.

o Electron has a charge of -1 and is located in the electron cloud of the atom, outside of the nucleus. Electrons are equal to the number of Proton sin a neutral atom.

o The nucleus is made up of these 2 particles Protons and Neutrons.o The electron cloud is divided in to energy levels or energy shells, the first level will hold 2 electrons electrons

and the second level will hold 8 electrons.o The valence shell or valence level is the Outer energy shell of the atom. The valence electrons determine

the reactivity of an atom!!! Atoms will gain, lose, or share electrons in order to have a full valence of electrons which will make them more STABLE.

o In an uncharged atom, the number of Protons equals the number of Electrons.o Atoms, compounds and molecules have a Neutral charge.o The nucleus of an atom has a Positive charge.

atomic mass and atomic number. o Atomic number is equal to the number of Protons in the atom and is also the atoms identity—it’s the small

number of the periodic table.o Atomic mass is equal to the average mass of all the isotopes of a particular element—it the big number on

the periodic table. Atomic Mass = Protons + Neutrons atoms with different numbers of neutrons (isotopes). They also have a different atomic mass.

o Ex. Carbon-12 and Carbon-14 The -12 and -14 are the atomic MASSES. Carbon 12 has 6 Protons 6 Neutrons 6 Electrons Carbon 14 has 6 Protons 8 Neutrons 6 Electrons

explain the relationship of the proton number to the element's identity. o The Atomic number is equal to the number of protons in the atom which is how the element is identified.o Ex. Nitrogen has an atomic number of 7 which means that is has 7 protons.

Number of Protons = Atomic Number Number of Electrons = Number of Protons = Atomic Number Number of Neutrons = Mass Number - Atomic Number

b. Compare and contrast ionic and covalent bonds in terms of electron position. Ionic bonds are the (sharing or transferring) of electrons and occur between a metal and a non-metal

1

Page 2: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Ionic bond is between a metal and a nonmetal on the periodic table.

Covalent bond is between a nonmetal and a nonmetal or between a nonmetal and a mettaloid on the periodic table, the are CO-Workers on the same side. The elements share electrons.

SPS2: Students explore the nature of matter, its classifications, the naming system for types of matter.

a. Calculate density when given a means to determine a substance’s mass and volume. Density=Mass/Volume: remember My Dear Valentine.

Ex. A student determines that a piece of an unknown material has a mass of 5.854 g and a volume of 7.57 cm3. What is the density of the material?

b. Predict formulas for stable binary ionic compounds based on balance of charges.1. Find the charge for each element based on what group it is in. (Group 1= +1 charge)2. Criss-Cross the charges to make the correct formula. Ca+2 + Cl-1 = CaCl2

c. Use IUPAC nomenclature for transition between chemical names and chemical formulas of Binary ionic compounds (containing representative elements).

Steps for writing Binary Ionic Compounds: Write the symbol for the ions side by side. Write the cation first.

2. Cross over the charges by using the absolute value of each ion’s charge as the subscripts for the other ion. 3. Check the subscripts and divide them by their largest common factor to give the smallest possible whole number-ratio of ions.

(2 x +3 = +6 and 3 x-2 = -6 which cancel each other out)Binary covalent compounds (i.e. carbon dioxide, carbon tetrachloride).

Naming Covalent Compounds-USES PREFIXES!!! 1. The less electronegative element is given first. It is given a prefix only if it contributes more than one

atom to a molecule of the compound. 2. The second element is named by combining (a) a prefix indicating the number of atoms contributed by

the element, (b) the root of the name of the second element, and (c) the ending –ide. With few exceptions, the ending –ide indicates that a compound contains only two elements.

2

Page 3: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

3. The “o” or “a” at the end of a prefix is usually dropped when the word following the prefix begins with another vowel. Ex: monoxide or pentoxide

Ex : P4O10

Numerical Prefixes 1- mono 4- tetra 7- hepta 10- deca 2- di 5- penta 8- octa 3- tri 6- hexa 9- nona

d. Demonstrate the Law of Conservation of Matter in a chemical reaction.The Law of Conservation of Matter States that Matter is Neither Created nor destroyed. Therefore the mass of the reactants should equal the mass of the products.

Steps for balancing an Equations 1. Divide the equation in half. Reactants on the left and Products on the right. 2. Count the number of atoms for EACH element on the Reactants side. 3. Count the number of atoms for EACH element on the Products side.

o Hint: if you write them in the same order on each side it is easier to see what needs to be balanced.

IMPORTANT: you can only add/change the coefficient, not the subscript (the little number). 4. Write the newly balanced equations with the Coefficients.

Examples:__FeCl3 + __Be3(PO4)2 --> __BeCl2 + __FePO4

__AgNO3 + __LiOH --> __AgOH + __LiNO3

e. Apply the Law of Conservation of Matter by balancing the following types of chemical equations:

Synthesis is when atoms combine to form a larger compound.o Ex. Element + ElementCompound or o A +B ABo 2Na + Cl22NaCl

Decomposition when compounds break down to form simpler substances.o COMPOUND __Element___ + ___Element__ oro COMPOUND _Compound_____ + __Compound____o ABA + B or 2 H2O2H2 + O2

Single Replacement (notice a compound and element on each side)o ELEMENT + COMPOUND ELEMENT + COMPOUNDo A+BC = B+ACo Cu + 2AgNO32Ag+Cu(NO3)2

Double Replacement o COMPOUND + COMPOUND COMPOUND + COMPOUND o AB+CD=AD+CBo CaCO3+2HCl=CaCl2+H2CO3

SPS3: Students will distinguish the characteristics and components of radioactivity.What are the 3 ways that radioactive elements undergo radioactive decay? By the release of Alpha (α) particles,

3

Page 4: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Beta (β) particles, or the most dangerous,Gamma (γ) : Gamma is not a particle it is an emission of energy. It is the same gamma wave/rays that are from the electromagnetic spectrum. Gamma can be stopped by lead or concrete is the most damaging because it can pass through the body and not be stopped by skin.

b. Differentiate between fission and fusion. Nuclear fission is the splitting of the nucleus of an atom to form smaller substances. This is the type of energy we use in power plants. Nuclear fusion is the combining of smaller elements to form a larger substance. This is the way the sun produces its energy. c. Explain the process half-life as related to radioactive decay. Radioisotopes decay through a process known has a half-life. The half-life of an atom can be calculated.100.0 g of carbon-14 decays until only 25.0 g of carbon is left after 11 460 y, what is the half-life of carbon-14?Advantages of nuclear energy: no greenhouse gases are emitted; a large amount of energy is created from a small amount of fuel (Uranium-235), conserves fossil fuels, can run 24/7

Disadvantages of nuclear energy: radioactive wastes have a long half life and have to be disposed of properly; possible meltdowns or nuclear disasters.

SPS4: Students will investigate the arrangement of the Periodic Table. a. Determine the trends of the following:

4

Page 5: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Number of valence electronso Valence electrons are found by looking at what group the atoms is in on the periodic table. Ex. Group 1

has 1 valence electrons, Group 13 has 3 valence electrons – for groups 13-18 you ignore the 1 in front and it tells you how many valence electrons it has

Types of ions formed by representative elements Group 1 +1 Group 15 -3 Group 16 -2Group 2 +2 Group 17: -1Group 13 +3 Group 18: 0 – the noble gases do not want to gain or lose electrons because they already have a full valence

Location of metals, nonmetals, and metalloids o Metals are located to the left of the stair-step line.o Nonmetals are located to the right of the stair-step line.o Metalloids are located on the stair-step line.

Phases at room temperature o Metals are solids(s) at room temperature with the exception of Mercury (Hg) which is a liquido Nonmetals are liquids (l) at room temperature with the exception of Bromine (Br) which is a liquido Metalloids are solids at room temperature.

b. Use the Periodic Table to predict the above properties for representative elements.

Properties of Metals Properties of nonmetals Properties of Metalloids

SPS5. Students will compare and contrast the phases of matter as they relate to atomic and molecular motion. a. Compare and contrast the atomic/molecular motion of solids, liquids, gases and plasmas.

Descriptions Solid Liquid Gas PlasmaShape

Volume

Molecular Motion

Pics

In the solid phase, atoms or molecules are held in a rigid structure. They are free to vibrate but cannot move around.

5

Page 6: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

The _______________ phase is intermediate between solid and gas. Intermolecular forces hold these atoms or molecules loosely together but do not force them into a rigid structure.

In the ____________ phase, atoms and molecules experience their greatest freedom. The forces attracting gas molecules are almost nonexistent. As a result, gas molecules are much farther apart and can move freely about.

Finally, plasmas are gases that have been so energized that their atoms have been stripped of some or all electrons. Solar flares are great examples of plasmas. Solar flares eject extremely hot hydrogen ions (H+) away from the Sun toward Earth.

b. Relate temperature, pressure, and volume of gases to the behavior of gases. ____________________________ is the force exerted on a surface per unit area.Collisions between particles of gas and the walls of a container cause the _______________________ in a closed container of gas.

Factors that affect gas pressureTemperature Volume Number of particles

Increasing temperature of a gas will increase pressure, if the volume and number of particles are constant.

Reducing the volume of a gas will increase pressure if temperature and number of particles are constant.

Increasing the number of particles will increase pressure if temperature and volume remain constant.

SPS6. Students will investigate the properties of solutions. a. Describe solutions in terms of A solution is a special type of mixture. It has a uniform composition throughout and ismade up of two parts—a solute and a solvent.

Solute- the material being dissolved Solvent- the substance that is dissolving the solute

o Saturated Solution – the maximum amount of solute is dissolvedo Unsaturated Solution – more solute can still be dissolved

Conductivity- The ability or power to conduct or transmit heat, electricity, or sound.The conductivity gives important clues as to the type of solute dissolved. In aqueous (waterbased) solutions, dissolved ionic compounds yield solutions with high conductivity. Cations and anions readily carry electrical charges through the solution. Strong acids and bases also have a high conductivity for the same reason. All of these solutions are considered strong electrolytes. Weak acids or bases ionize only partially so they form solutions with low conductivity. These compounds are called weak electrolytes. Solutions made from covalent compounds have zero conductivity since they dissolve as molecules, not ions. They cannot carry electrical charges. These substances are known as non-conductors Some selected compounds and their electrical conductivity are shown in the box to the right.

Concentration- THE AMOUNT OF SOLUTE DISSOLVED IN THE SOLVENT

b. Observe factors affecting the rate a solute dissolves in a specific solvent.There are three factors that affect the rate at which a solution dissolves. They are

6

Page 7: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Agitation Size of Particles Temperature Number of ParticlesMOVEMENT OF PARTICLES SMALLER PARTICLES DISSOLVE

FASTER DUE TO INCREASED SURFACE AREA.

MOLECULES INCREASE THE RATE OF CONTACT

FEWER NUMBERS OF PARTICLES, INCREASES SURFACE AREA.

Affect:INCREASE SOLUBILITY

Affect: INCREASE SOLUBILITY

Affect:INCREASE SOLUBILITY

Affect:INCREASE SOLUBILITY

c. Demonstrate that solubility is related to temperature by constructing a solubility curve. What is a solubility curve?THE RELATIONSHIP BETWEEN SOLUBILITY AND TEMPERATURE PLOTTED ON A GRAPH.

What is the solubility of Potassium Chloride at 45◦ C?

d. Compare and contrast the components and properties of acids and bases. Acids Bases

Definition SOLUTIONS H+ ions WITH HYDROXIDE (OH-)Taste SOUR BITTERTouch BURN SLIMEYReacts with Metals CORROSIVE FORM H+ GASElectrical Conductivity GOOD GOODLitmus Paper Test RED BLUEPh Scale 0-6.9 7.1-14

e. Determine whether common household substances are acidic, basic, or neutral. List 5 common acids: ORANGE JUICE, LEMON JUICE, VINEGAR, TOMATO JUICE, and BATTERY ACID.

List 5 common bases: BAKING SODA, DRAIN CLEANER, ANTACIDS, BLEACH, and MALOXXWhat is an example of a neutral substance? What is its pH? 7 AND WATER

What are the products of a neutralization reaction?ACID +BASE= SALT +WATER

Ionic vs. Covalent Bonds7

Page 8: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Ionic Covalent

8

Page 9: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

What types of elements form them?

metal + non-metal 2 non-metals ornon-metal + metalloid

Why do elements form these bonds?

to get a full valence & become more

stable

to get a full valence & become more

stableAre electrons shared or transferred?

transferred (metal) & accepted (non-metal)

shared

What state of matter are these compounds?

solids solids, liquids, gases

Are the compounds composed of ions or molecules?

ions molecules

Conductor of electricity?

yes in solution no

Good conductor of heat?

yes no

Melting Points high lowBoiling Points high lowSoluble in water? yes noSoluble in non-polar liquids?

no yes

Strong or weak bond?

strong weak

Form crystals? yes noElectrons orbitals are separate or overlap?

separate overlap

Charge of compound 0 0What holds the atoms together?

Opposites attract – the + charge metal is strongly attracted to the – charged non-

metal

Covalent bonds hold atoms together because the attraction between the positively charged nuclei and the negatively charged shared electrons is greater than the repulsions between the nuclei themselves.

Named with or without prefixes?

without with prefixes

Last chemical in name ends in -

-ide -ide

Types of Compounds Hard & brittle inorganic Relatively soft organicSPS7. Students will relate transformations and flow of energy within a system. a. Identify energy transformations within a system (e.g. lighting of a match).

9

Page 10: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Just as matter is conserved, so is energy. The law of conservation of Energy states that energy, like matter, cannot be created nor destroyed; it can only be changed from one form of energy to another. Energy takes many forms in the world around us. Each form of energy can be converted to and from other forms ofenergy.

sound energy is used in our homes to produce stereo sound through speakers. light energy produces current from which a fluorescent lamp will work. thermal energy for cooking and heating. nuclear energy, which is stored in the nucleus of atoms, is harnessed to produce electrical energy in modern

power plants. chemical energy is stored in the bonds that hold atoms together in molecules. When fuels or foods are

broken down, chemical energy is converted to heat energy or to kinetic energy. kinetic energy is the energy contained by moving objects due to their motion. potential energy, also known as stored energy, is the energy of position. When a boulder sits on top of a

cliff, it has gravitational potential energy as a result of its height above the ground. When the boulder tumbles off the cliff, its gravitational potential energy is converted to kinetic energy. When a ball is thrown up into the air, the kinetic energy of the ball is converted into gravitational potential energy as the ball approaches its highest point. As the ball falls back to the ground, the potential energy it gained during its upward flight turns back into kinetic energy. Kinetic and potential energy are types of mechanical energy.

b. Investigate molecular motion as it relates to thermal energy changes in terms of conduction, convection, and radiation.

CONDUCTIONDefine: the transfer of heat energy between materials that are in direct contact with each other

CONVECTIONDefine: CIRCULATING OF AIR OR WATER PARTICLES

RadiationDefine: TRANSFER OF ENERGY THROUGH SPACE/AIR.

c. Determine the heat capacity of a substance using mass, specific heat, and temperature. What is specific heat capacity?The amount of heat energy that a substance gains or loses, Q, depends on the mass (m), the specific heat,(c), and the change in the temperature (ΔT ) of the substance. The formula for finding the heat energy is simply the product of the three factors, Q= mcΔT.A copper ornament has a mass of 0.0693 kg and changes from a temperature of20.0°C to 27.4ºC. How much heat energy did it gain? Copper’s Specific Heat is 390 J/k X ⁰C.0.0693kg . 390 J/kg o C (27.4 – 20.0)oC = 200 J 27.027 . 7.4d. Explain the flow of energy in phase changes through the use of a phase diagram. What is the change called from a solid to a liquid? meltingWhat is the change called solid to a gas? sublimationWhat is the change called from a liquid to a solid? freezingWhat is the change called from a liquid to a gas? vaporization or evaporationWhat is the change called from a gas to a liquid? condensationWhich reactions are exothermic, or give off heat? freezing, condensationWhich reactions are endothermic, or take in heat? MELTING, SUBLIMATION, EVAPORATIONSPS8. Students will determine relationships among force, mass, and motion. a. Calculate velocity and acceleration.

The distance an object moves per unit of time is known as the speed The velocity is the speed of the object plus its direction. The average speed can be found by dividing the change in the displacement of an object by the change in time.

10

Page 11: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Ex. A car traveling west goes 10 meters in 5 seconds. What is its velocity? 2 m/s west

Acceleration, like velocity, has magnitude and direction. The average acceleration of an object is found by dividing the change in the velocity of the object by the change in time.Ex. Calculate the average velocity of the new power jet cat.

Vf - Vi

60 mph – 0 mph = 60 mph

b. Apply Newton’s three laws to everyday situations by explaining the following: Summary Example

Newton’s First Law AN OBJECT AT REST STAYS AT REST UNLESS ACTED UPON BY AN UNBALANCED FORCE, a.k.a. Intertia

BOULDER

Newton’s Second Law THE GREATER THE FORCE, THE GREATER THE ACCELERATION Force = mass X acceleration

BASEBALL- PITCHING

Newton’s Third Law EVERY ACTION HAS AN EQUAL AND OPPOSITE REACTION

CAR CRASHRECOIL ON A SHOTGUN

c. Relate falling objects to gravitational force Gravitational force is a force between any two objects. The strength of the force is related to the mass of the

objects and the distance between them. The more mass an object has, the greater the gravitational force it exerts. The Moon has less mass than Earth. The resulting lower gravitational force made the astronauts appear nearly “weightless” as they moved across the lunar surface.

Electromagnetic forces. These forces include both electric forces and magnetic forces. The forces exerted within the nucleus of an atom are called nuclear forces. These forces hold the protons and

neutrons together. Frictional forces tend to stop the motion of an object by dispersing its energy as heat. There are three types of

frictional forces: sliding friction, rolling friction, and static friction.o Sliding friction occurs when one solid surface slides over another solid surface. o Rolling friction occurs when an object rolls across a solid surface. o Static friction occurs between the surfaces of two objects that touch but do not move against each

other. Static friction must be overcome for one of the objects to move.d. Explain the difference in mass and weight. One should note that mass and weight are not the same quantity. An object has mass regardless of whether gravity or any other force is acting upon it. Weight, on the other hand, changes depending on the influence of gravity. The relationship between weight, W, and mass, m, can be written as the following equation: W = mg. In this equation, g represents the acceleration due to gravity. At the surface of Earth, the acceleration of gravity is 9.80 m / s². The value of g decreases the farther away from the center of Earth an object gets. This means the weight of an object would decrease if it was placed on top of a mountain or put into space. e. Calculate amounts of work and mechanical advantage using simple machines. Work is the transfer of energy when an applied force moves an object over a distance. For work to be done the force applied must be in the same direction as the movement of the object and the object must move a certain distance. A person may push on a wall and get tired muscles as a result, but unless the wall moves, the person has done zero work. Work can be summarized using the following equation:W = Fd, In the equation, W is equal to work, F is equal to the force applied, and d is equal to the distance that an object has moved. Remember, force is measured in newtons (N) and distance is measured in meters (m). A unit of work is the newton-meter (N-m), or the joule (J).Work can be made easier or done faster by using machines. Machines that work with one movement are

11

Page 12: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

called simple machines.

Simple Machines ExamplesInclined Plane STAIRS, WHEEL CHAIR RAMPLever SEE-SAW, GEARS, WHEEL BARROWPulley OLD-FASHION WELL, ELEVATORScrew LIGHT BULBWedge KNIFE, NAILWheel and Axle CAR

Simple machines cannot increase the amount of work done, but they can change the size and direction of the force applied. The force applied to a simple machine is called the effort force, Fe. For a machine to do work, an effort force must be applied over a distance. The force exerted by the machine is called the resistance force, Fr. An effort force is applied over a distance, known as the effort distance, de. This force moves can over the resistance distance, dr. The number of times a machine multiplies the effort force is called the mechanical advantage.

SPS9. Students will investigate the properties of waves. a. Recognize that all waves transfer energy. Waves are phenomena that occur, seen and unseen, all around us. __________________ by definition are disturbances that repeat the same cycle of motion and transfer energy through matter or empty space.Example:

b. Relate frequency and wavelength to the energy of different types of electromagnetic waves and mechanical waves. Electromagnetic Waves Mechanical WavesExamples: light and radio waves

Does not require a medium

Examples:

Requires a medium. The medium can be ______________, _________________, or gas.

c. Compare and contrast the characteristics of electromagnetic and mechanical (sound) waves. Define wavelength.

Define Amplitude.

Define frequency.

12

Page 13: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Define Crest and label it on the Ocean Wave.

Define Trough and label it on the Ocean Wave.

What does a transverse wave look like?

What does a longitudinal wave look like?

d. Investigate the phenomena of reflection, refraction, interference, and diffraction. Reflection Refraction Interference Diffraction

occurs when a wave hits an object that it cannot pass through it bounces off the object or medium boundary.

Illustration:

takes place when a wave passes from one medium into another at an angle and bends (changes direction) due to achange in speed

Illustration

occurs when two or more waves arrive at the same point at the same time

Illustration:Constructive-

Destructive-

results when a wave passes through a hole or moves past a barrier and spreads out in the region beyond the hole or barrier

Illustration:

e. Relate the speed of sound to different mediums. Sound travels faster through solids and liquids than it does through gases because particles are _____________ together in solids or liquids than in gases. Sound also travels fastest through elastic materials.f. Explain the Doppler Effect in terms of everyday interactions. When a sound source moves toward a listener, the pitch, or apparent frequency, of the sound increases. This is because the sound waves are compressed closer together and reach the listener with a higher pitch. As the sound source passes by the listener and moves away from the listener, the same sound waves are stretched farther apart. This results in a decrease in the pitch, or apparent frequency. This phenomenon is known as the ___________________ ____________________. It can be heard at a train crossing every time a train approaches, passes, and leaves a crossing while blowing its whistle.

SPS10. Students will investigate the properties of electricity and magnetism. Electricity- a. Investigate static electricity in terms of electricity results from the buildup of electric charges on an object. The buildup ofcharges can be caused by friction, conduction, or induction.

friction induction conduction

b. Explain the flow of electrons in terms of alternating current-

13

Page 14: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

o Example: Gas driven generator or lights in your house direct current-

o Example: Batteries in your car or batteries in your flashlight

Ohms Law: V = IRVoltage (V) Current (I) Resistance (R)To get electrons flowing through a circuit, a voltage (V) is applied. Voltage, which is measured in volts (V), is the potential difference in electrical potential energy between two places in a circuit. In other words, voltage is the energy per unit of charge that causes charges to move.

When charged particles flow through the wire in a circuit, an electric current (I) results. The current is measured in amperes (A). The electron is the charged particle that most likely moves through the circuit.

The opposition to current is called resistance (R), which is measured in ohms (Ω). Light bulbs and resistors are examples of objects with a resistance.

Type of circuit illustrated: Type of circuit illustrated:

Define: Define:

Examples: Examples:

c. Investigate applications of magnetism and/or its relationship to the movement of electrical charge as it relates to An electric current will also produce a magnetic field. A magnetic field is a region around a magnet or current-carrying wire where magnetic forces can be measured. _______________________ is the force of attraction or repulsion that is produced by an arrangement of electrons. Magnets have two poles: a north pole and a south pole. Unlike magnetic poles attract each other, while like magnetic poles repel each other. Groups of atoms with magnetic poles aligned are called magnetic domains. Materials with most of these domains lined up are considered magnetized. When a metal bar or other object is composed of stable, magnetic domains, a ______________________________ magnet results.When an electric current is used to produce a magnetic field in a coil of wire, the coil becomes an electromagnet. A rotating electromagnet is used in ___________________ motors to convert electrical energy to mechanical energy.When a magnet is moved near a wire, an electric current is generated. This process, called electromagnetic induction, is used to operate a ___________________________. A generator is a device that converts mechanical energy to electrical energy. In a commercial generator, an electric current is produced when a large coil of wire is rotated in a strong magnetic field.

14

Page 15: €¦  · Web viewPhysical Science Milestones Study Guide. SPS1:

Transfer electrons Share electrons

15