0 1 32 54jina/proceedings/cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 mass number...

28

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � ��� � � � � � �� � � � � � � � � � �

� � � � � � � � ��� �

��������� ��� � � !#" �%$'&(�)�+* , -/.0� 1��32 �54

� 6 798;: <>= ? @A= B 7DC 8FEHG @FG I J GLK�<H7D= M N8F= M OP@AE>EH798Q?AR 7SN 8UT V

" �%$'&(�)W)XZY%�+[" �%$'&(� � 1%$0\]� ^5�_ `%"" �%$'&(� _ �+$a�%b" �%$'&(� $c[d\e�5�%[L$a�fH�Sg�$0� �S� " ��$'&(�_ fHWh `%," � `�i�a�c�a�

Page 2: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � � ��� � � � � � � � � � � � � � � �� � � � � � �� � �

��� � ��� ��� � ����� � ��� ��!"�$#% � � ��� ��� � ����� !'& !'�)(+* #,-� .0/ / !'�)! �)� ! � !1�"23* !"45!'� !'&6�7� 89�7.:��;�7.:& ��. < �)��& �;< � � ��� !=#> � ? . & !"< �)�@�;& .:� � �"2:! � �A�B�C#D � � !'�)! � . < 4E�7�)��� �5(:� FG!"& !"�7(=* H �A�B�)�IFJ 45!'� J .K� ! 8L�).K� #M-� !1/ 4;�N(:� � ��& � � ��� ��!"� �)� !1.K��* & !1!'� !'���� < 4E�)�7�OFP� �5(K� !"& !"�)(K�5!"�Q#R � !S/ �T�����U!'� .A8 � ���V�U!'� ��� < 4E�7�)��� �5(:���!"� H !"�7���)< �)!'� ��& � � !'& �B�E�)�N!"�C#W-� �7! H �).=��.:& � < & �X�U��Y 45!=#Z-� � ��� ��� (K�)�"2 �E�P* #�\[]� �)! �7� !'�)! ��� � �E�7�5.:& ��4 � �;� !'& ���N.:& �C#���A� .O/ � �;� �7� ! < & �N2:!"���V! Y !S(:�;& #

� ^ _a`cbedgf)hGi j k lQk mG_anoh7prqshGtoivu'k ixw y7z7z7y|{

Page 3: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances
Page 4: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

P. M

öller, J. R. N

ix, and K.-L

. Kratz/N

uclear Properties

56

− 2.5 − 2.0 − 1.5 − 1.0 − 0.5

0.0 0.5 1.0

log(Tβ /s)

FRDM (1992)

80

100 120

140

Mass Number A

r-Process abundance

160 180

200

10−2

10−1

100

101

0 20 40 60 80 100 120 140 160 Neutron Number N

0

20

40

60

80

100

120 P

roto

n N

umbe

r Z

Nr,

(Si

= 10

6)

Figure 16

Page 5: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

60 80 100 120 140 160 180 200 220MASS NUMBER

−1.50

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

log

εSolar System Abundances

s−Process and r−Process

SS s−ProcessSS r−Process

Se Sr

Te

Xe

Ba

Eu

PbOs

PtAu

Page 6: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � � � � � � ���� � � � � � � � � � � � � � �

� ������� � ������� ��� � � ��!"�#�$� � �"� �������%!"� �&�$'( ) �*�#+-,.� /0�1� 2 +-!"+3�1� � �4� 2 �"� ( ���5� ��,6� ��7

8 � � � � � �� 9 9 � � � � � �

: � ( �;�<� ��,6�=��>�*+3�1� � ?@� �%! �1��!"�#+A2 � !5B � � � ��!"�#�$� +DCE��2

/0�*��� FHGJI.K�L*MN �&!"� �6� 2 O � O O ) ���� ) +P� Q C&�$� ���R ���"O �1� CE�1� ���

S T U :WV T U : ��2 X +A�4�.!"�� ��Y Q �Z�#� B � ) +[� Q /0�*��� � ���"B ���

�J��!"���1� :W!"���%' �J��!"���1� :W!"��� �4� 2� ��!"�#�$� :W!"���%'H\ ) ��/^] � ) � \ +P� �Z�@+3����J��!"���1� :W!"�Z� _ /E/E���&!"+3�1� ` +A�#]W�

T B � O +3� O �4� � Fa+P� B �1Q �����J� �>�$� � Q �b2 � ) M

Page 7: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � � � � ���#� � � � ���#� � � ��� � � � ��� � � � � �

: � ( ���5� ��,6� ��>�*+3�1� � ?@� �%! �1��!"�#+A2 � !5B � � � ��!"�#�$� +DCE��2

/0�*��� FHGJI�I G4MN �&!"� �6� 2 O � O O ) ��� �J��!"���1� :W!"�Z� ' � ��!"�#�$� :W!"�Z� �6� 2� ��!"�#�$� :W!"���%'H\ ) ��/^] � ) � \ +P� �Z�@+3���

Page 8: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances
Page 9: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

Observed HST-STIS and synthetic (computed) spectra in the region surrounding the gold spectral line at a wavelength of2675.94 Angstroms. (One Angstrom = 1/100 millionth of a centimeter).

(Top) The observed spectrum of BD +17 3248, shown in blue, is compared to that of another old halo star in our Galaxyknown as HD 122563, shown in red. The atomic gold spectral line is seen in BD +17 3248, but not in HD 122563. Thisdetection could only be made using space telescopes such as the Hubble Space Telescope.

(Bottom) The observed BD +17 3248 spectrum, shown in blue dots, is compared to four synthetic spectra to determine theabundance of gold. The computed values, shown in order of increasing abundance of goldby dotted, short-dashed, solid,and long-dashed lines computed for these abundances are: log epsilon (Au) = -infinity, -0.80, -0.30, +0.2. The best fit isseen to be for log epsilon = -0.3, which indicates that gold in this star is less than a trillion times as abundant as hydrogen.

Page 10: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

50 60 70 80 90ATOMIC NUMBER

−2.50

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

log

εr−Process Abundances in BD+17 3248

(Cowan et al. 2002)

Ground−Based DataSS r−Process AbundancesHST Data

Th U

Ba

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Os Pt

Ir

Au

Pb

Page 11: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

50 60 70 80 90Atomic Number

−6.50

−5.50

−4.50

−3.50

−2.50

−1.50

−0.50

0.50

Rel

ativ

e lo

g ε

r−Process Abundances in Halo Stars

HD 115444CS 22892−052SS r−Process AbundancesBD +173248

Page 12: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances
Page 13: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

30 40 50 60 70 80 90ATOMIC NUMBER

−2.50

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

log

εr−Process Abundances in BD+17 3248

Ground−Based DataModel SS r−AbundancesHST DataSS r−process Abundances

Ba

Th

Nd

Pt

Pb

Ag

Pr

Y

Sr

ZrOs

Ir

Tb

La

Er

Eu

Ho

Tm

Nb

Pd

Ge

U

Ce

Gd

Dy

Au

Sm

Page 14: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

30 40 50 60 70 80 90ATOMIC NUMBER

−2.50

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

log

ε

Stellar DataSS r−Process AbundancesSS s−Process Abundances U

Th

Pb

Os

Pt

Ce

Nd

Sm

Dy

La

Ba

Pr Eu

Tb

Sr

Y

Zr

Ru

Nb

MoAg

Pd

Ho

Tm

Hf

Yb

ErGd

Ge

CdGa

Au

Ir

Lu

Rh

Sn

Page 15: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances
Page 16: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

NEW DETECTIONS OF NEUTRON-CAPTURE ELEMENTS IN

CS 22892–052, HD 115444 & BD +17 3248

• Elements with atomic number Z = 40-50,including niobium, ruthenium, rhodium, pal-ladium, silver and cadmium have been de-tected now in CS 22892–052, HD 115444 andBD +17◦3248.

A SECOND R-PROCESS?

• Abundances of the neutron-capture ele-ments Z ≥ 56 (i.e. Ba and above) are con-sistent with the scaled solar system r-processcurve (blue line) indicating that the rela-tive elemental r-process abundances have notchanged over the history of the Galaxy andfurther suggests that there is one r-processsite in the Galaxy, at least for elements Z ≥56. Robust.• Abundances of the newly determined ele-ments from Z=40-50 in general fall below thescaled solar system r-process curve. Thesedata seem to support the suggestion (Wasser-burg, Busso & Gallino 1996, Wasserburg &Qian 2000) that there may be two r-processsites, with one responsible for the heavier ele-ments (occurring on a more rapid time-scale)and a less frequently occurring synthesis pro-ducing the elements below Ba.

• Strong and a Weak r-Process?

Page 17: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

• Alternative explanations: one supernovasite with two different epochs in the explo-sion/ejection process or different regions ofthe same neutron-rich jet of a core-collapsesupernova (Sneden et al. 2000; Cameron2001).

Page 18: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

−4 −3 −2 −1 0 1[Fe/H]

−1.00

−0.50

0.00

0.50

1.00

1.50

2.00

2.50

[Eu/

Fe]

ABUNDANCE SCATTER IN THE GALAXY

Page 19: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances
Page 20: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

−2 −1 0 1 2[Ba/Fe]

−2

−1

0

1

2

[Sr/

Ba]

r−process poorBurris et al.McWilliam et al.r−process rich

100% r−process

Page 21: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

Radioactive-Decay Age Estimates

The measured abundance of Th presents the op-

portunity to determine the age of CS 22892–052, by

use of the known Th half-life (14.05 Gyr):

NTh(t) = NTh(t0)exp(−t/τTh)

Where

τTh =14.05

ln2= 20.27Gyr

=⇒ Solar System Th/Eu (at formation) = 0.463

=⇒ Solar System Th/Eu (today) = 0.344

=⇒ Observed Th/Eu in CS 22892-052 = 0.219

It is important to note, that since the solar-

system Th/r ratio is larger than the observed ratio

in CS 22892–052 then CS 22892–052 must be older

than the solar system r-process material.

Page 22: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances
Page 23: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

30 40 50 60 70 80 90ATOMIC NUMBER

−2.50

−2.00

−1.50

−1.00

−0.50

0.00

0.50

1.00

log

ε

r−Process Abundances in CS 22892−052

Stellar DataSS r−Process Abundancesr−Process Theory U

Th

Pb

Os

Pt

Ce

Nd

Sm

Dy

La

Ba

Pr EuTb

Sr

Y

Zr

Ru

Nb

Mo Ag

Pd

Ho

Tm

Hf

Yb

ErGd

Ge

CdGa

Au

Ir

Lu

Rh

Sn

Page 24: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � ��� � � � ��� ��� ��� ����

� ������� � �� �! #" $&%('&) * + � ,.- /�0213 ��5460 798;:=<> ?@>98BACED F � ?8HGGI7 :J?8B7KEL C 3NMPO ? 798;:=AA ?�:J8BQR CES T 3VU�W 798B>AA ?@798BX

CED F � Y R CZS 798;:=Q< ?\[98]X ^ _ :KEL C 3NMPO 798B[6:=< ?`Ga8b? ^ _ :

KEL C 39McO ,c�bd2e�1 798;:=A7 ?f:J8][ ^ _ :

Page 25: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � � � � ��� � � � ���� �� � ����������� ��� � !#"%$'&)(+*�, - . / 0 1

2 3 3 4 5 37698;:;3 6+8=<?> > @A>B<C>2 3D3 4 5 3E6F8;: 3 G 6+8=<?> H @A:B<C>

I J @ @�:�K K K

L @A: 6+8=<?: 5 @MKN<CH: I PORQ ��� P�TS 6U8B<C> @ @ <VK W KX<?3

Y J G @EZ H 3PK[4 6+8=<?: 3 @A8B<C32 HB@A8 4 37698;8\@ 6+8=<?3 3 HB<?4 ]^]

`_a0Ab\0M_ 0c� �Od< ��3D8 8 8�"fehg�Q ia_aSjQ _ k Y Q Ol�j0 ��3D8 8B@E"fe`g�20c� �Od< �d3 8 8 3["�eBnmoip E�oq 0c� �O�< �d3 8 8 3�"r sut Y v sw. x 2 s v `y z x w{ | @D@~} @A> r �\����2 i� ��wQA�D0M�0c� �O�< @A5 5 >=e�r �� E�T�oQ _ 0c� �Od< @A5D5�Zhe`�uQ _�� 0c� �O�< @A5 5 5�"a� �� B{ @MKN<C5 W @ <C: r �\� ���u0M�TOR� �n�T�o0)� 0�� �O�< @A5D5 5�"��@MKN<C3 W @D<�Z r �\� ��x �R0MSjS 0c� �Od< @�5 5 4�"

Page 26: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � � � � ��� � � � � � � � � �� � � �� ����������

������� ���! #"$�&%(') *" + ,.-/ 0�213 *" 4 53 68739:���<; 4 5= > ��9�?@ > ��9�?. ACB DE�GF > �H9�?@ ACB DE�(F

I JLK3M�? NPORQTS NPOVUPS S*NTORN NPOXWZY [POR\I J�KH]^� NPOVN3_PS NTORN3UPS \PS=Oa` NPOVN3Y3Q S0WbOV[I JLK3��' NPOVN3\3U NTORNPS0W S*NTORU NPOVN3U3\ S*YPOV[

I JLK3c S3OR[=N `dOeWbS S*UTOXW \PORU3\ S3S3OVNc KH]^� NPOVN3Q3N NTORN3N�W S*QTORQ NPOVN3Uf` S*UPOVQc K3��' NPOVNPS*U NTORN3N3\ S*\TOXW NPOVNPS*[ S0WbOVY; g ?.�h�h�i- jlk m8npo Aq\3N=N3NfF

Page 27: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

� � � � � � � � � �

� � �� ���� ��� �� � ����� ����������� �� ��� �!"! # $%�& $ ��' $ ( ) ��� �� ����� �*' � ����� ����������� �� +���,��-

. . / 0 . . 1 2 . ) 3 465 1 4/ ) ) 7 8 9;: <;=>: ? :�@BA CD9B@BE�F�CD<;= G H EJID=>C I"C"K LC�F =>A =NM O =>:PC"K =QG6FR@BI A @SF @ @><T@BC"ID@BU IV= W=QI�? 9;G FYX =,9Z:Y=NFYC"E[@BI O :Y=QA C"E\F�CD9;G ] ^_9;: FYX =

G =,@B: ^`H F�H :Y=ba

. . / 5 3 c . / ) 4 c 3 465*�1 ) 2 c / . 2 4 7 d =JF @BC"I"] 9b^ FYX = ] H O =Q:�LG 9e<T@ =JM O IV9;] CD9ZG a f @bG F�X =N? ]g? G6F�X =Q] CDhJ=F�X = X =,@>< CD=Q]iF G LjE[@BO F�H :�= G H EJID=>Clk X @SF@BU 9ZH F G =QH F�:Y9ZG ]iF @B: U C"G @B:mCD=Q]nk� oTp D�Boe�q� �rb� ots�� # $ �����i� oT u$b� D��� p v������n� !�w ����!"o�����p ��� $x# �[!V�,oT� � bw �� "�y� oz$ p �B{x��i�,�grSo,� D�Z$ oT! # $ �����i� oT u$b� D���n(

) | ) 5 . . . / 0 . . �1 2 . ) 3 465 1 / ) ) 7 H EJID=�@B: K @B] ]K 9}A =QI"] FYX @zF @B:Y= :Y=QI"CD@BU IV= W ^_9;: <;=>:~?G =>H FY:�9;G Lj:mC"EnX G H EJID=QC�a

c . 5 | ) 2 5i 4 . 2 2 )c 0 4 . ) 5 c ) 2 / ) ) 7 9;:Y= A =[LF =>E\FYCV9;G ]�a

Page 28: 0 1 32 54jina/Proceedings/Cowan/cowantalk.pdf · 60 80 100 120 140 160 180 200 220 MASS NUMBER −1.50 −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 log ε Solar System Abundances

��� � � �����

� ����������������������� �!�"� ���$#�% �'&()��*)������,+�#�%)��* ���!%)���-+.�0/�/21�35476�4�89���)�;:=<>% ���?+.�@/�/.A��B/C% ���0/"��?���0&�D�E * F&)#�F+.�@/G���C���)�@/"�H ��* ������)<I+�#�% �"* ����-*J+$K����L#�J&,��KM��N,��-��/!��O/"��KB#��P/"Q-/"�"��NRNS#��������B#�KL+�#�TEF�+.��N,%F#����0&U���M�"����K���N,��?��#�KV#�J&W�B/"������%)�'+,#�E * J& #�F+.� %F#��"�"����J/X��Y+.������#���Z/"��#��$/�DU�E * F&)#�F+.���EF/"�����[#��"�M��J/X��F&?�B+�#��"�T��� �T% ���0/"��F+.�S���\���)�@/"�W:]<>% ���-+.�0/�/(��KM��N,��-��/^�M���KB&`_a#�KB#�+.���B+S�J#�KM�W#�F&b K���E * KB#��c+.KM*J/"�����S/"�d#��$/�D`e!� �0/"�f��EF/"�����[#��"�M��J/ &?��N,��F/"�"�$#����T���J#��c�"� �T�0#���KM���0/"� b �� ���$#�������F/^���/"��#��$/g�Mh���)�S_\#�K'#�i9Qj8k���@/"%J��F/"��E K��\�5���\)��*)������ <=+�#�% �"* ���X/"Q�?���)�@/"�B/g#�F&f�"� �^% ��� b �� �M�"���$/����V�"� ��F#�K��O/"��#��$/�8 �!�����X�$#�% �B&?KMQ�������K����� b D\�E * J& #�F+.�l+.��N,%F#����B/"��F/!#�N,�� b K'#�� b �X?* N^EF���$/m���V/"�d#��$/% �������B&?�\+.KM* �0/g#�EJ��* �!���)�;F#��"* ���(���2 ��* ������)<I+�#�% �"* ������K���N,��?�g/"Q�?���)�@/"�B/GEJ�����U&?*)���M b �"� �(�0#���<K��M�0/"�X�"�MN,�0/,#�F&n�"� ����* b � ��* �X�"� �S�)�'/"�"����Qn���a�"� �h_a#�KB#�i�Q�D�o>Y%J#������B+.* K'#��08C�"� �0/"�f+$��N,%F#����B/"��F//"* b�b �0/"�;&?�qp�������F+.�0/g��n��� �,�P#rQf���)�c�)�@#r������� 1>��F+.KM*F&s�M bTt #f#�F&U#�EJ�[����A\#�F&hKM� b �?�����\)��*)������+�#�% �"* ���X��KM��N,��-��/(#���� /"Q�?���)�@/"��u��0&f��UF#��"* ����D v�F&?���$/"��#�F&?�� b ��� �0/"�,&?�wp�������F+.�@/a�P��KMKC� ��K�%x�"��B&?��-�"�q�5Q �"� �\#�/"������% �?Q?/"�'+�#�K /"�M�"�(1y���!/"�����0/.AC���z#�F&S+.��F&?��������F/C��S�"� �X:=<>% ���?+$�0/�/�DCe!� �\#�E *)F& #�F+.�+.��N,%F#����'/"��J/!#�K'/"�S&?��N,��F/"�"�$#����X#,KB#�� b �l/"��#���<>����<=/"��#��{/�+�#����"���\��f��� �X)��*)������ <=+�#�% �"* ����|0�M������$#�<�"�M��/(#��\K��[�}N,����#�K�KM�B+.�M�"�M�0/"<!��� �'+~�U&?�B/�#�% %F�0#��$/��P���"�x��F+.���0#�/"�M b���� �[|[����<P#�F&U/"* b�b �@/"��/g#�n�@#���K�Q�8+��)��N,�B+�#�KMK�Q;*) N,�Mi9�@&^#�F&^�M)� ��N,� b ��)����*J/C_\#�K'#�i9QjDGe!� ��������QX���@+.��?�C ��* ������)<I+�#�% �"* ���!��K���N,��?���EF/"�����[#��"�M��J/X��F&?�B+�#��"�S�"�F#��,���)�O�0#���K�QW% �F#�/"�0/(���X_a#�KB#�+.���B+T?*F+.KM����/"Q9-�"� �0/"�B/�8z#�F&��"� �f#�/�/"�-+.��<#��"�@&`+�� ��N,�B+�#�K�������KM* �"�����8!#�������* �M�"�U+.��N,% KM��iJ8!�P�����`���)�fQ�����KB& /��5����N &?�wp�������-��1y%)��� b ��)�M�"����ANS#�/�/"<>�$#� b �P/"�d#��$/�+.��-�"����E * �"�M b �"�c&?�qpL������?�V+~� ��N,�'+�#�KJNc��i��0/�DG���"��KMKB#��P#�E * J& #�F+.�\+$��N,%F#����B/"��F/��F&?�B+�#��"�x#�+��J#� b �T�5����N �"� �Y:]<>% ���-+.�0/�/,�"����� �n/"KM���� ��* �"�����+�#�% �"* ���W1�35476�4�8��=<�A^% ���-+.�0/�/O#��� � b � ���PN,���d#�K�K��'+.�������0/\1=#�F&TKB#������g�"�MN,�0/.A!�Mf�"� �^_a#�KB#�i�Q�Dgo>U#�& &?��������f�"� �l&s���"�0+.������U�����"� ������* N#�F&,*)�$#� �M*)N���S�F#�K�� #�F& b K���E * KB#��V+.K�*F/"�����P/"��#��$/G��pL���$/!#(% ����N,�B/"�M b 8��MJ&?��%F��F&?��?��# b ��<=& #��"�M b�"�@+~� �B��* �(�"�F#��{+�#�f% * �!K����!����KM��N,�M��/!��f�"� �X# b �;���2�"� �^_a#�KB#�i�QO#�J&T���?*F/m��� �Xv� �������$/"��DGe!� �N,�-&?��KB/g#�F&f+.��Nc%J#����'/"��F/G#���� #�KB/"��&s�'/�+.*F/�/"�0&,��f���)� +$��?�"��i��g�����"� �X����N�#��� �� b % ����E K���NS/P#�F&��%J��,��* �0/"�"�M��J/��� �"� �\:]<y%)���-+.�0/�/�Dzem� �0/"�!�MF+.K�*F&?�G���)� b ��)���$#�K9K'#�+~�;����?*F+.KM�0#��C& #��d#{�5���2���)�PN,��/"� ��* �"���� <>���'+~� ?*F+.K�����#�F&,�"� �;+.�������B+�#�KFJ#���* ���H���z�"� �\?*F+.KM�0#��GNS#�/�/C�5����N^* K'#����?&?�qpL������F+.�0/2��O�"� �% ���?&?*F+.������U���!�"� � � �0#r�������X1I#�EJ����� EF#�����* NTAP#�F&fK�� b �?�"���\ ��* �"���� <=+�#�%)��* ���(��KM��N,��?�d/���#�J&U�"� �* F+.������#��M?�"�M�0/��M,�B&?��-�"�q�5Q��� b ���)�a#�+.�"*F#�K�#�/"������% �?Q?/"�'+�#�K /"�M�"���5���!���)�l:]<>% ���-+.�0/�/�#�J&,���)�{���9�'&?��F+.��5���08 #�F&����)�;%J��/�/"�ME)KM�g��i��B/"����F+.�(����8 N,�����g���J#�f�� �;/"*F+~�O/"�M�"��D