00003188_102094

Upload: meliissa-franco

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 00003188_102094

    1/6

    In situ TiCFeAl2O3TiAl/Ti3Al composite coating processing

    using centrifugal assisted combustion synthesis

    Reza Mahmoodian a,d,, M.A. Hassan a,e, M. Hamdi a, R. Yahya b, R.G. Rahbari c

    a Centre of Advanced Manufacturing and Materials Processing (AMMP), Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysiab Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysiac Restorative Dentistry Department, Dentistry Faculty, University of Toronto, Toronto, ON M5G 1G6, Canadad Department of Research and Development, Azarin Kar Ind. Co., Industrial Zone 1, 7635168361 Kerman, Irane Department of Mechanical Engineering, Assiut University, Assiut 71516, Egypt

    a r t i c l e i n f o

    Article history:

    Received 24 March 2013

    Received in revised form 25 October 2013

    Accepted 17 December 2013

    Available online 23 December 2013

    Keywords:

    A. Ceramicmatrix composites (CMCs)

    A. Intermetallics

    E. Joints/joining

    Functional graded coatings

    a b s t r a c t

    The composite coating of a titanium carbide aluminidealumina-iron composite was synthesized by

    centrifugal-assisted self-propagating high-temperature synthesis (SHS). The in situ TiCAl2O3Fe with

    intermetallic phases of titanium aluminide (TiAl/Ti3Al) possesses excellent metallurgical properties. This

    composite was produced from compacted titanium (Ti) and carbon (C) powders in the form of pellets

    embedded in a tube, which were exposed to very high temperature generated by the thermite Fe2O3and Al reaction. The process took place in a graphitesteel tube mounted in a centrifugal accelerator

    machine purposely developed for this function. Functionally graded coating was produced under the

    centrifugal acceleration field and the product of the thermite reaction (Al2O3 and Fe) infiltrated the TiC

    pellet and to create a strong, titanium aluminide intermetallic layer. The centrifugal force significantly

    enhanced both metallurgical alloying and mechanical interlocking between different sample layers

    during product formation. The purpose of the research addresses the applications of local reinforcement

    of the ceramic-lined tubes.

    2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Self-propagating high-temperature synthesis (SHS) leads to the

    in situ production of composites with reactive initial substances

    through an exothermic chemical reaction [1]. The heat generated

    by the reaction ignites and sustains a propagating combustion

    wave through the reactants as the anticipated product is created

    [2]. SHS is characterized as a high-temperature process that makes

    it an alternative, more economical method for ceramic industries

    compared to conventional ceramic processing. SHS is a feasible

    technique for the preparation of advanced ceramics, catalysts and

    nanomaterials[3].

    The centrifugal SHS process of Fe2O3 and Al is a spontaneous

    reaction propagation and simultaneous rapid synthesis under the

    effect of centrifugal acceleration. The reaction occurs in the inner

    surface of the centrifugal tube where the Al melts and Fe2O3 re-

    duces in the initial stage[4]. The self-sustained exothermic reac-

    tion propagates through a pre-mixed powder in the form of a

    high-temperature reaction wave with rapid heating rate and short

    reaction time. This is followed by phase separation and solidifica-

    tion of the Al2O3 and Fe products[5]. Finally, the product of the

    centrifugal SHS reaction between Fe2O3and Al is a metalceramic

    Al2O3Fe composite [6]. The post-processing of the ceramic-lay-

    ered tubes may pose some disadvantages for the ceramic layer.

    Various local reinforcement components such as titanium carbide

    composites can assist in this regard.

    Titanium carbide (TiC) has many desirable properties, among

    which are high hardness, low density, high melting temperature,

    high modulus, great corrosion resistance and excellent wetting

    properties to Fe[7,8]. The application of TiC particulate has been

    noted in wear resistant parts, thermal fatigue, erosion-resistant

    materials, and high performance tooling. The most frequently re-

    ported TiCFe composite is fabricated either by ex situ methods

    like powder metallurgy or in situ in the medium of Fe [9,10]. TiC

    is thermodynamically stable in steels, and thus provides fine rein-

    forcement for wear resistant applications[11].

    The TiC resulting from the reaction between Ti and C starting

    powders is characterized by high hardness, good wettability, low

    density, and chemical stability with the Fe-based matrix. In situ

    functionally-graded materials (FGM) consisting of ceramic and

    intermetallic components is appropriate for a number of post-pro-

    cessing applications, such as piping branches and orifice nibs of

    1359-8368/$ - see front matter 2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.compositesb.2013.12.016

    Corresponding author at: Centre of Advanced Manufacturing and Materials

    Processing (AMMP), Department of Mechanical Engineering, University of Malaya,

    50603 Kuala Lumpur, Malaysia. Tel.: +60 (3)79675200; fax: +60 (3)79675330.

    E-mail addresses: [email protected] (R. Mahmoodian), hamdi@

    um.edu.my(M. Hamdi),[email protected](R.G. Rahbari).

    Composites: Part B 59 (2014) 279284

    Contents lists available at ScienceDirect

    Composites: Part B

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o m p o s i t e s b

    http://dx.doi.org/10.1016/j.compositesb.2013.12.016mailto:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.compositesb.2013.12.016http://www.sciencedirect.com/science/journal/13598368http://www.elsevier.com/locate/compositesbhttp://www.elsevier.com/locate/compositesbhttp://www.sciencedirect.com/science/journal/13598368http://dx.doi.org/10.1016/j.compositesb.2013.12.016mailto:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.compositesb.2013.12.016http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2013.12.016&domain=pdfhttp://-/?-
  • 8/12/2019 00003188_102094

    2/6

    thick ceramic-coated pipes. It will enhance the inner-most layer of

    the ceramic surface that undergoes mechanically damages and

    crack propagation while transporting fluids or material. This would

    prevent the ceramic surface of the pipe from eroding, corroding or

    cracking excessively.

    Ferro-TiC is a superwear cermet with good erosion resistance,

    machinability and hardenable properties[12,13]. TiCFe cermet

    has low soldering or brazing capabilities under atmospheric condi-

    tions with large surfaces[14]. Therefore, ex situ TiCFe is not eco-

    nomical when used as an insert in the case of ceramic-lined pipes.

    A number of papers have been published on the synthesis of

    TiC-reinforced Fe-based composites [1517]using different start-

    ing materials under normal gravity conditions and with powder

    metallurgy technique. The advantage of powder metallurgy is that

    the products surface quality and precision are excellent; however,

    production cost is high, while product shape and size are

    restricted. For this reasons, several works on the liquid-based

    means have been published in the past decade[18].

    Gowtam et al. studied FeTiC steel FGM using SHS reaction fol-

    lowed by centrifugal casting[19](Fe2O3, MnO2, and TiO2powders

    in the presence of C), in situ TiC-reinforced steel composites[20],

    cast-sintering [21], as well as spark plasma sintering [22] and

    chemical vapor deposition [23]. In another study conducted by

    Huang et al., TiCTiB2 ceramics were prepared via combustion syn-

    thesis under a high gravity field[24]. Recently, Shi et al. reported a

    processing and abrasive wear study of FeAl2O3TiC composite by

    pressure-less Ti-activated reactive melt infiltration [25]. The pro-

    duction of an in situ TiCFeAl2O3composite system under centrif-

    ugal force utilized the heat generated by the highly exothermic

    thermite reaction of Fe2O3 and Al, whereby the reaction of Ti and

    C can be achieved at a rapid heating rates and short reaction times.

    The adiabatic combustion temperatures of the SHS Fe2O3+ Al and

    Ti + C reactions can reach 3622 C and 3290 C, respectively [19],

    much higher than the melting point of Al and Fe2O3 [26]. The

    advantage of this process is that once ignited, no further externally

    applied energy is required to complete the reaction [27]. Al2O3

    TiTiAl/Ti3Al processing using SHS is reported elsewhere but notunder centrifugal processing conditions[28,29]. So far, to the best

    of the authors knowledge, no report has been put forth describing

    the production of an in situ TiCFeAl2O3TiAl/Ti3Al composite

    system under centrifugal force using Fe2O3, Al, Ti, and C as starting

    materials. In this paper, the locally reinforced functionally graded

    coating, and the intermetallic layers of the composite product

    before and after immersion into a humid environment are

    investigated.

    2. Experimental procedure

    2.1. Materials and methods

    A centrifugal thermite (CT) machine was utilized to facilitate ra-

    pid centrifugal acceleration as well as temperature increase during

    the experiment. A bilayer graphitesteel compacted mold was

    fixed inside the CT reaction chamber. A high performance infrared

    thermometer, Raytek MM1MHSF3L, recorded the experimental

    real-time temperature data. The detailed procedure of using the

    centrifugal machine for thermite processing in metallic pipes is ex-

    plained in recently published literature[4].

    The starting materials, namely Al (

  • 8/12/2019 00003188_102094

    3/6

    only 2.5 s from ignition until Fe solidification, at which point it is

    assumed that reaction and infiltration is stopped. The thermite

    reaction products (Fe and Al2O3) deposited according to their den-

    sities [32] at the graphite molds innermost layer, and then diffused

    inside the TiC zone. The reactions created a porous TiC product.

    The product formed, i.e. TiCFeAl2O3 composite, had a round,

    rough innermost layer surface, and was microscopically porous

    at the cross-section. The average roughness (Ra) value inFig. 2, re-

    gion 4 (specimens face) was about 3.12 lm. The rapid heating andsuper-cooling process of the material would have caused surface

    imperfections [33]. Increasing the amount of thermite mixture

    fed into tube does not improve the innermost surface quality sig-

    nificantly, since it is a rapid melting and cooling process. As for

    FESEMEDAX analysis, an electron beam scanned along a pres-

    elected line across the sample, while X-rays detected discrete posi-

    tions along the line. Line analysis of the X-ray energy spectrum in

    Fig. 2provides plotting of the relative elemental concentration for

    each element versus position along the white line at the center of

    the figure.

    InFig. 2layer (1), TiC-rich area, there was only a small amount

    of Al representing Al2O3 or Al intermetallic detected as well as a

    high amount of Fe which penetrated the TiC zone. The intermetal-

    lic compounds comprising Ti, Al and Fe were mostly located in

    zone (2). All the starting elements participated in the experiments,

    thus increasing the quality of joining properties to each other;

    however, Fe was most uniformly distributed along area (2). The

    products middle layer (2) and (3) contained the highest amount

    of Al. The carbon content was diffused in all the layers, although

    titanium was diffused inside the Al-rich layer (3). The elemental

    composition of layer (4) was rich in Fe. The very weak signal in

    layer (4) for C and Ti is noise. There are some imperfection

    deposition happened since the pellet was situated at the head of

    the pipe whereas the highest temperature gradient exists. The high

    temperature gradient can cause the molten iron at the surrounding

    area moving to the head and created an unexpected layer [33].

    Therefore, the layer (4) mainly contains Fe.

    A typical area of the products TiC zone is shown in Fig. 3 before

    (a) and after (b) being exposed to environment where different

    locations are highlighted based on EDAX elemental analysis. The

    pores of TiC zone area seemed to be filled by the molten compos-

    ite due to high centrifugal acceleration that acts as an external

    force. At high gravity pressure the molten composite wet the cera-mic surface and filled the pores[34]. There are extensive reports of

    molten metal capillary infiltrating a porous medium to form a

    ceramic-metal composite[35].

    Fig. 3(b) shows a micrograph image of the sample that was ex-

    posed to environmental conditions and the corresponding EDAX

    elemental analysis of different locations at points 1 and 2, and zone

    3 are provided inTable 1. Various compounds were identified in

    the sample including iron oxide, titanium oxide, and carbon-based

    compounds such as TiC and Fe3C. According to the literature,

    corrosion begins at high interfacial energy and relatively weak

    bonding locations, such as grain boundaries[36].

    A scaling issue was also encountered here that increased the

    surface area. This phenomenon is similar to corrosion problems

    are mostly the result of tuberculation [37]. The findings are compa-

    rable to those of Tao et al. regarding the flower-like anatase TiO2hierarchical spheres assembled by nanosheets synthesized by gly-

    cine via a hydrothermal approach[38]. Tao et al. claimed that the

    obtained TiO2sample demonstrated good photocatalytic activity of

    decomposing of methyl orange under sunlight [38]. The oxide layer

    inFig. 3(b) is needle-like (flower-like) with sharp edges. This sort

    of surface changes are significant with respect to tribological

    behavior as they cause fretting corrosion damage in biomedical

    applications [39]. According to EDAX results, the corroded area

    consisted of FeO, Al2O3, TiO2, and TiC components after three-day

    exposure to the environment. However, the SEM-EDAX analysis

    inFig. 3(b) shows that points 1 and 2 contain very little oxygen

    (

  • 8/12/2019 00003188_102094

    4/6

    X-ray diffraction pattern (XRD) of the whole specimens

    cross-section elaborates the existing phases inFig. 4, and confirms

    the formation of a polycrystalline product with different TiCFe

    Al2O3 composite phases. The compounds intermetallic peaks of

    tetragonal titanium aluminide (TiAl, Ti3Al) were detected in the

    XRD pattern. The presence of intermetallic compounds enhances

    crystal properties in the form of ordered crystal structures [40].

    The Ti and Al atoms occupy specific locations in the crystal

    structure rather than random locations as in the majority of solidsolutions. Intermetallics have been shown to possess lower ductil-

    ity properties, with environmental factors also playing a role in

    limiting ductility in intermetallics[36].

    According to XRD and Rietveld refinement results, 28% of the

    product was composed of TiC h11 1i, and h00 2i crystal direction

    with cubic structure. Hexagonal titanium h01 1i, h01 0i crystal

    direction 28.2% and hexagonal carbon h00 2i, h00 4i crystal

    direction 23.0% elements did not react with each other but took

    part in metallurgical alloying and joining.

    2.5% of Al2.54Fe0.55Ti systemh02 2i crystal direction is formed.

    The ternary iron [41] has a cubic structure, with a substantial capa-

    bility of the developing intermetallic-based materials for high tem-

    perature applications [42]. The AlFeTi alloy also has

    ferromagnetism properties [43]. The XRD pattern did not display

    a strong anatase peak, as this compound grew as a thin layer on

    the top surface layer of the composite. It was not readily detectableby normal XRD, but was perceived by FESEM. Corundum (Al2O3),

    wuestite (FeO), and Cohenite (Fe3C) were detected by XRD with

    6.5%, 4.5%, and 2.2% quantity in the composite, respectively.

    The relatively sharp peak (Ti, C) which represents the amount of

    unreacted titanium and crystallized carbon may seem to be high

    due to the XRD mechanism that scanned the whole area of the

    samples cross-section from the inner-most layer up to the

    Fig. 4. XRD diffraction pattern on cross-section of the specimen.

    Fig. 5. Average Vickers hardness (HV) measurement of different typical point of TiC-rich zone (1), Fe-rich zone (2), versus TiC-rich and Fe-rich ( [33,44]), and TiCFe phase([15,45]).

    282 R. Mahmoodian et al. / Composites: Part B 59 (2014) 279284

  • 8/12/2019 00003188_102094

    5/6

    outer-most layer. Starting from the outer-most layer of the sample,

    whereas the outer TiC pellet surface was not directly exposed to

    the heat. On the other hand, the reaction time was too short to

    propagate and transfer the generatedheat inside the pellet, and be-

    sides, the intermetallic layers may have also prevented the rest of

    the specimen from reacting. The importance of the intermetallic

    layers is their support in providing a smooth transition of phases

    and compounds over the volume of the product.The mechanical properties in terms of micro-hardness conform-

    ing to Fig. 3(b) was measured in zones 1 and 2. The hardness

    reading result are plotted in Fig. 5 versus the hardness of those

    in literature [44,45]. The maximum Vickers hardness value

    (2313 HV) was observed at a TiC-rich region, whereas the maxi-

    mum hardness value of the less TiC-rich area was 1251 HV.

    Whereas the hardness variation is an indication of phase transition

    over the volume of the product [46].

    Employing an in situ technique to produce net-shaped products

    of the reinforcing ceramic-alloy composite with substantial inter-

    metallic constitutes will reduce post-processing cost and increase

    the service life of the manufactured parts significantly.

    4. Conclusion

    In the present study, the reaction temperature of the centrifugal

    thermite-assisted combustion synthesis between Al and Fe2O3was

    observed to be above 2925 C. According to FESEMEDAX TiO2were primarily formed after three days of exposure to a humid

    environment due to product surface corrosion however it was

    not detectable by XRD. In situ FGMs of TiCFeAl 2O3 with prede-

    fined geometry and several intermetallics layers mainly TiAl and

    Ti3Al with improved mechanical properties was successfully

    produced.

    Acknowledgements

    This study has been supported by University of Malaya student

    grant, Postgraduate Research Fund (PPP), Malaysia Ministry of

    Higher Education (MOHE) and the High Impact Research-Joining

    Technology (HIR-D00000116001). Special thanks to Mr. Ali

    Mahmoodian, the CEO of Azarin Kar Ind. Co., for consulting and

    facilitating the design and fabrication of the SHS-centrifugal

    machines reaction chamber.

    References

    [1] Odawara O. Mass-forced SHS, technology of ceramic materials. Adv Sci Technol

    2010;63:30211.

    [2] Wang Y-F, Yang Z-G. Finite element analysis of residual thermal stress in

    ceramic-lined composite pipe prepared by centrifugal-SHS. Mater Sci Eng, A2007;460461:1304.

    [3] Greco A, Raphaelson S, Ehmann K, Wang QJ, Lin C. Surface texturing of

    tribological interfaces using the vibromechanical texturing method. J Manuf

    Sci Eng 2009;131(6).

    [4]Mahmoodian R, Rahbari RG, Hamdi M, Sparham M. A new attempt to adopt a

    machine for SHS lining ceramics inside pipes. High Temp Mater Processes

    2012;16(1):1523.

    [5]Li WG, Zhou HP, Zhao YL, Yin L, Chen KX. The finite element analysis of the

    thermal stress of the ceramic lined composite steel pipe prepared by

    combustion synthesis. Rare Metal Mat Eng 2003;32:2414.

    [6]Rogachev AS, Baras F. Models of SHS: an overview. Int J Self Propag High Temp

    Synth 2007;16(3):14153.

    [7]Luo P, Dong SJ, Shi QY, Mei ZQ. Preparation of TiB2TiC intermetallic phase via

    mechanical alloying. Adv Mater Res 2012;403:6349.

    [8] Jiang QC, Zhao F, Wang HY, Zhang ZQ. In situ TiC-reinforced steel composite

    fabricated via self-propagating high-temperature synthesis of NiTiC system.

    Mater Lett 2005;59(16):20437.

    [9] Razavi M, Yaghmaee MS, Rahimipour MR, Salman S, Tousi R. The effect of

    production method on properties of FeTiC composite. Int J Miner Process2010;94(34):97100.

    [10] Wen F, Lin T, Liu X. Effects of microstructure characterization of SHS TiC

    reinforced Fe composite coating. Procedia Eng 2012;27:173843.

    [11] Xi W, Wang H, Li J, Shi C. A NiAl- and TiC-reinforced Fe-based nanocomposite

    prepared by the rapid-solidification thermite process. Mater Sci Eng, A

    2012;541:16671.

    [12] Rahimipour M, Ahmadi A. The effect of graphite formation on wear properties

    of Fe-TiC composite containing 6% by volume of titanium carbide. Majlesi J

    Mater Eng 2010;3(1):2936.

    [13] Gopalakrishnan S, Murugan N. Production and wear characterisation of AA

    6061 matrix titanium carbide particulate reinforced composite by enhanced

    stir casting method. Compos B Eng 2012;43(2):3028.[14] Nowacki J. Problems of brazing cermets and steels over large surfaces. Weld

    Int 2012;26(8):58592.

    [15] Bandyopadhyay TK, Chatterjee S, Das K. Synthesis and characterization of TiC-

    reinforced iron-based composites Part I: On synthesis and microstructural

    characterization. J Mater Sci 2004;39(18):573542.

    [16] Razavi M, Rahimipour MR. Effect of mechanical activation on syntheses

    temperature of TiC reinforced iron-based nano-composite from ilmenite

    concentrate. Ceram Int 2009;35(8):352932.

    [17] Zhang WH, YuanCL, Li Y.Al2O3TiC/Fe functionally gradient material prepared

    by SHS casting. Mater Sci Forum 2012;704705:610.

    [18] Das K, Bandyopadhyay TK, Das S. A review on the various synthesis routes of

    TiC reinforced ferrous based composites. J Mater Sci 2002;37(18):388192.

    [19] Gowtam D, Rao A, Mohape M, Khatkar V, Deshmukh V, Shah A. Synthesis and

    characterization of in situ reinforced FeTiC steel FGMs. Int J Self Propag High

    Temp Synth 2008;17(4):22732.

    [20] Wang J, Wang Y. In situ production of FeTiC composite. Mater Lett

    2007;61(22):43935.

    [21] Fengjun C, Yisan W. Microstructure of FeTiC surface composite produced by

    cast-sintering. Mater Lett 2007;61(7):151721.

    [22] Li B, Liu Y, Cao H, He L, Li J. Rapid fabrication of in situ TiC particulates

    reinforced Fe-based composites by spark plasma sintering. Mater Lett

    2009;63(23):20102.

    [23] Voudouris N, Angelopoulos GN. Modeling of TiC coating growth on plain

    carbon steels: application to the fluidized bed CVD process. High Temp Mater

    Processes 2011;15(2):14350.

    [24] Huang X, Zhang L, Zhao Z, Yin C. Microstructure transformation and

    mechanical properties of TiCTiB2 ceramics prepared by combustionsynthesis in high gravity field. Mater Sci Eng, A 2012;553:10511.

    [25] Shi YL, Guo ZM, Hao JJ,LinT, ZengX. Processingandabrasive wearstudy ofFe

    Al2O3TiC composite by pressureless Ti-activated reactive melt infiltration.

    Adv Mater Res 2012;482:9337.

    [26] Patil KC, Aruna ST, Ekambaram S. Combustion synthesis. Curr Opin Solid State

    Mater Sci 1997;2(2):15865.

    [27] Merzhanov AG. Self-propagating high-temperature synthesis: twenty years of

    search and findings. NY: VCH Publ; 1990.

    [28] Horvitz D, Gotman I, Gutmanas EY, Claussen N. In situ processing of dense

    Al2O3Ti aluminide interpenetrating phase composites. J Eur Ceram Soc2002;22(6):94754.

    [29] Shen YF, Zou ZG, Xiao ZG, Liu K, Long F, Wu Y. Properties and electronic

    structures of titanium aluminidesalumina composites from in situ SHS

    process. Mater Sci Eng, A 2011;528(45):21005.

    [30] Odawara O. Metalceramic composite pipes produced by a centrifugal-thermit

    process. In: Munir ZA, Holt JB, editors. International symposium on

    combustion and plasma synthesis of high temperature materials. San

    Francisco Calif: VCH Publishers, Inc; 1988. p. 17985.

    [31] Young RA. Introduction to the Rietveld method. Oxford, UK: Oxford University

    Press; 1993.

    [32] Meng QS, Chen SP, Zhao JF, Zhang H, Zhang HX, Munir ZA. Microstructure and

    mechanical properties of multilayer-lined composite pipes prepared by SHS

    centrifugal-thermite process. Mater Sci Eng, A 2007;456(12):3326.

    [33] Mahmoodian R, Rahbari RG, Hamdi M, Hassan MA, Sparham M. The effects

    of an unexpected ceramic coating phase at the head of a pipe on joining

    and postprocessing of a ceramic-lined composite pipe. JOM 2013;65(1):

    805.

    [34] Muscat D, Harris RL, Drew RAL. The effect of pore size on the infiltration

    kinetics of aluminum in titanium carbide performs. Acta Metall Mater1994;42(12):415563.

    [35] Travitzky N. Processing of ceramic-metal composites. Adv Appl Ceram

    2012;111(5):286300.

    [36] Askeland DR, Fulay PP, Wright WJ. The science and engineering of materials.

    Thomson Eng 2011.

    [37] Ebacher G, Besner M, Lavoie J, Jung B, Karney B, Prvost M. Transient modeling

    of a full-scale distribution system: comparison with field data. J Water Res

    Plan Manage 2011;137(2):17382.

    [38] Tao Y-G, Xu Y-Q, Pan J, Gu H, Qin C-Y, Zhou P. Glycine assisted synthesis of

    flower-like TiO2 hierarchical spheres and its application in photocatalysis.

    Mater Sci Eng: B 2012;177(18):166471.

    [39] Diomidis N, Mischler S, More NS, Roy M, Paul SN. Fretting-corrosion behavior

    of b titanium alloys in simulated synovial fluid. Wear 2011;271(7

    8):1093102.

    [40] Wang J, Song RG, Lin X, Huang WD. Microstructure and properties of laser

    cladding TiC/TiAl composite coatings on c-TiAl intermetallic alloy. Surf Eng2009;25(3):196200.

    [41] Palm M, Lacaze J. Assessment of the AlFeTi system. Intermetallics2006;14(1011):1291303.

    R. Mahmoodian et al./ Composites: Part B 59 (2014) 279284 283

    http://refhub.elsevier.com/S1359-8368(13)00746-4/h0005http://refhub.elsevier.com/S1359-8368(13)00746-4/h0005http://refhub.elsevier.com/S1359-8368(13)00746-4/h0010http://refhub.elsevier.com/S1359-8368(13)00746-4/h0010http://refhub.elsevier.com/S1359-8368(13)00746-4/h0010http://refhub.elsevier.com/S1359-8368(13)00746-4/h0015http://refhub.elsevier.com/S1359-8368(13)00746-4/h0015http://refhub.elsevier.com/S1359-8368(13)00746-4/h0015http://refhub.elsevier.com/S1359-8368(13)00746-4/h0020http://refhub.elsevier.com/S1359-8368(13)00746-4/h0020http://refhub.elsevier.com/S1359-8368(13)00746-4/h0020http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0030http://refhub.elsevier.com/S1359-8368(13)00746-4/h0030http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0045http://refhub.elsevier.com/S1359-8368(13)00746-4/h0045http://refhub.elsevier.com/S1359-8368(13)00746-4/h0045http://refhub.elsevier.com/S1359-8368(13)00746-4/h0050http://refhub.elsevier.com/S1359-8368(13)00746-4/h0050http://refhub.elsevier.com/S1359-8368(13)00746-4/h0055http://refhub.elsevier.com/S1359-8368(13)00746-4/h0055http://refhub.elsevier.com/S1359-8368(13)00746-4/h0055http://refhub.elsevier.com/S1359-8368(13)00746-4/h0060http://refhub.elsevier.com/S1359-8368(13)00746-4/h0060http://refhub.elsevier.com/S1359-8368(13)00746-4/h0060http://refhub.elsevier.com/S1359-8368(13)00746-4/h0065http://refhub.elsevier.com/S1359-8368(13)00746-4/h0065http://refhub.elsevier.com/S1359-8368(13)00746-4/h0065http://refhub.elsevier.com/S1359-8368(13)00746-4/h0070http://refhub.elsevier.com/S1359-8368(13)00746-4/h0070http://refhub.elsevier.com/S1359-8368(13)00746-4/h0075http://refhub.elsevier.com/S1359-8368(13)00746-4/h0075http://refhub.elsevier.com/S1359-8368(13)00746-4/h0075http://refhub.elsevier.com/S1359-8368(13)00746-4/h0080http://refhub.elsevier.com/S1359-8368(13)00746-4/h0080http://refhub.elsevier.com/S1359-8368(13)00746-4/h0080http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0090http://refhub.elsevier.com/S1359-8368(13)00746-4/h0090http://refhub.elsevier.com/S1359-8368(13)00746-4/h0095http://refhub.elsevier.com/S1359-8368(13)00746-4/h0095http://refhub.elsevier.com/S1359-8368(13)00746-4/h0095http://refhub.elsevier.com/S1359-8368(13)00746-4/h0100http://refhub.elsevier.com/S1359-8368(13)00746-4/h0100http://refhub.elsevier.com/S1359-8368(13)00746-4/h0105http://refhub.elsevier.com/S1359-8368(13)00746-4/h0105http://refhub.elsevier.com/S1359-8368(13)00746-4/h0110http://refhub.elsevier.com/S1359-8368(13)00746-4/h0110http://refhub.elsevier.com/S1359-8368(13)00746-4/h0110http://refhub.elsevier.com/S1359-8368(13)00746-4/h0115http://refhub.elsevier.com/S1359-8368(13)00746-4/h0115http://refhub.elsevier.com/S1359-8368(13)00746-4/h0115http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0130http://refhub.elsevier.com/S1359-8368(13)00746-4/h0130http://refhub.elsevier.com/S1359-8368(13)00746-4/h0135http://refhub.elsevier.com/S1359-8368(13)00746-4/h0135http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0145http://refhub.elsevier.com/S1359-8368(13)00746-4/h0145http://refhub.elsevier.com/S1359-8368(13)00746-4/h0145http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0155http://refhub.elsevier.com/S1359-8368(13)00746-4/h0155http://refhub.elsevier.com/S1359-8368(13)00746-4/h0160http://refhub.elsevier.com/S1359-8368(13)00746-4/h0160http://refhub.elsevier.com/S1359-8368(13)00746-4/h0160http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0170http://refhub.elsevier.com/S1359-8368(13)00746-4/h0170http://refhub.elsevier.com/S1359-8368(13)00746-4/h0170http://refhub.elsevier.com/S1359-8368(13)00746-4/h0175http://refhub.elsevier.com/S1359-8368(13)00746-4/h0175http://refhub.elsevier.com/S1359-8368(13)00746-4/h0180http://refhub.elsevier.com/S1359-8368(13)00746-4/h0180http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0205http://refhub.elsevier.com/S1359-8368(13)00746-4/h0205http://refhub.elsevier.com/S1359-8368(13)00746-4/h0205http://refhub.elsevier.com/S1359-8368(13)00746-4/h0205http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0200http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0195http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0190http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0185http://refhub.elsevier.com/S1359-8368(13)00746-4/h0180http://refhub.elsevier.com/S1359-8368(13)00746-4/h0180http://refhub.elsevier.com/S1359-8368(13)00746-4/h0175http://refhub.elsevier.com/S1359-8368(13)00746-4/h0175http://refhub.elsevier.com/S1359-8368(13)00746-4/h0170http://refhub.elsevier.com/S1359-8368(13)00746-4/h0170http://refhub.elsevier.com/S1359-8368(13)00746-4/h0170http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0165http://refhub.elsevier.com/S1359-8368(13)00746-4/h0160http://refhub.elsevier.com/S1359-8368(13)00746-4/h0160http://refhub.elsevier.com/S1359-8368(13)00746-4/h0160http://refhub.elsevier.com/S1359-8368(13)00746-4/h0155http://refhub.elsevier.com/S1359-8368(13)00746-4/h0155http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0150http://refhub.elsevier.com/S1359-8368(13)00746-4/h0145http://refhub.elsevier.com/S1359-8368(13)00746-4/h0145http://refhub.elsevier.com/S1359-8368(13)00746-4/h0145http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0140http://refhub.elsevier.com/S1359-8368(13)00746-4/h0135http://refhub.elsevier.com/S1359-8368(13)00746-4/h0135http://refhub.elsevier.com/S1359-8368(13)00746-4/h0130http://refhub.elsevier.com/S1359-8368(13)00746-4/h0130http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0125http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0120http://refhub.elsevier.com/S1359-8368(13)00746-4/h0115http://refhub.elsevier.com/S1359-8368(13)00746-4/h0115http://refhub.elsevier.com/S1359-8368(13)00746-4/h0115http://refhub.elsevier.com/S1359-8368(13)00746-4/h0110http://refhub.elsevier.com/S1359-8368(13)00746-4/h0110http://refhub.elsevier.com/S1359-8368(13)00746-4/h0110http://refhub.elsevier.com/S1359-8368(13)00746-4/h0105http://refhub.elsevier.com/S1359-8368(13)00746-4/h0105http://refhub.elsevier.com/S1359-8368(13)00746-4/h0100http://refhub.elsevier.com/S1359-8368(13)00746-4/h0100http://refhub.elsevier.com/S1359-8368(13)00746-4/h0095http://refhub.elsevier.com/S1359-8368(13)00746-4/h0095http://refhub.elsevier.com/S1359-8368(13)00746-4/h0095http://refhub.elsevier.com/S1359-8368(13)00746-4/h0090http://refhub.elsevier.com/S1359-8368(13)00746-4/h0090http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0085http://refhub.elsevier.com/S1359-8368(13)00746-4/h0080http://refhub.elsevier.com/S1359-8368(13)00746-4/h0080http://refhub.elsevier.com/S1359-8368(13)00746-4/h0080http://refhub.elsevier.com/S1359-8368(13)00746-4/h0075http://refhub.elsevier.com/S1359-8368(13)00746-4/h0075http://refhub.elsevier.com/S1359-8368(13)00746-4/h0075http://refhub.elsevier.com/S1359-8368(13)00746-4/h0070http://refhub.elsevier.com/S1359-8368(13)00746-4/h0070http://refhub.elsevier.com/S1359-8368(13)00746-4/h0065http://refhub.elsevier.com/S1359-8368(13)00746-4/h0065http://refhub.elsevier.com/S1359-8368(13)00746-4/h0065http://refhub.elsevier.com/S1359-8368(13)00746-4/h0060http://refhub.elsevier.com/S1359-8368(13)00746-4/h0060http://refhub.elsevier.com/S1359-8368(13)00746-4/h0060http://refhub.elsevier.com/S1359-8368(13)00746-4/h0055http://refhub.elsevier.com/S1359-8368(13)00746-4/h0055http://refhub.elsevier.com/S1359-8368(13)00746-4/h0055http://refhub.elsevier.com/S1359-8368(13)00746-4/h0050http://refhub.elsevier.com/S1359-8368(13)00746-4/h0050http://refhub.elsevier.com/S1359-8368(13)00746-4/h0045http://refhub.elsevier.com/S1359-8368(13)00746-4/h0045http://refhub.elsevier.com/S1359-8368(13)00746-4/h0045http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0040http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0035http://refhub.elsevier.com/S1359-8368(13)00746-4/h0030http://refhub.elsevier.com/S1359-8368(13)00746-4/h0030http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0025http://refhub.elsevier.com/S1359-8368(13)00746-4/h0020http://refhub.elsevier.com/S1359-8368(13)00746-4/h0020http://refhub.elsevier.com/S1359-8368(13)00746-4/h0020http://refhub.elsevier.com/S1359-8368(13)00746-4/h0015http://refhub.elsevier.com/S1359-8368(13)00746-4/h0015http://refhub.elsevier.com/S1359-8368(13)00746-4/h0015http://refhub.elsevier.com/S1359-8368(13)00746-4/h0010http://refhub.elsevier.com/S1359-8368(13)00746-4/h0010http://refhub.elsevier.com/S1359-8368(13)00746-4/h0010http://refhub.elsevier.com/S1359-8368(13)00746-4/h0005http://refhub.elsevier.com/S1359-8368(13)00746-4/h0005http://-/?-http://-/?-http://-/?-
  • 8/12/2019 00003188_102094

    6/6

    [42] Bendjeddou L, Debili M. Structure and hardness of AlFeTi Alloys. Defect

    Diffus Forum 2010;305:2332.

    [43] Krein R, Friak M, Neugebauer J, Palm M, Heilmaier M. L21-ordered FeAlTi

    alloys. Intermetallics 2010;18(7):13604.

    [44] Mahmoodian R, Hassan MA, Rahbari RG, Yahya R, Hamdi M. A novel

    fabrication method for TiCAl2O3Fe functional material under centrifugal

    acceleration. Compos B Eng 2013;50:18792.

    [45] Bandyopadhyay TK, Das K. Synthesis and characterization of TiC-reinforced

    iron-based composites Part II on mechanical characterization. J Mater Sci

    2004;39(21):65038.

    [46] Hassan M.A., Mahmoodian R., Hamdi M. Modified smoothed particle

    hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3combustion synthesis. Scientific Reports. 2014;4:3724. http://dx.doi.org/

    10.1038/srep03724.

    284 R. Mahmoodian et al. / Composites: Part B 59 (2014) 279284

    http://refhub.elsevier.com/S1359-8368(13)00746-4/h0210http://refhub.elsevier.com/S1359-8368(13)00746-4/h0210http://refhub.elsevier.com/S1359-8368(13)00746-4/h0215http://refhub.elsevier.com/S1359-8368(13)00746-4/h0215http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://dx.doi.org/10.1038/srep03724http://dx.doi.org/10.1038/srep03724http://dx.doi.org/10.1038/srep03724http://dx.doi.org/10.1038/srep03724http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://refhub.elsevier.com/S1359-8368(13)00746-4/h0225http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0220http://refhub.elsevier.com/S1359-8368(13)00746-4/h0215http://refhub.elsevier.com/S1359-8368(13)00746-4/h0215http://refhub.elsevier.com/S1359-8368(13)00746-4/h0210http://refhub.elsevier.com/S1359-8368(13)00746-4/h0210