01 - electrochemistry - ramesh- gec...

47
Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode 1 Dr. A. R. Ramesh - GEC CLT - ELECTROCHEMISTRY - 2015

Upload: others

Post on 05-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Electrochemistry

Dr. A. R. Ramesh

Assistant Professor of Chemistry

Govt. Engineering College, Kozhikode

1Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 2: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Electro Chemistry : Chemistry of flow of electrons

Electrochemical Cell

Chemical to Electrical

Electrolytic Cell

Electrical to Chemical

(Reverse of Electrochemical Cell)

Anode = -ve Anode = +ve

The electrons flow through the external circuit

Redox Reaction

2Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 3: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

A voltaic cell or Galvanic Cell

Two-half cells separated by a porous boundary with solid electrodes

connected by an external circuit

Electrons always travel in the external circuit from anode to cathode

Internally, cationsmove

toward the cathode, anions

move toward the anode,

keeping the solution neutral

(ionic movement through

electrolyte)

3Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 4: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Single Electrode Potential(Origin of electrode potential)

When a metal rod is dipped in a solution of its own ions

Either oxidation or Reduction takes place

Oxidation

� Layer of negative charge (e-) at the electrode surface

� -vely charged electrode surface attract a layer of +vely charged ions

at the interface

� Develop an electrical double layer (EDL) at the metal-solution interface

� The potential difference between the metal and solution at the

interface (EDL) is the single electrode potential

4Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 5: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Oxidation Reduction

(Reverse case)

Standard Electrode Potential (E0) is the electrode potential when the

electrode is in contact with a solution of unit concentration at 298 K.

It measures the tendency of the metallic electrode to lose (oxidation

potential) or gain (reduction potential) electrons, when it is in contact

with its own salt solution of 1M concentration at 250C

5Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 6: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

The electrode potential depends upon

� The nature of the metal and its ions

� Concentration of the ions in the solution and

� Temperature

Helmholtz Double Layer

A Helmholtz double layer (HDL) is an electrical double layer (EDL) of

positive and negative charges one molecule thick. This occurs at the

surface of a metal immersed in a solution.

Potential difference

ε = dielectric constant of the medium

σ = charge density

a = distance between the layersLayer of aligned ions, which is one

particle thick and then immediately

next to that, free solution.6

Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 7: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Gouy-Chapman Model

There is not a simple layer of ions but, an ionic

distribution that extends some distance from the surface

- called diffused layer

Stern Model

Rigid Helmholtz layer

Dispersed outside the Helmholtz

plane

7Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 8: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Terms Used for Voltaic CellsTerms Used for Voltaic Cells

Half Cell & Cell

8Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 9: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Electromotive Force (emf)

• Water only

spontaneously flows

one way in a waterfall.

• Likewise, electrons only

spontaneously flow one

way in a redox

reaction—from higher

to lower potential

energy.

9Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 10: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Electromotive Force (emf)

• The potential difference between the cathode and

anode in a cell is called the electromotive force

(emf).

• It is also called the cell potential, and is designated

Ecell.

10Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 11: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Daniell Cell

CuSO4 (aq)ZnSO4 (aq)

Cu metalZn metal

salt bridge

Cathode (reduction)

+ive

Anode (oxidation)

–ive

Zn(s) → Zn2+(aq) + 2e– Cu2+(aq) + 2e– → Cu(s)

11Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 12: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Galvanic Cells (cont.)

• In turns out that we still will not get electron flow

in the example cell. This is because charge build-

up results in truncation of the electron flow.

• We need to “complete the circuit” by allowing positive

ions to flow as well.

• We do this using a “salt bridge” which will allow charge

neutrality in each cell to be maintained.

12Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 13: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Salt Bridge

Functions – Complete the inner electrical circuit,

maintain electrical neutrality

Carefully merge Carefully merge

two solutions. two solutions.

Make CuSOMake CuSO44

more dense than more dense than

ZnSOZnSO44. Sheath . Sheath

Cu electrode in Cu electrode in

glass.glass.

Liq

uid

Liq

uid

--liq

uid

in

terf

ace

liq

uid

in

terf

ace

DaniellDaniell Cell without salt bridgeCell without salt bridge

Salt bridge makes Salt bridge makes cell construction cell construction

and operation and operation easier.easier.

Pack tube with a viscous, aqueousPack tube with a viscous, aqueous

solution of KCl or KNOsolution of KCl or KNO33. The. The

viscosity prevents mixing withviscosity prevents mixing with

the electrolytes. The ions permitthe electrolytes. The ions permit

exchange of charge. The chosenexchange of charge. The chosen

ions have similar mobility toions have similar mobility to

minimize junction potentials.minimize junction potentials.

Salt bridge is an inverted U tube filled with a concentrated solution

of KCl or KNO3 or NH4NO3 in agar-agar or gelatin

13Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 14: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

14Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 15: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Electrochemical Series

Is an arrangement of elements in the increasing order of their

reduction potential

15Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 16: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Electrochemical Series - Applications

�To know relative ease of oxidation and reduction

E0 = +ve (Reduction)

= -ve (Oxidation)

�To predict whether metal react with acid to give hydrogen

E0 = -ve only react with H2

�To calculate standard EMF of cell

E0Cell = E0

R –E0L = E0

Cathode – E0Anode

16Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 17: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Nernst Equation

Note the difference between using natural logarithms and base10 logarithms.Note the difference between using natural logarithms and base10 logarithms.

Be aware of the significance of “n” Be aware of the significance of “n” –– the number of moles of electrons the number of moles of electrons

transferred in the process according to the stoichiometry chosen.transferred in the process according to the stoichiometry chosen.

E =Eo

−0.0257

nlnQ

E =Eo

−0.0592

nlogQ

17Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 18: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

EMF measurements(Poggendorf’scompensation method)

Cannot measured using voltmeter- cause current flow- change in

concentration

Principle: The EMF of the cell is opposed by an external source of EMF.

When there is no net flow of current in the circuit the imposed

potential will be equal to the EMF of the cell.

18Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 19: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

E = Battery (whose EMF is greater than Cell)

Ex = Cell (unknown EMF)

Es = Standard Cell (known EMF, Weston Cell)

AB = Potentiometer wire length

D = null deflection for Ex (AD)

D’ = null deflection for Es (AD’)

19Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 20: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Standard Hydrogen Electrode

The convention is to select a particular electrode and assign its standard

reduction potential the value of 0.0000V. This electrode is the Standard

Hydrogen Electrode.

2H+(aq) + 2e– → H2(g)

H2

H+

Pt

The “standard” aspect to this cell is that the The “standard” aspect to this cell is that the

activity of Hactivity of H22(g) and that of H(g) and that of H++(aq) are both 1. This (aq) are both 1. This

means that the pressure of Hmeans that the pressure of H22 is 1 atm and the is 1 atm and the

concentration of Hconcentration of H++ is 1M, given that these are our is 1M, given that these are our

standard reference states.standard reference states.

20Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 21: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Standard Hydrogen Electrode

• E° = 0 V (by

definition; arbitrarily

selected)

• 2H+ + 2e- → H2

21Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 22: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Calculating Cell Potential

Because we tabulate reduction potentials, the cell potential is calculated (from

those tabulated numbers) as

Ecell = Ecathode - Eanode

The minus sign is present only because we are using reduction potential tables

and, by definition, an anode is where oxidation occurs.

22Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 23: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

23Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 24: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

24Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 25: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

25Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 26: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Concentration Cells

• . . .a cell in which both compartments

have the same components but at

different concentrations

26Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 27: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Concentration Cells

• Notice that the Nernst equation implies that a cell

could be created that has the same substance at both

electrodes.

• For such a cell, would be 0, but Q would not.Ecell°

• Therefore, as long as the concentrations are

different, E will not be 0.27

Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 28: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

e–

e–e–

e –

Ag

1 M Ag+

1 M NO3–

Anode Cathode

Porous

diskAg

0.1 M Ag+

0.1 M NO3–

28Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 29: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

29Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 30: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Batteries

• A battery is a galvanic cell or,

more commonly, a group of

galvanic cells connected in series.

30Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 31: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

How Does a Battery Work

cathode (+)

anode (-)

Electrolyte

Paste

Seal/cap

Assume a generalized battery

31Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 32: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Battery

cathode (+):

Reduction occurs

here

anode (-):

oxidation

occurs here

e- flow

Electrolyte paste:

ion migration occurs

here

Placing the battery into a flashlight,

etc., and turning the power on

completes the circuit and allows

electron flow to occur

32Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 33: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

How Does a Battery Work

• Battery reaction when producing electricity

(spontaneous):

Cathode: O1 + e- → R1

Anode: R2 → O2 + e-

Overall: O1 + R2 → R1 + O2

• Recharging a secondary cell

– Redox reaction must be reversed, i.e., current is reversed (nonspontaneous)

Recharge: O2 + R1 → R2 + O1

– Performed using electrical energy from an external power source

33Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 34: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

34Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 35: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Alkaline Dry Cell

35Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 36: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Alkaline Dry Cell

Brass rod

Plated steel (-)

Anode:

Mixture of Zn

and KOH(aq)

Plated steel (+)

Cathode:

Mixture of

MnO2 and C

(graphite)

Paper or fabric

Separator

Insulators

36Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 37: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Alkaline Dry Cell

Half-reactions

anode: Zn(s) + 2OH-(aq) --> ZnO(s) + H2O(l) + 2e-

cathode: 2MnO2(s) + H2O(l) + 2e- -->

Mn2O3(s) + 2OH-(aq)

overall: Zn(s) + 2MnO2(s) --> Mn2O3(s) + ZnO(s)

Ecell = 1.54 V

37Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 38: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Batteries are Galvanic Cells• Car batteries are lead storage batteries.

• Pb +PbO2 +H2SO4 →PbSO4(s) +H2O

38Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 39: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Lead Storage Battery

(cathode)

(anode)

6 x 2V = 12 V 39Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 40: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Lead Storage Battery

Half-reactions

anode: Pb(s) + HSO42-(aq) --> PbSO4(s) + H+ + 2e-

cathode: PbO2(s) + 3H+(aq) + HSO42-(aq) + 2e- -->

PbSO4(s) + 2H2O(l)

overall: Pb(s) + PbO2(s) + 2H+ + 2HSO4-(aq) -->

2PbSO4(s) + 2H2O(l)

Cell reaction reversed during recharging.

40Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 41: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Lead Storage Battery

Half-reactions during recharging (nonspontaneous)

cathode: PbSO4(s) + H+ + 2e- --> Pb(s) + HSO42-(aq)

anode: PbSO4(s) + 2H2O(l) -->

PbO2(s) + 3H+(aq) + HSO42-(aq) + 2e-

overall: 2PbSO4(s) + 2H2O(l) -->

PbO2(s) + Pb(s) + 2H+ + 2HSO4-(aq)

Cell converted into electrolytic cell via application of

external electrical energy.

41Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 42: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

42Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 43: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

NiNi--Cad BatteryCad Battery

Anode (Anode (--))

Cd + 2 OHCd + 2 OH-- ------> Cd(OH)> Cd(OH)22 + 2e+ 2e--

Cathode (+) Cathode (+)

NiO(OH) + HNiO(OH) + H22O + eO + e-- ------> Ni(OH)> Ni(OH)22 + +

OHOH--

43Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 44: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Fuel Cells

• Voltaic-like cell that operates with continuous

supply of energetic reactants (fuel) to the

electrodes

– utilize combustion reactions

– do not store chemical energy

• Not self-contained since reactants must be supplied to

the electrodes

– Example: Hydrogen-Oxygen fuel cell

44Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 45: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Hydrogen-Oxygen Fuel Cell

45Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 46: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Hydrogen-Oxygen Fuel Cell

Half-reactions

anode: 2H2(g) + 4OH-(aq) --> 4H2O(l) + 4e-

cathode: O2(g) + 2H2O(l) + 4e- --> 4OH-(aq)

overall: 2H2(g) + O2(g) --> 2H2O(l)

46Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015

Page 47: 01 - Electrochemistry - Ramesh- GEC CLTaroramesh.weebly.com/.../0/31707793/electrochemistry_-_ramesh-_g… · Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt

Fuel Cells

• Galvanic cells

• Reactants are continuously supplied.

• 2H2(g) + O2(g) → 2H2O(l)

• anode: 2H2 + 4OH− → 4H2O + 4e−

• cathode: 4e− + O2 + 2H2O → 4OH−

47Dr. A. R. Ramesh - GEC CLT -

ELECTROCHEMISTRY - 2015