010.141 partial differential equations module 4ocw.snu.ac.kr/sites/default/files/note/6784.pdf ·...

25
ENGINEERING MATHEMATICS II 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4

Upload: others

Post on 02-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

ENGINEERING MATHEMATICS II

010.141

PARTIAL DIFFERENTIAL EQUATIONS

MODULE 4

Page 2: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

2B.D. Youn2010 Engineering Mathematics II Module 4

EXAMPLES OF PDE

One-D Wave equation

One-D Heat equation

Two-D Laplace equation

Two-D Wave Equation

Two-D Poisson equation

Three-D Laplace Equation

¶¶

¶¶

2

22

2

2

ut

ux

= c

¶¶

¶¶

ut

ux

2 2

2 = c

2 2

2 2

u u + = 0x y¶ ¶¶ ¶

( )2 2

2 2

u u + f x, yx y¶ ¶¶ ¶

=

¶¶

¶¶

¶¶

2

22

2

2

2

2

ut

ux

uy

= c + æèç

öø÷

¶¶

¶¶

¶¶

2

2

2

2

2

2

ux

uy

uz

+ + = 0

A PDE is an equation involving one or more partial derivatives of a function.

Page 3: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

3B.D. Youn2010 Engineering Mathematics II Module 4

EXAMPLE OF WAVE EQUATION

Ø Problem, as a solution to the wave equation

( )( )

( )

( )

( )( )( )

14

14

2142

1 14 4

21 1

16 42

21 1 14 16 4

2

( , ) = sin 9t sin u = 9 cos 9t sin tu = 81 sin 9t sin

tu = sin 9t cos xu = sin 9t cos

x81 sin 9t sin = c sin 9t sin identically true,

if c = 16 81

u t x x

x

x

x

x

x x is

¶¶¶¶¶¶¶¶

×

- ×

×

× -

- × - ×

c = 36® ±

¶¶

¶¶

2

22

2

2

ut

ux

= c ( , )u t x

Page 4: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

4B.D. Youn2010 Engineering Mathematics II Module 4

EXAMPLE OF HEAT EQUATION

22

2

4t

4t

4t

24t

2

4t 4t 2

2

u u = ct x

u = e cos 3xu = 4e cos 3xtu = 3e sin 3xxu = 9e cos 3x

x4e cos 3x = 9e cos 3x c

4if c = , an identity9

-

-

-

-

- -

¶ ¶¶ ¶

¶-

¶¶

-¶¶

-¶- - ×

Page 5: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

5B.D. Youn2010 Engineering Mathematics II Module 4

EXAMPLE OF LAPLACE EQUATION

¶¶

¶¶

¶¶¶¶¶¶

¶¶

2

2

2

2

2

2

2

2

ux

uy

uxu

xuyu

y

+ = 0

= e sin y

= e sin y

= e sin y

= e cos y

= e sin y

e sin y e sin y = 0 0 = 0

u x

x

x

x

x

x x

-

-

Page 6: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

6B.D. Youn2010 Engineering Mathematics II Module 4

VIBRATING STRING AND THE WAVE EQUATION

Ø General assumptions for vibrating string problem:Ø mass per unit length is constant; string is perfectly elastic and no resistance

to bending.Ø tension in string is sufficiently large so that gravitational forces may be

neglected.Ø string oscillates in a plane; every particle of string moves vertically only;

and, deflection and slope at every point are small in terms of absolute value.

Deflected string at fixed time t

Page 7: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

7B.D. Youn2010 Engineering Mathematics II Module 4

DERIVATION OF WAVE EQUATION

Deflected string at fixed time t

T1, T2 = tension in string at point P and QT1 cos a = T2 cos b = T, a constant (as string does not move in horizontal dir.)

Vertical components of tension:– T1 sin a and T2 sin b

Page 8: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

8B.D. Youn2010 Engineering Mathematics II Module 4

DERIVATION OF WAVE EQUATION (Cont.)

2

2

2 1

Let x = length PQ and = mass unit length x has mass x

Newtonns Law: F = mass accelerationuIf u is the vertical position, = acceleration

T sin T

Thus

t

rr

¶¶

b

DD D

´

- ( )

( )

( )

2

2

22 1

22 1

+ x

usin = x

T sin T sin x u = tan tan = equation 2T cos T cos T

uAt P x is distance from origin , tan is slope =

uLikewise at Q, tan =

x

x

t

t

x

x

¶a r¶

b a r ¶b ab a ¶

¶a¶

¶b¶ D

D

D- -

Page 9: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

9B.D. Youn2010 Engineering Mathematics II Module 4

DERIVATION OF WAVE EQUATION (Cont.)

Substituting and x: 1x

u u = T

u

x 0, L.H.S. becomes u

= T so that

u = c u

e 1- D Wave equationIf T or c

+ x

2

2

2

¸ -é

ëêê

ù

ûúú

®

­ ¯ ­

DD

D

D

¶¶

¶¶

r ¶

r

r

x x t

as x

Let c

t xThis is th

x x

2

2

2

2

2

2

2

2

,

Page 10: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

10B.D. Youn2010 Engineering Mathematics II Module 4

Solution by Separating Variables

Page 11: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

11B.D. Youn2010 Engineering Mathematics II Module 4

Solution by Separating Variables

Page 12: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

12B.D. Youn2010 Engineering Mathematics II Module 4

Solution by Separating Variables

Page 13: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

13B.D. Youn2010 Engineering Mathematics II Module 4

Solution by Separating Variables

Page 14: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

14B.D. Youn2010 Engineering Mathematics II Module 4

Solution by Separating Variables

Page 15: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

15B.D. Youn2010 Engineering Mathematics II Module 4

Solution by Separating Variables

Page 16: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

16B.D. Youn2010 Engineering Mathematics II Module 4

From prior work the heat equation is:

In one dimension (laterally insulated):

Some boundary conditions at each end:

u(0, t) = u(L, t) = 0, for all t

Initial Condition:u(x, 0) = f(x),

specified 0 ≤ x ≤ L

HEAT EQUATION

¶¶

¶¶

ut

ux

= c22

2

¶¶ srut

u = c c = k2 2Ñ2

Page 17: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

17B.D. Youn2010 Engineering Mathematics II Module 4

CONVERT TOORDINARY DIFFERENTIAL EQUATIONS

U(x,t) = F(x)G(t)FG' = c2F"G¸ FGc2

G'/(c2G) = F"/F = -p2

F" + p2F = 0, and

G' + (cp)2G = 0Solution for F is:

F = A cos px +B sin px

Applying boundary conditions at x = 0 and x = L gives A = 0 andsin pL = 0, which results in pL = np, or:

p = (np)/L.Now

Fn = sin (npx/L)

let ln = (cnp/L), and proceed to time solution

Page 18: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

18B.D. Youn2010 Engineering Mathematics II Module 4

TIME-DEPENDENT SOLUTION

Gn = Bnexp(-ln2t)

Combined solution in terms of space and time:

This solution must satisfy the initial condition that u(x,0) equals f(x)

Thus:

As before, the constants Bn must be the coefficients of the Fourier sine series:

( )untnx, t = B sin n x

L en

p l- 2

( ) ( )u xLn

, = B sin n x = f xn= 1

å p

( )BLn

L

= 2 f x sin dx0ò

Page 19: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

19B.D. Youn2010 Engineering Mathematics II Module 4

SOME OBSERVATIONS

Ø The exponential terms in u(x,t) approach zero for increasing time, and this should be expected, as the edge conditions (x = 0 and x = L) are at zero, and there is no internal heat generation.

Ø Since exp(-0.001785t) is 0.5, whenever the exponent for the nth term, lnt, is -0.693, the temperature has decreased by 1/2.

Ø If the ends of the bar were perfectly insulated, then over time the bar temperature will approach some uniform value

Page 20: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

20B.D. Youn2010 Engineering Mathematics II Module 4

VIBRATING MEMBRANE ANDTHE TWO-DIMENSIONAL WAVE EQUATION

Three Assumptions:

Ø The mass of the membrane is constant, the membrane is perfectly flexible, and offers no resistance to bending;

Ø The membrane is stretched and then fixed along its entire boundary in the x-y plane. Tension per unit length (T) which is caused by stretching is the same at all points and in the plane and does not change during the motion;

Ø The deflection of the membrane u(x,y,t) during vibratory motion is small compared to the size of the membrane, and all angles of inclination are small

Page 21: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

21B.D. Youn2010 Engineering Mathematics II Module 4

GEOMETRY OF VIBRATING "DRUM"

Vibrating Membrane

Page 22: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

22B.D. Youn2010 Engineering Mathematics II Module 4

NOW FOR NEWTON'S LAW

Divide by rDxDy:

Take limit as Dx ® 0, Dy ® 0

This is the two-dimensional wave equation

( ) ( ) ( )[ ] ( ) ( )[ ]rD¶¶

x y ut

x x xD D D D D = T y u + x, y u , y + T x u x , y + y u , y2

x 1 x 2 y 1 y2 2- -

( ) ( ) ( ) ( )¶¶ r

2x 1 x 2 y 1 y = T u + x, y u , y

+ u x , y + y u , y

yu

tx x

xx

22D

D

D

D

- -é

ëêê

ù

ûúú

¶¶

¶¶

¶¶

22

2 2 = c + u

tu

xu

y2 2 2

æ

èç

ö

ø÷

T = c2

r

Page 23: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

23B.D. Youn2010 Engineering Mathematics II Module 4

WAVE EQUATION

Ø In Laplacian form:

where c2 = T/r

§ Some boundary conditions: u = 0 along all edges of the boundary.

§ Initial conditions could be the initial position and the initial velocity of the membrane

§ As before, the solution will be broken into separate functions of x,y, and t.

§ Subscripts will indicate variable for which derivatives are taken.

¶¶

2

22u

tu = c2 Ñ

Page 24: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

24B.D. Youn2010 Engineering Mathematics II Module 4

SOLUTION OF 2-D WAVE EQUATION

Let u(x, y, t) = F(x, y)G(t)

substitute into wave equation:

divide by c2FG, to get:

This gives two equations, one in time and one in space. For time,

where l = cn, and, what is called the amplitude function:

also known as the Helmholtz equation.

( )&&GG

Fxxc = 1

F + F 2 yy = -n2

&&G G + = 02l

( )FG F G Gxx&& ; = c + F2

yy

F F xx + F + = 0yy n2

Page 25: 010.141 PARTIAL DIFFERENTIAL EQUATIONS MODULE 4ocw.snu.ac.kr/sites/default/files/NOTE/6784.pdf · 2018. 1. 30. · PARTIAL DIFFERENTIAL EQUATIONS MODULE 4. 2 B.D. Youn 2010 Engineering

25B.D. Youn2010 Engineering Mathematics II Module 4

SEPARATION OF THE HELMHOLTZ EQUATIONS

Let F(x, y)=H(x)Q(y)

and, substituting into the Helmholtz:

Here the variables may be separated by dividing by HQ:

Note: p2 = n2 – k2

As usual, set each side equal to a constant, -k2 . This leads to two ordinary linear differential equations:

2 22

2 2Q = + d H d QH HQdx dy

næ ö

- ç ÷è ø

1 12

2

2

2Hd Hdx Q

d Qdy

Q = + = k2 2-æ

èç

ö

ø÷ -n

d Hdx

H d Qdy

Q2

2

2

20 0 + k + p2 2= =,