02/16/2015phy 712 spring 2015 -- lecture 141 phy 712 electrodynamics 9-9:50 am mwf olin 103 plan for...

24
02/16/2015 PHY 712 Spring 2015 -- Lecture 14 1 PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 14: Start reading Chapter 6 1.Maxwell’s full equations; effects of time varying fields and sources 2.Gauge choices and transformations 3.Green’s function for vector and scalar potentials

Upload: arthur-boone

Post on 24-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

PHY 712 Spring 2015 -- Lecture 14 102/16/2015

PHY 712 Electrodynamics9-9:50 AM MWF Olin 103

Plan for Lecture 14:

Start reading Chapter 6

1. Maxwell’s full equations; effects of time varying fields and sources

2. Gauge choices and transformations

3. Green’s function for vector and scalar potentials

PHY 712 Spring 2015 -- Lecture 14 202/16/2015

PHY 712 Spring 2015 -- Lecture 14 302/16/2015

Full electrodynamics with time varying fields and sources

Maxwell’s equations

http://www.clerkmaxwellfoundation.org/

Image of statue of James Clerk-Maxwell in Edinburgh

"From a long view of the history of mankind - seen from, say, ten thousand years from now - there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics" 

Richard P Feynman

PHY 712 Spring 2015 -- Lecture 14 402/16/2015

Maxwell’s equations

0 :monopoles magnetic No

0 :law sFaraday'

:law sMaxwell'-Ampere

:law sCoulomb'

B

BE

JD

H

D

t

t free

free

PHY 712 Spring 2015 -- Lecture 14 502/16/2015

Maxwell’s equations

00

2

02

0

1

0 :monopoles magnetic No

0 :law sFaraday'

1 :law sMaxwell'-Ampere

/ :law sCoulomb'

:0) 0;( form or vacuum cMicroscopi

c

t

tc

B

BE

JE

B

E

MP

PHY 712 Spring 2015 -- Lecture 14 602/16/2015

Formulation of Maxwell’s equations in terms of vector and scalar potentials

t

t

tt

AE

AE

AE

BE

ABB

or

0 0

0

PHY 712 Spring 2015 -- Lecture 14 702/16/2015

Formulation of Maxwell’s equations in terms of vector and scalar potentials -- continued

J

AA

JE

B

A

E

02

2

2

02

02

0

1

1

/

:/

ttc

tc

t

PHY 712 Spring 2015 -- Lecture 14 802/16/2015

Formulation of Maxwell’s equations in terms of vector and scalar potentials -- continued

20

2

02 2

20

22

02 2 2

General form for the scalar and vector potential equations:

/

1

Coulomb gauge form -- require 0

/

1 1

Note that

C

C

CCC

l

t

c t t

c t c t

A

AA J

A

AA J

J J J with 0 and 0t l t J J

PHY 712 Spring 2015 -- Lecture 14 902/16/2015

Formulation of Maxwell’s equations in terms of vector and scalar potentials -- continued

tC

C

lCC

Cll

tltl

CCC

C

C

tc

ttc

ttt

tctc

JA

A

J

JJ

JJJJJ

JA

A

A

02

2

22

0002

0

022

2

22

02

1

1

0

:densitycurrent and chargefor equation Continuity

0 and 0 with that Note

11

/

0 require -- form gauge Coulomb

PHY 712 Spring 2015 -- Lecture 14 1002/16/2015

Formulation of Maxwell’s equations in terms of vector and scalar potentials -- continued

JA

A

A

JA

A

A

02

2

22

02

2

22

2

02

2

2

02

1

/1

01

require -- form gauge Lorentz

1

/

:equations potential vector andscalar theof Analysis

tc

tc

tc

ttc

t

LL

LL

LL

PHY 712 Spring 2015 -- Lecture 14 1102/16/2015

Formulation of Maxwell’s equations in terms of vector and scalar potentials -- continued

01

: thatprovided physics same Yields

' and ' :potentials Alternate

1

/1

01

require -- form gauge Lorentz

2

2

22

02

2

22

02

2

22

2

tc

t

tc

tc

tc

LLLL

LL

LL

LL

AA

JA

A

A

PHY 712 Spring 2015 -- Lecture 14 1202/16/2015

Solution of Maxwell’s equations in the Lorentz gauge

source , field wave,

41

:equation waveldimensiona-3 theof form general heConsider t

1

/1

2

2

22

02

2

22

02

2

22

tft

ftc

tc

tc

LL

LL

rr

JA

A

PHY 712 Spring 2015 -- Lecture 14 1302/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

','',';,'',,

:, fieldfor solution Formal

''4',';,1

:function sGreen'

,4,1

,

30

32

2

22

2

2

22

tfttGdtrdtt

t

ttttGtc

tft

t

ct

f rrrrr

r

rrrr

rr

r

represent ,Let ,,x y zA AA represent ,Let ,,x y zf J J J

PHY 712 Spring 2015 -- Lecture 14 1402/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

',''1

''

1''

,,

:, fieldfor solution Formal

'1

''

1',';,

:infinityat aluesboundary v isotropic of case For the

''4',';,1

:function sGreen' for the form theofion Determinat

3

0

32

2

22

tfc

ttdtrd

tt

t

cttttG

ttttGtc

f

rrrrr

rr

r

rrrr

rr

rrrr

PHY 712 Spring 2015 -- Lecture 14 1502/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

22 3

2 2

'

Analysis of the Green's function:

1 , ; ', ' 4 ' '

"Proof" -- Fourier analysis in the time domain -- note that

1 '

2

Define:

1 , ; ', '

2

i t t

G t t t tc t

t t d e

G t t

r r r r

r r

'

22 3

2

, ',

, ', 4 '

i t td e G

Gc

r r

r r r r

PHY 712 Spring 2015 -- Lecture 14 1602/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

eR

G

Gc

RdR

d

R

RG

GG

Gc

cRi /

32

2

2

2

32

22

1,',

~ :Solution

'4 ,',~1

:'in isotropic is ,'~

that assumingFurther

,'~

,',~

:infinityat aluesboundary v isotropic of case For the

'4 ,',~

:)(continuedfunction sGreen' theof Analysis

rr

rrrr

rrrr

rrrr

rrrr

PHY 712 Spring 2015 -- Lecture 14 1702/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

cttctt

ed

eed

GedttG

eG

ctti

citti

tti

ci

/'''

1/''

'

1

2

1

'

1

'

1

2

1

,',~

2

1',';,

'

1,',

~

:)(continuedfunction sGreen' theof Analysis

/''

/''

'

/'

rrrr

rrrr

rr

rr

rrrr

rrrr

rr

rr

rr

PHY 712 Spring 2015 -- Lecture 14 1802/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

cttttG /'''

1',';, rr

rrrr

',''1

''

1''

,,

:, fieldfor Solution

3

0

tfc

ttdtrd

tt

t

f

rrrrr

rr

r

PHY 712 Spring 2015 -- Lecture 14 1902/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

Liènard-Wiechert potentials and fields --Determination of the scalar and vector potentials for a moving point particle (also see Landau and Lifshitz The Classical Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point charge q moving on a trajectory Rq(t).

3(Charge density: , ) ( ( )) qt q t r r R.

3 ( )Current density: ( , ) ( ) ( ( )), where ( ) .q

q q q

d tt q t t t

dt J r r

RR R R

q

Rq(t)

PHY 712 Spring 2015 -- Lecture 14 2002/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

3

0

1 ( ,' ')( , )   '  '    ( | | / )

4 |'

|'

']t

td r dt t t c

r

r r rr rò

32

0

1 ( ', t')( , )   '  '    ' ( | ' | / ) .

4 | ' |t d r dt t t c

c

J r

A r r rr rò

We performing the integrations over first d3r’ and then dt’ making use of the fact that for any function of t’,

( )( ) ( | ( ) | / ) ,

( ) ( ( ))1

'

(

'

| ) |

' ' rq

q r q r

q r

f td f t c

t t

c t

t t t t

r RR r R

r R

where the ``retarded time'' is defined to be

| ( ) |.q r

r

tt t

c

Rr

PHY 712 Spring 2015 -- Lecture 14 2102/16/2015

Solution of Maxwell’s equations in the Lorentz gauge -- continued

Resulting scalar and vector potentials:

0

1( , ) ,

4

qt

Rc

v Rr

ò

20

( ,

) ,4

qt

c Rc

vr

v RA

ò

Notation: ( )q rt r RR

( ),q rtv R | ( ) |

.q rr

tt t

c

Rr

PHY 712 Spring 2015 -- Lecture 14 2202/16/2015

Comment on Lienard-Wiechert potential results

i

x

i

i xi

i

i

i

dxdp

xF

dxdx

dpxxxFdxxpxF

i)p(xp(x)

xFdxxxxF

F(x)

)(

)())(()(

,2,1for 0for which ,function aconsider Now

)()()(

:function any for that Note

--

-

00

PHY 712 Spring 2015 -- Lecture 14 2302/16/2015

Comment on Lienard-Wiechert potential results -- continued

-

In this case we have: ( ') ( ') ''

1

' where: ( ') '

'' ' '( ') ' 1 1

' ' '

r

q r q

q r

q

qq q q

q q

f tf t p t dt

t t

c t

tp t t t

c

d tt t tdp t dt

dt c t c t

R r R

r R

r R

Rr R R r R

r R r R

PHY 712 Spring 2015 -- Lecture 14 2402/16/2015

Summary of results for fields due to moving charge – Liénard Wiechert potentials

Resulting scalar and vector potentials:

0

1( , ) ,

4

qt

Rc

v Rr

ò

20

( ,

) ,4

qt

c Rc

vr

v RA

ò

Notation: ( )q rt r RR

( ),q rtv R | ( ) |

.q rr

tt t

c

Rr