02ns-limitcontinuity

Upload: churreya-chai-lom

Post on 07-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 02ns-limitContinuity

    1/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 1

      LIMITS

      For a function of one variable – two one-sided limits at , namely0 x

    )(lim0

     x f  x x   −→   and )(lim0 x f 

     x x  +→

    reflecting the fact that there are only two directions (the right and left)

      For function of two variables – the statement means that the point is allowed to

    approach from any ‘direction’.

    ),(),( 00   y x y x   → ),(   y x

    ),( 00   y x

     

     y

     x

     z

     

    DEFINITION

    If C is a smooth parametric curve in 3-space that is represented by the equations

    )(t  x x = , )(t  y y =  

    and if )(),( 0000   t  y yt  x x   == , then the limits are defined by

    ))(),((lim),(lim0)0,0(),(

    t  yt  x f  y x f t t 

    C along

     y x y x   →→=  

     y

     x

     z

    ))(),((   t  yt  x

    )))(),((),(),((   t  yt  x f t  yt  x

     L

    ),( 00   y x

     

    As the point ( x(t ), y(t )) moves along the curve in the xy-plane toward .),( 00   y x

  • 8/19/2019 02ns-limitContinuity

    2/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 2

    The point ( x(t ),  y(t ),  f ( x(t ),  y(t ))) moves directly above it along the graph of

    with approaching the limiting value L.

    ),(   y x f  z =

    ))(),((   t  yt  x

     

      If the value of

    ),(lim)0,0(),(

     y x f  y x y x   →

     

    is not the same for all possible approaches, or paths to , the limit does

    not exist.

    ),( 00   y x

     

    DEFINITION (GENERAL)

    Let  f  be a function of two variables defined, except possibly at on an open disc

    centered at and let L be a real number. Then

    ),( 00   y x

    ),( 00   y x L y x f 

     y x y x=

    →),(lim

    )0,0(),( 

    If for each 0>ε   there corresponds a 0>δ    that ε 

  • 8/19/2019 02ns-limitContinuity

    3/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 3

    ALTERNATIVE NOTATION

     L y x f  y x y x

    =→

    ),(lim)0,0(),(

     also be written as

     L y x f    →),(  as ),(),( 00   y x y x   →

     

    PROPERTIES OF LIMITS OF FUNCTIONS OF TWO VARIABLES

    The following rules hold if

     L y x f  y x y x

    =→

    ),(lim)0,0(),(

      and  M  y xg y x y x

    =→

    ),(lim)0,0(),(

     

    1. ScalarMultiple

    kL y x f k    =),(lim  

    (k -constant)

    2. Sum orDifference

    [ ]

     M  L

     y xg y x f 

     y xg y x f 

    ±=

    ±=

    ±

    ),(lim),(lim

    ),(),(lim

     

    3. Product [ ][ ] [

     LM 

     y xg y x f 

     y xg y x f 

    =

    = ),(lim),(lim

    ),(),(lim

    4. Quotient M 

     L

     y xg

     y x f 

     y xg

     y x f ==

    ),(lim

    ),(lim

    ),(

    ),(lim ; 0≠ M 

     The limit of quotient is the quotient of thelimit provided the limit of denominator isnonzero.

    5. Power [ ]

    [ ]n

    n

    n

     L

     y x f 

     y x f 

    == ),(lim

    ),(lim

     

    6. Root

    n

    n

    n

     L

     y x f 

     y x f 

    =

    = ),(lim

    ),(lim

     

     provided if n is even0≥ L

  • 8/19/2019 02ns-limitContinuity

    4/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 4

      Limit of multivariable functions is more complicated to be determined than limitfor the functions of single variable.

      Step To Find The Limit 

    1st  attempt  :

    -  Determine whether defined or not.),(   ba f 

    -  If not, try 2nd  attempt.

    2nd  attempt  :

    -  Simplify  f (a, b) (if not applicable, try 3rd   attempt), then check againwhether  f (a, b) defined or not.

    3rd  attempt  :

    -  Show that the limit of the function  f (a, b) does not exists.-  Choose any two curves (or lines) which pass through the point (a, b).-  Show the values of the limit are not the same from those directions.-  Conclude that the limit for that function does not exits.

    -------------------------------------------------------------------------------------------------------------

    Example 1

    Evaluate .)3312(lim25

    )2,1(),( +−→  y x x y x Solution

    3lim3lim12lim)3312(lim)2,1(),(

    25

    )2,1(),()2,1(),(

    25

    )2,1(),(   →→→→+−=+−

     y x y x y x y x y x x y x x

     3

    3)2)(1(3)1(12 25

    =

    +−=

     -------------------------------------------------------------------------------------------------------------

    Example 2

    Evaluate 22)4,3(),(

    lim   y x y x

    +−→

    .

    Solution

    22

    2

    )4,3(),(

    2

    )4,3(),(

    22

    )4,3(),(

    )4(3

    limlimlim

    −+=

    +=+−→−→−→

     y x y x y x y x y x  

    525

    ==  

  • 8/19/2019 02ns-limitContinuity

    5/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 5

    Example 3

    The function is a polynomial, so find its limit at

    .

    5472),( 3224 −+−=   y x xy y x y x f 

    )2,1(−

     

    Solution

    5472lim 3224)2,1(),(

    −+−−→

     y x xy y x y x

     

    49

    532148

    5)2()1(4)2)(1(7)2()1(2

    5lim4lim7lim2lim

    3224

    )2,1(),(

    32

    )2,1(),()2,1(),(

    24

    )2,1(),(

    =

    −++=

    −−+−−−=

    −+−=−→−→−→−→   y x y x y x y x

     y x xy y x

     

    -------------------------------------------------------------------------------------------------------------

    Example 4

    Find y x

     xy x

     y x −

    −→

    2

    )0,0(),(lim .

    Solution

    1st  attempt  :

    0

    0lim

    2

    )0,0(),(=

    −→  y x

     xy x

     y x (indeterminate form)

    2nd  attempt  :

     y x

     xy x

     y x −

    −→

    2

    )0,0(),(lim

    ⎥⎥⎦

    ⎢⎢⎣

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    +

    +⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    −=

    →  y x

     y x

     y x

     xy x

     y x

    2

    )0,0(),(lim

    0

    )00(0

    )(lim

    ))((lim

    )0,0(),(

    )0,0(),(

    =

    +=

    +=

    −+−=

     y x x

     y x

     y x y x x

     y x

     y x

     

  • 8/19/2019 02ns-limitContinuity

    6/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 6

    Example 5

    Let22

    ),( y x

     xy y x f 

    +=  .

    Find the limit of as along),(   y x f  )0,0(),(   → y x

    (a) the x-axis (c) the parabola 2 x y =

    (b) the y-axis (d) the line  x y =  

    Solution

    (a) 1st  method  

    the x-axis has parametric equations ,t  x =   0= y  with corresponding to)0,0( 0=t   

    So,)0,(lim),(lim

    0)0,0(),(t  f  y x f 

    t  y x   →→=  

    0

    0)0(lim

    20

    =

    +=

    → t 

    t t   

    2nd  method

    along x-axis )0(   = y

      00

    )0(lim),(lim

    22)0,0(),()0,0(),(=

    +=

    →→  x

     x y x f 

     y x y x 

    (b) along y-axis )0(   = x

     22)0,0(),(22)0,0(),( 0

    )0(limlim

     y

     y

     y x

     xy

     y x y x +=

    +   →→0=  

    (c) along 2 x y =

     222

    2

    )0,0(),(22)0,0(),( )(limlim

     x x

     xx

     y x

     xy

     y x y x +=

    +   →→ 

    0

    1lim 2)0,0(),(

    =+= →  x

     x

     y x  

    (d) along  x y =  

    22)0,0(),(22)0,0(),(limlim

     x x

     xx

     y x

     xy

     y x y x +=

    +   →→ 

    21

    2lim

    2

    2

    )0,0(),(

    =

    =→  x

     x

     y x 

  • 8/19/2019 02ns-limitContinuity

    7/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 7

    Example 6

    Show that22

    22

    )0,0(),(lim

     y x

     y x

     y x +

    −→

     does not exist.

    Solution

    1st  attempt  :

    0

    0lim

    22

    22

    )0,0(),(=

    +

    −→  y x

     y x

     y x (indeterminate form)

    3rd  attempt  :

    along x-axis ;)0(   = y0

    0limlim

    2

    2

    )0,0(),(22

    22

    )0,0(),( +

    −=

    +

    −→→  x

     x

     y x

     y x

     y x y x1=  

    along y-axis ;)0(   = x 2

    2

    )0,0(),(22

    22

    )0,0(),( 0

    0limlim

     y

     y

     y x

     y x

     y x y x +

    −=

    +

    −→→

    1−=  

    Since has two different limits along two different lines, therefore the limit does

    not exist.

    ),(   y x f 

     -------------------------------------------------------------------------------------------------------------

    Example 7

    If42

    2

    ),( y x

     xy y x f 

    += , does exist?),(lim

    )0,0(),( y x f 

     y x   →

     Solution

    1st  attempt  :

    0

    0lim

    42

    2

    )0,0(),(=

    +→  y x

     xy

     y x (indeterminate form)

    3

    rd 

     attempt  :

    along x-axis ;)0(   = y 00

    )0(limlim

    42

    2

    )0,0(),(42

    2

    )0,0(),(=

    +=

    +   →→  x

     x

     y x

     xy

     y x y x 

    along y-axis ;)0(   = x42

    2

    )0,0(),(42

    2

    )0,0(),( 0

    )0(limlim

     y

     y

     y x

     xy

     y x y x +=

    +   →→0=  

    along parabola ;2 y x =422

    22

    )0,0(),(42

    2

    )0,0(),( )(limlim

     y y

     y y

     y x

     xy

     y x y x +=

    +   →→ 2

    1=  

    Then the limit does not exist 

  • 8/19/2019 02ns-limitContinuity

    8/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 8

      CONTINUITY

      The intuitive meaning of continuity is that if the point ( x,  y) changes by a smallamount, then the value of  f ( x, y) changes by a small amount.

      This means that a surface that is the graph of continuous function has no hole or break.

      Definition 

    A function  f ( x, y) is continuous at if),( 00   y x

    1. exists,),(lim)0,0(),(

     y x f  y x y x   →

     2.  f is defined at ),( 00   y x

     3. ),(),(lim 00

    )0,0(),( y x f  y x f 

     y x y x=

     -------------------------------------------------------------------------------------------------------------

    Example 1

    Where is the function22

    22

    2

    2),(

     y x

     y x y x f 

    +

    −=  discontinuous?

    Solution

    1st  attempt  :

    0

    0

    2

    2lim

    22

    22

    )0,0(),(=

    +

    −→  y x

     y x

     y x (indeterminate form)

    3rd  attempt  :

    along x-axis ;)0(   = y02

    )0(2lim

    2

    2lim

    2

    2

    )0,0(),(22

    22

    )0,0(),( +

    −=

    +

    −→→  x

     x

     y x

     y x

     y x y x 2

    1=  

    along y-axis ;)0(   = x 22

    )0,0(),(22

    22

    )0,0(),( )0(220lim

    22lim

     y y

     y x y x

     y x y x +−=

    +−

    →→2−=  

    1. Since  f ( x,  y) has two different limits along two different lines, therefore

    does not exists.),(lim)0,0(),(

     y x f  y x y x   →

     2. is undefined.)0,0( f 

     Then the function is discontinuous at (0, 0) because it is not defined there.),(   y x f 

     

  • 8/19/2019 02ns-limitContinuity

    9/9

    SRI / Calculus / Multivariable Functions / Limits & Continuity 9

    Example 2

    Let

    ⎪⎩

    ⎪⎨

    =

    ≠−

    −=

    )0,4(),(0

    )0,4(),(2

    4),(

     y x

     y x x

     y xy

     y xg  

    Show that g( x, y) continuous at (4, 0).

    Solution

    1st  attempt  :

    0

    0

    2

    4lim

    )0,4(),(=

    −→  x

     y xy

     y x (indeterminate form)

    2nd  attempt  :

    2

    2

    2

    4lim

    2

    4lim

    )0,4(),()0,4(),( +

    +⋅

    −=

    −→→  x

     x

     x

     y xy

     x

     y xy

     y x y x 

    0

    )2(lim

    4

    )2)(4(lim

    )0,4(),(

    )0,4(),(

    =

    +=

    +−=

     x y

     x

     x x y

     y x

     y x

     

    1. Therefore, exists.),(lim)0,4(),(

     y xg y x   →

     2. 0)0,4(   =g

     3. )0,4(0),(lim

    )0,4(),(g y xg

     y x==

     

    Then, the function g( x, y) is continuous at (4, 0).