03 04 trig substitution and partial fractions (1)

Upload: amita-angellae-guim

Post on 02-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    1/28

    Trigonometric Substitution PartialFraction

    Trigonometric Substitution and Integration ofRational Functions by Partial Fractions

    Mathematics 54Elementary Analysis 2

    Institute of Mathematics

    University of the Philippines-Diliman

    1/28

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    2/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Trigonometric Substitution

    We use trigonometric substitution for integrands that contain

    expression of the form:a2u2

    a2+u2u2a2

    Example

    1

    49x2 dxx

    2

    dx(x3)225

    5

    2/28

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    3/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Trigonometric Substitution

    Case 1. Integrand contains the form

    a2u2

    Let u= asin, where

    2,

    2

    . Note du= acosd.

    a2

    u2

    =a2a2 sin2=a2(1 sin2)= a

    cos2

    = a|cos|

    = acos

    a2u2

    ua

    3/28

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    4/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Case 1.

    a2u2. Let u= asin.

    Example 1. Find 49x2 dx

    x.

    Let x

    =7sin. Then dx

    =7cos d.49x2

    xdx=

    7cos7sin

    7cos d

    49x2

    x7

    =

    7cos2

    sind =

    7(1sin2)

    sind

    = 7(cscsin) d= 7 ln|csccot|+7cos+C

    = 7 ln

    7

    x

    49x2x

    +

    49x2+C.

    4/28

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    5/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Trigonometric SubstitutionIntegrals involving

    a2u2,

    a2+u2 or

    u2a2

    Case 2. Integrand contains the form

    a2+u2

    Let u

    =atan, where

    2,

    2 . Note du=asec2d.

    a2+u2 =a2+a2 tan2

    =

    a2(1+ tan2)= a

    sec2

    = asec

    a

    u

    a2+u2

    5/28

    T i i S b i i P i lF i C C C E i

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    6/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Case 2.

    a2+u2. Let u= atan.Example 2. Find

    dx(x26x+25)3

    .

    We have: x26x+25= (x3)2+42, Letx

    3

    =4tan

    dx

    =4sec2 d

    4

    x

    3(x3)2+42

    dx

    (x26x+25)3= dx

    (x3)2+423

    =

    4sec2

    (4sec)3d

    = 116

    cos d

    = 116

    sin+C

    =1

    16

    x

    3

    x26x+25 +C6/28

    T i t i S b tit ti P ti lF ti C 1 C 2 C 3 E i

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    7/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Trigonometric SubstitutionIntegrals involving

    a2u2,

    a2+u2 or

    u2a2

    Case 3. Integrand contains the form

    u2a2

    Let u

    =asec, where

    0,

    2 , 3

    2 . Note du=asec tand.

    u2a2 =a2 sec2a2

    =

    a2(sec21)= a

    tan2

    = atan

    a

    u2a2

    u

    7/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    8/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Case 3.

    u2a2. Let u= asec.Example 3. Find

    e4

    e2

    ln2 x4xln x

    dx.

    Let ln x= 2sec. Then 1x

    dx= 2sec tan d.

    2

    ln2 x4ln x

    e

    4

    e2

    ln

    2

    x4xln x

    dx=

    3

    0

    2tan2sec

    2sec tan d

    =

    3

    0

    2tan

    2sec2sec tan d

    =

    3

    02tan2 d

    = 2

    3

    0(sec21) d= 2(tan)

    3

    0

    = 23 3 8/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    9/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Example on Area

    Example 4. Evaluate 1

    0

    1x2 dx

    From the definition of the definite integral, the expression

    1

    01x2 dxis the area of the region

    .

    By trigonometric substitution, let x= sin. Then dx= cosd10

    1x2 dx =

    2

    0 cos cosd=

    2

    0

    1

    2(1+cos2)d

    =1

    2 (+1

    4 sin2) 2

    0 =1

    2

    2 +1

    4 sin01

    4 sin0 = 4

    9/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    10/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Summary

    a2

    u2 Let u

    =asin

    a2+u2 Let u= atan

    u2a2 Let u= asec

    10/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    11/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Exercises

    Exercises

    Evaluate the following integrals.

    1

    dx

    x2+2x152

    16

    e2x

    ex dx

    3

    42

    x24

    xdx

    4 x3 dx

    1x25

    dx

    25+x23

    11/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    12/28

    g

    Introduction

    Recall.

    A function his a rational functionifh(x)= f(x)g(x)

    , where fand g are

    polynomial functions.

    Consider

    1x2+5x+6 dx.

    Solvable using math 53:

    1

    x2

    +5x+6dx

    =1

    x+

    522 14

    dx

    =

    1

    2 1

    2

    ln x+3

    x+2 +C

    Note:1

    x2+5x+6 dx=

    1

    x+3 1

    x+2

    dx= ln

    x+3x+2

    +C

    This integral will be easier to evaluate.12/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    13/28

    g

    Goal.

    To decompose a rational expression as a sum of two or more

    simpler quotients, called partial fractions.

    Remark.

    1 We will consider rational functions h(x)= f(x)g(x)

    with

    deg(f(x))< deg(g(x)) (fand g are polynomial functions). Ifdeg(f(x)) deg(g(x)), then we divide first the numerator by thedenominator such that

    h(x)

    =q(x)

    +

    r(x)

    g(x)

    ,

    where deg(r(x))< deg(g(x)).2 Any polynomial with real number coefficients can be

    expressed as a product of linear and quadratic polynomials.

    13/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    14/28

    Case 1. Denominator of the rational function only has

    distinct linear factors.

    Ifg(x)= (a1x+b1)(a2x+b2) (anx+bn), where all factors aredistinct, then

    p(x)

    q(x)= A1

    a1x+b1+ A2

    a2x+b2+ + An

    anx+bn.

    Example 1. Find x dx

    x25x+6 .

    x

    x25x+6 =x

    (x3)(x2) =A

    x3 +B

    x2 =A(x2)+B(x3)

    (x3)(x2) .

    We have:

    x=A(x2)+B(x3).

    14/28

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    15/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    16/28

    Case 1. Factors of the denominator are linear.

    Example 2. Find 2x34x215x+5

    x2

    2x

    8

    dx.

    Since the degree of the numerator is greater than the denominator,

    we divide first the numerator by the denominator. We have

    2x34x215x+5

    x22x8 =

    2x

    +

    x+5

    (x4)(x+2) =2x

    +

    A

    x4 +

    B

    x+2.

    16/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

    3 2

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    17/28

    2x34x215x+5x22x8 = 2x+ Ax4 + Bx+2

    x+

    5

    (x4)(x+2) =A

    x4 +B

    x+2 x+5=A(x+2)+B(x4)

    Substitute2 for x: 3=B(6)B= 12

    Substitute 4 for x: 9=A(6)A=3

    2

    Hence,

    2x34x215x+5

    x22x8 dx =

    2x+ x+5(x4)(x+2)

    dx

    = 2x22+

    32(x4)

    12(x+2)

    dx

    = x2+ 32

    ln |x4| 12

    ln |x+2|+C.

    17/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    18/28

    Case 2. Factors of denominator are all linear but some are

    repeated.

    If (ax+b)n, n> 1 is a factor of the denominator, then the partialfractions corresponding to this factor are

    A1

    ax

    +b+ A2

    (ax

    +b)2

    + + An(ax

    +b)n

    .

    Example 3. Find

    (3x2) dx

    2x

    3

    x2

    .

    3x22x3x2 =

    3x2x2(2x1) =

    A

    x+ B

    x2+ C

    2x1 .

    18/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    19/28

    3x22x3x2 = Ax+ Bx2 + C2x1

    Multiplying both sides byx2(2x1)

    3x2=Ax(2x1)+B(2x1)+Cx2

    let x=

    0

    B=

    2

    let x= 12

    C=2let x= 1 A= 1

    (3x2) dx

    2x3x2 =

    1

    x+ 2

    x2 2

    2x1

    dx

    = ln |x|+ 2x1

    1 ln |2x1|+C

    19/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    20/28

    More Examples

    Example 4. Find

    (x5) dx

    (x+1)2(x2) .

    x5

    (x+1)2

    (x2) =

    A

    x+1 +

    B

    (x+1)2

    +

    C

    x2.

    We have x5=A(x+1)(x2)+B(x2)+C(x+1)2.Substitute1 for x: 6=B(3)B= 2

    Substitute 2 for x: 3=C(3)2 C= 13

    Substitute 0 for x: 5=A(1)(2)+2(2)+ 1

    3 (1)

    2

    A=1

    3x5

    (x+1)2(x2) dx =

    1

    3(x+1) +2

    (x+1)2 1

    3(x2)

    dx

    =

    1

    3

    ln

    |x

    +1

    |+

    2(x+1)1

    1

    1

    3

    ln

    |x

    2

    |+C

    20/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    21/28

    Case 3. Factors of the denominator are linear and

    quadratic and none of the quadratic factors is repeated.

    Ifax

    2

    +bx+ cwhere a= 0 is a factor of the denominator that is notrepeated , then the corresponding partial fraction to this factor isAx+B

    ax2+bx+c.

    21/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    22/28

    Case 3. Factors of the denominator are linear and

    quadratic and none of the quadratic factors is repeated.

    Example 5. Find 5x2+3x2

    x31 dx.

    5x2+3x2

    x31 dx=

    5x2+3x2(x1)(x2+x+1) dx=

    A

    x1 +Bx+C

    x2+x+1

    dx

    Consider 5x2

    +3x

    2=

    A(x2

    +x+

    1)+

    (Bx+

    C)(x

    1).

    Substitute x= 1: 6=A(3)A= 2Substitute x= 0: 2= 2(1)+C(1)C= 4

    Substitute x=1: 0= 2(1)+ (B+4)(2)B= 3

    22/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

    5x2+3x 2 2 3x+4

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    23/28

    5x2+3x2x31 = 2x1 + 3x+4x2+x+1

    5x2+3x2

    x31 dx

    = 2

    x

    1dx+

    3x+4x2

    +x+

    1dx

    =

    2

    x1 dx+ 3

    2(2x+1)

    x2+x+1 dx+ 5

    2

    x2+x+1 dx

    =2 ln

    |x

    1

    |+3

    2

    ln

    |x2

    +x

    +1

    |+5

    2 1

    3/2tan1

    x+ 12

    3/2+C

    23/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

    d i f f h d i

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    24/28

    Case 4. Some quadratic factors of the denominator are

    repeated.

    If (ax2+bx+c)n, n> 1 is a factor of the denominator , then the

    corresponding partial fractions are

    A1x+b1ax2+bx+c+

    A2x+b2(ax2+bx+ c)2 + +

    Anx+bn(ax2+bx+c)n

    24/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

    C 4 S d i f f h d i

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    25/28

    Case 4. Some quadratic factors of the denominator are

    repeated.

    Example 6. Find

    x3+1

    (x2

    +4)2

    dx.

    x3+1

    (x2+4)2 dx=

    Ax+Bx2+4 dx+

    Cx+D

    (x2+4)2 dx

    x3

    +1=

    (Ax+

    B)(x2

    +4)+

    (Cx+

    D)=

    Ax3

    +Bx2

    +(4A

    +C)x

    +D

    By comparing coefficients, we have A= 1, B= 0, D= 1.Also, ifx= 1 then 2=A+B+ (4A+C)+D.C=4

    25/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

    C ti ti

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    26/28

    Continuation...

    x3+1

    (x2+4)2 dx =

    x

    x2+4 dx+

    14x(x2+4)2 dx

    =1

    2 2x

    x2+4 dx+ 14x(x2+4)2 dx

    = 12

    2x

    x2+4 dx2

    2x

    (x2+4)2 dx+

    dx

    (x2+4)2

    =1

    2 ln |x2

    +4|2(x2

    +4)1

    1 + dx(x2+4)2 (trig.sub.)

    26/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercisesx3+1 d 1 l | 2+4|+ 2 +

    dx

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    27/28

    x +1

    (x2+4)2 dx= 12 ln |x2+4|+ 2x2+4 +

    dx(x2+4)2

    Let x= 2tan dx= 2sec2 d

    2

    x

    x2+22

    dx

    (x2+4)2 =

    2sec2 d

    16sec4

    = 18

    cos2 d

    =1

    8 1+cos22 d

    = 116+ 1

    32sin2+C

    =

    1

    16

    +

    1

    32 2sincos

    +C

    Hence,x3+1

    (x2+4)2 dx=1

    2ln |x2+4|+ 2

    x2+4+1

    16tan1

    x2

    + 1

    16

    xx2+4

    2x2+4

    +C.

    27/28

    Trigonometric Substitution PartialFraction Case1 Case2 Case3 Case4 Exercises

    E ercises

  • 7/27/2019 03 04 Trig Substitution and Partial Fractions (1)

    28/28

    Exercises

    Decompose the following into partial fractions.

    1(4x3)

    x22x32 1

    x3(x1)3

    2x+1x2(x2+2)

    4 x3

    2x(x2+1)2

    28/28