03137348

278
SHIP SYNTHESIS MODEL FOR NAVAL SURFACE SHIPS by MICHAEL ROBERT REED Lieutenant, United States Navy B.S., Iowa State University 1969 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF OCEAN ENGINEER and THE DEGREE OF MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May, 1976 Signature of Author .... ,, Department o Ocean Engineering Certified by.... ........... ,w ......-......... |, laThesis Supervisor Accepted by*...., ...... .. Chairman, Departmental Committee WCHIVES JUN 21 1976 ' ISS

Upload: avicha5215

Post on 05-Apr-2015

68 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: 03137348

SHIP SYNTHESIS MODEL FOR

NAVAL SURFACE SHIPS

by

MICHAEL ROBERT REED

Lieutenant, United States Navy

B.S., Iowa State University

1969

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF OCEAN ENGINEER

and

THE DEGREE OF MASTER OF SCIENCE

IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

May, 1976

Signature of Author .... ,, Department o Ocean Engineering

Certified by.... ........... ,w ......-.........|, laThesis Supervisor

Accepted by*...., ...... ..Chairman, Departmental

Committee

WCHIVES

JUN 21 1976' ISS

Page 2: 03137348

ABSTRACT

Ship Synthesis Model for Naval Surface Shipsby: Michael Robert ReedSubmitted to the Department of Ocean Engineering on May 7, 1976,in partial fulfillment of the requirements for the degree ofOcean Engineer and the degree of Master of Science in NavalArchitecture and Marine Engineering

This thesis presents a method for estimating the weight, volume,center of gravity, electric load, and other overall ship character-istics of conceptual as well as existing Naval surface displacementships. The method is computerized and thus permits rapid calculationsof technical characteristics for a much larger number of ship studiesthan would be permitted by hand calculations. The final programlisting is given together with a listing of the empirical relationsdeveloped.

The program is applicable to Naval surface displacement shipsand has been verified to give accurate results for ships which rangein size from 300 to 700 feet in length and 1700 to 17,000 tons indisplacement.

The model has been found to have applications in conductingfeasibility studies, systems analyses, updating design predictions,and conducting comparative studies. However, due to the aggregationof empirical data, the model should not be used as a substitutefor preliminary design studies and should definitely not be usedfor actual ship design.

The program developed is an attempt to provide a more versatilesynthesis model for Naval combatants. The versatility is providedby estimating the characteristics of the ship at a greater levelof detail than is generally attempted with a synthesis model andby use of a large input array to override calculated values whendesired. The model estimates only technical characteristics and nocost estimations are made.

Thesis Supervisor: Clark GrahamTitle: Associate Professor of Ocean Engineering

2

Page 3: 03137348

ACKNOWLEDGEMENTS

The author wishes to express his thanks to Associate Professor

Clark Graham for his advice, guidance, and encouragement toward

the development of this thesis. Also, the author must express

his most sincere appreciation to his wife, Connie, for her tireless

efforts in typing this manuscript.

3

Page 4: 03137348

TABLE OF CONTENTS

PageABSTRACT ....................................... 2

ACKNOWLEDGEMENTS ..................................... 3

TABLE OF CONTENTS ........................................ 4

LIST OF FIGURES ....................................... 6

LIST OF TABLES ........................................ 7

CHAPTER 1 INTRODUCTION ....................................... 9

1.1 Background .......................1.2 Statement of Problem .............1.3 Scope ............................1.4 Presentation of Thesis ...........

* .

·

*

·

* e e *

.

* *

·

*

* *

a *

* *

CHAPTER 2 GENERAL SYNTHESIS MODEL DESCRIPTION .................

2.1 Introduction .........................................2.2 Methodology for Program Development ..................2.3 Program Flow .........................................

CHAPTER 3 DETAILED PROGRAM DESCRIPTION ........................

3.1 Introduction ...........3.2 MAIN Program ...........3.3 Subroutine DATA2

SubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutineSubroutine

5

SPAYLDGEOM ..UWDIM .HPCALCCRVAL .EPLANTMACHLaMBSIZEVOLUMESHEER .WEIGHTVRTCG .FNCGRPSEASPDOUTPUT

e es..

* 0

.0000

00 000

*0 a 0

000...

see....

... · ·... ·

· · ·.. ·

· e.··

seeeO es

. .0

..·

· ...00.

000-D

0 0 0 0 * * 00 * -- 0 * *

ee lsss IDe..e..s.se.OOOOOOOO

ssesss..eOO.sO.essss.OOO..

e55e·e so

seC.5.

*55see

see

eec

5..00*a *

000* * * * * *

, ....

.....

.....

* e a

* ee

*0 5 a

e e s

e* a

.* .* a e

*

e *

-

* e

* a

ee

* 0

* *

* a

a *

see

O e

a

S s

5e5

Ose

ese

5

e

.5.

see

ess

0**essseeeecsee

* - - 0

.csa - 0 *

* * 0 -

* * - 0

* 0 4 0@ a

* a - -

* - 0 -seesSese

Os..seesseessees* - *

* * *

CHAPTER 4 RESULTS OF MODEL APPLICATION ........................

4.1 Introduction ....................4.2 Model in Conceptual Phase .......4.3 Model Used4.4 Model as a4.5 Assessment

to Update DesignComparative Toolof Results

Predii

00...

ctions .·..

ctions *-00

* - s e e s se

s e e s .0 . . ..eeeeessess

eseseessees·eeesese.sss·eeeees

4

911

12

13

15

15

15

22

30

3.43.53.63.73.83.93.103.113.123.133.143.153.163.173.18

303035373739424445464750576062646468

70

7071

748389

Page 5: 03137348

CHAPTER 5

REFERENCES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

TABLE OF CONTENTS (continued)

CONCLUSIONS AND RECOMMENDATIONS ...........

0 0 * * 0 * -

USERS GUIDE ..............................

SAMPLE OUTPUT ............................

CLASSIFICATION SYSTEMS ...................

DERIVED EQUATIONS LISTING ................

PROGRAM LISTING ..........................

NOMENCLATURE LIST ........................

5

000

0a0

c0e

0e5* *

eec

Page.... 96

.... 100

...* 102

.... 127

.... 141

*... 152

.... 178

.... 269

Page 6: 03137348

LIST OF FIGURES

Figure No. Title Page

1 Program Control Organization 24

2 Logical Program Flow 25

3 MAIN Program Flow Chart 31

4 SPAYLD Subroutine Flow Chart 38

5 GEOM Subroutine Flow Chart 38

6 UWDIM Subroutine Flow Chart 40

7 HPCALC Subroutine Flow Chart 43

8 EPLANT Subroutine Flow Chart 48

9 MACHLQ Subroutine Flow Chart 48

10 MBSIZE Subroutine Flow Chart 49

11 VOLUME Subroutine Flow Chart 51

12 Superstructure Size 53

13 SHEER Subroutine Flow Chart 59

14 WEIGHT Subroutine Flow Chart 61

15 VRTCG Subroutine Flow Chart 63

16 FNCGRP Subroutine Flow Chart 65

17 SEASPD Subroutine Flow Chart 67

18 OUTPUT Subroutine Flow Chart 69

6

Page 7: 03137348

LIST OF TABLES

Table No. Title Page

1 Areas of Desired Flexibility 17

2 Model Flexibility 18

3 Comparisons of Calculated and 72Actual Characteristics--ConceptualPhase

4a Comparisons of Calculated and 75Actual Characteristics--Design'Update

4b Design Update--Weight Comparisons 78

4c Design Update--Volume Comparisons 79

5 Comparison of Model Results to the 82Actual Ship, C.G. Cutter Model,and DD07 Model For the FFG-7 Design

6 Comparison of Model and CODESHIP 82Results for Full Load Displacement

7 FF-1052 to Soviet Design Standards 84

8 Sovietized FF-1052 86

9 Sovietized FF-1052 Characteristics 87

10 Estimated Soviet Kara Class 88Characteristics

11 Characteristics of FFG-7 Designed to 90High Performance Ship Standards

12 Problem Specifications 113

13 Payload Specifications 115

14 Weight Specifications 116

15 VCG Specifications 116

16 Volume Specifications 117

17 Electric Load Specifications 117

18 Miscellaneous Specifications 118

7

Page 8: 03137348

LIST OF TABLES (continued)

Table No. Title Page

19 Special Payload Specifications 119

20 Example Coefficients for 120Miscellaneous Specifications

21 Payload Shopping List 121

22 Functional Classification System 143

23 Modified BSCI Weight Groups 147

a

Page 9: 03137348

CHAPTER 1

INTRODUCTION

1.1 Background

The Conceptual Phase of ship design can be said to be made

up of Feasibility Studies and the Concept Design. The Feasibility

Study is the first and grossest estimate for a ship. The Concept

Design is development and optimization of a single or limited

number of selected Feasibility Studies to enhance absolute accuracy.

Since a large number of Feasibility Studies are generally required

to select a Concept Design, short-cut estimating techniques are

often used with emphasis placed on relative accuracy among studies.

Until the early 1960's, Feasibility Studies were performed by the

design engineer by completing a time consuming series of standard

calculations for each study. Because of the time required to com-

plete the Feasibility Studies, Navy designs of the past relied heavily

on designs that had been done previously. These design studies pro-

duced what were a set of feasible characteristics. However, because

of the limitations on the number of studies which could be conducted,

an optimum set of characteristics was probably not obtained.

It was during the 1960's that the U. S. Navy began to look

to the digital computer as a means of providing the required calcu-

lations to synthesize the ships being studied. By computerizing

the calculation process, the designer would be freed from the routine

calculations which had taken up most of his time during the earlier

stages of design.

With the use of the computerized models, larger numbers of

Feasibility Studies could be conducted. Since the optimum solution

9

Page 10: 03137348

is almost always the most desired solution, the designer using

a ship synthesis model could conduct many more tradeoffs than in

the past and be in a more favorable position when selecting the

set of characteristics closest to optimum.

The development of ship synthesis models enabled the engineer

to conduct systems level tradeoff studies early in the design on

aspects which were seldom considered in detail before. These

aspects include hull form, speed, endurance, and payload options,

among others.

Another important characteristic of the computer model is

that it allows consistency among feasibility studies. The con-

sistency built into the model standard calculations allows the study

results to be compared without the possibility of bias favoring

certain concepts. With the human element involved in performing

the hand calculations, it is difficult to insure that the same

assumptions will be made for each study and that no bias is applied.

Several synthesis models for naval ships have been available for

a number of years. Two Navy models were referred to extensively

in developing the program presented in this thesis. The two models

are the U. S. Navy's destroyer model, DD07 (15)*, and Center for

Naval Analyses Conceptual Design of Ships Model (CODESHIP) (3).

The destroyer model, DD07, was first developed in the 1960's

and has been continually updated since then. This model was

developed to model only destroyer type ships. The Coast Guard

Cutter Model of Reference (8) was patterned primarily after the

*Numbers in parenthesis refer to the references at the end

of this thesis.

10

Page 11: 03137348

DD07 model. Because of this, Reference (8) was also used extensively

in developing the program presented in this thesis,

The general framework of a method of analysis for the CODESHIP

model was first conceived at the Center for Naval Analyses in the

mid 1960's. CODESHIP was developed to model ships which range in

type and size from patrol craft to aircraft carriers, Because

of the wide range of ship types and sizes in the data base, the

CODESHIP model is probably not as accurate in predicting actual

values as a model designed for a specific ship type, e.g., DD07

for surface combatants. The greatest assets of the CODESHIP model

are its versatile input and output features.

Existing models appear to be limited in that they do not

provide the designer with the capability to change the design stand-

ards or practices from those which were built into the program,

except for only a few exceptions. These models produce feasible

ship results which cannot readily be changed to reflect desired

standards or practices. Desired changes can be incorporated by

changing estimating relationships or, in some cases, by inputing

lump sums of weight or volume which when analyzing the results

may be difficult to interpret.

1.2 Statement of Problem

The major problem with the ship synthesis models which currently

exist is that they do not have the versatility required to answer

many of the more specific questions which arise when considering

the ship characteristics produced for any design. The kinds of

questions which the models cannot readily answer concern "how the

ship might have turned out if certain functional items had been

1 1

Page 12: 03137348

designed to standards or practices different from those standard

calculations built into the model."

In answer to the above problem, this thesis is intended to

provide a more versatile Ship Synthesis Model for Naval Surface

Combatants. This model should allow the designer to control the

design standards and practices to which the ship is designed and

to observe the resulting ship characteristics from a more functional

level than existing models provide. The model should be based

on a set of standard calculations derived from the data base ships,

but should offer the designer the flexibility to change the results

by inputing values which reflect a different design practice or

standard. The resulting model should enable the user to provide

a significantly greater number of design options and a correspond-

ingly greater ability to investigate solutions.

1.3 Scope

The program developed in this thesis is an attempt to satisfy

the need for a more versatile Ship Synthesis Model for Naval

Surface Combatants. With the growth of systems engineering in ship

design, a more versatile model would allow the designer to place

additional emphasis on tradeoffs at all phases of the design.

The model developed in this thesis is intended to have

applications not only during the conceptual phase of design,

which has been the traditional use for synthesis models, but during

later phases of the design as well. The program is intended to

have a variety of applications to ship design, but primarily as

a model for conducting feasibility studies, a design aid for

updating predictions in later stages of design, and as a tool

12

Page 13: 03137348

for conducting Comparative Naval Architecture Studies.

With the model developed and ready for use, the next step

was to run several ship designs to allow for analyzing the results

and determining if the desired versatility could be achieved. The

results are discussed in Chapter 4.

The model is limited to surface displacement ships configured

as naval combatants. Therefore, the model should not be used for

synthesizing merchant types which are constructed to commercial

standards. The weight data for the sample ships used in the develop-

ment of the model ranges from full load displacements of 1770 to

16,294 tons. The length between perpendiculars for ships in the

data base ranges from 301 feet to 700 feet. Therefore, designs

that required extrapolations to very low or high values within in-

dividual component categories should not be made without additional

investigations as to the reasonableness of the particular extra-

polation.

The ship synthesis method developed is designed to provide

detailed technical characteristics of the ships modeled. However,

no cost characteristics are calculated by the model and are consider-

ed beyond the scope of this thesis.

1.4 Presentation of Thesis

Chapter 2 gives a general program description for development

of the model. Sections are provided to discuss the methodology

for program development and to explain the top level program flow.

Chapter 3 gives a detailed description of each of the subroutines

used in the model.

Chapter 4 gives an evaluation of the model including results

13

Page 14: 03137348

of test runs made.

Chapter 5 contains conclusions and recommendations.

Appendix A services as a users guide to the program by pro-

viding a description of the input and a shopping list for payload

items.

Appendix B gives a sample output listing.

Appendix C gives the classification systems used for volume

and weight assignment.

Appendix D is a listing of all the equations derived from

sample ship data to provide the calculations required in the model.

Appendix E is a listing of the program.

Appendix F is the nomenclature list for the entire thesis.

It is recommended that at least Chapters 1, 2, 4, 5 and

Appendix A be read before attempting to use the program. The

important aspects of each subroutine are covered in Chapter 3 which

may be omitted without loss of continuity by anyone not interested

in the details of the program.

14

Page 15: 03137348

CHAPTER 2

GENERAL SYNTHESIS MODEL DESCRIPTION

2.1 Introduction

This chapter gives the overall description of the -solution

method used to develop the synthesis model, as well as, the method

used within the computer program to complete the ship calculations.

The detailed description of the program is contained in Chapter 3.

Section 2.2 gives the methodology which was employed to arrive

at the final model. Included in this section is a discussion of

how the principal features of the program were selected and how

they were incorporated in the model.

Section 2.3 discusses the overall program flow. This section

explains the program execution required to complete a feasible

ship design and indicates the iteration cycles required to obtain

the degree of accuracy desired.

2.2 Methodology for Program Development

The design estimates produced by a synthesis model should be

tailored to meet the conditions required of a feasible solution.

First, there must be a balance between weight and displacement

(Archimedes Principle). Second, internal space available must be

equal to or greater than internal space required. In recent years

this area/volume requirement has become the dominant factor in set-

ting the size of U. S. Naval ships. The area/volume requirement

complicates the synthesis model significantly, since detailed

geometry calculations are required to provide the checks required.

Third, the energy available must at least meet the energy required,

15

Page 16: 03137348

i.e., propulsion, auxiliary, and electrical power requirements must

be met. Finally, the distribution of weight and volume must be

such as to satisfy design criteria for transverse stability, girder

strength, and seakeeping. These conditions for a feasible solution

require iterative processes within the model to obtain a satisfac-

tory solution.

The first step in developing a more versatile synthesis model

was to develop a list of items or features for which input flexi-

bility would be desirable. Table 1 lists several functional areas

of the ship system where flexibility in model input would be desir-

able. This list of functional groups closely follows that of the

U. S. Navy Space Classification System of Reference (17). By

covering all of the functional groups, the list suggests that it

would be desirable to be able to input or at least influence the

design emphasis and establish design standards for a specific

functional area when synthesizing a ship to a set of requirements.

Model flexibility for several ship models is indicated in

Table 2. In this table the areas of desired flexibility have been

more specifically defined. Model flexibility has been indicated

by an "X" for the U. S. Navy DD07 Destroyer Model (15), the Coast

Guard Cutter Model (8), the CODESHIP Model (3), and the author's

model. An "X" marked for an area of flexibility does not imply

that the model has complete flexibility in that area or can handle

all situations desired. It does mean that the model has some

flexibility to control how the feature is considered.

The selection of features to be included in the model was

based on availability of data and the capability to incorporate16

Page 17: 03137348

TABLE 1

AREAS OF DESIRED FLEXIBILITY

*MILITARY MISSION

Communication & Detection

Weapons

Aviation PAYLOAD ITEMS

Special Missions

Cargo

*PERSONNEL

Living

Support HABITABILITY

Stowage

*SHIP OPS

Control

Main Propulsion Machinery

Auxiliary Systems

Maintenance MOBILITY AND SHIPSUPPORT ITEMS

Stowage

Tankage

Passageways and Access

STABILITY, STRUCTURES,ARRANGEMENTS, AND FORM

*SYSTEMS ENGINEERING GENERAL ITEMS

17

*HULL

Page 18: 03137348

TABLE 2

MODEL FLEXIBILITY

FLEXIBILITY INCORPORATED AREAS OF DESIRED FLEXIBILITY

DD07* CUTTER* CODESHIP* MODEL MILITARY MISSION

X X X X Electronics

X X X X Armament

X X X X Ammunition

X X X X Aircraft

X X X X Other Selected Items

PERSONNEL

X X X X Accommodations

X X X X Separate OFF, CPO, ENL

X X X X Endurance Days Provision

X Messing, Rec., & otherSupport Services

X Potable Water & PersonnelStowage

SHIP OPS

X X X X Power Plant Type

X X Electrical Plant Type

X Engine Location

X X Shaft Type

X X X X Number Shafts

X X X X Sus. & End. Speed,Range --- H.P.

*DD07 is the U.S. Navy Destroyer Model described in Reference

(15). CUTTER is the Coast Guard Cutter Model in Reference (8).

CODESHIP is the Center for Naval Analyses Model in Reference (3).

18

Page 19: 03137348

FLEXIBILITY INCORPORATED

DD07 CUTTER CODESHIP

X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

TABLE 2 (continued)

AREAS OF DESIRED FLEXIBILITY

MODEL SHIP OPS

X Max. H.P. & Mach. BoxSize --- Speed

X Maintenance & Stowage

X Passageway & Access SpaceProvided

X Auxiliary Systems

X Office Space

X Other Selected Items

X

X

X

X

X

X

XX

X

XX

X

X

X

XX

X

X

X

X

X

x

X

HULL

Hull Shape (Coef. & Dim.)

Hull Coating

Hull Subdivision Std.

Hull & SuperstructureMaterial

Superstructure/Hull Ratio

Structures

Stability(GM/B, F.S.)

Space Available

SYSTEMS ENGINEERING

Ship Protection Level

Tolerance for Iterations

Design Margins

Ship Silencing

19

Page 20: 03137348

the feature into the program within the required time frame. The

ships used as the data base for developing model relationships

were:

FF 1006 DL 1

FF 1033 DL 2

FF 1037 CG 9

FF 1040 CG 16

FF 1052 CG 26

FFG 7 CGN 25

DD 445 CGN 35

DD 692 CGN 36

DD 931 CGN 38

DD 963 CGN 9

DDG 2

The versatility of the model is best understood by referring

to the Users Guide of Appendix A. The versatility is generally

accomplished by use of the following techniques:

a. input elements for problem specifications;

b. options on selecting several ship features;

c. payload shopping list for selection of payload items;

d. calculations of BSCI* weight groups, vertical centers

of gravity for all weight groups, volume groups, and

electric load groups which are not defined as input items

(groups defined in Appendix C);

*BSCI--"Bureau of Ships Consolidated Index of Drawings,

Materials, and Services Related to Construction and Conversion" of

February 1965 as given in an appendix to Reference (20).

20

Page 21: 03137348

e. option to override the calculation of any weight group,

vcg, volume group, or electric load group by direct input;

f. elements for inputing miscellaneous specifications (mainly

habitability coefficients);

g. elements for inputing miscellaneous payload not on the

shopping list; and,

h. results displayed in a detailed output listing.

A new functional classification system was developed to aid in

the analysis of results and to assist as a comparative tool when

assessing the impact of a function on ship design. The functional

classification system is listed in Appendix C, and is derived

from selecting the appropriate volume and weight groups for each

function. This classification system enables a density to be

calculated for each function.

After deciding what features to use, how to incorporate the

versatility, and developing a classification system, the required

relationships to complete the model were derived using data gathered

from the ships previously mentioned. The relationships derived

are given in Appendix D and include the following:

a. starting estimates for full load displacement and center

of gravity;

b. some geometry relationships;

c. linear fit to powering curves;

d. weight equations;

e. vertical center of gravity equations;

f. volume equations;

g. electric load equations; and,

21

Page 22: 03137348

h. equipment sizing relationships.

With the above completed, the computer model was ready to

be constructed. The model was formed by taking what were judged to

be the best features of the existing models and incorporating the

flexibility desired into the program. The general features of

the model formulation can be summarized as below:

a. input and output are patterned after the CODESHIP Model (3);

b. geometry, horsepower, electric plant, machinery liquids,

volume, weight, vcg, sheer, sea speed routines and internal

flow of program are much like DD07 and the Coast Guard

Model;

c. model uses all of the derived relationships found in

Appendix D and incorporates the logic for the versatility

items;

d. results are converted to the new functional classification

system and BSCI groups for output; and,

e. a summary of results is selected to include the overall

ship characteristics.

The model developed does not attempt to define or check the

arrangements required for the ship. Because of this, highly arrange-

ment dependent calculations cannot be performed. These would include

damaged stability, topside arrangement, longitudinal balance,

and strength calculations. However, for many ship types there

is sufficient flexibility in the arrangement of the design to allow

a satisfactory solution in these areas to be attained.

2.3 Program Flow

The program is controlled by the main program. The main

22

Page 23: 03137348

program calls the subroutines as required to calculate information

for output and to let program execution proceed. Program control

organization is shown in Figure 1.

The logical program organization or top level schematic of

program flow is shown in Figure 2. This figure indicates how the

program solves each problem.

The program begins by reading in the following data:

a. names of items to be printed in the output;

b. residual resistance coefficient values taken from the

Taylor Standard Series (7); and,

c. data for all the items in the payload shopping list.

This data is read in only once and is used for calculations on

all of the ships being run.

The next step is to read in the specifications for the next

ship to be run. It is this point in the program where control

returns upon completing the output of a ship. The ship data is

read in using subroutine DATA2 which allows unformated data to

be read into arrays for storage.

The program next calls subroutine SPAYLD which is used to

sort the weights of the payload items input and place them in the

proper BSCI weight group. The value of WPAYIN, the total weight

of payload input, is calculated to be used for the initial estimating

of full load displacement should the value of LBP not be specified.

At this point the underwater shape of the hull is calculated.

If the LBP is given as input, control passes to subroutine UWDIM.

Values input to this subroutine are LBP, free surface correction,

Cp, Cx, GM/B, as well as estimated KG and full load displacement.

23

Page 24: 03137348

PROGRAM CONTROL ORGANIZATION

Figure 1

24

Page 25: 03137348

LOGICAL PROGRAM FLOW

Figure 2

25

Page 26: 03137348

Output values from this subroutine are B, H, and Cwp.

If LBP is not an input, but values for L/B and B/H are input,

the control first goes to subroutine GEOM where LBP is calculated.

UWDIM is then called to complete the calculations for B, H, and

Cwp. Inputs to GEOM are L/B, B/H, Cp, Cx, and estimated full

load displacement.

Subroutine HPCALC is now called to determine either the maximum

sustained speed, VSUS, or the horsepower required at maximum sus-

tained speed, SHP. If VSUS is input, then HPCALC along with sub-

routine CRVAL, estimates the horsepower required to maintain the

maximum sustained speed. If SHP is input, then HPCALC is used to

compute VSUS. HPCALC is written to take speed as an input and

return a value of horsepower; therefore, to find VSUS an iterative

procedure is used.

Subroutine HPCALC is called on again to determine the horsepower

required at endurance speed. A value for endurance speed must be

input.

HPCALC uses a Taylor Standard Series horsepower estimate.

Values for the residual resistance coefficient, Cr, are stored in

arrays and subroutine CRVAL is used to choose the correct Cr value.

The program is now ready to make the electric plant related

calculations. Subroutine EPLANT is used to determine the cruise,

battle, and 24 hour average electric loads, and also, to determine

the number and size of generators required, if they are not specified.

Subroutine MACHLQ is called next in the program to calculate

the weight of potable water, reserve feed water, ship lube oil,

fuel oil and diesel oil. These weights are calculated at this

26

Page 27: 03137348

point since they are used to determine the associated tankage

volume which is calculated before the rest of the ship weights

are found.

The minimum depth for the machinery box must be determined

since this is also the minimum depth which the ship can have.

Subroutine MBSIZE is called next to make this calculation.

The program is now ready to calculate both the required and

available volumes for the ship and to make adjustments to the ship

geometry to balance these requirements. Since most U. S. Navy

surface ships are considered to be volume limited, this volume

balance is perhaps the most important iteration in the design.

Subroutine VOLUME supplies all of the volume calculations and ad-

Justments which include the following:

a. calculation of the volume required for all of the functional

groups of Appendix C;

b. use of subroutine SHEER to determine an acceptable sheer

line and resulting depth at stations 0, 10, and 20;

c. adjustment of superstructure size to achieve volume balance,

if possible;

d. addition of a raised deck if additional volume is required;

e. consideration of tankage space available and flare of

ship in determining usable arrangement volume; and,

f. increment to length if the maximum superstructure volume

available is insufficient or if an acceptable sheer line

cannot be found.

The weights of all light ship and load items which are not

payload input are next determined in subroutine WEIGHT. At the

27

Page 28: 03137348

completion of WEIGHT, the new full load displacement is compared to

the previous estimate. If the two values are within the displace-

ment tolerance required, a balance has been reached and the program

proceeds to estimate the vertical center of gravity. If the two

values are not close enough, a new estimate is made and control

is returned to either GEOM or UWDIM to reestimate the dimensions.

Subroutine VRTCG is now called to estimate the vertical center

of gravity of all weight groups including the payload associated

groups. The estimated VCG for the ship is compared to the previous

estimate. If the difference is less than the allowed difference,

control proceeds on, but if they are not close enough control goes

back to GEOM or UWDIM.

A check is made at this point to see if a long raised deck

(LRD) was added which is longer than the LBP. If the value of LRD

is greater than LBP, a message is printed and the length of the

ship is increased by 10 feet and control returned to UWDIM. If

LRD is less than or equal to LBP, a balanced and feasible ship has

been calculated.

Subroutine FNCGRP is called next to place the weights and

volumes calculated into the proper functional groups as described in

Appendix C.

An estimate of the speed the vessel will be able to sustain

in the North Atlantic Ocean is made in subroutine SEASPD. The

output of SEASPD offers a means of making a relative comparison of

seakeeping characteristics between ships,

Finally, subroutine OUTPUT is called to print the results.

The input specifications are printed first, followed by the payload

28

Page 29: 03137348

input, summary of results, functional group results, BSCI weight

listing, and functional electric loads.

Details of each subroutine and the main program are contained

in Chapter 3.

29

Page 30: 03137348

CHAPTER 3

DETAILED PROGRAM DESCRIPTION

3.1 Introduction

This chapter provides a discussion of the detailed flow of

the program. The main program and each of the program subroutines

are discussed to the level of detail necessary to explain how the

required calculations are made. The step-by-step analysis of the

model program is left to the reader. A program listing is provided

in Appendix E.

Section 3.2 provides the discussion of the main program. All

subroutines are discussed in sections 3.3 through 3.18 in the order

in which they are called by the main program.

3.2 MAIN Program

The MAIN program controls the execution of each trial case.

All but two of the remaining subroutines are called from the MAIN

program. A flow chart from this routine is given in Figure 3.

The real, integer, data, dimension, and labeled common state-

ments used are first defined. Labeled common statements are used

throughout the program to transfer data and save computer storage

area.

The program next reads in values from data for the following:

a. specification names;

b. type names;

c. summary of result names;

d. functional component names;

e. BSCI weight group names;

30

Page 31: 03137348

MAIN PROGRAM FLOW CHART

Figure 3

31

Page 32: 03137348

f. electric functional group names;

g. Cr array; and,

h. payload shopping list.

The data for items a through g above is given in the listing of

Appendix E.

The input specification array is now initialized to zero.

The ship number index is incremented to show the current ship

being calculated.

The specification items for the next ship are read in next.

The program now transforms the payload specifications input to

a quantity of each item and an associated item number which is

used to refer to the payload for later calculations.

The input specifications are now symbolized to allow for

easier identification within the program, e.g., VSUS = S(1) and

VEND = S(2). The arrays used to store results for volumes, weights,

vertical centers, densities, and electric loads are initialized

to zero before the calculations begin.

The calculation is now made to compute the number of ships

company and total accommodations required. Subroutine SPAYLD

is now called to calculate the weights of the payload items input

and the total weight of the payload, WPAYIN, which may be required

for an initial displacement estimate.

The frictional resistance correction factor, DELCF, is now

set equal to .0004 if no value is specified in the input array.

Program pointers for calculating ship geometry, horsepower, and

electric plant are next set as follows:

a. KGEOM = O if LBP = O, KGEOM = 1 if LBP > O;

32

Page 33: 03137348

b. JHPOPT = 1 if SHP = O, JHP = 2 if SHP > O; and,

c. KELEC = 0 if electric plant size is not given, KELEC = 1

if electric plant size is given.

The program next initializes the counters used for iteration

of weight, vcg, and length. An initial estimate of full load dis-

placement is made at this point. These equations as well as all

others used in the program are found in Appendix D. If LBP is

given the program goes to subroutine UWDIM to calculate the dimen-

sions. If however, L/B and B/H are given instead of LBP, subroutine

GEOM is used to obtain LBP, and then UWDIM is called. Values

received from UWDIM are B, H, and Cwp. An initial value for KG

is also estimated in the MAIN program at this point.

The propulsive coefficients at endurance and maximum speeds

are now set, if not specified. Subroutine HPCALC is used to obtain

values for VSUS, SHP, and horsepower at endurance speed. If SHP

is given, then VSUS is calculated or the reverse if VSUS is pro-

vided. When the maximum sustained horsepower is specified, a

modified Newton-Raphson technique is used as in Reference (8), with

the slope approximated by a secant to the speed-power curve, to

calculate VSUS.

Subroutine EPLANT is called next to calculate the electric

loads and size generators, if not given. MACHLQ is called to

obtain the weight of liquid load items. The next subroutine

used is MBSIZE to estimate the minimum machinery box depth.

Subroutine VOLUME is used to calculate the volumes required

for all functional groups and to size the superstructure and ship

depth to meet the requirements. If the largest superstructure

33

Page 34: 03137348

size acceptable is not big enough, the LBP is increased by 10 feet

and calculation of the ship starts over.

The BSCI weight groups are now estimated in subroutine WEIGHT.

A modified Newton-Raphson technique is used to iterate full load

displacement until convergence between estimated and calculated

values is obtained. The method used is described in detail in

Volume II of Reference (3). If a weight balance cannot be reached

within the specified number of iterations, a "no balance" message

will be printed and the next ship will be called.

The vertical center of gravity for all weight groups is cal-

culated in subroutine VRTCG. A check is made for convergence of

the vertical center of gravity estimate for the ship. The average

of the estimated and calculated values is used to iterate the KG

try. If the vcg counter exceeds the allowed number of iterations,

a "no balance" message is printed and the next ship tried.

A check is next made to see if a long raised deck was added

and if that length was longer than LBP. If LRD is greater than

LBP, then LBP is increased by 10 feet and the ship is recalculated.

Once the ship size is set, the next step is to calculate the

functional weights and volumes according to Appendix C. This is

done by subroutine FNCGRP. The density of each function is also

calculated in pounds per cubic foot.

Subroutine SEASPD is now called to estimate an average sus-

tained speed in the North Atlantic Ocean. Subroutine OUTPUT is

called last to print the ship results. Control now returns to

the beginning to input the next ship.

The listing of the MAIN program concludes with a listing of

34

Page 35: 03137348

print and format statements which are used if any default option is

encountered. The default is printed and control returns for the

next ship input.

3.3 Subroutine DATA2

Subroutine DATA2 was adapted from Reference (13) for use in

reading the data for each ship. The detailed description of the

subroutine as well as the detailed flow charts may be found in

the reference and are not reproduced here. The subroutine was

found to be very useful for a program like the ship synthesis

model, since it allows format free data to be input into arrays

or matrices for easy storage and manipulation.

Each card to be read using DATA2 must begin with an address

field followed by one or more value fields. A field is defined

as a group of characters terminated by a blank. A field having

the last non-blank character in column 72 of the data card is accept-

able. The address refers to the location in a given array in which

a data item is to be stored.

The value fields are the data items being input and are of

the form

A ... AA.aa...a B...BB.bb...

which is interpreted as

± A...AA.aa...a x 10 B ' 'BB' bb

The portion represented by the A's is called the coefficient; the

portion represented by B's is called the exponent. An unsigned

coefficient is assumed to be positive. For example the card:

4 1+1 21.2 -7-3

would yield 10 as the 14th element in a given array, 21.2 as the

35

Page 36: 03137348

15th element and -.007 as the 16th element.

The address may be multi-dimensional, e.g., the card:

1,1 ,4 17.2

would place 17.2 in element (1,1,4) of the given array. There is

no limit to the number of dimensions used.

No alphabetic characters will be accepted by the routine.

Also care must be taken when several value fields are given on a

card with a multi-dimensional address. For example, when reading

in the payload, element (1,4) is followed by element (2,4) since

there are 7 rows in the payload matrix, P(7,300).

If data items were to be entered into a singly dimensioned

array, e.g., S, the calling sequence to DATA2 would be

CALL DATA2 (S, IND, 2500)

where 2500 is the size of the array and IND is a fixed point

indicator having the following possible values upon returning

to the MAIN program.

(1) IND = 0 - Routine encountered a blank card read. No

(2) IND = 1 -

(3) IND = 2 -

following cards were read. By using a

blank card as the last card of a data set,

this becomes the normal return value.

Routine found the first card read was a blank

card. No following cards were read. By

using a blank card as the last card of an

input deck, this return indicates the end

of the input deck has been reached.

An unacceptable data card was read. No

following cards were read and an error

36

Page 37: 03137348

message was written of the form, "BAD DATA

CARD . .. (card image)".

For a multiple dimension array, such as P(7,300), the sub-

routine DATA2 would be entered by

CALL DATA2(P, INDP, 2100)

where INDP is a 3-item array. The array in this case happens

to be INDP(1) = 2 (the number of dimensions of P), INDP(2) = 7

(size of the first dimension), and INDP (3) = 300(size of the second

dimension). Upon returning from DATA2, INDP(1) serves as the

indicator and would have the above-mentioned possible values of IND.

3.4 Subroutine SPAYLD

Subroutine SPAYLD is used to sort the weights of the payload

items into the proper BSCI weight groups. The subroutine checks

each item of payload to see which weight group it should be placed

in. SPAYLD then multiplies the quantity of the item times the

weight per item and places the result in the weight array element

corresponding to the weight group. The flow chart for this sub-

routine is given in Figure 4.

The final result- provided in the subroutine is the total

weight of all payload items input. This total payload weight,

WPAYIN, may be required by the MAIN program to estimate full

load displacement.

3.5 Subroutine GEOM

Subroutine GEOM is used to provide a value for the length

of the ship if LBP is not input. If LBP is input to the program,

GEOM is not used. The flow chart for GEOM is given in Figure 5.

37

Page 38: 03137348

SPAYLD SUBROUTINE FLOW CHART

Figure 4

GEOM SUBROUTINE FLOW CHART

Figure 5

38

Page 39: 03137348

When it is required to use GEOM, values for the estimated full

load displacement, Cp, Cx, L/B and B/H are used with the standard

geometry equations of naval architecture to provide the unconstrain-

ed dimensions of the ship. Besides a value for LBP, B and H are

also calculated, but may be changed later in the program to satisfy

stability requirements.

Throughout the program, it is assumed that the total displace-

ment is 1.4 percent greater than the molded displacement. The

molded displacement is used for the calculations of GEOM.

3.6 Subroutine UWDIM

The values for beam and draft are calculated in subroutine

UWDIM. Inputs to this subroutine are length, Cp, Cx, displacement

try, KG try, and GM/B. The waterplane coefficient, Cwp, is also

calculated, but only as a linear function of CB. A flow chart

for this subroutine is shown in Figure 6.

Since displacement is an input to this routine, the value

of beam times draft is fixed as:

B x T = Displacement x 35./(LBP x C x C)

Reference (2) may be referred to for a detailed definition

of naval architecture variables used in this routine.

The beam to draft ratio, B/H, is determined by the GM/B

criterion where GM available is given by the formula:

GM = KB + BM - KG - Free surface correction

A value for KB is estimated using Morrish's approximate formula:

KB = H - 1/3 x (H/2 + V/A)

where: H is the draft in feet

39

Page 40: 03137348

UWDIM SUBROUTINE FLOW CHART

HMAX=(C1/2.005)2BMIN=C 1 /HMAXR=C2*HMAX+C3*BMIN -C4

-C5*BMIN

Figure 6

40

Page 41: 03137348

V is the volume of displacement = B x H x LBP x Cp x Cx ft3

A is the waterplane area = B x LBP x Cwp, sq. ft.

A value for BM is estimated using:

BM =LBP x B x C<V

where Co is a transverse moment of inertia coefficient which is

assumed to be a linear function of Cp.

A number of coefficients are used in this routine which are

defined by the above equations. These coefficients are:

C1 = DPTRY * 35./(LBP Cp Cx ) = B x H

C2 = .833- Cp * Cx/(3.*Cwp) = KB/H

C3 = LBP * CALPH/(DPTRY*35.) = BM/B3

C4 = KG + FSCORR

C5 = GM/B = GMBMIN

A variable R is introduced in the subroutine with a value

of:

R = KB + BM - GM - KG - FSCORR

When R = O, the stability criterion that GM = C5 x B is ust satis-

fied. This condition gives the desired solution. However, the

solution is only valid provided the value for beam to draft ratio

remains within the limits specified by the speed-power estimation

which are:

2.0 B/H 4.0

or since B = C1/H

(C1/4)½ H (C1/2)½

The solution method used to obtain the final dimensions of

the ship is an iterative one and is described in full detail in

Reference (8).

41

Page 42: 03137348

3.7 Subroutine HPCALC

Subroutine HPCALC performs the speed-power estimates required

by the program. The subroutine uses the Taylor Standard Series

power estimation of Reference (7). The procedure used is very

nearly that of the hand calculating procedure. The flow chart for

the subroutine is given in Figure 7.

Two problems of interest arise with regard to doing the cal-

culations on a computer. The first problem is choosing the correct

value for the residual resistance coefficient, Cr, from the curves

of Reference (7). The method for obtaining Cr in the program

was taken from Reference (8) where the Cr curves are converted to

array form and stored in the program. Subroutine CRVAL, described

in the next section, chooses the correct value of Cr from this

stored array.

The second problem is that of computing the surface area of

the hull. This is accomplished by using the equation developed

in Reference (8) which is:

S = (1.7.L.T + V/T)(.0053(B/T) - .02(B/T) + 3Cv + .08-Cp

+ 926)

Although this formula may not be the most accurate method,

it is considered to give values within 5 percent of the values

calculated from the curves of Reference (7) over the entire range.

The results are considered to be very satisfactory for the program

and further refinement in this area was not considered necessary.

Also, linear approximations to the curves of Reference (9),

used for calculating effective horsepower with appendages and ef-

fective horsepower total, once effective horsepower bare hull is

42

Page 43: 03137348

HPCALC SUBROUTINE FLOW CHART

Figure 7

43

J

Page 44: 03137348

known, are included in the subroutine. These equations are listed

in Appendix D.

3.8 Subroutine CRVAL

The only function of subroutine CRVAL is to choose from stored

data arrays the values of the residuary resistance coefficient, Cr

which straddle the input point and then to interpolate to find

the value of Cr at the input point. The input point is specified

by the four variables: beam to draft ratio, Cp, Cv, and speed

length ratio.

The CRVAL subroutine used in the program was taken directly

from Reference (8). The constants stored in the three arrays which

contain the Cr data were originally determined using the curves

of Reference (7). Although the three arrays (CR1, CR2, and

CR3) are each one dimensional, the data they contain is four dimen-

sional, varying with each of the four variables which specify

the input point.

The maximum ranges for the input variables that are accepted

are listed below:

2.0 _ B/H 4.0

.48 < C p .70

.001 Cv .006 for 0.5 V/Jr < 1.3

.001 < Cv .003 for 0.5 V/V-T- •2.0

Sixteen values of Cr are required to straddle the input values

of B/H, Cp, C, and V/ L. After these sixteen numbers have been

chosen, the value of Cr at the input point is found by interpol-

ation. A total of fifteen interpolations are required, eight

to select the correct speed length ratio, four to select the

44

Page 45: 03137348

correct Cp, two to select the correct beam to draft ratio, and a

final one to select the correct Cv .

A more detailed description of the subroutine and the subroutine

flow chart are found in Reference (8).

3.9 Subroutine EPLANT

Subroutine EPLANT performs two basic functions. The first

is to estimate the functional electric loads for cruise, battle,

and 24 hour average conditions for use in sizing the electric plant,

if required, and in calculating fuel requirements. The second

function is to size the generators, if the size is not input. The

flow chart for the subroutine is given in Figure 8.

The ships used in developing the electrical load relations

were:

FFG-7

DD-963

DDG-2

FFG- 1

FF- 1 052

CG-9

DDG-FY 67

The equations which were derived for estimating the electrical

loads and sizing the electric plant are given in Appendix D.

Electric loads for cruise, battle, and 24 hour average are calcu-

lated for the following groups:

Group Function

100 Propulsion Auxiliaries and Steering

200 Auxiliary Machinery

300 Deck Machinery

400 Shops

500 Interior Communications and Electronics

45

Page 46: 03137348

Group Function

600 Ordnance System

700 Hotel

800 Air Conditioning and Ventilation

900 Power Conversion Equipment

An electric load growth margin is also applied to each group

and a group total is calculated to include the margin. The growth

margin is generally added to new designs and major conversions

to provide sufficient generating capacity for the entire life of

a ship. For combatant ships the margin is usually taken to be

30 percent.

The subroutine first calculates the cruise loads, followed

by the battle loads, and then the 24 hour average loads. At this

point a test is made to determine if the electric plant size has

been specified. If the electric plant is input, the subroutine

has only to total the number of generators input for ship service

and emergency use and determine the ship service, emergency and

total installed generating capacities.

If the electric plant size is not input, the subroutine then

performs the calculations and checks required to size the plant.

Once the size is determined, the type of ship service and emergency

generators is checked and the final number of each type generator

is found.

3.10 Subroutine MACHLQ

Since the shaft horsepower required for propulsion and size

of the electric plant have been determined, the weight of fuel,

lube oil, potable water, reserve feed water, and diesel oil can

46

Page 47: 03137348

be calculated. These calculations are performed in subroutine

MACHLQ. The weight of the variable load liquids is calculated

at this point because it is needed to determine the required tankage

volume and the volume calculations preceed those for other weights.

A flow chart for the subroutine is given in Figure 9.

The equations used to calculate the liquid weights are listed

in Appendix D. The equations derived for specific fuel consump-

tion and fuel rate were based on data given in Reference (12)

for all but the COGAS plant and from Reference (1) for that plant.

3.11 Subroutine MBSIZE

The only purpose of subroutine MBSIZE is to determine the

minimum allowable depth of the machinery compartment. The equations

derived for this subroutine were based upon data taken from

Reference (14) and are listed in Appendix D. The flow chart for

the subroutine is given in Figure 10.

It was determined that the only critical dimension of the

machinery box was depth. This is due to the manner in which the

volumes for machinery systems were broken down for estimating

purposes. The machinery box as defined for the program contains

the volume for all machinery systems except uptakes, shaft alleys,

maneuvering related spaces (steering room), and ventilation spaces

(fan rooms). The machinery box would therefore contain all of the

following spaces:

boiler and firerooms auxiliary machinery spaces

reactor spaces electrical generator rooms

engine, motor and gear rooms switchboard spaces

combined machinery spaces pump rooms

47

Page 48: 03137348

EPLANT SUBROUTINE FLOW CHART

Figure 8

MACHLQ SUBROUTINE FLOW CHART

Figure 9

48

Page 49: 03137348

MBSIZE SUBROUTINE FLOW CHART

0

Figure 1 0

49

Page 50: 03137348

The volume routine estimates one volume to include the above

functions. It would be up to the arrangements engineer to divide

the volume allocated into the appropriate machinery spaces.

Because of the large volume which would be associated with the

machinery box, it was felt that the longest length requirement

could always be met by appropriate arrangement of other functions

within the machinery box. Similarly, it was felt that the beam

selected for the ship by subroutine UWDIM would be adequate for the

machinery box and no minimum beam is estimated.

Results using the machinery box concept described above

were found to be very good. Since most warships contain primarily

the same types of equipments, but not always located in the same

spaces, a much better correlation for the total volume for these

functions could be attained than for individual functions.

3. 12 Subroutine VOLUME

Most of the U. S. Navy ships of recent design are considered

volume rather than weight limited. Because of this it is important

that the synthesis model determine a balance between required and

available volume as well as between weight and displacement.

Subroutine VOLUME performs this function in the model. A flow

chart for this routine is shown in Figure 11.

Since dimensions of the hull below the load waterline are

determined in subroutine UWDIM, only the sheer line, deckhouse

volume, and the length of raised deck, if any, remain to be deter-

mined to define the olume available in the ship. The enclosed

volume of the hull and deckhouse will be completely determined

by these variables.

50

Page 51: 03137348

VOLUME SUBROUTINE FLOW CHART

51

Page 52: 03137348

Deckhouse volume is constrained primarily by stability con-

siderations and by external deck area requirements. If the deck-

house becomes too high, it may not be possible to make the vessel

stable. Also a certain amount of free deck area is required in

nearly all designs, restricting the horizontal spreading of the

deckhouse. At the other extreme, the ship may have excessive

stability if too small a deckhouse is installed.

These deckhouse volume restrictions have been included in the

model by restricting deckhouse size to be within the limits of

past practice. Both an upper and a lower limit are placed on the

size of the deckhouse as shown in Figure 12. Upper and lower limits

of 0.00150 x L3 and 0.001 x L3 , respectively, are used in the

Navy's destroyer model (DD-07). The model described here uses

upper and lower limits of 0.00163 x L3 and 0.0008 x L3, respectively.

The new limits were chosen because they can be seen in Figure 12

to bound data for 11 ships in the data sample as compared to only

4 ships for the limits as used in DD-07. The deckhouse volumes

shown in Figure 12 do include uptakes.

The volume in the hull is also estimated in VOLUME. The

underwater volume is already available. The first step in deter-

mining the above water hull volume is the development of an accept-

able sheer line. This step is performed by subroutine SHEER and is

discussed in conjunction with that routine.

Once the sheer line and with it the average freeboard have

been estimated, the above water volume is found by multiplying

the area of the waterplane by the average freeboard and by a factor

to account for flare. The total volume in the hull is the sum

52

Page 53: 03137348

OL X 1XfllOA UIn;OnELSEdfnS

53

W

HU)

w a:A; ''

E-4 ~ -4

U

P;U) wm4w CD

P. -

00N'

c'JI0 0

>< ?r o

I

)

)

Page 54: 03137348

of the above and below water volumes.

The total hull volume includes the volume to the main deck

only. The hull volume cannot be reduced below this size but a

raised deck can be added to increase the volume of the hull. The

model is somewhat limited in that the most that can be added is

one raised deck, however, this has proven to be adequate in syn-

thesizing ships from the data base. The deckhouse size can be

varied somewhat to change the available volume.

Required hull volume is broken down into three categories.

These are the machinery box, tankage volume and arrangements volume.

The object of subroutine VOLUME is to alter the available volume

so that there is sufficient space for each of the three categories

of required volume. The model assumes that all tankage volume

and the machinery box volume are in the hull. The deckhouse

contains only arrangements volume.

The machinery box size is the first category estimated. This

volume is found in one of three ways. The machinery box volume

may be found from the estimating relationships provided in Appendix

D, or it may be input directly through the input array for volumes,

or the machinery box length, beam, and depth may be input in the

problem specifications. Machinery box volume is subtracted from

the available hull volume to the main deck leaving a volume which

can be used for tankage and arrangements.

Some of the remaining volume cannot be used for arrangements

because of hull shape. The next step is to estimate the fraction

of the remaining volume that can be used only for tankage. This

is the minimum tankage volume for the ship. If less tankage

54

Page 55: 03137348

is required for the liquids that must be carried, the excess volume

must be used for voids or cofferdams since it cannot be converted

into machinery box space or arrangements volume. If more tankage

is required than this minimum, some of the arrangements volume must

be used for tankage.

The relationships used in the model for flare factor and tankage

volume fraction are the same as those used in Reference (8). These

relationships were originally taken from work done on the Navy

destroyer model.

The weights of all the liquids which must be carried are

calculated in subroutine MACHLQ. In VOLUME, these weights are

converted to volumes and added together. The volumes required for

liquid stowage and other tankage are added together to determine

the total tankage volume required. The required total tankage is

then compared to the minimum tankage volume to determine the amount

of arrangements volume, if any, that is required for tankage.

All of the volume remaining in the hull after tankage volume

and machinery box volume have been subtracted can be used for ar-

rangements. The entire superstructure volume is also available

for arrangements.

The total arrangements volume available must be compared

to the volume required for all the ship's functions plus the volume

due to the specified input. The volume required for ship's

functions, such as stores, living and maintenance, are estimated

in the model based on past practice. The estimating relationships

developed for all volumes are given in Appendix D. Volumes are

55

Page 56: 03137348

either input of calculated for all of the appropriate functional

groups of Appendix C.

Data was obtained for the volume relationships from References

(21) and (22) and from class notes from M.I.T. Course 13.71. The

following ships formed the data base from which the volume relation-

ships were developed:

FF-1006 CG-26 DDG-2

FF-1033 DL-2 FFG-7

FF-1037 DL-1 DD-963

DD-692 CGN-35

DD-931 CGN-9

All of the required volumes are summed to determine the total

required volume. This volume is then compared to the available

arrangements volume in the hull and superstructure.

Comparisons are made in the following order. First, the

arrangements volume required to be located in the deckhouse is

compared to the volume of the largest allowable deckhouse. If

the required volume exceeds that available, the design is infeas-

ible and an error message is printed and the ship length is in-

creased by 10 feet to provide a larger superstructure. Next, the

total required arrangements volume is compared to the total available

volume. If the required volume is the smaller, the deckhouse

size is decreased. The deckhouse size used is either the size

which balances the volume requirements or the smallest allowable

deckhouse size or the volume required to be in the deckhouse,

whichever is greatest. Should the total required volume exceed

that available a raised deck is added.

56

Page 57: 03137348

The length of raised deck is determined by an iterative pro-

cedure. On each iteration the area required to be included in

the raised deck is computed and the relationships provided by

Reference (8) are used to convert the area to a raised deck length.

The curve developed in Reference (8) is based on the main deck of

a 378' Coast Guard Cutter and is considered to give satisfactory

results for Navy ships. Since the geometry of a cutter closely

resembles that of naval combatants (C wp L/B, B/H, Cp, Cx, etc.),

the area distribution with length at the main deck level can be

expected to be approximately the same. The iteration continues

until two successive iterations fall within 5 percent of the

length of the ship or until twenty iterations is reached. In the

latter case the design is ruled infeasible.

If the raised deck length lies between 0.4 and 0.6 times the

length of the ship, the raised deck is extended to 0.6 times the

length of the ship.

As mentioned before, all of the volume estimating relationships

were developed using the Navy ships in the data base, however,

the general procedure used for the VOLUME subroutine was taken

from Reference (8).

3.13 Subroutine SHEER

Subroutine SHEER selects an appropriate sheer line by speci-

fying the freeboard at the forward perpendicular, amidships, and

at the after perpendicular. This sheer line must satisfy a number

of criteria.

First, there must be sufficient depth amidships to accommo-

date the engine room. The depth amidships must also be sufficient

57

Page 58: 03137348

to insure adequate structural strength. A minimum value of L/16

is used.

The next criterion which must be satisfied is adequate free-

board at the forward and after perpendiculars. Navy derived

formulas were used. These formulas give the minimum acceptable

freeboard based on a deck wetness criterion,

Once independent determinations of freeboard at the forward

and after perpendiculars and at amidships are made, a check is

required to insure that a reasonable sheer line can be drawn

between the three. Reference (8) indicates that data was obtained

from past designs and from standard merchant ship sheer curves.

This data was nondimensionalized by subtracting the freeboard

amidships from the other freeboard values and then dividing by

the length of the ship.

The sheer line is assumed tobepractical if the forward sheer

fraction lies between 0.01 and 0.03 and the after sheer fraction

lies between 0.001 and 0.0075. If this is not the case, one or

more of the freeboard values is adjusted until the criterion is

satisfied.

If a raised deck is added to the hull, a new sheer line is

calculated. It is assumed that the required freeboard of the main

deck at the forward perpendicular can be one deck height below

that required by the deck wetness criterion. This will result

in a flattened sheer line as is common for raised deck vessels.

A flow chart for this routine is shown in Figure 13. Additional

details of subroutine SHEER may be found in Reference (8).

58

Page 59: 03137348

SHEER SUBROUTINE FLOW CHART

Figure 13

59

Page 60: 03137348

3.14 Subroutine WEIGHT

Subroutine WEIGHT estimates the individual BSCI weight groups

for the ship so that a balance can be made between full load weight

and displacement. The BSCI was used instead of the currently

adopted Ship Work Breakdown Structure (SWBS) of Reference (20)

due to the fact that most of the weight data available was in the BSCI

form and conversion of ships from SWBS to BSCI listings was con-

sidered the simplest. A flow chart for this routine is shown

in Figure 14.

Several of the weights required have already been calculated

or were given as input. Calculated weights include the liquids

which were found in subroutine MACHLQ and the input items cal-

culated in subroutine SPAYLD. Most communications and control

weights and armament weights are given as input. The weight groups

noted refer to the Modified NAVSHIPS Hull Group Weight Classification

as given in Appendix C.

Also given as input are the weights of cargo, aircraft, ammu-

nition, aircraft fuel, and other special payload items. All other

weights which are a part of the full load weight are estimated in

subroutine WEIGHT. All weights input or calculated are presented

at the three digit weight breakdown level.

All weight data, used to develop the weight estimating re-

lationships which are given in Appendix D, was taken from Reference

(4). This reference is a complete compilation of weight data

for the ships of the weight data base. The original source of

all weight data was the weight breakdown sheets prepared for each

60

Page 61: 03137348

WEIGHT SUBROUTINE FLOW CHART

Figure 14

61

Page 62: 03137348

design. The ships used in the weight data base are:

FF-1006 DD-445 CG-9

FF-1033 DD-692 CG-16

FF-1037 DD-931 CG-26

FF-1040 DD-963 CGN-25

FF-1052 DDG-2 CGN-35

FFG-7 DL-1 CGN-36

DL-2 CGN-9

3.15 Subroutine VRTCG

The vertical center of gravity of the ship is estimated in

this routine, Since the designer has some latitude with regard

to the location of the center of gravity, the value calculated

by this routine should be viewed as a feasible rather than as

the best value. A flow chart for the subroutine is given in

Figure 15.

The effect that the vcg has on the design can be investigated

by using different values of free surface correction. The free

surface correction is added to the KG. Therefore, either a positive

or a negative value can be used to represent a shift in the KG

location.

Subroutine VRTCG estimates a center of gravity for each 3-digit

weight group. The vcg for each input item is calculated from

input data. The vcg for each non-input function is estimated

from the equations provided in Appendix D. The ships used as a

data base for estimating the vertical centers are listed below:

FF-1037 DDG-2

FF- 1040 CG-26

62

Page 63: 03137348

VRTCG SUBROUTINE FLOW CHART

Figure 15

63

Page 64: 03137348

FF-1052 CGN-25

FFG-7 CGN-35

CGN-9

This data base spans a wide range of ship sizes and gives

very good predictions for the vcg's.

3.16 Subroutine FNCGRP

The primary function of subroutine FNCGRP is to place the

weights calculated for the BSCI groups into the functional groups

as defined in Appendix C. Once the weights have been assigned

to the appropriate functional group, a volume and weight will have

been assigned to each group and a density for each function can

be obtained. All of these values will be printed as part of the

output. A flow chart for subroutine FNCGRP is given in Figure 16.

This subroutine functions in a straight-forward manner by

taking each functional group and obtaining the associated weight

and then density as defined in Appendix C. For those weight

groups which are listed as applying to more than one functional

group, the weights are proportioned among the appropriate groups

according to the equations given in the listing of Appendix E.

3.17 Subroutine SEASPD

This routine is based on the work reported in References (18)

and (19) and is the identical subroutine as used in Reference (8).

In References (18) and (19) a computer program is given for computing

the average sea speed. This computer program was altered by drop-

ping the option to use a bow sonar dome and by deleting the read

and write statements. The program was also rewritten in ASA

64

Page 65: 03137348

FNCGRP SUBROUTINE FLOW CHART

START FNCGR

COMMONSTATEMENTS

I

1

RETURN

Figure 16

65

CALC WEIGHT& DENSITIESFOR MILITAR'MISSION

CALC WEIGHT& DENSITIESFORPERSONNEL

CALC WEIGHT&DENSITIESFOR SHIPOPERATIONS

CALC WVEIGHTFOR HULLFUNCTIONS

CALC WEIGHTFOR SHIPSYSTEMSFUNCTIONS

END )

l

T

,

.

, ~~~w.

r

Page 66: 03137348

standard FORTRAN. Except for these changes, subroutine SEASPD

is the computer program developed in the references. A flow chart

for this routine is shown in Figure 17.

Briefly, the routine assumes: (1) that the ship is operating

in the North Atlantic Ocean over a long period of time; (2) that

it is steaming into head seas one half of the time; and (3) that

the remainder of the time (when steaming at other headings) it is

not forced to reduce speed due to ship motions. The part of the

time the ship is steaming into head seas, its speed will be limited

by the sea state. In the routine this is simplified to a single

sea state limited speed. The remainder of the time the ship is

assumed to be able to make its maximum sustained speed. The per-

centage of the time the ship is limited in speed is estimated

based on average wave heights in the North Atlantic Ocean and on

ship characteristics.

The average speed at sea is calculated assuming that the vessel

will travel at its maximum sustained speed whenever it is not

limited in speed by the sea state. When the vessel is steaming

at headings other than into head seas, its speed is not limited.

This is assumed to be one half of the time. When steaming into

head seas its speed will be limited only part of the time. Both

the limiting speed and the percentage of time that it applies

are calculated in SEASPD.

This routine has been included to indicate the effect that

changes in the vessels characteristics will have on its seakeeping

ability. The many assumptions made in deriving the average sea

speed limit the usefulness of the speed predicted. However, the

66

Page 67: 03137348

SEASPD SUBROUTINE FLOW CHART

Figure 17

67

Page 68: 03137348

speed calculated can be used to compare two designs to decide

which will give the better seakeeping performance.

For additional details of this routine the reader should refer

to References (18) and (19).

3.18 Subroutine OUTPUT

All program output is printed by subroutine OUTPUT with the

exception of error messages and some default options in the MAIN

program. A simplified flow chart for this routine is shown in

Figure 18. Subroutine OUTPUT is used to print the input data and

the output generated to the degree specified by problem specifi-

cations 72 and 73 which are defined in Appendix A.

Subroutine OUTPUT consists primarily of print and format

statements. Some calculations are made but only to convert

previously calculated values to a desired output form, such as,

determining several ratios which are output.

The only decision points used are to determine the amount of

output to be printed. These decision points are shown in the

flow chart.

68

Page 69: 03137348

OUTPUT SUBROUTINE FLOW CHART

Figure 18

69

Page 70: 03137348

CHAPTER 4

RESULTS OF MODEL APPLICATION

4.1 Introduction

As a basis for evaluating the accuracies and versatility of the

model, this chapter provides particular results from using the model

to synthesize several surface ships over a wide range of size, Both

data sample ships and non-data sample ships were tested. The test

runs were made on the IBM 370, model 168, computer located in the

Information Processing Center at M.I.T.

Section 4.2 discusses results obtained when using the model

as a conceptual design tool. During the conceptual design phase,

many combinations of input variables are generally tried before

the specific features of the ship are selected. Once specific

features, e.g., length, horsepower, individual weight and volume

groups, and accommodations, have been selected the model may be used

with these known parameters to provide a design update with increased

accuracy in overall results. Use of the model to provide a design

update is presented in section 4.3.

Since the model allows for the input of specific weight and

volume groups and habitability standards, it may also be used as

a tool for comparative naval architecture studies. An example of

the model used as a comparative tool would be designing the FF-1052

to Soviet design standards. Results of this application and others

are presented in section 4.4.

Section 4.5 is provided to give an overall assessment of the

results and how they should be interpreted and used.

70

Page 71: 03137348

4.2 Model in Conceptual Phase

A comparison between results produced by the model and the

actual ships is given in Table 3. All of the ships compared in

this table except for one, the FFG-2, were in the data sample used.

Model predictions of Table 3 are the result of input speci-

fications which assumed the ship designs to be in the early con-

ceptual phase, therefore, the large percentage difference for some

of the ships was expected. The only input specifications reflecting

the actual ship were:

LBP Accommodations

VSUS Cp

Payload Items Cx

Endurance Duration

Type Propulsion Plant Type Electric Plant

The program was allowed to make the standard calculations

for all weight and volume groups and to size the propulsion and

electric plants. Since the standard calculations built into the

model reflect what is probably the "average" ship over the past

20 years, the results for the ships built during the mid 1960's

with few special features, e.g., FFG-2, FF-1040, and CG-26, are

good for this level of input.

For the ships which differ considerably from the model pre-

dictions, special features can be identified to account for the

major portion of the difference. For example, if the habitability

standards used by the model to predict the FFG-7 and DD-963 were

increased from the model standard to current standards, the pre-

dicted results would improve.

71

Page 72: 03137348

t_ O O > 1D q wQ- N N4* * * * *.. * * * .O e \o o L a o\ eo

.- , , * oO kO LO l c , r~ ~J ao \ t- .N -0

N o o u o 4 4 4 co , ,

D o o O O -LL\ L \ 0 o0fa E4 * 4" 'N C N UN N \D 0 0 - ) OH

fzi - .- - - - - N N .%n 0 * 0 * * Ht C.E N u 0 Cn O c4

~ 1~ 00 !- I ~ 4I, -, z * * * *. 0P' 0 *-*p cO 0 4 4 0 ON C- 4 O_ 4,H

... .* _ * * * * T 00 L0 O .0 a 0 0 iO C ' F4 E

Z ~ ; N 4 ('(N ."N 4 L- '.0 ,- L d 0®4x q- 0., t 0, o o o ,0 Z o ' Co or N 4 o .o o 0 zCl 4 '\ 0 a' N N 43 N oH 0 E

* * * -* * * * * Lr\0[-H 0 Z-H 0 O 0 - 0- N '0 N 0' .-: ( T N _0 4.\ N N 0 0E-4 4 0': - O NO N C H

O.0 4 4:) 0 t U EN 4 N ON0 0< HE-4 : N '- L 4 E 4 4 0 o

z-l PE 0W E0 0 43 KLE E("N 0(-- I N N 0 N ' 0 0- ' * Z0 aZ 4 0 UE \ LIN -N 4 O O

O 0rN \10 C- O 0 Vrs a Zx O O IL co

Eq7~B X D O 0 r * -O 0 \ CO ;t 0 N \D \O OY W Q in rr\ ;t OD F. 0 z Jo

1kq rM r4 X4 P n C! p O Q f4 ~ ~ ~ r L Pc i4aanVVZ

72

Page 73: 03137348

In general, the full load displacement predicted will vary from

the actual ship data in the same manner as the internal volume dif-

ference varies. As an example, the model prediction for the DDG-2

is approximately 1000 tons more than the actual ship in full load

displacement. The volume predicted is also too high by about 66,000

cubic feet. Most of the error in the prediction can be found in

weight groups 1, 2, 5, and 6 with over predictions of approximately

500, 100, 100, and 50 tons, respectively. This accounts for about

750 of the excess 1000 tons with the remaining 250 tons spread over

the remaining weight groups. Calculations for the weight of groups

1, 5, and 6 are highly dependent upon the internal volume of the

ship. When the volume is reduced to near the actual value, as can

be seen in the next section, the predictions for these weight groups

decrease anda much better prediction is obtained. The excess volume

predicted for the ship is the result of the model assigning the

freeboard to be approximately 5 feet greater over the length of the

ship than the actual freeboard. This 5 foot of freeboard difference

accounts almost entirely for the 66,000 cubic feet over prediction.

It should be noted that the DDG-2 is probably the most volume critical

ship in the data base.

Once characteristics and standards for the ship are selected

as the design process continues, these specified features may

be input to the model to provide a design updated prediction which

would more closely predict the final ship. The results of this

application are presented in the next section.

73

Page 74: 03137348

4.3 Model Used to Update Design Predictions

Since the model provides the option of specifying weights,

volumes, vcg's, and electrical loads, in addition to accommodating

payload changes and habitability standards, it offers the capability

to update ship predictions as the design features become fixed. To

illustrate the model use to update predictions, Table 4 is provided.

In this table the same ships are presented as in Table 3 with the

addition of the CGN 25. The inputs to the model for this run were

more specific with the following features input:

LBP Accommodations

Installed SHP Cp

Payload Items Cx

Endurance Duration

Type Propulsion Plant Type Electric Plant

Habitability Standards Size Electric Plant

Ammo Weight Weight Groups 200 & 201

The overall results are shown in Table 4a. It can be noted that

the differences between model prediction and ship data are now much

less than those of Table 3. These results were expected since the

new inputs better define the actual ships.

The results of Table 4a were improved over those of Table 3

mainly because installed SHP, habitability standards, and electric

plant size were input. In a few instances the percent difference

for full load displacement was then changed from a minus value to

a plus value or vice versa. One of the reasons for this occurring

is that the SHP and installed KW were input for the results of Table

4, but were estimated by the program based on VSUS and other variables

74

Page 75: 03137348

i-4 n 4 -4 - 0 N

0 t[- 'D .0 O .o L. _ - N ct 0o,-;i- - - - - i- '- N '- N Nz C .- ' 0 o Uo N 4)

E-4 . . . . . .¢ 4 * * 00 '.D C- N aO N * 0 l

4 -

1- \.0 0 UN 0\ - 4 C0 0 * * 0 * * * 0 * .

W-. --4 0 0 W .. 0 ". 0)I q ,U . * 4r-o 40 Ct 0 0 0 -' U -N 0 0 _"

Q N Mn 'n , N Nt P4 0

. . " . .... . ' .. a..... 4P o'.0 * 0 ' '0 0O O 4- N -)

P P \Po \ 4 ' C 0 0 a

- E\ ' 0 0 0 0 0 0.............. ~ - -- - -t O 00 IO

~ _0 ..@; ~~~ ~<~~~~ cx ~~ ~ ~ o_ o

......... o . . . . . O-0' N J- N N '.t 4 N: 0 P4+ )0 N 4 4 4 44 _ UN U - - C O

N- N c- o O N .O 0 X -H * * o * CU 4g0

r o- N -- UN o co UN 4 - o oN 4 4 4 4 4 -I o N U UN C- N 4 U-N UN cC- t UN U)

NO * * * * 0 * 0 T

z H .- w- 0 0CO 4 C> C) 4 CX Nd 0 4 - C o

4 o C- C- 4 .. - 0' 5: 0 4 +VdP 4t N C> 0 N 4 - \ CO 0 U CP a P4x - NN UN -* '.0 0.0 0 * oH.O 0 'o j 0 ON 0 N UN O .0 0 U - 4: c- cO C ~ b O\ _ o OA Z Z N 4 O 4 U 44 -0' CO Oa 0 0w4a I O\~ n _- n\ o _- aE t f) O U ) toZ O0 O N N - O NUN c qd

EH N rN' * D ' - N> UN * * co (0Ez 4 '0 .- c O '- 4 UN 3 co 0CM N '\ UN\ 4 UN 0 ON 0 H-733 ~ _\9~~~ a4~4) CO

H 4-

+ + + I + I + + *4 -14_ --- 4 JPer

0 N CM N a' ON K 1i-) W 0' 0 N 4 C- 0 4 N UN\ NrN H 0' r- N '. UN co O 4 .- c- N 0H 4 3 t-1 0 H - 00 4 t C> - CO CdJ 4 .O)

44 t0 -N P-UV -UN 4 CO a' 4C- - C - CO WC (N 4 N - a' 0$. +H E- 4 f) N O N U N '.0 CO UN N .. 0-d

P., Lr\P( \ ciiH 0 N 0 c- 0 N 10 \.0 N - \

r4 rM4 Uz Um P. Q O0 zF=:. U:.. U:.. 0:. 44. U 0 0 Z

4)

Q0

r1-

UlzCd4

4)C*P

I

UHEnvEqH

O

cq P02m 4W H9 R 0 .

4 '

z1-4 0pq PI P

rn

oz0U)H

0IL)To

75

Page 76: 03137348

to obtain the results of Table 3. For the ships where the results

of Table 3 were within a few percent of the actual full load dis-

placement, e.g., FF-1033, FFG-2, and CG-26, the change in propulsion

and electric weights alone could be enough to change the percent

difference from minus to plus or the reverse.

For the ship characteristics shown in Table 4a, the results

below were noted.

a. The difference between actual and predicted full load dis-

placement varied from +8.5 to -2.6 percent. However, of

the 10 ships modeled, 7 of the estimates were within 4

percent of the actual ship displacement.

b. The difference between actual and predicted internal volume

varied from +16.4 to -9.5 percent. This result is not as

bad as it might seem, since ships which have large differ-

ences in volume can still have small differences in dis-

placement. For example, the FF-1052 volume difference is

-9.5 percent, but the displacement difference is only -1.4

percent. This result occurs because the volume differences

are generally the greatest in the functional areas of

passageways and access and tankage (voids). These are not

very dense functions and addition or loss of volume in these

areas have only a minimal effect on displacement.

c. The largest percent difference in beam was -10 percent.

This was for the FF-1052 for which the displacement and

volume were also estimated low. In this case the predicted

beam would be closer to the actual beam if the displacement

and volume were increased.

76

Page 77: 03137348

d. The largest percent difference in draft was +16 percent.

This was for the FF-1040 which was also estimated high in

displacement by 7.4 percent. If the displacement was

estimated lower, then the draft would also be closer.

e. The largest percent difference in depth is +24 percent.

However, of the 10 ships modeled, 8 of the estimates were

within 5 percent of the actual depth. The ship which

differed by 24 percent was the DDG-2 which has an unusually

small freeboard.

f. The largest percent difference in KG was +22 percent for the

FF-1033. The KG for the other ships was within 5 percent

of the actual value.

Detailed results for the major weight and volume groups are

given in Tables 4b and 4c. The differences are reasonably small

in most areas with the majority of the weight groups being 5 to 10

percent from the actual values. As was the case in the previous

section, the primary cause of the difference is related to overall

ship volume, i.e., when the predicted ship volume is too low the

weights for groups 1, 5, and 6 will generally be low also. This in

turn influences the amount of energy required for the ship and

affects weight groups 2 and 3 and some variable load items.

From Table 4b it is noted that the predictions for weight

group 2, propulsion, are within 12 percent for all ships and within

8 percent for all but the FFG-2 and FF-1040. Because of this, the

model predictions for weight group 2 are considered to be very sat-

isfactory when the installed SHP is specified.

The results for weight group 3, electric plant, even with the

77

Page 78: 03137348

co C' 0 UN - N cO 4 0 4. - - O 0 4 N N 0 \-0-- O - ,\ N 0 c--- - - ,IN NI -- .-

i- ll 4 .- N --

L" 0c" o 0 N CO u N -"- - '- N.

N N N 0 C, 0 UN - -4 tN N 0 UN C N L o" N

0" - . N ~ \- N o

0 - CO SID UN CO N 0 0\ cO4 _- 0' 0i 4 UN 4 N CO un

i- i - .N -N c i i

cO 0' 0 -.'Y 0 ' - O''.0 4 N 'Io 40' U N co t

N N N N N 44 4 0'

.- 4 0 N N -O U,. ,0 ' 0N\ N 0 --N CN UN J t 4 0

-N N rN N NU 4t 4 4 0'

co 0 a, 4 u 0 0 N 0 N0W 0 ,- 4% ,-. 0 U1 K ,N -4 N\ NN N UN~ LA CO \N Kr\ Co

4- I- '.0 N 0 N N ~.D NN 4 tU NN N '.0 UN co

',0 4 0 - N o O _ 0 N

4C ,- - 0'C - o 0' 0O C- LrN,-- ,-- ,- -- U- ON -N N - N - I t N CO

'0' - N \0 C0 OO

UN 0 0 0 0 4 N 4N N - 4 N-

N 0 o 0 \ 0 0 Co) 0 \0I 0' 0' N U CO CO '.0 ON N-

N NN N\ -4 N N' \ UNN rc

N N__ N N UN rN UN O\ UN N rN" \.0 4 N NN lN MN Nu 4 CO N C MN U\

N N

\.0 \.0 O ' .0 UN - ON \'. 0 0C\.0 rMe 0' co co 0 N N- N COUN\ o- 0 '\( \.0 UN 0 4t-- N N W \0

E N 0 - CO - \.0 N No - 4 \ 0' CO U\ 0' ;t'.0 '- c- N N N 0 KN 0' UN

ffN~ 0 NMN 4t U\ o N U N

0 N 0 O _ N '.0 %0 N 0'C - - 0 - 0 N Z Z

rM4 4 -4 r4 t4 O 0 0p r4 N 4 M O Q t 0 0

78

0U2 0

:,4 -0 44z4 E-4

- 0E-,

P

E:

0O...E

0

E-=

0

E-

EH44:O_CD-

Q

E-4

E -'02

0z0t2H

4:,40E-,I

E-40ro H-4 N

c4 E-E4 4C

a4

mz0Nei

XArQ

, ,,~

Page 79: 03137348

r N N N - 4- N - ON a - o'LN - 0c CC - 0VI\ N 4 Nc a'N N I'D

oo 9- Co - -

N - O -

N 0 4 --- N -

·- O 4 O O a'_ o rN a' O N, 0a' - \o N 0 NN 0 \D 0 -,o 0 o .- ~ O D4- 0 ' UN - 0

oN - N .N .,Co: - N * UL

:o N ,- o 'O * *

0' , oN -0' ~0 , - a 0 Co

N O M - 0 -

a' N _ N Cr o CoN a a N N 0U t- N N \- Co N Nn 0 N Co- UN 0MN N '- N N 0 MNN UN UN N Co N 4t

N 4 N a' ' N UN0 c O o 0 - UN0 0 C N UN_ N N

N '- o a' N 0

N a' 4 a a'Co 4 @ O' - O

9 -O 9 4 9- 9

UN ('4 '0 O -t 04 _- 0 4 N_.N _-M a

4· N - NUN Co N a C UNCo c O 0 .0 N\. N - C 9- UNt a' Co UN Oco - _

.0 a \0 0 N 0N\.0 0 a' 0 0 co0 C N UN 0 N4 N 4 M N cN

N a' 0 \10 0 Co_ - \0

WN0rx4r4

E- N \ cr N0N

X N a N= a' p f:) u PLF ~ ~ ~~ r z4

0

UO00

UN0

i:4

0

:> E-II; G

E-4Po E4;m;E4 a

03 0

OOP: pO3 E-

RCQ

o 0

OW Z; z

a; :>o

.. c

I-iQ

Z 0W

E-4 C)Q ~nH i--,-::>

Q

P4Hf-

E)z0U)H;

P4

00

Ec EniW

zHU)i

0r-i

0es4

f::

- _ . _ . . _ .

. .

Page 80: 03137348

plant installed KW specified, are on the average about 20 percent from

the actual values. Most of the difference can be traced to the re-

sults for group 300, electric power generation. This estimating

equation may require some modifications. Also, some of the difference

is caused by the total internal volume prediction being different

from the actual value, since weight groups 302 and 303 are estimated

in the program as functions of the internal volume. However, most

of the error in the weight group 3 prediction could be eliminated

by input of weight group 300 directly into the program once the elec-

tric plant has been selected and this weight is known.

The weights for groups 4 and 7 of Table 4b and the volumes for

military mission in Table 4c are determined primarily from values

input from the payload shopping list. In some cases the predicted

values are very close and in other cases the values predicted are

off by as much as 100 percent, i.e., weight group 4 for the FF-1033.

There are two reasons for the errors which occur. First, some of

the data in the shopping list may need modification to reflect

better the values required on existing ships. Second, the payload

list input to the program for each ship may have been incorrect.

In a few instances data on the exact payload for the ship was not

available and an estimated payload was used, e.g., number of rounds

of ammunition. In general, the results for weight group 7 were

closer than those for group 4.

The model prediction for the total weight of load items is in

most cases 10 to 20 percent too high. One reason for this is that

the model seems to consistently predict the fuel required too high by

the same 10 to 20 percent. This would not account for all of the

80

Page 81: 03137348

difference, but would account for a significant portion, i.e., up

to 50 percent. The calculations for fuel and diesel oil should be

reviewed and could be improved upon.

As a next iteration, more of the individual weights and volumes

could be input than was done to obtain the results of Table 4 and

even greater accuracy would be expected.

Reference (8) presents a comparison between the actual ship,

DD-07, and the Coast Guard Cutter Model for the Navy's Patrol

Frigate (FFG-7) design. These results are presented in Table 5

along with the model predictions of Table 4. The input specifi-

cations for all of the model predictions of Table 5 are to nearly

the same level of detail. It should be noted that the actual ship

data and the model prediction reflect an installed electric plant

of 4 diesel generators while the Cutter and DD-07 predictions reflect

only a 3 generator plant as originally planned. The model results

compare favorably with DD-07 and Cutter output.

The results presented in Reference (3) compare actual full

load displacement to CODESHIP model results for a number of ships

over a wide range of sizes. Six of these same ships have also been

predicted by the current model. A comparison between the results

of the two models is given in Table 6. As was the case above, the

level of input is approximately the same. The model generally gives

better results than CODESHIP when predicting ships in this size

range. However, the CODESHIP model is built on a data base which

includes ships which range in size from small patrol craft to air-

craft carriers. The CODESHIP model is intended to synthesize ships

of all sizes and types for conceptual analysis and for comparing

81

Page 82: 03137348

TABLE 5

COMPARISON OF MODEL RESULTS TO THE ACTUAL SHIP,

C.G. CUTTER MODEL, AND DD07 MODEL

FOR THE FFG-7 DESIGN

LBP BEAM DRAFTft ft ft

SHIPMODEL*DD07CUTTER

408408405405

45.042.446.746.0

14.416.0

15.315.3

DOft

33.941.041.1

D1 0ft

25.534.028.9

D20 DAVGft ft

26.734.829.3

35.235.331.0

WEIGHTS

SHIP

WTGP 1

WTGP 2WTGP 3WTGP 4WTGP 5WTGP 6WTGP 7WTLSHIP

LOADSMARGIN

1247.3254.6207.099.3411.6302.2

96.12618.1

833.8133.5

3585.4

MODEL

1185.7270.6166.5131.3345.4260.4

99.82510.7

965.3123.0

3548.0

DD07

1331.2240.0156.6

70.7381.3238.085.7

2503.5

1100.5162.9

* Model prediction has 8.5' raised deck for 387 ft.

TABLE 6

COMPARISON OF MODEL AND CODESHIP RESULTS FOR

FULL LOAD DISPLACEMENT

DATA337134123934452578288519

MODEL362137023879490881238751

MODEL% Diff+7.4+8.5-1.4+8.5+3.6+2.7

CODESHIP

36983991526987008262

82

DISP.tons

3585354837663706

CUTTER

1199.6258.0211.270.7317.5333.8

85.7

1070.2161.0

3707.7

SHIPFF 1040FFG 2FF 1052DDG 2CG 26CGN 25

CODESHIP% Diff+ 8.1+ 8.4+ 1.4+16.4+11.1- 3.0

Page 83: 03137348

cost and technical results not necessarily accurate in absolute

values.

4.4 Model as a Comparative Tool

Another possible use for a versatile design model would be

as a tool for comparative naval architecture studies. In Reference

(11), Captain Kehoe suggests differences in design standards for

warship design between the Soviet and U. S. Navies. Applying the

suggested standards to the FF-1052, but keeping the payload, in-

stalled SHP, and accommodations of the originally designed ship, the

new ship was synthesized to the standards listed in Table 7. The

results for weight and volume (Table 7) indicate a smaller, faster,

and denser ship would be realized at the expense f reduced habit-

ability, endurance, maintenance, and access. This result is as

expected and seems to be a reasonable estimation of the redesigned

ship.

The reduced habitability standards can be input using the mis-

cellaneous specifications described in Table 18 of Appendix A. To

reduce the habitability standards by 40 percent of conventional

U. S. practice, a value of 0.6 could be entered for the habitability

related coefficients of Table 18. The reduced volumes for the

bridge, offices, machinery box, ventilation, maintenance, and passage-

way and access were directly input to the program by taking the

appropriate percentage of the model predicted FF-1052 volumes.

The reduced deck height and endurance were directly input to the

program.

As a second example, the FF-1052 was modeled as if it had

83

Page 84: 03137348

TABLE 7

FF 1052 TO SOVIET DESIGN STANDARDS

FUNCTIONAL GROUP CHANGES

Military Mission (Payload) FF-1052 as ORIGINALLY DESIGNED

Personnel Reduced habitability space byapprox. 40%

Ship Ops Reduced bridge and office spaceReduced machinery box volumeby 20%Reduced ventilation space &weightReduced maintenance space by 50%Reduced passageway & access by30%Reduced between deck heightto 8 ft.Changed endurance to 3500 miles

SHIP COMPARISONS

WEIGHTS (tons)

FF 1052CALC BY

DATA MODEL

1291 1185

422 456

130 106

294 277

365 351

273 244

145 158

1014 1104

3934 3881

FF 1052TO SOVIETSTANDARDS

1022

454

101

271

293

204

158

908

3411

VOLUMES (cu ft)

FF 1052CALC BYMODEL

Military Mission 107792

Personnel 109017

Ship Ops 218484

Total 435293

Superstructure 89200

Hull 346094

FF 1052TO SOVIETSTANDARDS

96022

78610

180415

355046

59270

304178

84

WTG1

WTG2

WTG3

WTG4

WTG5

WTG6

WTG7

Loads

FullLoad

Page 85: 03137348

been designed to estimated Soviet mission requirements and design

practices. The changes made to produce the Sovietized FF-1052

were taken from Reference (11) and are given in Table 8. These

changes in standards were also handled by directly inputing appro-

priate weight and volume groups and the new payload list and problem

specifications. The resulting ship characteristics are given in

Table 9. The model predicts the Sovietized FF-1052 to be even

lighter than the ship of the previous example. This result seems

reasonable due to the greater impact on the ship of the FF-1052

payload as compared to the Sovietized payload with twice as many

payload items. The SQS 26 Sonar and 5"/54 Rapid Fire Gun are much

higher impact items than the individual components of the Sovietized

weapon suit.

The model may also be of assistance in estimating the character-

istics of ships for which little data is available. As an example

of the model used in this manner, the Soviet "Kara" Class CG was

estimated. Inputs for the model were those given in Reference (11)

with the Soviet weapons suit being input as comparable items from the

payload shopping list. The input for the Kara run is listed at the

end of the computer listing in Appendix E. The estimated Kara

Class characteristics are given in Table 10.

As a final comparative example, the FFG-7 was synthesized

using design standards characteristic of the high performance ships,

i.e., hydrofoils and surface effect ships. The inputs to the model

were the same as those the FFG-7 presented in earlier results with

the following changes:

a. length was not specified (L/B and B/H specified);

85

Page 86: 03137348

TABLE 8

SOVIETIZED FF-1052

Functional Group Changes

Military Mission (Payload) Changed Major Payload Items to:

5"/54 Lw GunMK 22 Tartar2 Harpoon CanistersMK 74 GMFCSMK 87 GFCSSPS-52 RadarASMD Suite2 MK 32 T/TD/M RedeyeASROC Launcher2 CIWSHelo HangarVDSSQS 23 Sonar

Personnel Reduced habitability space by approx.40%

Ship Ops Reduced bridge and office spaceReduced machinery box volume by 35%below standard program value for samehorsepowerReduced ventilation space and weightReduced maintenance space by 50%Reduced passageway & access by 30%Reduced between deck height to 8 ft.Changed endurance to 3500 milesIncreased speed to 33 knotsIncreased number of shafts to 2Increased number of boilers to 4

86

Page 87: 03137348

SOVIETIZED FF-1052 CHARACTERISTICS

Value

LBPBeamDraftDepth station 0Depth @ station 10Depth @ station 20CpCxVCG Full LoadEndurance @ 20 ktsSustained SpeedSustained SHPKW InstalledDisplacement Full LoadDisplacement Light ShipVariable LoadsWTGP 1

WTGP 2WTGP 3WTGP 4WTGP 5WTGP 6WTGP 7Total Internal VolumeSuperstructure VolumeHull VolumeMilitary Mission VolumePersonnel VolumeShip Ops VolumeAccommodationsPayload Volume FractionPersonnel Volume FractionShip Ops Volume FractionPayload Weight FractionPersonnel Weight FractionShip Ops Weight FractionShip Density Full Load

420 feet39.6 feet14.6 feet39.9 feet27.3 feet27.8 feet.577.81215.4 feet3500 nm.33 knots44,648 SHP2600 KW3299 tons2409 tons890 tons1010 tons498 tons89 tons175 tons295 tons200 tons142 tons353,612 cu.ft.59,270 cu.ft.294,342 cu.ft.77,251 cu.ft.78,610 cu.ft.194,671 cu.ft.2450.220.220.560.130.050.4720.90 lbs/cu.ft.

87

TABLE 9

Characteristic

Page 88: 03137348

TABLE 10

ESTIMATED SOVIET KARA CLASS CHARACTERISTICS

Characteristic Value

Sustained Max SpeedEndurance SpeedEndurance RangeMax Sustained SHPLBPBeamDraftDepth @ Station 0Depth @ Station 10Depth @ Station 20VCG Full LoadDisplacement Full LoadDisplacement Light ShipVariable LoadsWTGP 1

WTGP 2WTGP 3WTGP 4WTGP 5WTGP 6WTGP 7Total Internal VolumeSuperstructure VolumeHull VolumeShip Density Full LoadPayload Volume FractionPersonnel Volume FractionShip Ops Volume FractionMilitary Mission VolumePersonnel VolumeShip Ops VolumeAccommodationsPayload Weight FractionPersonnel Weight FractionShip Ops Weight Fraction

34 Knots20 Knots8750 n.m.95,115 SHP538 ft.51.8 ft.20.8 ft.

54.9 ft.38.8 ft.39.3 ft.19.4 ft.8498 tons5539 tons2959 tons2758 tons741 tons319 tons259 tons585 tons444 tons433 tons867,135 cu.ft.144,461 cu.ft.722,674 cu.ft.21.95 lbs/cu.ft.0.170.240.59150,194 cu.ft.205,558 cu.ft.511,383 cu.ft.5400.090.050.48

88

Page 89: 03137348

b. high speed diesel electric plant specified;

c. aluminum hull material selected;

d. centerline passageway type selected;

e. weight group 201 reduced by 50 tons to allow for elim-

inating gas turbine enclosure and other items not required

on high performance vehicles;

f. weight group 203 reduced by 50% to account for planetary

gears and light weight bearings and shafting;

g. machinery box volume reduced by 10%; and,

h. deck height for payload items and raised deck reduced to

8.0 feet.

The resulting characteristics for the high performance designed

FFG-7 are listed in Table 11. The model estimates the new design

as only 2634 tons with an increase in speed to 33 knots. This is

with no reduction in personnel volume, but a reduction in total

ship volume of approximately 20%. The resulting model prediction

should be a technically feasible ship design, since the inputs to

the model represent features which are currently within the state-

of-the-art in shipbuilding. Many high performance indices, which

would reduce the size of the ship even further, were not considered

due to the uncertainties in incorporating these into a conventional

displacement hull design.

4.5 Assessment of Results

The model results are considered to be good for conceptual

phase estimating of ships in the size range of the data sample.

The data sample ships ranged in size from the 301 ft./1770 ton

FF-1033 to the 700ft./16,294 ton CGN 9.89

Page 90: 03137348

TABLE 11

CHARACTERISTICS OF FFG 7 DESIGNED TO

HIGH PERFORMANCE SHIP STANDARDS

HIGHPERFORMANCE MODEL

CHARACTERISTIC FFG-7 FFG-7

Max. Sustained Speed, knots 33.0 30.5Sustained Speed SHP 40,000 40,000LBP, ft. 382 408Beam, ft. 40.2 42.4Draft, ft. 13.4 16.0Cp .593 .593Cx .747 .747VCG Full Load, ft. 17.8 18.4GM/B 0.08 0.08Average Depth, ft. 31.0 35.2Accommodations 185 185KW Installed 4000 4000Full Load Displacement, tons 2634 3548Light Ship Displacement, tons 1666 2460Variable Loads Weight, tons 886 965WTGP 1, tons 595 1186WTGP 2, tons 191 271WTGP 3, tons 113 167WTGP 4, tons 123 131WTGP 5, tons 295 345WTGP 6, tons 249 260WTGP 7, tons 100 100

Total Internal Volume, cu.ft. 392,500 493,040Hull Volume, cu.ft. 301,660 382,335Superstructure Volume, cu.ft. 90,840 110,705Full Load Ship Density, lbs/cu.ft. 15.04 16.12Military Mission Volume, cu.ft. 83,901 89,288Personnel Volume, cu.ft. 111,050 111,150Ship Ops Volume, cu.ft. 197,550 292,602Payload Volume Fraction 0.22 0.18Personnel Volume Fraction 0.28 0.23Ship Ops Volume Fraction 0.50 0.59Payload Weight Fraction 0.13 0.10Personnel Weight Fraction 0.05 0.04Ship Ops Weight Fraction 0.47 0.43

90

Page 91: 03137348

The model was built to reflect what were generally the standard

features of U. S. ships over the past 25 years. Since the model

estimates standard features, the ships predicted by the model at

the early conceptual phase level, when only the minimal problem

specifications are known, will in most cases be smaller than the

actual ships which result. This is because most ships will have

some special features which either exceed the standard or for which

no standard calculation is provided, e.g., clean ballast system.

Some of the features which are generally responsible for size

increase are special tankage, increased habitability, and special

maintenance and access requirements. This can be seen in Table 3

where ships with few special features, i.e., FFG-2, FF-1040 and

CG-26, are predicted very close, but ships like FFG-7 and DD-963

with increased access and habitability requirements are predicted

too small. The general trend is that the newer ship designs will

have more features which are more demanding than the standard

calculations provide, and hence, the newer ships will tend to be

underestimated the most.

The results are noted to become more accurate as the input

becomes more specific. This was shown in Table 4 where the results

became very good with specification of the major ship character-

istics which are usually defined early in the design. It is at

this point, when the desired standards for habitability, tankage,

maintenance, access, etc., have been established, that the model

predictions can be made with anticipation of only a small difference

from final ship results.

The property of the model which allows increased accuracy

91

Page 92: 03137348

beyond the conceptual formulation is the input array for weights,

volumes, vertical centers, etc. It is this feature to update design

predictions which would allow for exactly specifying the actual ship

if all weights and volumes were input.

When used as a tool for comparative naval architecture, the

model gives results which appear to be quite reasonable. The value

of the model used in this manner is that it can be used to compare

ships for which the design data available ranges from only top level

ship characteristics to detailed ship specifications, i.e., Soviet to

U. S. ships. When doing comparative studies, whatever information is

available for a ship can be directly input to the program. For the

case of U. S. ships, the individual weight, volume, vcg, and other

special input groups can be directly set into the program to the fin-

est level of detail used in the program and available in the data.

The results for this type of ship prediction should be very accurate.

For ships where little data is available, the problem specifications,

payload items, and any desired special features can be input based

upon engineering judgment, any data available, or a best guess. In

any case the results should be examined for reasonableness of the

prediction.

The model can be used to synthesize ships to certain "design in-

dices". Here design indices refer to a ratio of design impact to ca-

pacity, where design impact can be measured as the weight, space, or

energy required to provide the specified capacity. To accomplish this

for all features an iterative number of runs may be necessary to meet

all of the desired indices. After each run the results must be an-

alyzed to determine which inputs should be changed to meet the

Page 93: 03137348

desired indices. For example, the machinery box volume per shaft

horsepower indice can be met once the installed SHP has been deter-

mined by multiplying the two numbers and inputing the result in the

input array element for machinery box volume.

The standard relationships used for calculating weights in the

program have been found to be very good over the entire range of

ships in the data base. This applies to the ships whether large

or small in size or old or new in age. Model results have shown

that a ship which has the internal volume predicted by the model

would have actual weights very close to those estimated by the model

standard calculations.

Analysis of model results indicates that the weight required

for specific functional items has not changed significantly over

the past 25 years; however, the volume required for the same func-

tions has been the driving factor in determining the resulting

ship size. In general, it can be said that the full load displace-

ment of a ship carrying a specific payload can vary over a consider-

able range depending on the volume allocated to the various func-

tional groups. To support this statement, it was found in develop-

ing Table 4 that varying the volume for habitability items, tankage,

maintenance, and passageways and access, while accepting the standard

weight calculations, produced very good results. This seems to

indicate that volume requirements in these areas have been those

which have deviated from standard practice the most and are the

areas where most of the special features of a design are found.

If it were desired to have the model predict ships using the

standards of a certain class of ships, e.g., FFG-7, the model

93

Page 94: 03137348

estimating relations which are based on several ship classes could

be changed. This could be accomplished with relatively little

difficulty since no change to the program logic would be required.

This change would probably increase the value of the input array

since modeling ships of a class different from the one the model

is based upon may require a more detailed input.

The detailed output of the model could provide a basis for bud-

geting weights and volumes for beginning the preliminary design

phase. Once a concept design has been selected, the preliminary

phase is generally handled by a number of design teams working in

parallel in areas such as combat systems, mobility, ship support,

hull structures, habitability, and ship systems. Each of these

groups could be assigned the volume and weight groups associated

with their areas of functional responsibility as an initial budget

or design guide.

This method of providing an initial budget based on model

predictions could result in a more efficient ship design than

having each design group start with only gross ship characteristics

and providing their own first assessment of what they feel they

need. If the design groups find that the budgeted weight and

volume are just not satisfactory to provide the required functional

capabilities at the desired design standards, the acceptable values

can be directly input into the corresponding weight and volume

groups of the program to override the calculated values. The

model can now be used to provide an updated prediction for the ship

reflecting the fixed values input. This would also provide the

designer with an indication of how changes in one functional group

94

Page 95: 03137348

may have an affect on another group, e.g., adding weight to any

weight group will mean added weight and volume for fuel to attain

the same endurance. In any event the designer would have an aid in

assessing the impact of design changes at any phase of the design.

95

Page 96: 03137348

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The synthesis model was found to give results accurate to

within about 20 percent when used to predict actual ships using

standard input specifications at the level of early conceptual stud-

ies. When using this level of input to predict existing ships, the

differences between model predictions and actual ship characteris-

tics can generally be explained by special features of the actual

ship. Since the model predicts a "standard" value based on the

sample data, results at this first and roughest level of modeling

will tend to be predicted on the low side. This is true because

the model will make its standard estimations considering a ship

with essentially no special features.

The computer synthesis model can be used more effectively

during the conceptual phase of the design than at any other stage.

The model developed in this thesis allows the user to make the

same kinds of ship systems level tradeoffs as previous models.

Input options are selected for payload and performance features

and a series of standard calculations are used to predict the

results. The model provides additional versatility at this phase

of design, since it enables the designer to directly input values

at a more detailed functional level when it is desired to provide

features which differ from the standard calculations provided.

Results attained when using the model in this manner were shown to

be within 5 percent of existing ship values for minimal amounts of

additional specification and could be reduced even more if additional

items were specified.

96

Page 97: 03137348

The model was also shown to provide a means of conducting com-

Parative studies between ship designs. This is one area where

models which can accommodate only one set of design standards

cannot be applied. The model used in this manner could be of

considerable value when analyzing foreign ship designs where the

design standards differ for U. S. practice in most areas. The model

can provide a prediction for any existing ship by using specified

input values when available and providing the standard calculation

if a better value is not available.

Although the synthesis model appears to give accurate results

in its current form, there are several areas which are recommended

for additional investigation or improvement. The areas which are

recommended for future investigation are discussed in the following

paragraphs.

With the current limits placed onthe Cr array, many ships

cannot be run which may be very desirable. Perhaps the best

solution to expanding the Cr values available would be the addition

of the data from another model test series, such as series 64.

Also, the effect on speed-horsepower predictions caused by

sonar domes of modern warships should be included in the horsepower

calculating routine. It is felt that the large sonar domes, e.g.,

SQS 26 bow mounted sonar, could have a noticable effect on speed-power

predictions at both endurance and maximum speeds. The current

model does not consider the effects of sonar domes.

It is recommended that the payload shopping list data be

modified to include the cruise, battle, and 24 hour electric load

requirements for each item. This would be especially desirable

97

Page 98: 03137348

for the items which fall under weight groups 4 and 7 (electronics

and armament), since these are the most variable items from one ship

to the next and the hardest to predict electric loads for.

Since payload items used on naval combatants are continually

changing, the payload shopping list should be reviewed period-

ically to insure that it is kept up-to-date. Some items on the

list will require changes as systems are revised. Other items

may lose their value on the list and should be deleted, while

new items should be added to the list as they become available.

It would also be desirable to include a routine which would

consider the topside deck areas required by payload items and the

superstructure. In recent years the Naval Ship Engineering Center

has developed a significant capability to relate electronic

system performance to topside geometry. Information of this type

could be used to help set limits on length and height requirements

for the superstructure.

An additional recommendation for future development is the addi-

tion of a cost routine to the program. Results attained by the

program could be used to predict acquisition cost for a lead ship

of the design and costs for follow-on ships. Also, relationships

could be derived to predict a life-cycle cost which may be of more

interest than the acquisition cost.

The model could be modified to handle changes in hull shape

which are considerably different from conventional design practice.

The model relationships are based on ships of conventional hull

shape. New relationships would be required for most all items due

to the effects of an unconventional hull shape on features such as

98

Page 99: 03137348

powering, arrangements, structures, access, etc.

As discussed in Section 4.5, the model can be used to design

to indices rather than to gross weight and space values. However,

the model requires an iteration of synthesis runs which could be

expensive and time consuming. It would be desirable to have a model

where design indices could be input with the model iterating a

balanced solution satisfying the indices.

The ship synthesis model developed in this thesis is intended

to serve only as a design tool, and as such, complete reliance

should never be placed in the results attained. However, it is

felt that if the results are properly analyzed, the model will

enhance the design-engineer's ship-design capability. Since the

model is only a design tool, the relationships used in the model

must be kept current. The users should conduct a periodic review

of empirical relations used to insure that they are in agreement

with current design policy.

Finally, as has been recommended for several other synthesis

models, it is recommended that the model not be programmed as part

of a ship optimization routine. Any optimization criteria selected

would in general be difficult to define and may result in more

desirable ship characteristics being discarded due to biases built

into the criteria. It is felt that an experienced designer could

better direct the selection of input combinations to be used based

on analysis of the previous results attained.

99

Page 100: 03137348

REFERENCES

1. Abbott, Jack W. and Baham, Gary J. "COGAS--A New Look forNaval Propulsion" Naval Engineers Journal, Vol. 86, No. 5,October, 1974, pp. 41-55.

2. Comstock, John P., ed. Principles of Naval Architecture.New York: The Society of Naval Architects and Marine Engineers,1967.

3. "Conceptual Design of Ships Model (CODESHIP) (U)." Centerfor Naval Analyses, Research Contribution 159, Volumes I throughIV, December, 1971.

4. "Consolidated Weight Listing for Various U. S. Navy Cruiser/Destroyers," Naval Ship Engineering Center, 1975.

5. Cotton, James L. "Fourth Update of CODESHIP Payload ShoppingList." Center for Naval Analyses, CNA 662-75, 2 May 1975.

6. "Electric Power Analysis for DLG-9, DDG-2, DEG-1, DE-1052,DDG-FY67, DD-963, FFG-7."

7. Gertler, Morton, A Reanalysis of the Original Test Data forthe Taylor Standard Series, David W. Taylor Model Basin Report806, Washington, D.C.: U. S. Government Printing Office, 1954.

8. Goodwin, Michael J. Ship Synthesis Model for Coast Guard Cutters.Massachusetts Institute of Technology, Department of OceanEngineering, Thesis, June, 1975.

9. Graham, C. and Hamly, R. 'Simplified Math Model for the Designof Naval Frigates." Massachusetts Institute of Technology,Department of Ocean Engineering, Course 13.411 Handout, Lectures5 through 8, September, 1975.

10. Johnson, Robert S. "Ship Synthesis Models--With Examples."'Naval Ship Engineering Center, Hyattsville, Md.

11. Kehoe, Capt. James V., Jr. "Warship Design--Ours and Theirs."Naval Engineers Journal, Vol. 88, No. 1, February, 1976,pp. 92-100.

12. Libby, D. A. "A Guide for Estimating the Propulsion PlantWeight for Naval Type Surface Ships." Naval Ship EngineeringCenter Code 6144, February 1970.

13. Mason, T. W. "Data Subroutine CNA Computer Program 13-655."Center for Naval Analyses Research Contribution No. 14,26 August 1965.

100

Page 101: 03137348

14. Menz, M. G. "Ship Design Analysis--Machinery Box EstimatingProcedures." Naval Ship Engineering Center Memo 6152: MGM:dcd,Ser 131, 29 April 1969.

15. Mills, J. "Feasibility Studies and Ship Synthesis Models."Lectures 7, 8 and 9. Unpublished lecture notes for ProfessionalSummer at M.I.T.

16. Naval Vessel Register/Ships Data Book, Naval Sea Systems Command,Washington D.C., 1 July 1975.

17. "Proposed U.S. Navy Space Classification Manual." Naval ShipEngineering Center, December, 1969.

18. Shen, Michael and Gale, Peter. "A Procedure for Predictingthe Speed of Surface Ships in Rough Head Seas." Naval ShipEngineering Center Report No. 6114-71-4, 1970.

19. Shen, Michael, Gale, Peter A., and Walker, Kenneth. "AnImproved Procedure for Predicting the Speed of Surface Shipsin Rough Head Seas." Naval Ship Engineering Center ReportNo. 6114-71-8, 1970.

20. "Ship ork Breakdown Structure." NAVSHIPS 0900-039-9010, NavalShip Systems Command, Department of the Navy, Washington, D.C.20360, 1 March 1973.

21. Smith, L. C. "Ship Space Classification Data." Ship ConceptDesign Division, Naval Ship Engineering Center, March, 1970.

22. "Summary of Compartment Volumes and Deck Areas for DD-963."Contract No. N00024-70-C-0275, ID No. DD75-010, Ingalls Ship-building, Pascagoula, Mississippi, 12 November 1975.

23. Ward, W. K. "A Method for Estimating the BSCI Group 203 WeightDuring Concept Formulation and Feasibility Studies." NavalShip Engineering Center Code 6144, May 1968.

101

Page 102: 03137348

APPENDIX A

USES GUIDE

102

Page 103: 03137348

APPENDIX A

USERS GUIDE

General

This Appendix is intended to serve as a guide for preparing

data and specifications for the computer synthesis model listed

in Appendix E. For proper use of the computer model it is man-

datory that the data input follow the outline of this Appendix.

Input for the model can be divided into two main groups. The

first group containing the data for the list of symbols (names)

to be used in the output, the Cr arrays used in estimating propul-

sion power, and the payload data describing the payload character-

istics. The second group contains the data for individual ship

runs.

The computer cards for each job run should be set up in the

following order:

Control Cards

Main Program

All Subroutines

Control Card for Data Input

Symbol Cards

Cr Data Cards

Payload Data Cards

Blank Card

Ship No. 1 Specifications

Blank Card

Ship No. 2 Specifications

Blank Card

103

Page 104: 03137348

Ship No. 3 Specifications

Blank Card

Etc.

Ship No. n Specifications

Blank Card

Blank Card

Control Card

The symbol cards and Cr cards are read by the main program

and must be in the proper order with no blank cards between them,

although some blank cards are included in the symbol data. The

payload data is read by subroutine DATA2 and requires the blank

card after the last payload item to return control to the main

program. The symbol cards, Cr array cards, and payload item

cards are read into the program only once and are stored in arrays

for use with all test cases run.

The data cards containing the specifications for each ship

are also read in by subroutine DATA2 and must be followed by a

blank card to return control to the main program to allow calcu-

lation for each ship to proceed. Two blank cards are required

at the end of the data deck. The first blank card serves the same

purpose as the preceeding blank cards, i.e., returns control to the

main program to calculate ship results. The second blank card

indicates that no additional ships are to be calculated and directs

program execution to stop.

Data for the symbols, Cr arrays, and payload items is listed

following the program listing in Appendix E.

104

Page 105: 03137348

Ship Specification

In order to set the input specifications for each ship to be

run, a specification array of 2500 elements is used. It is through

use of this input array that the versatility of the program is

utilized.

The specifications are numbered for use by the computer.

The blocks of the array are divided as listed below:

Blocks Use

1-99

100-299

300-1099

1100-1899

1900-2199

2200-2249

To define performance, hull, power

plant, accommodations, special features,

and calculation control.

For specifying the payload items and

quantity.

To directly input the weight of any

of the BSCI weight groups. This over-

rides any program calculation.

To directly input the vertical center

of gravity of any of the BSCI weight

groups. This overrides any program

calculation.

To directly input the volume of any

of the functional groups of Appendix C.

This overrides any program calculation.

To directly input the electric load

(cruise, battle, or 24 hour average)

for any electric load group. This over-

rides any program calculation.

105

Page 106: 03137348

2250-2299 For specifying certain miscellaneous

program parameters or coefficients.

2300-2500 For inputing any special payload items

desired which are not included in the

payload shopping list.

The primary specifications for any ship run are those defined

as the problem specifications in Table 12. This table lists

several options which are available to the user in specifying

each ship.

The user should keep in mind while preparing input data for

each ship that the program initially sets all elements of the

specification array to zero. Therefore, care must be taken to insure

a value is input for every appropriate non-zero specification.

Also, for each succeeding ship after the first one, the values of

the specifications remain the same unless the appropriate element

is changed.

The user has the option of selecting either the sustained

speed (number 1) or the SHP at sustained speed (number 12). If

both are specified, the SHP is used and VSUS is ignored.

The length between perpendiculars, LBP, (number 4) may be

selected or values for L/B and B/H must be input. If L/B and B/H

are specified, but not LBP, the program will calculate a value for

LBP and proceed. However, if LBP is specified the input values

for L/B and B/H are ignored and the input LBP is used.

The number of boilers must be specified if conventional steam

propulsion is selected. Also, the number of boilers and reactors

must both be specified if nuclear propulsion is desired. In all

106

Page 107: 03137348

cases the number of main propulsion engines and number of shafts

must be specified.

Values for propeller rpm and diameter may be specified, if

desired. If not specified, a calculation is made for each of these

variables to allow estimating BSCI weight group 203.

The machinery box dimensions may be input, but it is required

that if any one of the dimensions (numbers 21,22 and 23) is input

that all three be specified. The machinery box volume may also

be input using element number 2121 as explained in the following

paragraphs or a calculation will be made by the program.

Propulsive coefficients used in estimating shaft horsepower

at sustained and endurance speeds may be input. If not input,

values of 0.67 and 0.65 are used, respectively.

The frictional resistance correction factor (number 26) may

be specified. This value is used in the horsepower calculation.

A value of 0.0004 is used if none is input.

The ship service electric and emergency electric plant types

must be specified. Item numbers 33 through 40 may be left as

zero if it is desired to have the program size the electric plant.

However, if any of items 33 through 40 are specified, then the entire

electric plant must be specified, e.g., 4 steam turbine generators

at 500 KW each and 2 low speed diesel generators at 300 KW each.

The free surface correction (number 71) may be entered to

adjust the KG above or below the average built into the program

and may be entered as a positive or negative number.

For other specifications a value should be selected as sug-

gested by Table 12.

107

Page 108: 03137348

Payload specification is accomplished by use of specifications

100 through 299 as shown in Table 13. Up to 100 items may be

specified, in any quantity for each item. The quantity is to be

given as an even numbered specification, starting at 100. The asso-

ciated item number is to be given as the next specification in

each case.

The program has been developed to allow the user to specific-

ally input any weight group, volume group, center of gravity, or

electric load group that may be desired. This capability may be

especially useful in later stages of a design as more and more

characteristics of the ship become fixed. For example, if the

propulsion plant had been selected, the user could directly input

most of the BSCI Group I weights. The input weights would override

any calculated values and improve the accuracy of the overall

ship characteristic estimates. The user should then be able to

continually update the prediction of the final ship, until in the

end, the entire. ship is specified. The specification numbers

which correspond to the weights, vcg's, volumes, and electric

loads are found in Tables 14, 15, 16, and 17, respectively.

During execution of the program the values of elements 300

through 2249 of Tables 14, 15, 16, and 17 are checked for a non-

zero value. Non-zere values found are usedl however, if the

element is left zero the standard calculation is made to estimate

the appropriate item. Because of this feature, if it is desired

that a function have the value of zero, a small positive value

must instead be input, e.g., to make volume group 311 equal zero,

input item 2111 equal to 0.01. The exception to the above is that

108

Page 109: 03137348

volumes for functional groups 100, 110, 120, 130, 200, 210, 220,

230, 300, 310, 320, 330, 340, 350 and 360 may not be specified

directly since they are calculated by summing other volumes.

A list of miscellaneous specifications is provided in Table

18. Not all of the elements in this list have been used, and

therefore, the capability exists to readily add more items. le-

ments 2250 through 2273 have been used to reflect desired changes

in primarily personnel related area. As shown in Table 18 these

elements are used as multipliers or coefficients to change the

calculated value of certain volume groups. Table 20 is provided

to suggest a range of values which might be used for these elements.

The DD 931 and FFG 7 were selected to generally reflect the two

extremes in personnel related volumes required (mainly habitability

areas) in current U. S. Navy ships. When not input, a multiplier

of 1.0 is assigned.

Item 2274 allows for input of the deck height to be used in

calculating volumes for payload items and also in computing volumes

associated with an added raised deck. If no value is input a

value of 9 feet is assumed. Item 2299 is used to input the

machinery box prismatic coefficient. When not input, a value of

0.95 is assumed.

Table 19 indicates how special payload items not identified

in the payload shopping list at the end of this Appendix may be

input. The information required for special items is the same

as that of regular payload items. The appropriate weight and

volume groups must be entered along with weight, vcg, and area

requirements.

109

Page 110: 03137348

Payload Shopping List

A key element in preparing the input for a ship run is the

specification of the ship payload items. The list of payload

items available for selection is given in Table 21. This list

was developped by selecting appropriate items from those available

in Reference (5).

While the definition of each payload item is given in Table

21, the characteristic data for each item is found in the payload

data listing included in the program listing of Appendix E. Each

line of payload data contains the payload item number followed

by seven numbers separated by blanks. The data should be inter-

preted as shown by the following example using payload item 15:

A B C D E F G H

1,15 408 112 9.8 12.0 1 210 100

where A = item number (15)

B = weight group number (408)

C = functional volume group number (112)

D = item installed weight in tons (9.8)

E = center of gravity location (feet/factor) (12.0)

F = center of gravity reference index* (1)

G = deck area inside the superstructure (sq.ft.)(210)

H = deck area in the hull (sq.ft.)(100)

1 = item location relative to strength deck (feet)

2 = item location relative to keel (feet)

3 = item location as fraction of ship hull depth at

station 10.

110

Page 111: 03137348

Example Ship Input

As an example, input data for a ship might look like the fol-

lowing:

column 1 column 20

1 0 20 4500 408 0 0 .59 .75 0 0 6 40000 0 0 2 1

17 2 1 0 0 0 0 0 .66 .67 .0005 0 0 0 5 4 0 4

35 0 0 0 00 .300 0 0 2 2 0 0 0 14 15

52 156 00 0 45 00 0 0 1 2 0 .75 0 10 20

68 .10 20 .05 0 2 0 0 2

100 1 2 1 24 1 27 1 41 1 61 8 64 1 65 1 75

116 1 100 1 102 1 116

312 40.5

1825 17.2

2161 9000 0 13000

2250 1.32

Since the ship specifications are read in under subroutine

DATA2, Chapter 3 provides the information on how to code the input

data. A sample input is given in the listing at the end of Appendix

E. In the example above a few selected specifications are:

Item 1 = 0 VSUS not specified

Item 4 = 408 LBP specified

Item 12 = 40000 SHP specified

Item 17 = 2 controllable pitch propeller specified

Item 62 = 2 aluminum superstructure specified

Item 100 = 1 quantity of 1 of item 101 specified

Item 101 = 2 payload item number 2 specified

Item 2161 = 9000 volume of ballast tankage specified

111

Page 112: 03137348

Item 2162 = 0 volume of peak tankage not specified so

will be calculated, but a 0 was entered to

allow item 2163 to be specified as 13000

112

Page 113: 03137348

TABLE 12

PROBLEM SPECIFICATIONS

Number Definition

1 Sustained speed, knots2 Endurance speed, knots3 Endurance range, nautical miles4 Length between perpendiculars, feet5 Length-beam ratio (L/B)6 Beam-draft ratio (B/H)7 Prismatic coefficient (Cp)8 Midship section coefficient (Cx)9-10 Not used11 Propulsion plant type: 1. 600 psi steam

2. 1200 psi steam3. 1200 psi pressure fired steam4. nuclear5. gas turbine 1st generation6. gas turbine 2nd generation7. diesel8. COGAS

12 Sustained speed shaft horsepower, SHP13 Number of boilers14 Number of nuclear reactors15 Number of main propulsion engines16 Number of shafts17 Propeller type: 1. fixed pitch

2. controllable pitch18 Shaft type: 1. Hollow

2. Solid19 Shaft RPM (optional)20 Propeller diameter, feet (optional )21 Depth of machinery box, feet (optional)22 Length of machinery box, feet (optional)23 Beam of machinery box, feet (optional)24 Propulsive coefficient at endurance speed (optional)25 Propulsive coefficient at maximum sustained speed (optional)26 Frictional resistance correction factor, &CF (optional)27-30 Not used31 Ship service electric plant type: 1. steam

2. gas turbine 1st gen.3. gas turbine 2nd gen.4. low speed diesel5. medium speed diesel6. high speed diesel

32 Emergency electric plant type: 1. gas turbine 1st gen.2. gas turbine 2nd gen.3. low speed diesel4. medium speed diesel5. high speed diesel

113

Page 114: 03137348

TABLE 12 (continued)

Definition

Number of low speed diesel generators (optional)Number of medium speed diesel generators (optional)Number of high speed diesel generators (optional)Number of gas turbine generators (optional)Number of steam turbine generators (optional)KW per diesel generator (optional)KW per gas turbine generator (optional)KW per steam generator (optional)Electric plant design margin (e.g., .30)Not usedType of ship heating: 1. steam

2. electricFin stabilizers desired: 1. no

2. yesNot usedShip officer personnel accommodationsShip CPO personnel accommodationsShip enlisted personnel accommodationsFlag personnel accommodationsTroop accommodationsPassenger accommodationsShip accommodations duration, daysNot usedBasic hull material: 1. steel

2. aluminumBasic superstructure material: 1. steel

2. aluminumNot usedGM/B stability value (e.g., .10)Not usedTolerance for displacement iterations, tons (e.g., 2)Maximum number of displacement iterationsTolerance for vertical center of gravity iteration, feet(e.g., .1)

Maximum number of center of gravity iterationsDeSign, construction margin (e.g., 10% margin entered asO. 10)Free surface correction, feetPrint index, number of pages: 0. input plus summary of

results1. above plus functional

listing2. all of above plus BSCI

weight groups and elec-tric loads

Miscellaneous coefficients print index: 0. don't printconstants

1. print constantsNot used

114

Number

333435363738394041

42-4445

46

47-495051

525354555657-6061

62

636465666768

6970

7172

73

74

Page 115: 03137348

TABLE 12 (continued)

Definition

Passageway type: 1.2.

Not used

centerlineport & starboard

TABLE 13

PAYLOAD SPECIFICATIONS

Definition

Quantity of payloadPayload item numberQuantity of payloadPayload item numberQuantity of payloadPayload item number

Quantity of payloadPayload item number

item in 101(payload shopping list)item in 103(payload shopping list)item in 105(payload shopping list)

item in 299(payload shopping list)

115

Number

75

76-99

Number

100101

102103104105

298299

Page 116: 03137348

TABLE 14

WEIGHT SPECIFICATIONS

Definition

of BSCI* Weight Groupof BSCI* Weight Groupof BSCI* Weight Group

100, tons101, tons102, tons

400 Input of BSCI* Weight Group 200, tons401 Input of BSCI* Weight Group 201, tons*. .

900 Input of BSCI* Weight Group 700, tonsInput of BSCI Weight Gru 70 tons

903 Input of BSCI* Weight Group 703, tons904 Input of BSCI* Weight Group 704, tons

1000 Input of BSCI* Weight Group 800*, tons

1099 Input of BSCI* Weight Group 899*, tons

NUMBER = BSCI WT GRP + 200

*Modification to 1965 BSCI weight listing found in Appendix C.

TABLE 15

VCG SPECIFICATIONS

Number Definition

Input of VCGInput of VCGInput of VCG

for BSCI*for BSCI*for BSCI*

Weight GroupWeight GroupWeight Group

Input of VCG for BSCI* Weight Group 200,Input of VCG for BSCI* Weight Group 201,

Input of VCG for BSCI* Weight Group 700,

Input of VCG for BSCI* Weight Group 703,Input of VCG for BSCI* Weight Group 704,

Input of VCG for BSCI* Weight Group 800*, feet

Input of VCG for BSCI* Weight Group 899*, feet

NUMBER = BSCI WT GRP + 1000

*Modification to 1965 BSCI weight listing found in Appendix C.

116

Number

300301302* *

InputInputInput

110011011102

12001201

1700

17031704

1800

1899

100,101,

102,

feetfeetfeet

feetfeet

feet

feetfeet

Page 117: 03137348

TABLE 16

VOLUME SPECIFICATIONS

Number Definition

1900 Functional volume group 100*, cubic feetFunctional volume group , cubic feet

1911 Functional volume group 111, cubic feet

2000 Functional volume group 200, cubic feet

2100 Functional volume group 300, cubic feet0 0

2199 Functional volume group 399, cubic feet

NUMBER = FUNCTIONAL VOL GRP + 1800

**Functional Classification System defined in Appendix C.

TABLE 17

ELECTRIC LOAD SPECIFICATIONS

Number Definition

2200 Electric cruise load group 100, KW2201 Electric cruise load group 200, KW

ElectricElectricElectricElectricElectric

ElectricElectricElectric

cruisecruisecruisebattlebattle

battlebattlebattle

load group 900, KWload margin, KWload total, KWload group 100, KWload group 200, KW

load group 900, KWload margin, KWload total, KW

Electric 24 hour average load group 100, KWElectric 24 hour average load group 200, KW

ElectricElectricElectric

24 hour average load group 900, KW24 hour average load margin, KW24 hour average load total, KW

117

22082209221022112212

22192220222122222223

223022312232

Page 118: 03137348

TABLE 18

MISCELLANEOUS SPECIFICATIONS

Definition

MultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplierMultiplier

forforforforforforforforforforforforforforforforforforforforforforforfor

calculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated valuecalculated value

of volume group 211of volume group 212of volume group 213of volume group 214of volume group 215of volume group 216of volume group 217of volume group 218of volume group 219of volume group 221of volume group 222of volume group 223of volume group 224of volume group 225of volume group 231of volume group 232of volume group 233of volume group 311of volume group 313of volume group 325of volume group 341of volume group 342of volume group 343of volume group 370

Input for value to be used for deck height, feet

Not used

Input for value of machinery box prismatic coefficient

118

Number

22502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275thru22982299

Page 119: 03137348

TABLE 19

SPECIAL PAYLOAD SPECIFICATIONS

Number Definition

2300 BSCI weight group of first special payload item2301 Functional volume group of first special payload item2302 Weight of first special payload item, tons2303 Center of gravity location (feet/factor)* first item2304 Center of gravity reference index* first item2305 Deck area inside superstructure for first item (sq.ft.)2306 Deck area inside hull for first item (sq.ft.)2307 Not used2308 Not used2309 Not used0060

*0000

2490 BSCI weight group of twentieth special payload item2491 Functional volume group of twentieth special payload item2492 Weight of twentieth special payload item, tons2493 Center of gravity location (feet/factor)* twentieth item2494 Center of gravity reference index* twentieth item2495 Deck area inside superstructure for twentieth item (sq.ft.)2496 Deck area inside hull for twentieth item (sq.ft.)2497 Not used2498 Not used2499 Not used2500 Not used

*1 = item location relative to strength deck (feet)2 = item location relative to keel (feet)3 = item location as fraction of ship depth at station 10

119

Page 120: 03137348

TABLE 20

EXAMPLE COEFFICIENTS FOR MISCELLANEOUS SPECIFICATIONS(Personnel Related Items)

SHIP

DD 931*

.71

.77

.63

.68

.57

.57

.92

.74

.82

.55

.61

.34

.34

.241.01.24.60.66.77.75.85.981.191.04

FFG 7*Model Standard

1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0

1.321.17.77

1.11.94.93.99

1.421.181.331.122.*231.723.30.961.722.821.032.691.651.331.73.62

1.10

*DD 931 and FFG 7 were selected to indicate the recommended range forcoefficients, since DD 931 was launched in 1955 and FFG 7 isscheduled for launch in 1977.

120

ElementNumber

225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273

Page 121: 03137348

00

OO C

o 0 H'O:>

;r

HE-4

cO 'O UircU N o-' , O.- - N 't. 0 N L- o Io1o o _3 _3 r. . .. O ul o5 104 aQ4 C)4 P4 U2 U ) P4 U4 r-4 r luWto t U f tX VI to m CQ

cOo' O,- Nt " -. L Co Co O\CMNqN' WN C~K% 1 r( 0) rC lC\'

COUS

0CQ

z

E- 0 : H

0)( Wt "'O _- U W)\N N N OD- n4 N

u2 u vU cY aV) t u t W

U)U)5I E

$ tZ Z U) Ct YC C? C'Y Ccn tOp ) .4

0

0

4)4)

U(

o

O :-

C( H H4) Ceo o ;1

W to Lr Cm m

O N Nc\ t\D U,-c\ O-\ '-N N--'t\-; -t t t t ;t ; - -t Lr\ LN Lf\ l\

I~~~~zr Vz4PHrZ4 P4 PL4P4 H rZ4H IN -\ 3 :>B 3v

-4 Q:. 1: '.,11.0 O0 CO- \ O O O N \ N N t pn C -t _ t t ;-t -t

H H

O\ OC NL , In\

I) ) r 3 o' CQ CQCvJ tQ" o 3 r. uo o3 o3 oU o3 ou, P4I I P a4 P, 1r4 4 o4 P. ar /i o4 o 11 4P0 vn uz to U) tQ Wo ow ce CQ CQ Ul U) tQ U

_ NN W 4 U u\ D ckO :) -o - ~- N U s N NU NON

121

z0HE-4HzH

N

E..

E-H

00

0

EHH

O O

0 r.0

Id 30c4

a 0

or3

CO0

4)

· , r.) I:

p oZP

"e a

O O

000 0r4.d 4

h o H

4 o toE4E1U2U

OHE-4H zH M

C0

r.00

ZI 'H

1-1) I'Ul LN

Page 122: 03137348

cOOOH _E-I I I

H Iz

U) l o

E-4 E4X t; 5;

Hc- r otE. t cO

z 0

U t(

o a

oVHU LUI bc-U

U)O H I d

a o33 r.. E

r-o r--cS - tH H ·-o" o o t Z t 4t t\ K PC _N x .CHH. O a dO,-I o,--ai H 5. o ,.) O -C -- 0 O- 0

U) cI o o o , o, , ,

oco0 con m N (NO mO C\O CY 0 0 0 u3 q q ^^ ^t I r I _

P4 c dr*

\\-.NsusN 0 o 0O ' H H

c O O O M 0 .o o gE 5O CO O 00000

la

t sX0l PH H QZ H

p 0

H rn

a)o

o o

5 Ln oo P\ 0

*oN N0D NU

0 r,

o

a C

v m

0\- 1I4 N pa

D- 00 C 0 - N NN

z0t~:I

o C4 r* C oh 0*f-4 O4 0H 4

0

hId 4.0 C )U)- r4

05.4 4.

L o

14 4 0O '@ H

U2 0 %.0 r-lU d

o

-H a:

"N

· -u%4 I

rZ4 ntn e 1:

u\ '.O E- 0 ON"lo \.O \10\10 U

I E-

0

E-I , I4C Nd or C)U)QP> i CoC x d14E0c e544.) P r

tC:z1~ r

zE-N

0 QNUI

t z4z(I II I ~N IQ

LU

00) I I0

o oU)Q E E4

C- 4 u O t -

122

04)

c)UI

N

Page 123: 03137348

0)

1_ -Iz

Z -o0 4 ,'-. r-IH z 1 0 a4E4 000 : m

H cO,- l - XO4, ,,' . 0 Cnf P1:34 I Ic O'.O I -f:0

CU CUU) W C z C 00E4 E- tP U-\ I

EH1H

_t

r-

0

a)ooo ·

, a .I5454 0

k O

H ,l F:

NM\4c0N \ iO C- 0 N0 - N tW\nnn~$Q _' N) V_ _4, _f ~K~ _ _ _

v- r I- l- 1

torl

C)

EC) 0W

*d

0 CoEo-

.P0 -1 10·4 (d H_ ) __C00

U-\:-

,,o C;t ~f u00-

H Ha

0

O CbO

I C

V O H-t u I I I

co: OO - N

4)>o _ _~-~

coW0

co

Uf)

r_4054

00054

V.r-10

H

Co.rj

C

4

00

a)CoH

Co

to54

co

54El:0)

z

U)

-H 5CO CU

a t4o

Coa 0-.

o r) .

ot od*ri Fri0 h

0 th 0 00E-I ul ) Z

Uc\ -=t Ur\U\UU'\ L\ Lrl\LrN Lfl

SH

U)

D3o

\,o

c' ID IIo-. : z

0 0-O 00 --0000,- -

UE

0zU) HH

4 10W) -t 54

CD E0 040 0% o t a a

L\ E t2 0

0 %- '- -(4.4O ZZO I I I

0 z z

C~a'

H oENH

0 I

co nco FA ZZ: Vimz = = P

,N u N O C_ o

__ - - - - -

* 0* *

aI a 1= M4 m M PO co

n U>

:

123

_: O OHHuNcO V m m

Oa0 - N on 4 oUN odN N N N N N N _

v- - - - 9-- 9-

r~ok45

-1

:r-t

n3

§Cco4.)04)0

0

0

Co

I c :-

D4 c) 00

U I I I '

U) $4'-4 o 00

NNNI_

'0a)

.,.3Oa00

NJ

HHzH

H

co60S

Cohi(1)U)WH054

4a)*,000

54

rz4

F:iF:CD/

Page 124: 03137348

(J)£t

UU

O o 0D.

c) ) .c.)0 H P4 I P000 Co U-\0 D O ,

oo o C 00 C _ _ _ _ _ _ _

_v r_H H4 a

4) 4)00~-

O O0 0

0 0

U0O

-4 4

0

(12

A P(v 0 N X >

C1 ~

-I C C t tM- K;AN-t

~4Q

; : N- a) t '.ozcot

I; I: II: I: II:

PCN -Lt O kb E-O 000 - N CN amooomo o o oC- C-- - _ N N N N

0

H

o o00

a- v aV54 n ed 0l r

H-- -V H U2 C%1 U UC CUC? U V bO bO h4 t)

H MAA k- 'O-

-zuzzzzzOmH (1(1 a 0r 0c0 Ar >r. Z 0> >:E 4 a

E-fHI

c M O - N N\ -Lt (- U, L -C-C-D \C- \ D V-- - - - - - -

0a

-ra)00

0)

-H(a

.rizE

zy: N S

h hP 5 I

E4 E-4 E- E P 4-I I 1 I t1 ( 0

C \ \ '0 1 - 0

H H H H H _pr; IY a a; a; UO

O0;O4o 0

r: I M

c cO ' MO - 'N -tU- -C- CC- - C- C-

124

aCU

0o4p

bCl

P:-HCU

0(d

00a):3

E-4

0

E0E-4

Co

P 0

• o Q4 40

P oE -ri r- UE-4 E4E- EE-4 0

\ 0rl Cu\ CuN A t( Kl\ KN PIltllk~~~~10~ ~C M ~ ~LE 4

0

O) H. o

D O N0o-N ' C- C- C C c

cu(U

Co LHHZ 00 $.H .H 0Z 0H

, k

0,?Ca0E_ 4

$4

4D0,-a) O

0 v.1d

H 0H- a0

O Ez14 I 1

0 U1 CU CUE- : Po PC

0

0

0o

rz;E-HI

(12

N

o 0 N A N NN

Page 125: 03137348

H r-CC0H .40 CH

0 0H_ :00CU O-0.

0 ri A j00 00

v 4 =I 0 4 - rCUOm~OO r

4L~o c-co 0'N LND CO ON NWN Nr \ W~ \ N Cf y C N

$40)4

:4100$4:40pq

10

-:R

93 -:s

H H00(a) 4)0 9O O00 a) a)

12 P

4-)Ha) 0

·- A 0 PQ

*H i -H 0 04 4a 0P PI :E

0H

0H U0

'~ P P

o.

-)k -H

, P40 4

, t:P

No \0 coU0 0 0 0- N (N fL c \_LC\ Lf N

t0C Cd0Cx1

tCUH

44- 4444 -4 O :JCYN 0\ NN N N N \ C1 ' N N J j NN

r-qa)

4.4

0) a) kt

0 d toO1 06 $E-i

N H 0 4 CU:Z :4oH H OHEYt HO tHpq H k , H

1 H 4:) Hc0 r-i 0s 0 P, a4

5: O >

_-N rV U2 r) Z4.1:40a4

:

X H

4 0H I

P - > P4

ct: e: < · : 41 34 .4 '' I 9 1

q-p

000

oI0

o0 oa)

Ew u)

o00 0- 'N 'N U oOO .......- - -

0-HI'd

-H

-H~-p00CU-H-H4

rICUto0

* c -H bO-CU

o0 H- O

O .0

4OP(d( P4

0 -H0 4N 01 U )

CO CU C

,III,'14> Q t1Ec, m h H1 1 11

d 0 0 0 0Ln tS tl . . . . * o

Cd :. O El v v

P . :- H 0 c H C- )I: s z x

:4 0< ~o-H

H -pH CU

I: %-a0ON0 C Lr -H___ N c NNNNN >PNNN N NNNNN

125

P4

0E-f

A 0 ,D r~ cU cU

4 H CU H H

LtCU b

_H-p _ 4)a

H 0

f4Z :4-) Cd

U Um

00-n 3C 0 0d

E-4-p

CD CdOH 0tk4e d $4

0H

0'- Pkr-CeC NC% f

z0HE-4HH p

4n HP

000a

0b4

N imH QS E - I c n~ r

k

U)

a,40-I

:40

Ux-p:

CQ- 4-U1)Ic rIs P

U4cU4-)

toJU

Nc\ n i

0

-H-)00U

N

Page 126: 03137348

IC1

m

:tO4 0Lr% . 0

126

.1-t

100

d

c'JP9

z0:HELIHzH

0)00rIj

a)71 >Eel P,$4

:3

E-4 :3 F4

l-~

04.)

:E:

4.40Csz (a(

g0 03 t-H t-4

a)

UO r0P

4H(1)

s 0

(NJ ?=I

Page 127: 03137348

APPENDIX B

SAMPLE OUTPUT

127

Page 128: 03137348

APPENDIX B

SAMPLE OUTPUT

A sample output is provided in this appendix. The output

printed consists of the ship specifications, special payload input,

payload specifications, summary of results, functional grouping

results, BSCI weight listing, and functional electric loads.

The first items printed in the output are the ship specifica-

tions. The 75 ship specifications are printed in three columns of

25 each. Column 1 gives the specifications of items 1 through 25

of Table 12. Items 26 through 50 of Table 12 are presented in column

2 and items 51 through 75 are found in column 3.

The special payload input is printed in the format specified

in Appendix A.

The payload specifications are printed next. The item number

of each payload item selected from the shopping list is printed

with the quantity of the item.

The summary of results gives the overall ship characteristics

for the ship run plus a listing of some selected ratios. The nomen-

clature used for most of the items in the summary of results are

found in Appendix F. For those items not found in Appendix F, the

following definitions are provided:

LEN R DK Length of raised deck added, ft.

VCG FLD Full load ship center of gravity, ft.

SUS SHP SHP at maximum sustained speed

END SHP SHP at endurance speed

AVSEASPD Average sea speed in North Atlantic Ocean, knots

NU ACCOM Total number of accommodations on ship

128

Page 129: 03137348

Ship density at full load, lbs./cu.ft.

Ship density at light ship, lbs./cu.ft.

Payload weight fraction

Personnel weight fraction

Ship operations weight fraction

Payload volume fraction

Personnel volume fraction

Ship operations volume fraction

Ratio of weight group 2 to SHP, lbs./SHP

Ratio of machinery box volume to SHP, cu.ft./SHP

Ratio of weight group 3 to installed KW, tons/KW

Ratio of weight group 1 to total volume, lbs./cu.ft.

Ratio of weight group 5 to total volume, lbs./cu.ft.

Ratio of volume of personnel living and support to

total accommodations, cu.ft./man

Ratio of weight of personnel living and support to

total accommodations, lbs./man

Ratio total accommodations to full load displacement,

men/ton

Ratio of installed KW to full load displacement,

KW/ton

Ratio of SHP to full load displacement, SHP/ton

Ratio of full load displacement times VSUS to SHP

(transport efficiency), dimensionless

Ratio of payload weight times VSUS to full load dis-

placement, knots

129

FLD DENS

LSP DENS

WPAY/FLD

WPER/FLD

WOPS/FLD

VPAY/VOL

VPER/VOL

VOPS/VOL

WTG2/SHP

VMB/SHP

WT3/KWIN

WTG1/VOL

WTG5/VOL

VHAB/MAN

WHAB/MAN

MEN/DISP

KWIN/FLD

SHP/DISP

DP*V/SHP

WPY*V/DP

Page 130: 03137348

The ship constants as defined in Table 18 are presented next.

These are followed by the detailed results for the functional group-

ings of Appendix C, Table 22.

Results for the BSCI weight listing as given in Table 23 of

Appendix C follow the functional grouping results. The last results

printed are the functional electric loads as described in Section 3.9.

130

Page 131: 03137348

SHIP NUMBER 2

SHIP SPECIFICATIONS

VS USVENDRANGELBPL/BB/iCPCX

PROP PLTSUS SHPNU BOILSNU REACTNU ENGSNU SHAFTPROPELLRSHFT TYPPROP RPMPROP DIADEPTH MBLENTH BBEAS 3BPC ENDPC AXSP

PROP PLTSSEL TYPEMEL TYP

0.0020.00

4500.00408.00

9.073. 140.590.750.300.006.00

40000.000.000.002.001.332.001.000.000.000.000.300.000.000.00

GASTURB2MzDSPDIEMEDSPDI E

DELTA F

SSEL TYPE MEL TYPNU LOWSDNU NMDSDNU HI SONU T 3NNU' ST GNKW/DI ESLKW/GAS KW/STn ;ELC ARG

HEAT TYPFIN SrA3

OFF ACC

SHFT TY?PROPELLRFIN SA3HEAT TYP

5.000.000.000.000.005.004.000.004.000.000.000.00

1000.00O.GO0.000.300.000.000.CO2.002.300.000.000.00

14.00

HOLLOWCONT PITYESELECTRIC

CPO ACCCREW ACCFLAG ACCTRP ACCPASS ACCDAYS DUR

HULL MATSIPSTMAT

G M/B MIN

DISP TOLMXDIS ITVCG TOLMXVCG ITDCWTMARGFS CORRPRNT TYPPRNTCNST

PASSAGE

HULL MATSUPSTMATPASSAGE

SPECIAL PAYLOAD INPUT

VT GRP VOL GRP VT V:3 NU VC$ REF AREA SUP AREA HULL

NO SPECIAL PAYLOAD INPUT

131

15.00156.00

0.000.000.00

'45.000.000.000.000.001 .002.000.000.080.00

10.0020. 000.10

20. 003 .050.002.001.000.002.00

SZELALUITNUIPORTSTBD

Page 132: 03137348

SHIP NUMBER 2

PAYLOAD SPECIFICATIONS

QNTY ITEM1.00 21.00 241.00 271,00 411.00 618.00 641.00 651.00 751.00 1001.00 1021.00 116

800.00 1191000C.00 124

1.00 13140.00 1682.00 1801.00 1651.00 2122.00 2136.00 200

QNTY ITEM1.00 2041.00 2081.00 2092.00 2144.00 2151.00 221

12.00 2261.00 2301.00 2321.00 1901.00 242

193.00 21710.00 2191.00 48

QNTY ITEM QNTY ITEM QNTY ITEM.

SUMMARY OF RESULTS

DISP FLODTSP LSPVR LOADS

T Mn R3WTGPP 1WT RP 2WTGPP 3WTGRP 5WTGRP 5WTGRP 5WTGRP 7VOL TorVOL HULLVOL SSrR:RUISEKBATTLEKW24 HR'KVNUi LOUSDNU MEDSDYU HI SDNU GT GNNU ST GNKW/DIESLKW/GAS TKW/srT

3547.9724 5 9.70965.29122.98

1185.68270.56166.51131.29345. 38260.44

99.844930140.30382334.80110705. 10

2201.2617 39. 1 11286.52

0.004.000.000.000.00

1000.000.00).00

132

LBPBEANDRAFTDO 0D 10D 20D AYGLEN R DKCPCxVCG FLDVCG/DAVGL/BB/HEXCES KGRANGESUS SHPEND SHPVS USVENDAVSEASPDNU ACCOMKW INSTKW SPSERKW EMERG

408.0042. 4215 .9633.8925. 5026.7135.15

386.620.590.75

18.390.6B9.622.660.00

4500.0040000.007341.77

30.4920.0027 .72

185.0040C0.004000.00

O.OC

FLD DENSLSP DENSVPAY/PLDVP ER/PLDWOPS/FLDVPAY/V3LV P ER/VOLVOPS/VOLWTG2/SHPVMB/SHPWT3/KWINWTG 1/VOLWTG5/VOLVHAB/MANW H A B/ ANSEN/DISPKWIN/FLDS [IP/DISPDP*V/SRPwPY*V/DP

16.1211.180. 100.00.430. 180.230.59

15.152. 40

93.255.391 .57

517.45802.77

0.051.13

11.2718.612.96

Page 133: 03137348

SHIP NUMBER 2SHIP CONSTANTS

ELEMENT NUMBER VALUE2250 1.322251 1.172252 0.772253 1.112254 0.942255 0.932256 0.992257 1.422258 1.182259 1.332260 1.122261 2.232262 1.722263 3.302264 0.962265 1.722266 2.822267 1.032268 2.692269 1.652270 1.332271 1.732272 0.622273 1.102274 8.502275 0.002276 0.002277 0.002278 0.002279 0.002280 0.002281 0.002282 0.002283 0.002284 0.002285 0. 002286 0.002287 0*002288 0.002289 0.002290 0.002291 0.002292 0.002293 0.002294 0.002295 0.002296 0.002297 0.002298 0 002299 0.00

133

Page 134: 03137348

SHIP NUMBER 2

DETAILED RESJLTS--FUNCTIONAL GROUPIN3

GROUP NAME WEIGHTTONS

Wr FRAC VOLUMECU FPT

100 HIL MISS 345.0 0.0973

110III112113114115116

120121122123124125126127128

130131132133134135

140150160170180

COMH/DETR DIOCONRADARSONAREC4EVALUATEC/D SUPP

WEAPONSGUNSMISSILESASWHINE WARSN ARMSCM NO ELWEAP SUPSPE CEAP

AVIATIONCONTROLSTOW/MNTSTORESLIQUIDSORDNANCE

AIPH OPSCARGOFLAGPASSNGERSPEC MIS

70.016. 17.99.34.5

19.612.6

163.742. 690.29.60.03.0

11.96.30.0

111.312.121.96.7

68.02.70.0G. O0.00.00. 0

0.01970.00453.39220.00260. 00 130.00550.0035

0.0462. 0 120

0.02540.00270.00000.00083.0 3 340.00180. 0 000

0.03140.00340.00620.00190.3 1920.0008

VOL FRAC

89288. 0.1811

27391.7446.1615.2015.2295.

11407.2614.

18581.6208.8534.

935.0.

765.O.

2139.0.

43316.2763.

34850.3400.2304.

0.

3. 30000.00000. 00000.00000.0000

0. 0 5560.01510.00330.00410.00470.)2310.0053

0.0 3770.0 1260.0 1730.00190.00000.90160. 00000.33430.0000

0.0 8790.0C560.0 7070.00690. 00470.300

0. 0. 30000. 0.3003O. O.00CO0. 0.0000O. 0.0000

200 PERSONIEL 140.8 0.0397 111150. 0.2254

210211212213214215216217218219

LIVINGOFF BEROPPF ESSOPFF BATHCPO BERCP3 NESSCPO EATHCHEW EERCREWFN ESSCREWBATH

38.30. 00.00. 00.00.00. C .30.00. 0

0. 0 1080.00000.30000.0000C. 0000.00000. 0000.30000.00000. 0000

68265.9217.3456.1034 .479C.1817.1297.

29722.11412.5520.

0. 13850.01970.00700.0 210.03970.33370.00260.06030.02310. 3112

134

DENSITYLBSS/C T

8.66

5.724.91

10.9613. 34

4. 393.85

10.78

19.7315.3723.6823.090.008.780.006.640.03

5.769.841.414.40

66.08).03

0.000.O30.000.000.00

2.84

1. 260.030.00

0.000.000.000.000.000.00

Page 135: 03137348

SHIP NUMBER 2

DETAILED RESULTS--FUNCTIONAL GROUPING CONTINUED

GROUP NANE WEIGHTTONS

220221222223224225226

SUPPORTADMIN FNFOOD P8RED DENPEa SERVREC 6 ELSEWAGE

28,01.1

10.21.38.22.15.0

VT FAC VOLUNECU PT

0.30793.30030.00290.000140.00230.00060.0014

27462.1297.7552.2824.7450.66 39.1700.

230 STOWAGE .74.5 0.3210 15423. 0.3313231 STOR3S 30.3 0.0085 5036. 0.3102232 PER STOW 14.2 3.3340 4408. 0.0089233 POTWATER 30.0 0.0084 5979. 0.0121

300 SHIP OPS 1509.4 3.4256 292602. 0.5935

310 CONTROL 36.3 3.0102 18529. 0.0376311 SHIP CNT 27.9 0.0079 6056. 0.0123312 DA[ CONT 0.0 0.0000 2541. 0.3052313 OFFICES 8.4 0.0024 9932. 0.0201

320321322323324325

MACH SYSNACH BOXUPTAKESSH, BR,PRMA NEUVERVES TILAT

330 DECK AUX331 ANCRH,6T332 UNREP

340 MAINTAIN341 MECHAIIC342 ELECTRIC343 RISC

350351352353354355356357

STO AGEFUEL OILR FEED L!IBE OILDIES OILFISC LIQSTOR SUPBOATS

557.3393.1

12.787. 032.132.4

61.239.821.4

46.15.52. 8

37.9

799.7641.6

0.014.383.70.0

43.416.7

0. 15713. 11080.00360.02450.00910.0091

0.01720.0 1120.0060

3.01300.00160.00080.0107

3,.22550. 1809O. CCOO0.00400.0236

. 30300.01223.0047

130318.96170.20190.

O.4226.9732.

15085.15000.

85.

5938.3522.1765.651.

39059.26293.

0.559.

3327.0.

8879.0.

0.26430. 19510,.04090.00000.00860.0197

0.03060.03040.0002

0. 3 1200.00710.30360.0313

0.07920.35330.00003.30110.30670.00000.0 1300.0030

135

VOL FRAC

0.05573.)3260,.0153C.030570.01510.01350.0334

DENSTTyLBS/CU PT

2.291.903,021.052.470.726.59

10.8213.497.23

11.23

11.56

14,3910. 310.0:1,90

9.589.161.410.00

17.037.45

9.085,.94

563.95

17.1413,503.50

130.26

45.865%. 660.0057. 4456.330.00

13,940.00

_ _

Page 136: 03137348

SHIP NUMBER 2

DETAILED RESULTS--PUNCTIONAL GROUPING CONTINUED

GROUP NAME WEIGHTTONS

360361.362363364365

TANKAGEBALLASTPSAKVOIDSXFLOODNGMISC TNK

370 PASS&ACC380 HULL BAR390 SUP ARG

0.00.00.00.00.00.0

Wr FRAC VOLUMEC PT

0.00000. 00000. 00000.33000.00003.3000

8.9 0.00250.0 3.00000.0 0.0000

23449.9000.1449.

13000.0.0.

60225.0.0.

400 HULL GRP 1207.3 0.3404

BASCHULLSEC HULLDECKHOUSARMORPREPFLLQ

532.8552.9121.6

0.00.0

0. 15020.15590.034 30.00000. 0000

SHIP SYS 344.3 0.0971

3546.8 1.3300 493041. 1.0000

136

VOL PRAC

0.04760. 1830.00290. 2640.00000.0000

0.12220.00000.0000

DENSITYLBS/CU PT

0.000.000.000.000.000.00

0.330.003 .03

410420430440450

500

TOTAL 16. 11

Page 137: 03137348

SHIP NUMBER 2

DETAILED RESULTS--BSCI WEIGHT LISTING

GROUP NAME WEIGHT WT FRAC WT FRACTONS FULL LD LITE SH

PLATING 265.2FRAMING 155.9INN BOTM 0.0PLATFLAT 75.5

C.00.00.0

ALL DECK 183.50.00.00.0

SUPERSTR 121.6PROP FND 41.9AUX FNDS 83.3STR BKHD 131.8TRK&ENCL 36.7STR SPON 0.0ARMOR 0.0AC T STB 0.0CAST&FOR 35.8S ACHEST 1.8BAL UNIT 0. 0SPEC DRS 0.0DRS&HTCH 17.0

0.0MASTKGPT 4.6SONAR DM 2.5TOWEPLAT 0.0WELDRIVT 28.5FREEFLIQ 0.0GRP1 TOT 1185.7

BOIL&CONPROPUNITMN CONDSSH, BR,PRCOMB AIRUPTAKESPROP CNTMN STM SFWFCONDNCIRCSCWSFOSERSY SLBOILSYSREPAIRPTOPER FLDGRP2 TOT

0.0111.5

0.087.07.8

12.76.00,00.03.68.9

11.05.0

17.0270.6

0.07470.04390. 00000.02130.00000.00000.00003.35170.00000.00003. 00000.03430.01180. 02350. 03710. 01030.00000. 00000. 00000. 01010.00050. 00000. 00000. 00480.00000.00130.00070.00003.00800.00000.3342

0. 0000.3 314

0.00000.0 2450.00223.00360. C0 170.00000. 00000.00100.00250.00310. 00140.03480. 0763

0. 10780.06340.00000.03070.00000.00000.00000.07460.00000.00000.00000.04940.0 1700.0 3390. 05360.0 1490.00000.00000.00000 .01460.00070,.00000.00000.00690,.00000.00 190.00 100.0000

. 0 1160.00000.4820

0.00000. 0 4530 .00000.03540.00320.00520.00240.00000.30000.00140,.00360.00450.30200.00690.1100

VzGFT

13.911.74.8

13.80.30.30.0

31.70 .00.00.3

46 .49.2

14.118.621.3)3.00.315.413.25.20.0

24.829.8

.084.3-2.00.0

20.55.6

20.9

15.314.09 .35.0

38.458.921. 122.514.2

8 .810.910 .916.511.213.6

137 - '

100101102103104105106107108109110111112113.114115116117118119120121122123124125127128150151

200201202203204205206207208209210211250251

Page 138: 03137348

SHIP NUMBER 2

DETAILED RESULTS--BSCI WEIGHT LISTING CONTINUED

GROUP NAME WEIGHT WT FRAC I FRAC VCGTONS FULL LD LITE SH PT

300 EL PWGEN 96.2 0.0271 0.0391 16.7-301 POW SBD 14.6 0.0041 0.0059 21.0302 CABLE 35.0 0.0099 0.0142 25.6303 LIGHTING 17.4 3.0049 0.0071 30.3350 REPAIRPT 3.4 0.0009 0.0014 17.0351 GEN FLDS 0.0 0.0000 3.0000 13.5

GRP3 TOT 166.5 0.0469 0.0677 20.4

400 NAV EQUP 3.7 0.0011 0.0015 51.4401 IC SYSTS 22.1 0.0062 0.0090 27.7402 GPC SYST 10.0 0.0028 0.0041 49.0403 CH NO EL 11.9 0.0034 0.0048 24.3404 ECM 4.5 0.0013 0.0018 49.5405 NFC SYS 0.4 3.0001 0.3002 64.0406 ASW FCS 11.1 0.0031, 0.0045 52.6407 TORP FCS 0.0 0.3000 0.0000 0.0408 RADAR 7.9 0.0022 0.0032 49.5409 RADIOCOM 16.1 0.0045 0.0065 28.5410 ELEC NAV 2.0 0.0006 0.0008 55.0411 SPACTRCK 0.0 0.0000 0.0000 0.0412 SONAR 9.3 0.9026 0.0038 17.5413 ELEC TDS 19.6 0.0055 0.0080 43.0415 ELECTEST 0.0 0.0000 0.0000 3.0450 REPAIRPT 4.6 0.0013 0.0019 28.9451 CC OPFLD 8.0 0.0023 0.0033 -3.0

GRP4 TOT 131.3 0.0370 0.0534 34.2

500 HEAT SYS 12.7 0.0036 0.0051 13.1501 VENT SYS 40.5 0.0114 0.0165 33.5502 AIR COND 22.0 0.0062 0.0090 20.6503 REFER PL 7.5 0.0021 3.0030 16.4504 HEAF,ETC 5.6 0.0016 0.0023 21.0505 PLUMBING 7.4 0.0021 0.0030 27.4506 FIREMAIN 29.9 0.0084 0.0121 24.8507 FIRE EXT 8.0 0.0023 0.0033 27.5508. EALSTSYS 11.4 3.0032 0.0047 10.2509 FRESHWAT 13.3 0.0038 0.0054 22.9510 SCUPPERS 2.3 3.3307 0. 00C9 32.1511 FUELTRAN 22.2 0.0063 0.0090 13.1512 TANKHEAT 0.0 0.0000 0.0000 5.9513 COMP AIR 22.7 0.C064 0.0092 16.4514 AUX STM 0.0 0.0000 3.0000 12.3515 BUOY CNT 0.0 3.0000 0.0000 0.0516 MISCPIPE 0.0 0.0000 0.0000 10.5517 DISTILLG 5.6 0.0016 0.0023 17.6518 STEERING 11.2 0.0032 0.0046 15.8519 RUDDERS 20.9 0.0059 0.0085 12.7520 ANCH,MST 28.0 3.0079 0.0114 25.1

138

Page 139: 03137348

SHIP NUMBER

DETAILED RESULTS--BS-E WEIGHT LISTING CONTINUED

GROUP NAME WEIGHT WI FRAC WT FRAC VCGTONS FULL LD LITE SH PT

STOR EQPELOPGEARAIR ELEVACARGEARCATSSJBDHYDROFLSSTAB FINUNREPREPAIRPTAUX FLDSGBP5 TOT

HULL FITBOATSRIG&CANVLAD&GRATNONS BDPAINTINGDK COVERHULL INSSTORERMSUTIL EQPWKSP EQPGA L EQPLIV FURNOFF FURNM&D FURNRAD SHLDREPAIRPTO&F FLDSGRP6 TOT

4.90.00.04.00.00.0

24.721.43.5

15.6345.4

11.816.7

1.026.619.335.91t4.538.032.68.29.310.221.611.91.30.01.70.0

260.4

GUN HNTS 17.50.00.0

SPWEPH&S 0.0

0.00.00.0

TORPTHSS 7.00.0

MINE H&S 0. 0SM ARMS 3.0AIR H&ST 0. 0

0.0CARGOSHS 0. 0REPAIRPT 5.6ARM FLDS 0.7GRP7 TOT 99.8

0.00140.00000.00000.00110.00000. 00000 .00700. 00 600.00100.00440.3973

0.00330.00470.00030.00750.00540. 01010.00410.0 1070.00920. 0023:,.00260.00290.00610. 00330. 00040.00000.00050. 00000.0734

0. 30490.00000. 00003. 00000.01863.0O000.0000O. 00003.00203.00000. 00000.00080. 0000. 01000.00003.00160.00020.0281

0.30200.00000.00000 .00160.00000.00000.01CO0.00870.00 140.00640. 1404

0.00480.00680.00040.0 1080.0079.0 146

0.00590.01540.0 1330.00330. 00380.00410.00880.00480 .00050.00000.00070.00000.1059

0.00710.00000.00000.00000.02680.00000.30000.00000.00280.00000.00000.00120.00000 .00000.00000.00230.00030.0406

37.70.00.0

34.00 .00.07.9

34.018.119.821.4

38.344.045.617.732.722.229.729.222.826.127.531.429.135.329.50.0

24 .10.0

28. 1

44.00 .00.03.0

31.00.00.00.0

37.00 .00.0

34.00.00.00.0

20.032.733.2-. .- - - . .- 13 9 - - - - - - -. . --- - -

521522523524525526527528550551

600601602603604605606607608609610611612613614615650651

700701702703704705706707708709710711712713720750751

2

Page 140: 03137348

SHIP NUMBER 2

DETAILED RESULTS--BS_£ WEIGHT LISTING CONTINUED

GROUP NAME WEIGHT W FRAC VCGTONS FULL LD FT

800801802803804805806807808809810811812813814815816817818819820821822

SHIP OCETRPS&EFFPASSSEFFSHIPAMMOAV AMMOAIRCRAFTPROV&PSTGEN STORMARINESTAERO STRORDSTRSHORDSTRAVPOTWATERR FEED LUBOILSHLUBOILAVFUEL OILDIES OILGASOLINEJP-5MISC LIQC RGOBALL AT

VRLOA D TOTLIGHT SHIPWT MARGIN

FULL LOAD DISP

2C. 70. 00.0

41.42.7

17.930.38.10.06. 70.00.030.00.0

14. 33.7

641.683.70.0

64. 30. 0

0.00.0

965.32459.7123. 0

3548. 0

3.00580.00000.00000.0 1170. 00080.00500.00850.30230. 00000.00190.00000.00000. 3840.00000.00400.00100. 180803.02360. 00000.01810.00000.00003. 0000

0.27213. 69330.0347

1.0000

25.525.525.527.936.041.017.223. 20.0

27.20.00.04. 24.7

16.210.28.3

12.50.0

11.20.00.00.0

11.322. 122.0

18.4

DETAILED RESULTS--FUNCTIONAL ELECTRIC LOADS

GROUP NAME CRUISE KW

100200300400500600700800900

PA STEERAUX MACHDECKIACHSHOPSIC&ELEXORDN SYSHOTELA/C&VENTPWR CONVELECMARG

122.3202.5. 2.06. 9

197.925.6

119.3786.8113.0508.0

BATTLE KW

126.6250.2

1.51.2

219.1102.992.8328.8214.6401.3

24 HR AJ KW

131.9169. 30.35.4

184.112.1

139. 4247.7

99.4296.9

TOTAL KW 2201.3 1739.1 1286.5

140

Page 141: 03137348

APPENDIX C

CLASSIFICATION SYSTEMS

141

Page 142: 03137348

APPENDIX C

CLASSIFICATION SYSTEMS

The classification systems used to identify functional and

weight groups are given in this appendix. Table 22 is the functional

classification system developed for the model. Table 23 gives the

BSCI weight groups as modified for use in the model.

Although the Ship Work Breakdown Structure (SWBS) described in

Reference (20) is the system currently used to classify weight groups

for ships in the U. S. Navy, the BSCI classification system was

chosen for use in this thesis. There were two reasons for choosing

the BSCI system. First, most of the sample ships weight data was

in the BSCI format. Secondly, at the three-digit weight breakdown

level, SWBS data can be readily converted to BSCI format; however,

BSCI data at the same level of detail cannot easily be converted to

SWBS format. This is because the SWBS format is in the finer level

of detail at the three-digit level.

142

Page 143: 03137348

TABLE 22

FUNCTIONAL CLASSIFICATION SYSTEM

U.S. NAVYSHIP SPACE

CLASSIFICATION NAVSHIPSITEM FUNCTIONAL SYSTEM NUMBER B.S.C.I. WEIGHT

NUMBER NAME (Reference 17) Group (1965)*

100 MILITARY MISSION Group 1(Payload)

110 COMMUNICATIONS, DETEC- 1.1TION & EVALUATION

111 Radio, Signal, Secure 1.111, 1.112 409Comms, Lookout 1.113, 1.114

112 Radar 1.115 408113 Sonar 1.116 412114 Electronic Counter- 1.117 404

measures115 Evaluation 1.118 413116 Comms, Detection, Eval- 1.12 415, 450, 451

uation Support

120 WEAPONS 1.2121 Guns 1.21 402, 700, 873122 Missiles 1.22 405, 774, 883123 ASW 1.23, 1.24 486, 784, 708,

893124 Mines 1.25 710125 Small arms, pyro- 1.26 711

technics126 Countermeasures 1.27 403127 Weapons Support 1.28 750, 751, 810128 Nuclear Weapons 1.29 615, 703

130 AVIATION 1.3131 Operations & Control 1.31 496, 613**132 Aircraft Stowage, Hand- 1.32, 1.33, 523, 524, 525,

ling & Maintenance 1.34 805133 Aviation Stores 1.35 809, 811134 Aviation Liquids 1.36 815, 819135 Aviation Ordnance 1.37 712, 804

140 AMPHIBIOUS WARFARE 1.4 801, 808

150 CARGO TRANSPORT 1.5 720, 821

*Modification to the 1965 B.S.C.I. Weight Groups are found in Table 23.**Weight applied to more than one functional grouping.

143

Page 144: 03137348

TABLE 22 (continued)

FUNCTIONALNAME

FLAG

U.S. NAVYSHIP SPACE

CLASSIFICATIONSYSTEM NUMBER(Reference 17)

1.6

NAVSHIPSB.S.C.I. WEIGHTGroup (1965)*

800**

PASSENGER

SPECIAL MISSIONS

PERSONNEL

LIVING

Officer BerthingOfficer MessingOfficer BathCPO BerthingCPO MessingCPO BathCrew BerthingCrew MessingCrew Bath

SUPPORTAdministrationFood Preparation & HlingMedical & DentalPersonnel ServicesRecreation & WelfareSewage

STOWAGEPersonnel Stores (Prvisions)Personnel StowagePotable Water

SHIP OPERATIONS

1.7 802

5291.8

Group 2

2.1 612**,800**

2.1112.1122.1132.1212.1222.1232.1312.1322.133

and-

2.22.212.22

2.232.242.252.26

2.32.310-

505* *613**611

614609612**594

806

2.322.33

608**, 800**812

Group 3

CONTROLShip Control

Damage ControlOffices

MACHINERY SYSTEMS

3.13.11

3.133.14

3.2, 3.31,

400, 401,411

613**

3.33

144

ITEMNUMBER

160

170

180

200

210

211212213214215216217218219

220221222

223224225226

230231

232233

300

310311

312313

320

410,

Page 145: 03137348

TABLE 22 (continued)

FUNCTIONALNAME

U.S. NAVYSHIP SPACE

CLASSIFICATIONSYSTEM NUMBER(Reference 17)

NAVSHIPSB.S.C.I. WEIGHTGroup (1965)*

Machinery Box 3.21,3.23,3.25,3.12,3.33

UptakesShafting, Bearings &PropellersManeuveringVentilation

DECK AUXILIARIESAnchor Handling, Mooring& TowingUnderway Replenishment

MAINTENANCEMechanicalElectricalMiscellaneous

3.22,3.24,3.27,3.31,

3.263.28

3.3113.313

3.323.321,

3.323

3.43.413.423.43

3.322

200, 201, 202,204, 206, 207,208, 209, 210,211, 251, 300,301, 351, 502,503, 504**,512, 513, 514,517, 527, 551,603**205203

518, 519501**

520, 600

528

610**610**610**, 602,605

STOWAGEFuel OilReserve Feed WaterLube OilDiesel OilMisc. LiquidStores & Supplies

Boats

TANKAGEBallastPeak TanksVoidsCross FloodingMisc. Tanks

PASSAGEWAYS & ACCESS

3.53.5113.5123.5133.5113.5143.52

3.53

3.63.613.623.643.653.63

3.7

816813814817818, 820608**, 250,350, 550, 650,807601

822

603**

145

ITEMNUMBER

321

322323

324325

330331

332

340341342343

350351351353354355356

357

360361362363364365

370

Page 146: 03137348

TABLE 22 (continued)

FUNCTIONAL

NAME

U .S. NAVYSHIP SPACE

CLASSIFICATIONSYSTEM NUMBER(Reference 17)

NAVSHIPSB.S.C.I. WEIGHTGroup (1965)*

HULL MARGIN

SUPERSTRUCTURE MARGIN

HULL

Bsic Hull Structure 100, 101,

107**, 150**

Secondary Structures 116, 122, 123,125, 127, 128,150**, 510,604, 113,107**, 102,103, 112, 114,115, 118, 119,120, 121

Deckhouse Structure

Armor

Free Flooding Liquids

111

117

151

SHIP SYSTEMS 302, 303, 500,506, 507,501**, 508,511, 516, 521,522, 526, 606,607, 651, 825,509, 505**

146

ITEM

NUMBER

380

390

400 Group 4

410

420

430

440

450

500

Page 147: 03137348

TABLE 23

MODIFIED BSCI WEIGHT GROUPS

Sub Group Description

Hull Structure--Group 1

100 Shell Plating101 Longitudinal & Transverse Framing102 Inner Bottom Plating103 Platforms & Flats107 All Decks (BSCI 104 thru 110)111 Superstructure112 Propulsion Foundations113 Foundations for Aux. & Other Equip.114 Structural Bulkheads115 Trunks & Enclosures116 Structural Sponsons117 Armor118 Aircraft Saddle Tank Structure119 Castings & Forgings120 Sea Chests121 Ballast & Buoyancy Units122 Special Doors & Closures123 Doors & Hatches (BSCI 123 & 124)125 Masts & Kingposts127 Sonar Domes128 Towers & Platforms150 Welding, Riveting & Fastenings151 Free Flooding Liquids

Propulsion--Group 2

200 Boilers and Energy Converters(Includes Nuclear)

201 Propulsion Units202 Main Condensers & Air Ejectors203 Shafting, Bearings & Propellers204 Combustion Air Supply205 Uptakes & Smoke Pipes206 Propulsion Control Equipment207 Main Steam System208 Feed Water & Condensate System209 Circulating & Cooling Water System210 Fuel Oil Service Systems211 Lubricating Oil System250 Propulsion Repair Parts251 Propulsion Operating Fluids

Electric Plant--Group 3

300 Electric Power Generation

147

Page 148: 03137348

TABLE 23 (continued)

Sub Group Description

301 Power Distribution Switchboards302 Power Distribution System (Cable)303 Lighting System350 Electric Plant Repair Parts351 Electric Power Generator Fluids

Communication and Control--Group 4

400 Navigation Equipment401 Interior Communication Systems402 Gun Fire Control Systems403 Countermeasure System

(Non-Electronic)404 Electronic Countermeasure Systems

(ECM)405 Missile Fire Control Systems406 ASW Fire Control & Torpedo Fire

Control System407 Torpedo Fire Control System--

Submarines408 Radar Systems409 Radio Communication Systems410 Electronic Navigation Systems411 Space Vehicle Electronic Tracking

Systems412 Sonar Systems413 Electronic Tactical Data Systems415 Electronic Test, Checkout &

Monitoring Equipment450 Communication and Control Repair

Parts451 Communication and Control Operating

Fluids

Auxiliary Systems--Group 5

500 Heating System501 Ventilation System502 Air Conditioning System503 Refrigerating Spaces, Plant &

Equipment504 Gas, HEAF, All Liquid Cargo Piping,

Aviation Lube Oil System, SewageSystem

505 Plumbing Installations506 Firemain, Flushing, Sprinkler, S.W.

Service Systems507 Fire Extinguishing System508 Drainage, Ballast, Stabilizing Tank

System

148

Page 149: 03137348

TABLE 23 (continued)

Sub Group Description

509 Fresh Water System510 Scuppers and Deck Drains511 Fuel & Diesel Oil illing, Venting,

Stowage & Transfer System512 Tank Heating Systems513 Compressed Air Systems514 Auxiliary Steam, Exhaust Steam &

Steam Drains515 Buoyancy Control System, Submarines516 Miscellaneous Piping Systems517 Distilling Plant518 Steering Systems519 Rudders520 Mooring, Towing, Anchor & Aircraft,

Handling System & Deck Machinery521 Elevators, Moving Stairways, Stores

Handling Systems522 Operating Gear for Retracting &

Elevating Units523 Aircrafts Elevators524 Aircraft Arresting Gear, Barriers

& Barricades525 Catapults and Jet Blast Deflectors526 Hydrofoils527 Diving Planes & Stabilizing Fins528 Replenishment at Sea & Cargo

Handling550 Auxiliary Systems Repair Parts551 Auxiliary Systems Operating Fluids

Outfit and Furnishings--Group 6

600 Hull Fittings601 Boats, Boat Stowage & Handling602 Rigging & Canvas603 Ladders & Gratings604 Nonstructural Bulkheads & Doors605 Painting606 Deck Covering607 Hull Insulation608 Storerooms, Stowages & Lockers609 Equipment for Utility Spaces610 Equipment for Workshops, Labs &

Test Areas611 Equipment for Galley, Pantry,

Scullery & Commissary Outfit612 Furnishings for Living Spaces613 Furnishings for Offices, Control

Centers & Machinery Spaces

149

Page 150: 03137348

TABLE 23 (continued)

Sub Group Description

Furnishings for Medical, DentalSpaces

Radiation ShieldingOutfit & Furnishings, Repair PartsOutfit & Furnishings, OperatingFluids

Armament--Group 7

Guns, Gun Mounts, Ammo Handling &Storage (BSCI 700, 701, 702)

Special Weapons Handling & StowageRocket & Missile Launching, Hand-

ling & Stowage Devices (BSCI 704,705, 706, 707)

Torpedo Tubes, Torpedo Handling& Stowage

Mine Handling Systems & StowageSmall arms & Pyrotechnic StowageAir Launched Weapons Handling &

Stowage (BSCI 712, 713)Cargo Munitions Handling & StowageArmament Repair PartsArmament Operating Fluids

Loads--Group 8

Ships Officers, Crew & EffectsTroops & EffectsPassengers & EffectsShips AmmoAviation AmmoAircraftProvisions and Personnel StoresGeneral StoresMarines StoresAero StoresOrdnance Stores ShipOrdnance Stores AVPotable WaterReserve Feed WaterLube Oil ShipLube Oil AviationFuel OilDiesel OilGasolineJP-5Miscellaneous Liquids

150

614

615650651

700

703704

708

710711712

720750751

800801802803804805806807808809810811812813814815816817818819820

Page 151: 03137348

TABLE 23 (continued)

Sub Group Description

821 Cargo822 Ballast Water825 Future Development Margin

151

Page 152: 03137348

APPENDIX D

DERIVED EQUATIONS LISTING

152

Page 153: 03137348

APPENDIX D

DERIVED EQUATIONS LISTING

This appendix provides a listing of the equations which were

derived to provide the standard calculations required by the com-

puter program. The data used were taken from References (1), (4),

(6), (9), (10), (12), (14), (16), (21), (22), and (23).

The technique used to develop most of the relationships listed

in this appendix was linear regression for two variables by the

method of least squares. In each case several combinations of

variables were tried to determine which gave the best correlation.

A coefficient of determination was calculated for each try to give

an indication of how closely the equation fit the data. Data

points available for each calculation were examined in an effort

to insure that only appropriate ship values were used in deriving

a particular equation.

In a few instances equations were developed to best fit exist-

ing curves, e.g., linear approximations to the powering worm curve

used in horsepower calculations. Also, in a few cases where insuf-

ficient data was available or a satisfactory variable correlation

could not be attained, an average value was selected as the value

to be used.

153

Page 154: 03137348

Starting Estimates

DPTRY = 0.00076 LBP2 57

DPTRY = 7.0754 'WPAYIN + 914.45

KGTRY = 0.1589 LBP 7 771

LBP input item

LBP not input item

Ship Geometry

Cwp = 0.425 CB + 0.526

Ce= 0.0733 Cp + 0.0026

Speed/Power

VMAX = 8.696(SHP/LBP)'2 66 8

EHPAPP = 1.3 EHPBH

EHPAPP = (1.4587 - 0.1867 SLRAT)EHPBH

EHPAPP = (1.310 - 0.0938 SLRAT)EHPBH

EHPAPP = 1.13 EHPBH

EHP = 1.1 EHPAPP

EHP = (1.205 - 0.150 SLRAT)EHPAPP

EHP = (1.3827 - 0.3667 SLRAT)EHPAPP

EHP = (1.1109 - 0.1364 SLRAT)EHPAPP

EHP = (0.9753 - 0.0395 SLRAT)EHPAPP

EHP = (0.8645 + 0.0227 SLRAT)EHPAPP

SLRAT < 0.85

0.85 < SLRAT < 1.6

1.6 < SLRAT 1.92

SLRAT > 1.92

SLRAT < 0.70

0.70 < SLRAT < 0.82

0.82 < SLRAT 1.18

1.18 SLRAT 1.4

1.4 < SLRAT 1.78

SLRAT > 1.78

Electric Loads

ECR(1) =

ECR(2) =

ECR(3) =

ECR(4) =

ECR(5) =

Cruise KW Loads

(0.00173FLDISP x VSUS - 64.62)A

(0.0517FLDISP + 19.27)E

2.0

6.9

0.2041WGP4 + 172.71

154

Page 155: 03137348

ECR(6) = 25.6

ECR(7) = 0.0169FLDISP + 59.38

ECR(8) = 0.1649FLDISP - 344.33

ECR(8) = 0.1320FLDISP + 438.96

ECR(9) = 110.0

A = 1.0; E = 1.0 Any propi

Steam heat

Electric heat

ulsion plant except nuclear

A = 4.0; E = 2.0 Nuclear propulsion plant

Battle KW Loads

EBT(1) = (0O.00209FLDISP x VSUS - 99.19)A

EBT(2) = (0.0746FLDISP - 14.21)E

EBT(3) = 1.5

EBT(4) = 1.2

EBT(5) = 0.3613WGP4 + 174.52

EBT(6) = 1.670WTGP7 - 63.79

EBT(7) = 0.00794FLDISP + 64.70

EBT(8) = 0.0382FLDISP + 193.40

EBT(9) = 214.6

A = 1.0; E = 1.0 Any propulsion plant exc

A = 4.0; E = 2.0 Nuclear propulsion plant

EAV(1)

EAV(2)

EAV(3)

EAV(4)

EAV(5)

EAV(6)

EAV(7)

ept nuclear

24 Hour KW Average Loads

= (0.00115FLDISP x VSUS + 7.63)A

= (0.0705FLDISP - 80.54)E

= 0.3

- 5.4

= 0.3322WGP4 + 143.17

= 12.1

= 0.00462FLDISP + 123.03

155

Page 156: 03137348

EAV(8) = 0.1021FLDISP - 114.19

EAV(8) = 0.1252FLDISP + 343.10

EAV(9) = 99.4

A = 1.0; E = 1.0 Any pro

A = 4.0; E = 2.0 Nuclear

Electric heat

pulsion plant except nuclear

propulsion plant

Machinery Box Minimum Depth

DEPMB = CVK + HCOR + HABCVK

CVK = 0.2B - 6.0

HCOR = -10,OCx + 9.0

HABCVK = 0.00025SHP/NSHFT + 20.5

HABCVK = 0.000125SHP/NSHFT + 20.0

HABCVK = 19.0

HABCVK = 21.5

PPTYP = 1,2,3,4NB/NSHFT = 1

PPTYP = 1,2,3,4NB/NSHFT > 1

PPTYP = 5,6,7,8NSHFT = 1

PPTYP = 5,6,7,8NSHFT > 1

Weight (BSCI Groups Modified)

Hull Structure--Group 1

W(100) = (0.0677 FLDISP + 25.26)C

W(101) = (0.0532 FLDISP - 55.38)C

W(102) = 0.0 FLDISP C 4600

W(102) = (0.0120 FLDISP + 9.27)C FLDISP > 4600

W(103) = (0.00581 FLDISP1'1 59 )C

W(107) = (0.0694 FLDISP - 62.51)C

W(111) = 0.00778 VOLSST0 O 82 0 Aluminum superstructure

W(111) = 0.00199 VOLSST - 16.44 Steel superstructure

W(112) = (0.00101SHP/(NB x NSHFT) - 3.51)NB x NSHFT x C PPTYP = 2

156

Steam heat

Page 157: 03137348

= (0.5428 SHP©' 3 3 4 8

= (.00204SHP)C

= (0.000818SHP/(NR

= (0.000239SHP/(NE

)C PPTYP = 1

PPTYP = 7

x NSHFT) + 40.65)NR x NSHFT x C PPTYP = 4

x NSHFT) + 16.18)NE x NSHFT x C

PPTYP = 5,6,8

(0.000714SHP)C

(0.000189 VOLHUL - 11.68)C

(0.000285 VOLHUL + 22.83)C

(0.000658 VOLHUL - 115.89)(

0.0000527 VOLTOT - 4.47

Input Item

Input Item

Input Item

(0.0000708 VOLTOT + 0.94)C

3.03 x 10 -8VOLMB1' 5 6

8.42 x 10-8VOLMB 53

Input Item

0.0

0.00342FLDISP - 18.51

0o000o383VOLTOT - 1.89

O.000278FLDISP + 3.62

Input Item

Input Item

(0. 00527VOLTOTO 8 3 14) C

Input Item

55

PPTY = 5

NON Nuclear Propulsion

Nuclear propulsion

PPTYP = 5,6,7,8

PPTYP = 1,2,3,4

FLDISP < 7600

FLDISP > 7600

Steel Hull

Aluminum Hull

157

W( 112)

W(112)

W(112)

W(112)

W(112) =

W(113) =

W(114) =

W(114) =

W(115) =

W(116) =

W(117) =

W(118) =

W(119) =

W(120) =

W(120) =

W(121) =

W(122) =

W(122) =

W(123) =

W(125) =

W(127) =

W(128) =

W(150) =

W(151) =

C = 1.(

C =O.J

C

Page 158: 03137348

Propulsion--Group 2

W(200) = 0.0 PPTYP = 5,6,7

W(200) = 0.00234SHP + 48.09 PPTYP = 2

W(200) = 0.000883SHP PPTYP = 8

W(200) = 0.00288SHP + 21.92 PPTYP = 1

W(200) = 0.00234SHP - 14.00 PPTYP = 3

W(200) = 0.000183SHP 1 '4 5 6 PPTYP = 4

W(201) = 0.00143SHP + 17.92 PPTYP = 2,3

W(201) = 0.00175SHP + 13.25 PPTYP = 1

W(201) = 0.000761SHP 1 119 PPTYP = 4

W(201) = 0.0124SHP + 5.25 PPTYP = 7

W(201) = 0.00283SHP + 2.68 PPTYP = 5,6

W(201) = 0.00247SHP PPTYP = 8

W(202) = 0.0 PPTYP = 5,6,7

W(202) = 0.000766SHP + 2.98 PPTYP = 1

W(202) = 0.000457SHP + 2.57 PPTYP = 2,3

W(202) = 0.00923SHP 0 79 3 5 PPTYP = 4

W(202) = 0.000533SHP PPTYP = 8

W(203) = WSHAFT + WPROP + WBRGS

WSHAFT = F x LBP x NSHFT(O.0275(SHP/(NSHFT x RPM))2/3) 0 8 76 8

Solid Shaft

WSHAFT = F x LBP x NSHFT(O.0134(SHP/(NSHFT x RPM))2/3) 0 9 4 9 7

Hollow Shaft, Fixed Pitch Prop.

WSHAFT = F x LBP x NSHFT(1 + .SNSHFT)

x (0.0134(SHP/(NSHFT x RPM))2/3)0.9497

Hollow Shaft, Controllable Pitch Prop.

RPM = 96.12VSUS/DPROP + 52.15

158

Page 159: 03137348

DPROP = 2.603H 0'6 2 9

DPROP = 4.281HOI42 83

F = 0.36

F = 0.20

WPROP = (0.00146DPROP3' 2 79 )NSHFT

WPROP = (O.00314DPROP3 128 )NSHFT

WBRGS = 0.15(WSHAFT + WPROP)

W(204) = 0.0

W(204) = 0.000119SHP + 12.22

W(204) = 0.000119SHP + 10.14

W(204) = O.000105SHP + 6.50

W(204) = 0.000196SHP

KWINSTW(204) = 0.000503(SHP + 8 x .746 )

W(204) = 0.000267SHP

W(205) = 0.0

W(205) = 0.000317SHP

W(205) = 0.00140(SHP + KWIN8 x ST74

W(205) = 0.00209SHP

W(205) = 0.000181SHP + 3.18

W(205) = 0000136SHP + 14.14

W(205) = 0.0001136SHP + 6.54

W(206) = O.OO50OOSHP

W(206) = 4.0 NSHFT

W(206) = 0.OO00144SHP

W(206) = 0.0000525SHP + 3.90

W(207) = 0.0

W(207) = 0.0000833SHP

One Shaft

Two Shafts

PPTYP = 1,2,3,4

PPTYP = 5,6,7,8

Fixed Pitch Prop.

Controllable Pitch Prop.

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

PPTYP =

4,7

2

3

1

5,6 SSETYP = 4,5,6

5,6 SSETYP = 2,3

8

4

5,6,8 SSETYP = 4,5,6

5,6,8 SSETYP = 2,3

7

1

2

3

8

1,2,3,4

7

5,6

5,6,7

8

159

Page 160: 03137348

= 0.000544SHP - 1.70 PPT'

= 0.000586SHP - 5.68 PPT'

= 33.52SHPO 03 92 PPTI

= 0.0 PPTI

= 0.0001833SHP PPT'

= 2.592SHP03105 PPT'

= 0.000610SHP + 10.42 PPT'

= O.O00564SHP + 7.48 PPT'

= 0,0 PPT'

= 0.OOO89OKWINST PPT'

= 0.00111(SHP + KWINST 746 PPT'.8 x .746

1.32 x 10 8(SHP + KWINST )1.8642.83 x 1 746

=

(P =

YP =

YP =

YP =

YP =

YP =

YP =

YP =

YP =

YP =

2,3

4

5,6,7

8

4

2,3

1

5,6

5,6

7

SSETYP = 2,3

SSETYP = 4,5,6

PPTYP = 4

0.000192(SHP + KWINST x. 7 + 4.02

= O.000300SHP PPTYP

= 0.0 PPTYP =

= 0.00882W(816) + 3.25 PPTYP =

= 0.00882W(817) + 3.25 PPTYP =

= 0.000267SHP PPTYP =

- 0.000156SHP + 4.82 PPTYP =

= 0.0443SHP 0560 PPTYP =

= 3.10 x 10-7SHP' 6 41 PPTYP =

= O.00193SHP PPTYP =

= 45.0 PPTYP =

= 5.0 PPTYP =

NSHFT =

PPTYP =W(250) = 10.0

PPTYP = 1,2,3

8

4

1,2,3,5,6,8

7

8

1,2,3

4

5,6

7

4

1,2,3,5,6,7,81

1,2,3,5,6,7,8160

W(207)

W(207)

W(207)

W(208)

W(208)

W(208)

W(208)

W(208)

W(209)

W(209)

W(209)

w(209)

W(209)

W(209)

W(210)

W(210)

W(210)

W(211)

W(211)

W(211)

W(21 1)

W(211)

W(250)

W(250)

Page 161: 03137348

NSHFT = 2

= 0.000668SHP + 12.14 PPTYP = 1,2,3

= 0,0972(W(200) + W(201) + W(202) + W(207) + W(208)

+ W(209) + W(211)) - 69.57 PPTYP = 4

= 1.152(W(209) + W(210) + W(211)) - 10.10 PPT

= 0.618(W(209) + W(210) + W(211)) PPT

!YP = 5,6

YP = 7

= 0.000633SHP PPTYP = 8

Electric Plant--Group 3

= NLSD(0.0424KWPRD + 0.44) + NMSD(0.0240KWPRD + 0.05)

+ NHSD(0.0137KWPRD + 0.32) + NGTG(.OO00424KWPRGT + 16.4)

+ NSTG(O.0167KWPRSG - 1.63)

= 0.00300KWINST + 2.61

= 2.15 x 10 8VOLTOT1 '6 23 VOLTOT < 400,000

= 0.000170VOLTOT - 48.83 VOLTOT Ž 400,000

= O.0000367VOLTOT - 0.73

= 0.000348KWINST + 1.96

= Input Item

Communication and Control--Group 4

= 0.00035OV(311) + 1.62

= 0.0000508VOLTOT - 2.90

= Input Item

= 0.00333FLDISP + 0.12

= Input Item

= Input Item

= W(486) + W(496)

= Input Item

= Input Item

161

W(251)

W(251 )

W(251)

W(251 )

W(251)

W(300)

W(301 )

W( 302)

W(302)

W(303)

W(350)

W(351)

W(400)

W(401 )

W(402)

W(403)

W(404)

w(405)

W(406)

'N(486)

W(496)

Page 162: 03137348

= 0.0

= Input Item

= Input Item

- 2.0

= Input Item

= Input Item

= Input Item

= Input Item

= 0.0317(W(400)+ W(401) + **W(413) + W(415)) + 0.82

= Input Item

Auxiliary Systems--Group 5

= 7.72 x 10-8VOLTOT1 ' 4 4 3 Electric

= 0.0000110VOLTOT + 0.76 Steam hea

= O.0000728VOLTOT + 4.57

= 0.0000346VOLTOT + 4.96

= 0.0205NACC + 3.66

= 0.000728FLDISP - 1.98 +W(594)

= Input Item

= 0.00107(V(213) + V(216) + V(219)) - 0.96

= 0,0000471VOLTOT + 6.63

= 0.000619VOLTOT 0O 7 2 2 4

= 0.0000243VOLHtUL + 2.15

= 0.00170V(233) + 3.18

= 0.00756LBP - 0.75

= 0.0 PPTYP = 4

= 0.0276W(816) + 4.50 PPTYP = 1

= 0.0276W(817) + 4.50 PPTYP = 7

heat

t

,2,3,5,6,8

162

W(407)

W(408)

w(409)

I(41 0)

W(411 )

W(412)

W(413)

W(415)

W(450)

W(451)

W( 500)

W ( 500 )

( 501 )

W(502)

W(503)

W( 504)

W( 594)

W(505)

W(506)

W(507)

W(508)

w(509)

W(510)

w(51 )

W(511)

W(511)

Page 163: 03137348

= 0.00323W(816) + 1.01

= 0.0

= 0.0000959V(321) - 4.50

= 0.00132SHP

= 0.000426SHP

= 0.000274SHP + 11.78

= 0.000667SHP 1 406

= 0.00000120VOLTOT

= 0.0

= 0.0

= 0.0

= 20.0

= 0.0000944V(321) - 0.86

= 0.0783NACC 0 8 84 7

= 0.0172NACC + 2.37

= 0.0OO0681FLDISP x VSUS + 3.89

= 0.000194FLDISP x VSUS - 0.08

= 0.00860FLDISP - 2.49

= 9.14 x 10 6VOLTOT + 0.38

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= 0.00731FLDISP - 1.20

= 0.0

PPTYP = 1,2

PPTYP = 3,4,5,6,7,8

PPTYP = 1,2,4

PPTYP = 7

PPTYP = 3

PPTYP = 5,6,8

PPTYP = 1,2,3,4

PPTYP = 5,6,7,8 Steam heat

PPTYP = 5,6,7,8 Electric heat

PPTYP = 1,2,3,5,6,7,8

PPTYP = 4

PPTYP = 1,2,3

PPTYP = 4

PPTYP = 5,6,7,8

Fin stabilizers

No fin stabilizers

= Input Item

163

W(512)

W(512)

W(513)

W(513)

W(513)

W(513)

w(514)

W(514)

W(514)

W(515)

W(516)

W(516)

W(517)

W(517)

W(517)

W(518)

W(519)

W(520)

W(521 )

W(522)

W(523)

W(524)

W(525)

W(526)

W(527)

w(527)

W(528)

Page 164: 03137348

= 3.5

= 0.0000417VOLTOT - 4.93

Outfit and Furnishings--Group 6

= 0.00230FLDISP + 3.61

= 0.0971NACC - 1.27

= 1.0

= 27.35FLDISPO '08 26 PPTYP = 4

= 0.OOOO403VOLTOT + 6.70 PPTYP = 1,2,

= 0.0000321VOLTOT + 3.50

= 0.0000641VOLTOT + 4.26

= 0.0000408VOLTOT - 5.61

= (0 .0OO717VOLHUL + 10.56) x

= 0.0000712VOLTOT - 2.50

= 0.00113V(224) - 0.19

= 0.00211(V(341) + V(342) + V(343)) - 3.25

= 0,O152NACC + 7.37

= 0.000271V(210) + 3.09

= 0.000921(V(221) + V(313)) + 1.51

= 0.000505(V(221) + V(313) + V(160)) + 3.54

= 0.000265V(223) + 0.58

= 0.404W(703)

= 0.00290(W(600) + *.* W(615) + W(651)) + 0.9!

= Input Item

.0

.55

3,5,6,7,8

Non flag ship

Flag ship

3

Steel hull

Aluminum hull

Armament--Group 7

W(700) = Input Item

164

w(550o)

W(551 )

W(600)

W(601)

W(602)

W(603)

W(603)

W( 604)

W(605)

W(606)

W(607)

W(608)

W(609)

W(610)

W(611)

W(612)

W(613)

W(613)

W(614)

W(615)

W(650)

W(651)

C= 1

C=

Page 165: 03137348

W(703) = Input Item

W(704) = W(774) + W(784)

W(774) = Input Item

W(784) = Input Item

W(708) = Input Item

W(710) = Input Item

W(711) = Input Item

W(712) = Input Item

W(720) = 0.0

W(750) = 0.0101(W(700) + W(703) + W(704) + W(708) + W(710)

+ W(711) + W(712)) + 4.66

W(751) = 0.0173(W(700) + W(703) + W(704) + W(708) + W(710) + W(711)

+ W(712)) - 0.88

Loads

W(800) = 0.0737NACSC + 0.105NOFF + 0.073NCPO + 0.0290NCREW

+ 0.0737NFLAG + 00737NFLAG

W(801) = 0.0737NTRP + 0.0370NTRP

W(802) = 0.0737NPASS + 0.0290NPASS

W(803) = W(873) + W(883) + W(893)

W(873) = Input Item

W(883) = Input Item

W(893) = Input Item

W(804) = Input Item

W(805) = Input Item

W(806) = 0.0164(NACC x DUR)0 83 3 3

W(807) = 0.000755(NACC x DUR) + 1.81

W(808) = Input Item

165

Page 166: 03137348

W(809) = Input Item

W(810) = Input Item

W(811) = Input Item

W(812) = 0.0530NACC 1' 21 4

W(813) = 0.0

W(813) = 0.2022SHPO0 5 30

W(813) = 0.000583SHP 1'0 5 7

W(813) = 0.00362SHP0' 94 6 6

W(814) = 0.0000388SHP + 3.08

W(814) = 0.00286SHP 0'7 64 9

W(814) = 5.51 x 10-6SHPl 387

W(814) = 0.00398SHP

W(814) = 4.366SHP 0 1 1 2 2

W(815) = Input Item

W(816) = 0.0

W(816) (ENDUR x FRSTM VEND x 2240 (1 18)

FRSTM = 0.5882AVEDPW + 1303.92

AVEDP` = 1.10SHPE

W(816) = WFPROP + WFELEC + WFAUXB

WFPROP = 0.0

WFPROP = (ENDU x FRCGAS)( 1 18)VEND x 2240

FRCGAS = 2589. + 0.288SHP

WFPROP = (ENDUR x AVEDPW x SFCAED)( 1 1 8)VEND x 2240

AVEDPW = 1.10SHPE

EDPWPE AVEDPWNEEND

NEEND = 1,0

NEEND = 2.0

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

PPTYP

= 5,6,7

= 1,8

= 2,3

=4= 1

= 2,3

=4

= 7

= 5,6,8

=4= 1,2,3

PPTYP = 5,6,7,8

PPTYP = 7

PPTYP = 8

PPTYP = 5,6

AVEDPW < SHP--.. 1T %

SHP < AVEDPW < 2SHPNE NE

166

Single ShaftSingle Shaft

Page 167: 03137348

NEEND = 2.0

NEEND = 4.0

AVEDPW < 2SHPNE Twin shafts

2SHP c AVEDPW 4HPTwin shaftsNE NE

SFCAED = SFCFP(1.2298(1 - EDPWPE )

SHPSFCFP = -0.0000101- + 0.717NE

SHPSFCFP = -0.0000101- + 0.627NE

WFELEC = 0.0

WFELEC = (ENDUR x AVEDPW x SFCAED)1 0 5VEND x 2240

AVEDP KW24AVAVEDP = .8 x .746

AVEDPWAEDPWG AVGNGAVG

AEDPWGSFCAED = SFCFP(1.2298(1 KWPRGT/(.8

KWPRGTSFCFP = -0.0000101 8 x 746 + 0.717

KW.PRGTSFCFP = -0.0000101 .8 x .746 + 0.627.8 x .746

+ 1.00)

PPTYP = 5

PPTYP = 6

SSETYP = 4,5,6

SSETYP = 2,3

1 . 6384x .746) ) + 1.00)

SSETYP = 2

SSETYP = 3

ENDUR x FRAUXBVEND x 2240

1.044 x NACC

W(817) = 0. 1432KWEYMER - 5.60 PPTYP = 1,2,3,4

W(817) = WFPROP + WFELEC

WFPROP = 0.0

WFPROP = ENDUR x AVEDPW x SFCAED 1.18VEND x 2240

AVEDPW = 1 . 1 OSHPE

EDPWPE AVEDPWNEEND

NEEND = 1.0

NEEND = 2.0

NEEND = 2.0

NEEND = 4.0

PPTYP = 7

AVEDPW SHPNE

SHP < AVEDPW < 2HPNE NE

AVEDPW - 2SHPNE

Single Shaft

Single Shaft

Twin Shafts

2SHP < AVEDPW · 4SHP Twin ShaftsNE NE

167

WFAUXB =

FRAUXB =

PPTYP = 1,2,3,4,5,6,8

Page 168: 03137348

RATFP = EDPWPESHP/NE

SFCAED = 0.274e(- 5' 16 6 x RATFP) + 0.359

- 0.0

ENDUR x FRDIEG x NGAVGVEND x 2240

KW24AV0 8273- 1.8845 NGAVG

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

SSETYP = 1,2,3

SSETYP = 4,5,6

Vertical Center of Gravity

Hull Structure--Group 1

= 0.3661D10 + 1.45

= 0.1999D10 + 4.94

= 0,1139D10 + 0.91

= 1.029H - 2.59

= 0.8289D10 + 3.54

= 1.2334D10 + 4.44

= 0.2324H + 10.00

= 0.5784H

= 0.9257H - 8.68

= 0.2607H + 9.94

= 0.6216D10 - 2.54

= 0.4623D10 + 5.27

PPTYP = 4

PPTYP = 5,6,8

PPTYP = 1,2,3,7

= Input Item

168

WFELEC

WFELEC

FRDIEG

w(818)

W(819)

W(820)

W(821 )

W(822)

W(825)

VCG( 100)

VCG(101)

VCG(102)

VCG( 103)

VCG(107)

VCG(111)

VCG( 112)

VCG(112)

VCG( 112)

VCG(113)

VCG( 114)

VCG(1 15)

VCG(1 16)

Page 169: 03137348

VCG(117) =

VCG(118) =

VCG(119) =

VCG(120) =

VCG(121) =

VCG(122) =

VCG(1 23) =

VCG(125) =

VCG(127) =

VCG(128) =

VCG(150) =

VCG( 151 ) =

VCG(200) =

VCG(200) =

VCG(201) =

VCG(202) =

VCG(203) =

VCG(204) =

VCG(204) =

VCG(204) =

VCG(205) =

VCG(206) =

VCG(207) =

VCG(208) =

VCG(209) =

VCG(210) =

Input Item

0.4529D10

0.3055D10 + 2.80

0.2436H + 1.29

Input Item

0.7288D1 0

0.8815D10 - 0.14

0.5461D10 + 65.75

Input Item

Input Item

0.5829D10 + 0.68

0.348H

Propulsion--Group 2

0.000271N SHP + 4.47 PPTYP = 1,2,3,5,6,7,8

SHP0.000322NSHP + 7.58 PPTYP = 4NSHFT PPTYP = 4

0.809H + 1.09

0.5611H + 0.36

0.6603H - 5.54

000018 0SHP- + 17.45 PPTYP = 1,2,4,7

0.506D10 PPTYP = 3

1 .13D10 PPTYP = 5,6,8

1.467D10 + 9.00

0.4381D10 + 6.23

0.5178D10 + 4.94

0.2643D10 + 5.24

0.2234D10 + 1.21

0.4219H + 4.12

169

Page 170: 03137348

- 0.3492D10

= 0. 1479D1 0

= 0.9992H -

- 1,04

+ 11,48

4.74

Electric Plant--Group 3

= 0.5829H + 7.40

= 0.4431D10 + 5.89

= 0.4432D10 + 10.49

= 0.8399D10 + 1.71

= 0.5471D10 - 1.63

= 0.3542D10 + 1.48

Communication and Control--Group 4

= 1.1534D10 + 12.19

- 0.7251D10 + 3.07

= Input Item

= 0.5068D10 + 7.04

- Input Item

= Input Item

- Input Item

= Input Item

= Input Item

= Input Item

= 55.0

= Input Item

= Input Item

= Input Item

= Input Item

= 0.2659D10 + 19.89

170

VCG(211 )

VCG(250)

VCG(251 )

VCG(300oo)

VCG(301 )

VCG(302)

VCG(303)

VCG(350)

VCG(351 )

VCG(400)

VCG(401 )

VCG(402)

VCG(403)

VCG(404)

VCG(405)

VCG(406)

VCG(407)

VCG(408)

VCG(409)

VCG(41 0)

VCG(411 )

VCG(412)

VCG(413)

VCG(415)

VCG(450)

Page 171: 03137348

VCG(451) = Input Item

Auxiliary Systems--Group 5

= 0.7209D10 + 3.08 Steam heat

= 03867D10 Electric heat

- 0.7663D10 + 7.14

= 0.2779D10 + 11.11

= 2.4468H - 22.62

= 0.8323D10 - 7.28

= 0.6806D10 + 4.26

= 0.8267D10 - 3.33

= 0.7804D10 + 0.95

- 0.1610D10 + 4.71

= 0.4265D10 + 8.39

= 0.2834D10 + 22.42

1 .2224H - 6.44

= 0.3278 + 0.6557

= 16.4

= 0.8126H + 5.53

= o. 7735H

= Input Item

= 0.308D10

= 0.9938H + 1.73

= 1.8139H - 13.10

= 0.6428H + 2.40

= 0.6252D10 + 3.82

= 0.8655D10 + 8.24

= Input Item

PPTYP = 1,2,3,4,7,8

PPTYP = 5,6

171

VCG(500oo)

VCG( 500)

VCG( 501 )

VCG(502)

VCG( 503)

VCG(504)

VCG(505)

VCG(506)

VCG(507)

VCG(508)

VCG(509)

VCG(510)

VCG(511 )

VCG(512)

VCG(51 3)

VC( 514)

VCG(514)

VCG(515)

VCG( 51 6)

VCG(517)

VCG(518)

VCG(519)

VCG( 520)

VCG(521 )

VCG( 522)

Page 172: 03137348

= Input Item

= Input Item

= Input Item

- Input Item

= 0.4878H

- Input Item

= 0.2804D10 + 8.53

= 0.5007D10 + 2.77

Outfit and Furnishings--Group 6

= 0.7772D10 + 11.85

= 1.0081D10 + 10.63

= 1.0183D10 + 10.99

= 0.3082D10 + 7.18

= 0.8684D10 + 3.15

= 0.4282D10 + 7.64

= 0.9046D10 - 1.03

= 0.5420D10 + 10.80

= 0.4503D10 + 7.47

= 0.5927D10 + 5.92

= 0.9440D10 - 4.55

= 0.8384D10 + 2,86

= 0.8037D10 + 1.75

= 1.0519D10 - 0.42

= 0,4172D10 + 15.28

= VCG(703)

= 1.1088D10 -

= Input Item

13.58

172

VCG(523)

VCG(524)

VCG(525)

VCG( 526)

VCG(527)

VCG(528)

VCG(550)

VCG(551 )

VCG( 600 )

VCG( 601 )

VCG(602)

VCG(603)

VCG( 604)

VCG(605)

VCG(606)

VCG(607)

VCG(608)

VCG( 609 )

VCG(610)

VCG(61 1)

VCG(612)

VCG(613)

VCG(614)

VCG( 61 5)

VCG(650)

VCG(651 )

Page 173: 03137348

Armament--Group 7

VCG(700)

VCG(703)

VCG(704)

VCG(708)

VCG(710)

VCG(711 )

VCG(712)

VCG(750)

VCG(751)

VCG(800)

VCG(801)

VCG(802)

VCG( 803)

VCG( 804)

VCG(805)

VCG(806)

VCG(807)

VCG(808)

VCG(809)

VCG(810)

VCG(81 1)

VCG(812)

VCG(8 13)

VCG(814)

VCG(815)

= Input Item

- Input Item

= Input Item

= Input Item

- Input Item

- Input Item

= Input Item

= 0.546D10 + 1.44

= 32.7

= 0.7076D10 + 1.41

- VCG(800)

- VCG(800)

- Input Item

= Input Item

= Input Item

- 0.5932D10 - 2.99

= 0.2840D10 + 13.54

= Input Item

= Input Item

= Input Item

= Input Item

= 4.2

= 4.7

- 1.1519H - 2.20

= Input Item

Loads

173

Page 174: 03137348

= 0.2515H + 4.27

= 12.5

= VCG(816)

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

PPTYP = 1,2,3,4,5,6,8

PPTYP = 7

Military Mission

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= 0.332FLDISP + 1437. + Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= Input Item

= 0.3577(V(121) + .-. + V(126) + V(128)) 0 8 9 5 8

= Input Item

= Input Item

= Input Item

174

VCG(

VCG(

VCG(

VCG (

VCG(

VCG(

VCG (

VCG(

VCG(

816)

817)

817)

818)

819)

820)

821 )

822)

825)

Volumes

V(111)

V(112)

V(113)

V(114)

V(115)

v(116)

V(121)

V( 122)

V(123)

V(124)

V(125)

V(126)

V(127)

V(128)

V(131 )

V(132)

Page 175: 03137348

V(133) = Input Item

V(134) = Input Item

V(135) = Input Item

V(140) = 572.36NTRPO0 8 906

V(150) = Input Item

V(160) = 572.36NFLAGC.89 06

V(170) = 572.36NPASS0h 8 906

V(180) = Input Item

Personnel

V(211) = (777.77NOFF - 3906.56)S(2250)

V(212) = (526.83NOFFC)6 5 33)S(2251)

V(213) = (128.92NOFFC 88 78)S(2252)

V(214) = (255.15NCPO + 488.10)S(2253)

V(215) = (89.91NCPO + 584.75)S(2254)

V(216) = (53.78NCPO + 588.04)S(2255)

V(217) = (129.45NCREW + 9828.35)S(2256)

V(218) = (23.12NCREW + 4429.66)S(2257)

V(219) = (26.31NCREW + 573.84)S(2258)

V(221) = 3.33NACC1 88 S(2259)

V(222) = 107.22NACC0'79 33 S(2260)

V(223) = (18.33NACC - 2124.47)S(2261)

V(224) = (16.30NACC + 1316.03)S(2262)

V(225) = (2.91NACC + 1473.42)S(2263)

V(226) = Input Item

V(231) = 0.8642(NACC x DUR)09 6 5S(2264)

V(232) = (17.22NACC - 623.12)S(2265)

V(233) = (7.172NACC + 793.50)S(2266)

175

Page 176: 03137348

Ship Operations

= (0.00749LBP2258)S(2267)

= 0.417FLDISP + 1062.74

= (0.8889FLDISP + 541.68)S(2268)

= 30,851 + 1.472SHP + 7.735(KWINST)

= 893.21SHP 0 4 9 5 5 PPTYP =

.65( . 7 1.225KWINST0.2685(SHP + .8 x .46)

PPTYP = 1,2,3

7

PPTYP = 4

= 0.8346(SHP + .8 x .746

= 0.4547SHpO 0 c1 3 4

1.084I

I

= 2000.0 ]

= 8. 32SHPO . 6 6 6 7

= 0.00951(SHP + 8 KWINST746

= 0.0

= 15.90LBP - 3688.67

= 0.000021 0LBP 3 0 34

= 0.0183(FLDISP x VSUS) + 2248.70

= (2.092FLDISP - 1516.62)S(2269)

= 0.64 13LBP1 4 32

= Input Item

= (0.8036FLDISP - 200.37)S(2270)

= (0.1943FLDISP + 331.42)S(2271)

= (0.0291FLDIS 1 284 )(2272)

= 105.85W(816)0.8532

= 0.0

= 0.5324W(813) 1 9 2 8 7

= 39.0W(814)

PPTYP = 5,6,8

PPTYP = 1,2,3

PPTYP = 4

PPTYP = 7

PPTYP = 5,6,8

PPTYP = 5,6,7,8

PPTYP = 1,2,3,4

Any plant--2 shafts

1 shaft

1 shaft

PPTYP = 1,2,3,5,6,7,8

PPTYP = 4

176

V(311 )

V(312)

V(313)

V(321 )

V(321 )

V(321 ) =

V(321)

V(322)

V(322)

V(322)

V(322)

V(323)

V(323)

V(323)

V(324)

V(325)

V(331)

V(332)

V(341 )

V(342)

V(343)

V(351)

V(351)

V(352)

V(353)

Page 177: 03137348

= 27.93W(817) 1.07 9 8

= 40.0W(820)

= 0.5353(NACC x DUR) + 4422.87

= Input Item

= 40.0W(822)

= 0.450FLDISP - 145.90

= 0.0000238FLDISP 2.314

= Input Item

= Input Item

= (0.130(VOLTOT - V(370))0 9 2 3 3 )S(2773)

= (90.90(VOLTOT - V(370))0 493 2 )S(2273)

Centerline passage

Port & starboardpassage

= Input Item

= Input Item

177

V(354)

V(355)

V(356)

V(357)

V(361)

V(362)

V(363)

V(364)

V(365)

V(370)

V(370)

V(380)

v(390)

Page 178: 03137348

APPENDIX E

PROGRAM LISTING

178

Page 179: 03137348

0000000000000000000000000004 4 4 4 , 4xEX XEx xE3:EX X

0

-4

Z0

00

3-- '4

0: o

.00 ^0 _ U0

- 0. N.

X-: C {..- w O V*CZOLU . ' -N. X .. O O

, ¢.J Z U '-o": n _. A'O Vl ~ZQZ *0

00O-

3_JU.

a_4

z_

>.0<ca

I c.sWO-

'O O0

* *

I to0,

a. C O*9---:

N O

Z_a *

.-30.0

CD 1:E

<CD

0' Z O 3w _ * ) C ON C030.0-3'Na

9. O

N 1O O Co ,- V- ,-4 - .- 4 - 9..4 P4 4 -400000000000000000000Z4 < 44 < 4 4 < 4 xxxxxxxxxx5

- :rI Z_ > 0n0 < CA04 ,4 N :23 *

03 .Z ;Z

U, O,LL.

>. l.> o w"' I0 c.3

-- W)>

0 uJ:J *-4 L

0 0

2E :E> 'ES

0 C U LO-0

C I

000:000 :E

W.: 0.LU 'Y. 00Y C 0.

UJ 'r U e(. C LL C,

Z ,, 0.O..,X *-

V) o .

Z -. I-->-m >

Z ) - I.LZ *U.

E U. J

Z 0 CC

..~Z lo.Cie 0. > co0 'U ZY * .Z3 0.

.3 C0

0.4 D X'00 N

'0 03XO I C Z U Z Z

-4

O _ N m 't k O - C 0 . N m 0 %rN N N N N N N N n n er n 00000000000000000ZZZZZZZzzzzzzzZZ Z3 E 3 Z ct e 3E a $ er E 3 e '< E ~r'9- - -- 9 - - - - 9 -44444444444______4

0

0) 4_

V Ir r

CL .

0 0 > O. '0 O.z L 0 Z or u o :*: t.. 1-..l

CL 3 LL 33 ....

I.O 4 i ,

Z 3 3 * U0. U. ,

3 0 - 3 3 0UJ 3 O cc: cc p a

'$LI) * .CD .* r 34 .*4 01- O0O

OZ O -Z3 o Z

LU 0 0 3 0 U.JCD Z D 3 0C: L V l7 L (D- x N. 7 0 3 a3 3 *

LUJ Z 3 N ' _ ,-I qU I 0 t D a

0 0 0 0 £ 0 00:W 3 3 0O

UUQU9-

0.

Il Jz

U WZi. 3 L031

<0 CWO:,, Z -

0 O» LU

O W

Z I0000

v Z

+ +0 +_ i

Z,0.

_ _n *

Z a_

Z r+ +· J . I--O

Z -Z

+ Z +_ 0 Li

- U 0 e _9-_ - - Z

O-+ ' 0 > -,.-, -0. >-. _ 0 Z .+

- N * 4+ -

+4 r. 0. o

_Z WO _·

LU

7:z--

U.0)-

3:

3E

UJ"'

00n

0'.4

0

'.4

II

Lrl

'.4

0C

179

Page 180: 03137348

4, U, Nor- c 0 0 -4 N

000000000O--- O O O -O 4 < 44 4 4 4xxxxxxxxx <

n t uV r 0 ', o r4000000000000000000zzzzzzzzz

-4 - - - 4 X4 4 a t I: a: Ia

N ( 0 r. , ,- N0000000000000000000000zzzzzzzzzzz]E 3o C 33 31E ]E or E :44444444444 XX:£ : :

LAtf'4,

CI

Iiz

_ W2:

+ 0+z+ 4Z- zc,- Z

_+ O

0 0Z

S 00_C +O

-+ --- C, -Z-1 ,.4 UJ

.ct

_,4

Z ._-

r.. ,=.

4

+-

-0Z +

O-

'+ O

9,-..

_"0 0Z +

_ _

- ., -00Z00 ^4

4. OV

-. + -W U

r- co

.-4 " 4

O-,4I '- co)s 9_

.-4 -.4 4 "4

L)

un

*

2#

-

w ZZ

It :, O

0 N-I 3

- -0 -

w c3

a 9

cc-' W O :

tU.J

U-

Wz

t.

ZI-UJ t.

. W

_ Ce, c

Z - J _"

z . w r?* I ,,,,.- UC>=+ + W-..- N ZZ LLi IC,' .WO = _+ It ,,, ,-' _. ,Q UJ -

^ Pi IJ cd No

I _N+ _

9 s0 e b

N -4',-4 :3 -

(7O 0N C

.4 -"4 NMLM

(I

4 "4 "4 4

U

LU

tn

Ce

V)

CC.

U,

wU

0

IJ

.C

Co40-J

a-

-j-4U

,.-41--,.-4,-- 4O a__ *3NOC(.' 0CLUC *uC e * 0O U O u O C C -O c LL LL ^. ^

0o 4 NN N N"-4 -4 -4

180

N

U

000- - 0-

XZ

0"4 N

0000ZZ -: a 4t 4L M x Mmr444' m

-J

0.)

Wco

WI

LLC3

U.Wce

Ce4V'

V)00W

9-M04eO-

-jz0C·0

00

_0. -..0-- 0

t -Z 4

- 0

I -

< LLU

00N

l40 11 *

110- III -

(AC-.

U

Page 181: 03137348

O O 6n OO O- O

00000000000000000000<4 < - 4 4 < 4 4t,,=, l.-d IE; I,=d fm I,., I.,, I,=. tu '-'"

000000 0000000000000f- #- q " " -0 " " 4 44 44 4 4

0O( O O' 00 00000000 -4,.4000000000< < 4 4 < 4Z < 4a: : x : E 2: x

N O O L O P- 0000000t-4.4 V.4 -4 4 -40000000- 4 _ =- -_-

*( ~C,, (l:d ql.

z3

--

z3 ::0. )-w >

_ I-0 ..

..UJUj 3Z 0

. U.0 t

- c caI- 0

z- O4 Oe

-UJ "- CCt.0 0 -

.J < . X O0 ,-

, U C- -4 0^0 *_

+ 0 ^ * NO0. _" 0 -N +.

I ( L!J . I ~O0' ...JZ 4 * O 11 f- 0--t : C: 1 _- _. t ._

l- _ " - (:: 7 I-L~ ,~ .. X O IL - O

L. )

n

I-.

U-4

U

0.V3

UJ

-J0a

w -, N --0Z o. u I 'tl _ tl II C~ U_ , if C:) co 11

a L.) > > J

- f 0 _

_ _ _0 N _ -_. -it h* 0LL .- -,II 40II 11 I I11 I II -4 .4 O. .-

m ma, >/ 0-I l 1l °. h la O w:. c:: X v . iZi C z z b z z . CL O. a

U

181

-

N

3 :

J CL

Page 182: 03137348

a 0 .-4 N eM 4. t00 cls 0 - N M 4 6Nl % r'. 0 p -4 -4 r 4 4 0- -- r - r-- N N N N N N N N N4

000000000000000000000ZzZZZZzzzzzzzzzzzzZzZ0-4 -4 - - -4 W - 4 .. .b - 4 O4 -0 0 0k, azl b:Es'Zx x

m ¢ Ln % O 0t m ( - N m ,I

--- p -4 -- d - -d V-4 V-4 wI .4 ,-4000000000000zzzzzzzzzzzzi-M -l - - I -- * - -a: : :X a a X:E a a Z a

p.oce

-Ccr

-iP..

- (A ( (A1 NLIN _ . >_ ._ I

0- 0. 0 1U Zde u! OJ 0LZ

, ,- -C t '. r4 0 _- - -. --' 0 ,I .0 C N- . t -_-I^ tx: Il -1 _-N -1 O N -I J i Ir I rl -F

U0 t, V - - 0 0 O L n Ln ' - - - - '- 'I -- -- -

II II i I 9- 0 . 0 1 -I-_ IZt -C < 0 0 _ 0 > 0 0 0 0C 3 11 11 ( _ 0 U.l 0. I t I 0 It 0 11 I i 11 () Z If 11 V I 0 V W 1 11 II (A 11 I j 11 1 U. X 9C - 0- :

I ) 0 :3 3 3 _J - 0 U I. 1 0 =1 - X U X U V) 0t U C2Z Z Z <4 Yk J lLI: U Z Z Z 2p Z Z C I rl ( Q > X: O U. -

182

Page 183: 03137348

- .4 - 4 - - 4 -40000000zzzzzzzZ Z- Z -Z2 _4_44444__4

% P, cO 0' 0 -.4 N 0 U 0VU um , , O 0%O ,O O 'O O

00000000000ZZZZZZZZZZZ.4 1 a 1., ab" a:l a.,, : ,.-- -, -- -- -rLTL

-J4

00ZZZ,.: ,

0a 4- N U % O I- C r P P. f...r - I- P.4 .=4 4 Pd _,00000,,1 I ,c b, X[XXXX[*C ,1

0-.

U0 0t.-

0 Z0

0 UJ WU 0U C0 > 0

_ Z 0

U. _ LU UJ

U. 0 0 UI Z

wU 0 Z 0,- Z 40 - 0 J 0

I- Z T: I 0 D c ') V-0 U. U. I L 0

@- W ui c ,.U. .LU

4 .j o l LU 7O -i 0 0 Ul1 M' .IJ C:O LU LUJ N 2Z + >" O CL 00 It L UO UU.-

> - 4 O. I- - 0* · Ct Z AW W 11 U NUl ,-0 0 U + O .-4 I ll 0

0 : " *1D I .2 0 -. c t cIt II 0 3: . ..I l.- II .)" U0 - - r cZ W Q O w u aI- . ~ w - .U 0 L+ +o </- Z Z + I t- U _ 1- ::I- Z- tAJ L U + C < , A -' W "W *0 WlLI 4 O 0 V ° Y a 0 or1 7 it 0.C i CZ U:C

i i l- I W 0L.) U ! 4 U 0J - -e O. - 00 w .U 0 0 0 l Z Z I->, ^

- N + + ,-4 - C U

OD _- O _-, 1 ) 't' '~ IA zcDIA .T_ I.I lLLL IA.

U U UL

I.-LUAW

0

U

0

:(.0-4

Z0

.ILUi-,

I-

'.4

L)LU

-. 1

14

0

o

.J0

0J F

· 000J0+ O II

*)00O- I- -

J-r · e _ 0

U- 0 * * ..J,+ H. II

tI 1 >- 0 Q> c

0 > _j L,<0 U U.ZZwLUsZt -- . --O~ W 0 C Y: Z : J I Z Z J- ::X JLL r oLL UN C t IL

U

183

., -t .4t 0000ZZZZ4 :r Z r

000444,.. . ,

O O

s zr ct000ZZ724 4 a

Page 184: 03137348

00 0O r- N

O O OP C' Or OOO OzzO-- -- -Im! 4 4 4 4 Ie tl Ie

V-4 1P4 ,-4 -0000;e z 24444zzr zb

00 0% 0

000zzz644X zz

', N '

NNNOm ZZt-.4 Ire Ii

NNNO

0 0 0- -

M z

rI M a0 o N 4 LA %O O -4 - ,4 -4,-4 .4N N N NV 1 N N N0000000000

Z Z ZZ ZZZ:2Z4 4 4 4 4 < * < < <-x: L x zx: -

9--zUJ

U.U.00

0.

0.

0

O,z0

UJ r'

WeO

4 )

X0 N

~ .L co 0 ,O

J 0; _ _* _

uJ

I0.wz49-.004U7-7uj

0.

'1'00

U 0

0. NM a.

-I -L. 0U -

0w

LU

,--

00

4

0:E.-J40

N

0a

00

0_ _-. 0

cO X ~") X *

COO 0 X I It _*"

,( *.D X co , O :C0 .a 0 , X- a >000 *% m < O >CLIC 09 - t ; I

XJ.=,-X0 0 , X J, . O ^ . I . >: X X -J _t I 3- > .X , -I

* * .). I-O X0. 0 _ I . 0. I X C-* U. I O 4. U* I- >LU U

¢C' N

a

0LJ. : O

CO

0 0w

_ S

- 00

X ,10V,0a .

0 II 11 C)- E I J

00DO

0 c Z

w U.

0 0LU U

NJi- a;CO i

.. J LJ J0 0 UJ

U. 0UL J 4J W I

--I _ 1 _1U U3 .

0 0 0

i

0

0

-J4z09-Uz

U.

0

LU

U

-J0

U

<

UL

- 0 W LLI

4 I -

-J - -_ _J0 0 0 U

0 U U U

00 co c,,4 ,,4 .4000

, t w

4 C O coco

0000Z Z Z Zlar 4d <Z a -I - =,4444x

0 )

184

Page 185: 03137348

cz O 0 -4 N M u 0 fs o OC ' 0 4 N'-. N N N N . N ,N N N N N .NNNNNNNNNNNNNNNNNo000000000000000zzzzzzzzzzzzzzzz-- - -- ." " " 4 - Z- - - 4r S L E L 31 r P E L X <: X S r cr

M 4 LM,.O P- 0 - N V r 0 0 a 4 N

M M M M M M M % 4 t 4 4 4 4 llo000000000000000000 zzzzzzzzzzzzzzzzzzzz-. .- 4 W - - b--4 "k -* -4 -4--- .4ld - NW

1)

L3Z-4

0

U

cC

0ULJ-4

00en

0-

0L.9

o 0JD ..C0 CYcu.. 00 _9

·'-- : 0.0O0 CD3 ^U I

* U.NI- 1 C.

Y -3 .O WwV

uw UtjzU_ <LLU_

-4

0

c-a. CC

0 0

3+ J-4t4 U. O

a. 0 '00 Vt 0-

CL - *0L CL O-J

I Z

. 0 0 C,- ..9 I H * cZ_ 1 l 1 C e

7 -O U. 0 1 U. U. (M C

so

0"

1-

I. 0 t

U 0

-a Z X+* LL *- 0 * J- + 9-

0-I I .)0Z1. UOU.- C0 JZ 0 Z

Oc u. Oz

0 , ,

U

185

-4

00

-J

a

-

-J0 LLt U

) .,e

- U-

9t00

0

W r

uJ 7

U.00_ ZU OCc

001 -

O N

0 .0 -0. Iec

a

U QC

_w I-

I:0

--of

-4 .

JU- > .ZO,-.-

t M40

1- 09-

O 00 0 -_. 0

0 -' .4 1

C 0 >-* .1.-

Z e.- 0

,,. *. .LL J 11

OLD X

N

Page 186: 03137348

ult ulrLC %O No%ONV N NU N N N\000000Z: 22Z Z -C br - CI - -444444

'IO 14 %O O O 10 %ON N NN N N0000000

4 4 <4 1Xx EX x:

N00 z z z- -"-a 4 4TZLE

nI I I000-- -W

ot .: 4c

O r- 0 a O c e0 (z N M n > 0 a0- F f F co cI, c a: r- oM M coN N N N N N N N N N N0000000000000Z ZZZZZZZ Z ZZZZ-4 - 4 -4 : 4 P. I " a-: - - -4 4 4 4 4 4 4 4 4 4 4 44rL

2Z

z0-

00.%

. uU UJ

_*¢ _

00 41

0-000

(D. . J so3

Z ( . _j

Z - - --0> LL U.L,=, .

LJ

2E

I-,X0Z .

"O00-It --Z -

. U.0 0.U -

-t' co 0o O0 O'co u 4

LUX E0

U. U

. , L

- 04-

J L ^0* X C0 - >00 C a*X ̂:3 * : ~

-0 0 Z + 0 :,-t: I- -4 0 4

0e 0 w O 0 W M * -iMI ." ·. 0 = 3I-- "0 OZ + O O ~.::D

9- 9- .Z c W UUO021 2 - Z II I11J OZ 3E _ : E I- Z 11 Z - J J -Y C tY C Z -.J a a 04 < 4C. U. 0 . WU U- J CJ - 000

00',4

U.

It-

3:

_.J

4UZ4 0

C UJ O* we

:U

ML > Z UX C3

. _ uU "-0 UZ >w

, U U- 0:I:~%0

Z

-3

U·U-,

a - -

I c-

0u ^

34w

--

43 .2W OUJc

00 D

ZC *0

4 UL 4 ----t ̂1 iZ Q' Z ~r W 1.. Z Zr N

_" "C 1e* L -

03 U . I 0 0. O . LL UL0 -4O ,0 L" t

O"0 0 C- 4o U, L -4 c0 -

J--

0.0

0

.J0

C'

U-a0w

::

0

'"r

cteU-f,)0z<u.

0 00I F0 O OO *

0 . 0 )-

1 Z Z E -0 0-4

0 O Za aO CLOd H

186

00ZZZZx: - X

Page 187: 03137348

a' 0 N Mn % um 4o P- w fy oaD I 0 , 0 7 O c r O 0N N I N N N N N N N N '000000000000ZZZZZZZZZZZ4 42:4 44 44 4 4 4 4 4 44 :r :X :E :r a :: : : : :

aLU

LU

U.

0-U 0

z 4 00 0 . EU.

OD 0~ OfO C < Y

C)F C

F ZZE

zVt C;I

00

0h-

UL0

-

-i

0

U

C >( 0. c

, .4z 000'000,-(O -- O _

0 w 00 . 0. LL.

I-

Ujze

0wc9

a000

N 0-4

t-

z -- -

. LA. LU

c' 0 O 0 00 NO~ cr _ o*-4 -

187

Page 188: 03137348

N M + n o000000000000000000000000O:>O OQO OO O OO30O O OOO ONN 1 1NNNNb

Q,, I' Q,- I,, Q- I,-

a00 0coNN4 44a 0

%O _ __t

000000000 a aO Q C, ~

_ 4

0000-l-- (I-

0t c a Q a O

C) OO000oc N Nt 000 * _ OO

N O

000I'l N N44 4J Ng

n4 ryIN N N

000

000

N N0 0OoO0NN00 .

N 00000N NJ NJ

000I~ C[ , O

,_ N C4 LA 0\ %000000000000IC N N N C

o 0 a 4 4 00000

4

0

O 3

LUJ

Z -_ _

Z ̂-4C _

_ Z_ _-

w

X ZZ -O ZCC _J

w uo_ IIW) _wQ-z rc: rC OS ^

w C: LL --XI~ X

0

N CF I 0- 3II

S _

%O

nNCuV

r,-fl-

0-II

II Z

Z c o_c _t

N1 0 N O cI4 % %t ~N O rl

OI- "N4 -N_ t -4 _11 11 1140 V) )a- D DI c c J Z

C:) u" ¢be , ::3 5:

O-

I,0U

[-a

er

N -..

- 4

40Z N0 0U c

N

0

0I--aC

P- 0* (3

P-4II- N

2Z

CJ

Z. W,, W-4

UJ J Z-- Z 3. O 2

- J_ 9

-J w0- e

- . II

Z_ OZ WO - ,--W ZOW UJ U Za C: _ M _~C

W: 0T 4II )lW3 r:

0II u-

co ofM0 I .-O - e

0 0 0 0 0-- N M .d LM

0

0C4I--00 r

0'

--4 9-O II

II_ - c

: -_ _ _- O

O O E@fF e

188

Page 189: 03137348

O O0 00 aN

%O O ro O0000000NNNN r (4 4 44000000

"i444

r-

* II IIU t II II II

0 IW i LW LL U, -" l - - - "- I_II i N" , II" ,-, ¢ Ii, II, " i iU

4

00N

"4

-44t

L ceI. Ce

INON · 0 a¢ FO col%O + " _II I IC. C C4

*1 1 Y _ _ _ __- _. . f

4 m on

,, o f0 c0 o

* * C^i _. _.

_ i ii

0c O

W UJ" . O,_w

N1

Ca00

* 0I

0 0wii w..CO00-

Ct- -

. . . J _ . . N -L.~ L, L, ..) . U W t.. --

U. U U. U U. U U. L_ . i o _ _ _I , I

0W4

I,-

_O O00

NN ZN 0 Zrt Ct. O O4

. C - 0L.) II "4- .a + o o

LL X L U.- b- - ._l _ _lc

I-

C

0

0rwz

C)3

0f.

0 0i c.- o0 0O I,,-

A _

I _..

A..z UN x

_ II

w 0

ii i ii

0 000 00N _ m r % .-4 -4P-4 r4 r

cr

,-,~Z

-

O -O0 +OCi C C

0 4 0 I1 c0 I

0 D a:_I _ a _ @_

0N9E

"4

0~If-4

0 p-4 1N ,-...- -Z_11 0 g

, -, - 0_, , _

O aC C

0,- N

N N-_ 0

0 Z 1,U. !rU.-C I 0 2 !l II _- g D + _

- ---0I(0 OU.'0-"4 4 N N(4N

189

0 00 0000NNNNI- I- - I N i1 NNN

0 0

00000000

4 00CZCO Q

0O 0000000

.-4N (f00r 000,- I.- .-

OUlO

000000N - -- a O4444

0000 C N N

444 0a a O

o 000

000NNh N N

1 a

O - NI-- - I-000N N

000

0 00 .4_ "4

Page 190: 03137348

0 "4 N (fm UIn 0 I,-C* ao a co I 0 co 000000000NNNNNNNNI I I N N t IN IN -)- Qe C- C: C .C:1 I

c0 0 al 0 06O0000000000000NN C N N N N N9- ---b-I -0000000

%O h- o

000 00000IN N I-- -O-- I-0000

O 0 O OI COO0 4 .- -4"4 ".4 -.0000000NINNINNNIN

0-

N9 - CI -I- -- C I0000< < < < < < ! 0000000 c

0VIm1

0CIN 04n Mc

O o

a 0- c O0 0 · N

- O w_ _ * o a- .W Z o

+ 0 @

_ _ _ -O O

LL U. U U. U. U-b@ _ " _ _

U OO OO4N N N N N ' m

IH 1 Ht II II t l of I It

I--t I- I-I- - CI t-

O00

r0

00 0 0 4 I -' 0

* * J I 4 I-4 < z * c'I 0 >-.-) WIf - - V II - .ZC - -- C LL - ,0 -L, 0 O-- _ ._ t (.D _.

o _

0 N

N40 v0,-a Iu I

0 C000 0o6 Wuu

0* I

11

HO

000 00NM4 I r4 "

IN O I

Oe OD-

O

* 0 0

l W W.w*w

a4o

N O!n

1 ·

IN0

0

0.0-

~- 01-4

IN , os

40 N

IO 0 4" Nt m 4 4

I I I

w Uj J -J0 0

- - - -- - - - - -

" ~5 1 Cj - - j - Wi 3

C 000000 0 -C 0 U Q . L) )..) 0 0 V II:- - - - - - - - --0 U.U u. U, LL W U.it UWL UU:9 r _ _ _ _ _ _ _ _

a

190

n r fUmO

0000NNNNF- t- C -0000IN N I I

h.. GO O,

00O000NN IN-i-49 41 4

0 00 ON N< 4

0-4

0I-

0

O 0cw Z

0 Jov aa _ 0

* _0- -

L) 0 0

" i" > 04

0

OZ t OI0 Z 1 11I O UJ UI

r UJ V)

A

Page 191: 03137348

W-4 N n - O-S -4 - -4 -4 -4

000000)L C- CI - C· I

4 A o 4440 00 0 0 0

00N

O 0

ON 0 -1 -4 N O- N N

O0

N N N

O OO0 N a

iO I- cON N NIV- V4 -0 0

0s 0 _ N

0000NNNNO a a

n n · q u r-

0000 0N NN NN 4a a 440a0 00

0000000NNNNNNN4 4 4 4 a

o oU( N

0 0O 0

o I 0 .J J. W1

I -i s * . 0.a . 1 W

O'-* ^ -- O^4 . · N" - I, J O ~ .,J LU

4 4- I t00I f1 0 + _ -_ " C I - -

0 : it U. U. U.LL U0 > 4- O-

00C%

0 0

C O

0 0'0 0 O .O

O Z

Z .-, .* .( I _ I4tW I t' * V J J 0II O 1 0 7 LU

UJ I UJ w L. ) I

rr u c a__u I

O - NIt I 11. 0.0.UJ WU .

wI,

I

:00 0 0 O L 00 00 00oo, ' O 0 - - N "1) m' U .1 ,O r- CO 0,m r m It -t r 4 4t 4 4I 4It 4 44 It

O

, co N

%O 0 4'- . NNNNI I I

* 0 *

* .

- -4 -v _

t -.. JtO)

LnI- -cu-u

0ft If I t It I II t

W , WJ .- J UJ W o,, b1~ , , s,, b1,, w, ,

40 O r40

-4r 4

a _ _ __ _

_r _r _

0000UU L UU

LL L. L ULL

00 N O O 0I I I O I Z,ItcalN .40 .It % a 4 t

%O at o N N .CaLf r N 0 'j0io . '- _ W

* 00 0 4 W +U U UW U J X

-_ - I O

U- L. tLI. W LX 0

0-4

191

O 00-4

NN

C a

00

0 WO <

. >0 *

I .

J ^I

LL a-. >

Page 192: 03137348

4 4 O .4 .4 -4O . -4 .4 . LI4 O.

N N NN C ON N NV N N N

O OXk

O .o u

Z

0. 0O 0

r LurZ ..ej0 C, , Z C,X O O II -U O - .1 I 4 N

I - I 0 - ·CO-+4 Z IU *t G[-. - -Z-) 014 s J7 I * - *O V + - 2) I v D I -C.4- -_ Zs-M 0X :ET IL U.LL I -- O 3 G ZlLf Ct -q--- V) X -0 W

O 0 00004N M - UL M O

192

Page 193: 03137348

_ N r4 .4LC 0 r-. F eO 0r o N rf 4. UX' 0

OOOOOOOOOOOOOOOO O<O·· OV O~ OJ O O OC OO Q O s O C:) o~ OS OI O

J J _J -- I _ J .1 - J .J J ..I J * J4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 mJ)-: >) 3>. : )- :1,. - )- :. ,, >., > )- :l-)..Q.(X QCL .C Q.I ,Q. CL . Q. IX0w , Q.Ca O IX, 1 0

--444443 4444444444003

.J

C4LLa

: 0W

VI JO>-C

0 0Uno _

. 0 W.-0 3NOd

J - :

OZOD~

30L)0

000.

-

I'

o''4

C

C

00

Iim,

a_0

3 1

0\

-4

U)

W

040-J

..- .- 4 (.9- <- _-_ U

O-.3 C

ic CI C OI1 C- - 0

00- .* * J-Og -- ·- - V -

y.: a CP :- * O- ^ N O

0. 0U. L* - O U.

4W II---

,uwwaTc rmC) (

N

3+

04-

V)

1 3

I ;

_ 033 -3 _ 0

U

Z

D(J

3

D0

. -V3 30.-

O +

* -I CL

.? Z NZ

. , f -,

0L OL3 a3_. Ncc1 p.

0

193

' -4 N00_-

.- .

4 N4 0NNN0000J J J>Q )- )-

OOO O O

I -J -I

zI- LLUzaeiJ

Page 194: 03137348

4N 00000000wwL

W O

00 0 0000IUJ WA

aCr

ot0

X Ca

L

3 Y:cc

OO

a I *I~-

0

OX.9.9-.

0xCO * ..

V- O* * a:000

Oj V

O c F 3 pC-i 000 Z IaO DO a0 o>-Y X

co 00)'2: -mL c

(A U auwcvoLf cULL)

a O O

00 0000OOOw UJ1 Uwww3 (

r N

- O000WO W W

4 .

- _

**

a I

, )-* Ce

I- I* oe

Q VI co > co 11U U J co

I-

41

re-"-

4 0-

I : IItl o.0

7I-

U ZCe: uj

194

Page 195: 03137348

0 6 o - N 4 UF % P- M M o N t V\ %4V f4NNN N N N N N NN MN MMM0000O0000000000000000000000000000000000P- 0. 0-. :>0 " 0. "W 0. " 0-0 " : P.- " 0- 0. 6. 0-

a-

CL.C-C3.

c00

U .0

t. J e,

k I,

0O _ .

X 0 C00-

00 .00 LUA .3 UL ur"_

U OC Orz ZWZ-

-O00o-0 a V a G3 w0 -Ow e, ce 0000I

cC)

U

cc*

+V--

X,-, * '

O . , l I

N *C. 4 M- ce-a- oa - ce* + _J Oz

O Cl -X - V+ e . Ic M W * I C U.IZ n LM I L c I

XIO)-* I Vl I

X · II O0 .. V + I00 4 ~. · L L.E* * II 0 + CCc0 :r -4 N *" i t OO V L)L) L) Vr iuuuuuuowU~

z-

O -

C0 *U. NOc _

uncI NN* +UL *

N r

N_

+ 0* C

I C) &

OI. z

-

c0 Z -

Z * +. O.4

O~TN L)Z J+ e-

I COeWLLZa O z oO) :E: :! :: J I -4-11 *4 * Z I N rY o tD

, - - I IE !-- 11 II U. ,,-4

I cOch V dLwUd

z

*

I4.

- *

0 * U* c f4- HI * ol

: ZXEZ H+ *.>O

::m Cr'C r*rz I <z U - of i

195

0000000013 3 33D : : :)

00 0000333_. _ _9Q CM M

co 0N0"4-4

0 0 000 0 , -00003 a a3 3: 1:3 3_ _ _

4 . .000000I-4- O

:S ;M 3C

-4 0r "

000-O-333: a a

(,

4*

,-C

x I z< >- cc

11 - IJI:E .

Page 196: 03137348

0 00 0 0 N 0 4 O - 00 m 't 4 t 4t + 4 00000000000000000000000000O b 3 O a a 3 O 3 3 a O 33 3 3 3 :N 1 :X 3 3 :J :S :

_-._________3~

ON OOO _ N r n %0 P - O M C 4 N m 't U U U U 0 UE t. N N %O %0 o -0 0 00000000000000000000000000000000000000 000000 000000

O a a a a a O a a Z a a a a e3 C O3 : :N 3i := t :W :X :t : 3 : 3· ; 3 3 23R33 3333 3333333

(L)N *U 0o

UV N

%b.* U

- I0 I 0)I I IfI II It

0I ·

is i"4"4~

0ItN0

0*

*I

NUr

I

-I1*

I *11 *-t' ,~

0

.-3

N*

"4 4 w

+ + +L .

II It II

0 - Z

Q o L.)

We

Y >- 0>

0 I- 0-ul I IL O03 3 t II Z 1I

LU 0 U-J *t -> I -

Sl It ' ! O J O.

N0I 0 *0OJ,

U

196

X

t

*4n *

cr <0 x -

I ZON :: + *

" I * ZX N - < ) =X co CC L

tN

zUZ

IAwZ4 4 < < w UP

Page 197: 03137348

- a a a a t aG a Q0 0a000 000"0 0000000000000 00000a W a a = : a a a a

-N r:? Ln rW- I- - I- I- I-00000000000000OA P 0 OA M4

3 aW W ==

O C0 0000U Ei) U

04 04 04 C= Wfi MW

N N NN L0000U t) U 3: :n: :

0 O o

= W

MO O - M--to oON Y m3 r~mrmmmmr000000000000000000U L) C U U t) U uO4 4 0 m Pu m Ff a W = : = e = = W

I04

a '

E:4C: L<:C0 a041Z 4Fd aU rs ",.

04 'q

U EtW* U4

04 c C $4E403a P W

0 a

-NU

no En W 04 0 C4 4

U) %U C N A

Oa0 a w

UZ C) :: a :4 0 00AP4 04I 4 r iV P P~404bPzNH la $a 0a as WX 0: w MP

H4 4 \4\ V4

:: G I ^I H0o W 0 W C.t coo .o= Z000wa0U CZ H U icr

,

N

I-I .

* 4

n oco= u

a$ O U) vr

o0o0 o

0o

0 C

EFO

O O0

oW

5-4 H 4c. U U5 4.

E4

%O c4

* cn

u coU a* I-

0 0I0

+ -t

C4 6

400 a

0O 0

5. 4O C

· 04 0-% *

i *oun-0 0*

P U,""'O *4U) 0 c n04 *,_ Lif _4 O t i55.; +0*

I-O 3

II

cO

04a_ 0N co

414* 0

.4 ACW4 40C

_ -4A b

a 4

197

PC

a 0

Pi ** I0

ou

Nr Eo 9

, II

_ ON

11 4W W4 C0 0P4E C4e

ul l Ec n

A4 owa U

04

44

nH HH I- , . _ _ _

K a X, p4W .?

E544CA

.-0

t-oI0

1:

1r

04

II-

Sn(

p404

0

4

0%

mI-

0

E4

I- Vq

,'- o

oJI !o 4t4U) U)1

* *nL

O'I)

I' j,- * 0

.

.0 0·I I?

0 LA

9.- ff

- 1II II04 ., ,o3 :

9- 9

* E-

- S* 5

re, <54a 54 44Z *

Fc

: t a b9 0* P 6

a cu a Vt

W X1 X* * S4

.4

Page 198: 03137348

CO aM O N m

0 0000000000000RUUUUUU

04C4

dr

N0

04 0

04 n( V-

0

0Eqc:4v r off ;

F I CL~C51O

198

Page 199: 03137348

s0 1 0 C O-N rO C;' w 0 0 0.. 4P.N N N00000000000000w c cc a a c woJJUUJJJuoJ0 > )00 0

m t 0 % P w 0 O N 0 00000000000000000000000000000.,J . , ., J J I J J .J J J J

uuuuouuuuuuuuI-,-

0+* *

' t

I 1-'J.J

- 4 +

* * * NU-

I 1 r

e+. I -11 -I I - -- II

,' M A. . N

:-____--Ic rU rN U U, cJ

M _*M _ _ 5

N

-000* N

+

0. 1

0 . L)U V 11

0 U

O

10

O

,0 0 oQ 0

eO_ _0

+ + I >I, , , I O I Pl -If P -4 0

0 N : LL >II J U'-

C

9-.

O0

t

4 >

-Z Zd *44

, II n n- "-- > U. Uln V 0 - _

* 0O-

_0

0

- 0

+ W- >. I _+ * I .IJ -. +

It .. " '- II IIJ .J U.., J U - 4N7 >-,> L: :E ~r

'0 .4',.4

199

_ N0000 0J J-'-.4

V0

000 000000

o o

%O I"- o0o 0

000LJ or J000t a

00000000iJ I Ci

:. :. I.~ ¢.U CU

0000 V0

10

N

ON>-

>l>

Jcr

Z z

0 0O S.O00

0

-

01O

X 0

11II Z LLn * _.

-4

' -I0w U4, -

.,

Page 200: 03137348

O OOO 00000

o O o

N M t N O W C" OcY4 Mt 011 r ( a - N M 4 00 Io Wp aO O o . N4 -t 4%t 4 -.++ 4$ tp U , ur UE m- >-uo tn o u O Oo C o \ o O z o O P P- f.OOOOOOOOOOO000000000000000000000000000000000000000000000000o0J amJ~ J J aJ J J J a we a J J J ccJJ a J J w J-61 QL csataat: er at cu ara at at ac at at c cr t al at a c cY at at cg ce at cs cU V VV QV O ) cU V U VO U U U V VVV UU OU

N

_ _ _ ._ - 0 -

N -4 N - N 4 N I. _43E E :E 3[: E 3E x E.* * * O * 0 *.

-4 N N - - N tN 0V4

,-.

U ~ I

-J.I9

_Ovn cc- u

II b_ U

~J .JI-% 90.- 9.

0 0 k 1UN~ .N 0.

0 *Q'-I- N I N~- -.4 -40 IL 1 u ILD " - ( 4 -0~' ?

N _4 N _. N _"4 N 4 :E N x " E x : ": E

-4 N N -4 4 N N ,,4 -4J J

It N 11 N It

W- U-V

-J .4

- L) -N N

11 a It" U "

.J .,- * -.. S.

N - NN *N .N

I N HII N It

c 11 o 11 e- - .

.J _J

n o 3L - U(.. -

0 II c 11

"4

200

4 _..

4

IJ

, .n ,-t4 ..4 O." _" "

It- 11 I

J J

n Cr n

I M0 11"4 U u I

Page 201: 03137348

m 4 ut r b 0 -4 N MI * 0 0 PI ON c o

00000000 0 c O OOoooooooooOoooOO

O0OOOOOOOOOOO000Ch e Ic ce w C c ce w e c Ce w cc wC)

cr O t O O O000000. I .J . -J .

OV. U L

0 00- 0 0 a000 00000LV U L.

- N 4 tAO O O O O

J - J -J aOVVVQLatct

'-4 N

90. O-

N N4- c0I t SII

- -.-'.Oce n Y -) 0O - -it (4 If cr1 11

00 l U c-

ce 11 ce II ceU " C U

4 N -4

Ii c: c i l- - N_ UJIW U- M1_. C o _

N

NU1p-

N I rA, * .~ * 00itN ~ -- .I * * .- 4

_ _J 0. I-e 9 d I I LL it tl> U -4a

0UO

< Q LJ D

csU a

O . .

II Ht II

0l,-

*IL

0

U. .+ N* U1' Ol xII " .

1,- I. 1 IIU - < )

+

00-I

*"-4

IL)

-4Ic u t

U00* U

I I

11 It0n 0

U U

"-4

X Gix O

C

201

Page 202: 03137348

,-4 NO 0O 0O0 a

rn .t L rI O O

h-tI- ---

W1O0 a - NM 4 00000000000000OO O O O O OO OO OO O

Ln % 1- OD9-4 4 P- 1-0 0 0 0 0 0 I--C-~-I-

O1 O,,.N m,4 -t .0 -,,,-4 N N INI N IN000000--000000000

C - - " ) - O- C

0 01 0

OOOl-h-I--O0OON M 4- Ln %4000000oO t C o t-jJ -j j j -i -j i j i i J ~J -J -i ) j i i -i - i i - - - J J - II -i -

M C MCL X 0 0. M CL M CL CL m . * C. a . a *a a L6 a CL mCL a a Cuj j u u juiui j u u LU uj UJ LU LU L A ui LU UI I UWUJ U ui W u 1U L j i W LU iW LU LU ui

0 W.-.)-

3 Ob-J 'D.h- CZ

_ ZrU. ,,

^ JZ *

c3

O c

Li M

CD.J

Z.

0 _._ '~

II- 9 0 sO M 9U N

E ,- CY a-0 00 L~C.)Z4J O O 2

It a -I,- I O ~.

· zr ,..- zO 3

I= O O O,

uJ 2: Z ZZ CO OL-, ~ CD L)2'000 t

r.I'-

aK

U

ui',O

CCUW

4.-

LJ

*F+W

ceL)+

ujw

In<XU

w-,-

vw -I

C)(-C

L) U-4O-r-1UJW_3 c

Ot -

_ O

_ _

C

W UJ1

1 I

> OS V)%t :

N Z3 A,

a CL

>

C UJ

O a 4

W> C: LD W

V. Z0 W -U.~U

C)-C.,4 eU

U. .- O-C

0 Q: O CD WU Uj 3

0 _ C, L

,-I ,., I.A.A. J' L

O tU 34, UJ uZ Z Z

C OD C

CDOCC:) ) O

t

ZlU U

~Z

J z .e. V)a XL I

Z .CD I..,

Z XV .

(L LZ ::J aV3 a

z .( U3 CbCIAI

CI.-i~

el. e,X C·3 0Y 0

· , D jcc Ch s- : :SX>

cc C....U . C:^O c0 o1. It

03 V L2 a

7-)

7-1 L.) U.

0¢1.

o

.1g)

y 0

(7 %t1-

+ I

Ia. . C

,.%,O O ·0 j nn

$ C C

J ,4J _Uw tl 'IIUw a *, * .

t I > c _ s _

re ao C16_ _ n _

a t]!- Y

,--

¢+~~~L

-j I -4

CA CJ 4 U.O-.* 3

~S Ln L) 0 00

0: 0 - I %O IIt J '.I . I0 OO0

· · O0 _ · W cc c rU.~~1 11 U. tl U· I- ,o J LJ ,LJ * 0 _s I I t -I JII Ua II * UOU ¢3

Ct cc OU O tlC

A

%O0

c,-3 4A ·

43 r.. +

_ +3 rS

dr 3UIA*4- _4- 43 OI eq

Q OL 1

3 -1 -ID I

a _CL Co

3L W

00aO,

-

C O0 0 0N,-00 ·O 0e(1 CII

oh tt0-O -cr tCa U.C % .

Za.,UJ

aW JZ *tF a: J

o2t!

3 W:) -i

a, _S -O 3:

+O %11 VII L.- 3

II11I 4$

a C3CO 3

N

I INitsoU

wl

QUUOLLU<U-J LL L -

U

202

Page 203: 03137348

- wb 0 Q _ N m4 in I p 0 0

0000000000000000000000000000WWWJ J J J J J J J

0 Ln 00000hm-h l- I-l

U O0 0P co o 0 <- N m t U) %O I-L C U) O O O O O O O O0000000000000000000000Im- h - --- '- h- I --J J -J - -J J J J -J J J -J J

WWWWW W U W LI U W U WWt J W W W IW W WU

a: 6 o _ N%O O P I r

0 000 -J-J -J -J -JQ CL & C CLW 1 W LU

+

_ *

II 1g .- V

,,, al

U 09$- 4J* 4

OJ · O 0I-4 .-v .

I I' c Io **U.. C C Il _N I 1a i-a N - -

* P-

-3

0 4

-

* m

-- UI

_U c

u W

!

Cr..-

3

0 0 .300 c." II IOp e P

0 00,,D rO 1 3 30 3 3

9-

LL+9-

9-

4.W

9-Lr

W

+

0 O+

O O -

* + p -J* U 0

* 0 0 <

II II l 4. <:) 00 CO 4 oI L 1LLI ~ ^U +

9UJ14U WW Ui W

0C09-

0O NO N-:0 -

4 0 11N * -N-,a0 0t W OII· *N tUJ 11

- I Z-- ZC 0 CI

cW-4

0a,U

203

0-J

-J

40

UN Z- .

- L_

O

e4 O

LU

_ J

N 0 V7

- * O_0 :r: . 0W U.ce

U.. >»OLLUC

r WU i

0Q 0

-- LU II

Z--4-I -

U U

00C7

,.-LL

LUa

9 -

_t Co

- IAJ

C-

W O+ ·

-4 ..--

11 I -

" e4 N

0 C-.

Ow

Page 204: 03137348

4e tL u ,0 rf 00000

00 o _ N n -t uo fo w rC cr o N n t n Q IrW w m c N 4 Ln ,o F

0 000 000 000000000000 r rO0000000000000000000000000000000" L- " " A. L- " I - " b 6 b C .- l--I.-6- b- L )-I.-~--~- - . - I C $- I

ms C. CL . mm.0 Cs tL C. C. C s C. C CL C Cs CL C. C. C CQ Cs Cs mm&& mm C I: C. CL CI I CL Cs M s

W W wJ 1 U W LU w UJ w UJ U W U W U LU L U W LU LU UJ LU U U LU LU U U L LU

~~~~~~~~~~~;jjj~~j~~J+~

U3Eui4.

4UJ+

004

_ N* 0.

_ 0.4 (A+ -

3cIN4 0

IN 43 -4

0 0 0II II II I II

LU LLI' W LU

LU0 +5-4

44

+ uJII +V 4

. -=4 >U.) :

.O 4

4.II LUH- +CO - -

0., W_- N CrN * 4,-4LU . 4

-I

U4- J U

N0

0I-

m 0N -N Z

'N ·. 0%N 0 if-N

N r -44II INUZ eCN+ -. N- N Z Ico 0 - Z- 0% 0 > ,.>: C ) U UJ O -W

LU

z,-Z0

II

l-

Z Z

if -

N 2 co

- 0Z._ 0Z .4 1 J0.4 J CO

0 O_ > WOr- 3E U .) 05.4 4 ZN40U- It " 0

WO 430+ 4 Z 0o- ZC· -' Z O -

O- * . W

> >N *-4 0 4U. U. U-UOJ -LU . * *--

N 00Cy,

U

0tU0Ci

.30

<[04UJ

00V)

O9J07a N 4

040

o 0

0 X0 D

-

0-

000co0 V

0.

4-

003*D

0

0+

Z-032:

It II01 Or

t4 le

,4-

UJ 0. 4.

It 30+ %elU Y >

U) U. .3 X IN

11 It

L <

le Z Z

v

ZJ

0 l

0 3O Y

O. o

0 4*

2+ -J:

4 . +

0 ZZ 0+ J0

+ 0 0_+ 4( U 3

Z 0 uc'L.)t

204

14

Page 205: 03137348

a, o _ n a > r ro _ a f iu v o U uO P0 w o0 0 N n a o w 0 _N M to c P_ ri -4 4 4 _ -- _ N N N N N N N M} M f M Mf M f5 M M 4 t <+ ,t a

P4 _4 _-4 _1 P( rl V4 _4 4 rl _ t I _4 4 4 _rl rO .V4 o Po _I _ r P 4 Fl _# e4 _# 4 VW _4 _- _o000000000000000000 00000000000000000J > X J X J zI JI J J J JI i J II J > X XI JI > J J > ~J J > X > J > J >

CL CL L CL ( CL . L C M C C L CL L L 0. 0 . 0 *. C . * CL m m .Wj LU Wj UJ Wj u W UJ . W 1 UJ .1 U W W U U W U UJ W W U U W w W W W w W U U

0 0c ( + < +u. J;Z 4+ a

W . W :r :w .. (.,w 3 3 ZY 3 +w 3 3 : U1 YT > :

)O U . +3 N

- It 11

Z W 0 >IIbO L < U33 3 C 0e beZ Z Z

0

J

000z

0

0

LU

LUa U I

Z noW

wow=-

* I.W3

0 3U

ZI C) XZ

00It

2zUjI

3-4

LU

* 3J3

03 NOYN

ZI UX >

:3 U (. 3 . Z Z

NI,-

0t-

O0

030

v t) n W- 3.0

0r",,

0I-Q 03 4-

_ Z

Co w 0Ln 3 N

w > w0 004 0

O * 004 O0 N N 3 0 ,,It ) I If it b )

N N Y UL 11 '-- I U.I II i X Z LU ) 0 O X

u,~3 U. 33 33 0 0 U.Z -_etle g Z O _

V-

205

-4

+ZW03

N. t 11 I1 t I-- I1

W. V) >Z3 u3 _0 be Ye l ;

000

u 11

LUJ3N

Page 206: 03137348

0- - *-4 .4 p.4 -4000000C- C lI -I-.- -

p-O I --- o\a--4 0.4 0F c 4 0 04 -

- - -I.- =- 1- h-%O O

0 0~-m.-

I 0 - M O7 0 4 o-N M .t U - M r a ,, %O ,o,%O ~01,.. I- t~ !.~ t .. 1. i.. oOI4 "4 4 - V W 4 - F- F r4.4 .4 P.4 P. 4 .400000000000000000I- I..- I. I- - t - I. . I,- I- - = - - -.J. .,J -J -. .I J . J. J - =J J i . J J ., .1J J J J J .1 1 J ~ J J J

. . M CL 0 0 0 C. 0 0 0 00. 0. 0. .0. .:L 0. CL 0 .0 0 . a. M. 0. WLU W UJ 16W UW W LU W L W WWWWWW UWWWWWWWW W UWWJ UJ W UW LU UJ W J W W UJ W W LW U UJ W

0I-

0

Z -UJ 00 03 UN

,4

0< 0O04 0 0 0 U3U 3 ·0 l etl I 11

I- II e LUV) C xZ > - 3E 3:3 C 3 LY Z D le -

0

-0+Z .,W 0O O> U

OO 1OO U' n O :in %0 3 Y, i 11 g: D Ui ce - it U.Z ui t4 LD O xW V Z > ' ,t3 V)_ < _3 3 3 0 Ct .

v iy t. 4

0t--

+

W 0I0 0

00< 0OO '. Q OC3

a M 30 N SNU II : 00 t U

Z UJ V) 0 wU Xt 0 Z > F- x -0V 0-< -UL -

SY c 14Z t) 'le

-4

Z3(

0 0 >00

OO Nn - ,-4 3N II II If c, - 11Z u.J , CLU V Z >L3 <:3 3 3 3330L

co

UI

I-

Z

:E

UJ03

I-ZO4O) 0

< It 114 w + Ct o)+ r ZtUWI.- uV Z Z UJ U Z t )zz 3 C w Z :V C3D 3 1 3Z3 3 + IC 0 N) 4 c: H A If

4*. U I > :E - UJ3 ¢ (, < 4 Z C. J

U L Z Y Z 3 (, 3 >C N x 1 11 t 5e -i xr4 l

I1 E C- i Z 11 J

03 V3 0 U C . L-0 3 3 3 tD C 3 LD t Z e le Z Z _

O0 0

CQ a:

206

U' 0 l: 0p4 - -,t It.. 04 0) -4000IC=- - - I-

0

00

0 0C3

L) 11U.igcex ZO SU, tl cv"

: .. le

Page 207: 03137348

P- N M 4 0 % P M 7- 0 - N r

00000000000000,. ,. ,=I ,-I = .¢ -m~ ,.4 ,-. I -I4hl-- ------ t- I - - -- I--

OVO

0 0-9-.o

I- a0o O

0 0% OOOO ~ fVl-h--I=

N m -t a a Q w o 4 N O O O 0 0 0 0 --O.-4-4

N N N N N N N N NI-- C-- I -- .-I.- I- - - - - -

wwwwwwwwwwwwu a a a a jwwwwwwwwwwwwwwwwwwww a a i i

N Nu

*o

c-4

9.LO

WO - Z.II U,) 0 ! It ) O_ UJ -, (XLU 3 3 0 V 3 0Z be Ze Z e 0

w w : UzUJ W W ZZ Z Z

iUj uJL UJ :w : : E UJ

I Ui 00 W O cO W O U 3

Z I Z II Z II Z t-110011 0011 o110wII 0 II II II0. 0 V) 0. -C.3 0 3 0 : 3 0 3

0 0IO t

ZL III-

00

ZUJLD31I-

3

Z - ZLu L U

0 It C 0 3 0 3O I- 7Cl 11 c 11,

0. V) Q0. CLo 3 a : N a I 3

O -4 N O - N n 4 Ou)n 910 0 0 UM0 .n Vn n Li

CO

207

uj

w 7-0 rOZUJz W- 0 uli

Page 208: 03137348

0 0aao

t U' %O

0' 0 0 Of o o

0 00a 00

0 "4 N M 4t UONQ'-4 ( a -4 N04 _ "4 _ _ 4 P4 __ N N N000000000000000000000000000000000000Q000

N00a~dOJ -I J . J i J 4 J J J i J j - J J J - J J -IJ J4 4f4 4 4 44 4 4 4 4 4 4 44 4 t 4 4 4 a 4 44

E : z: X E X : 7 3E 3 E r E: :r : £ X X E E

I4- ':3 I-

,3

) 0 L

V X

0 ., 0, >- 3W .O 0,

O O -

0J ]W CE MCo X _- 2E ]

0 _JD 0 0 VI Uc 0 . .:0,.-0"

4.oVW - 0.i OI .Z40.I-)Y

D Z W Z ? ~ 00000Z

za W

O J

n X:z ;Z0L .

W ZW ,-

u. -

F ,.U43

W ZI _

30Z .

z 72. 0.

t 0 7

cc L)e 0. V

WZ 0

:X Z

) V) .

ct

' I U.U Z

CL L

ZU.U

0.LL0.W LU W

a CQ Uz 3 -4W 0 W> _L Z CO3

C UX V < *

0 (Z O4

b . 4 .0 0

^ O O N0E 3E E 4U U 00 - -3

WI-.430WWUJ

UCWLLI

0.

1-

0.0.

"4t"4

4'M0

NO

0O '-"4

0 3

00 0'4 4 0

* * 0* *3

3Z * u/U) f1 ** a oNN O OO O ON O O

0000 00W

: , a z4 N .to

,,-,,

U .

0.

I"O

UJW

U

J 0

M0.U) .W a-~O O C o0 .

+ * * * O

O-M O I 74O.NO N W % * cJ * 0 V N ' * t

* 0 0 O j F 0 0 0 " j4 0 '

"4 0-- C ( 4( t � "4- - - r0 * * 0 C zC - -O- - : 0 N C1 3 0 0 ~ 0 0 .o

U-i %O r- co O' O

U

208

N N0000004a X E

o a O 00 0000--J J J44

O Na aa uf000444

M nO 0O O

4 4r .J..J:

n OO Ca00 44X:X

Page 209: 03137348

_ N r I 0n O r o ao 4 N%t t 4 4 4 N % 4 W 0 n000000000000000000000000z 4 z q z z oooooooooo o:r r 1

0000 U0 U000000000OOOOQOo

O N xl 0O . , , O , I % N, 4, ,O d O %O O ,O %O - '- Ir r00000000000000000000000000OOOOOOOOOOOOO

4IJ -J .J 4J I J J J I JJ J J I 4 J 4 J 4 1 J: a 4 4 zs z 4 4 4 : 4: a a 4 4Z 4X Z X3C3C C 3 3C3C3C C E 3CZ Z 3 Z

o

0

0"4

-"N *0

.0.WX *

* 0 WI0 wIt W - 4 a .U

Z Z eOI *IJ

%4. N. *

· n r' I L N Z >

WU IAO eO e~w, ,, 0 O C- 0.L I . t ^ - v LL .0 W 0 .Wa3 3> *_ Z

W * 0 . C. U.- * *.

L "= CL O * L IY

* 4

o,44

0N

Zza _L W0 V) u

O LZO

O *0 D

0 0 N n 11 u 11

C O C: o

U O C U.b ;: U 3

WwV)

UAN

a 0-

N 0 0_ _

%O D

3O .

0>

+

0*+ *O ·I _

*0

00 0i * O3

-U e *P 3 ic '-'OW

uJO el.J~CL +

0 U.

ff I - I II

C3 II Ice3 - O 3 * L UI .4 V) 3

4' U 0 -4' LA .0

LU0

w.o

Z <,u W>3

ZU. +

X X

co ZU. 3 a30

cO 3 U 3 3 V0N O

'0 0

209

I-r c00

O Oa a-J 444

o0 O

O OO O00a a

z

ao

"C4

*

W000N

0~0

WZOH

CO Z

0 I." 4

W 4 LLc>'of.4 U. r

3i II A,

00C0

AJ

o: N0 -*O

II ULL3: IOC V)

C ZUj-

4

0O O

:00

- 03 O

4 N(In en

Page 210: 03137348

-t '0 Ln - 00 0 P - N m e 4 -IC ' -- r rc- I -- r- C ,- O O o oo 0 O w 0 00 000 000 0 0 0 00 0 000000000000000C] CI C3 (J 0 C30 (3 0 CI (20C CI C o

co0 o% aQ'000000000Cy Cy a a a

O, O O~ O

0000 a Ca (3

CO 0 a 0

o 0 a -j J J i -. -J -j J .J - J .J J -i .J - j - J j . J j . I .J - J .i4 4 2: C 4 4 4 4 4a 4 q 2: 2: 42 o2 4 4 4 4 4 4 A C: 42

00

,.4

0-40a0%%

,-4

l-0zLUZ

o. W

i.- W

0 0.-, u3

0 * J0 0 * 3

OL 3 :]: !11 A

0u. H 0 ) U. LL 0C0 X0 - - 0a exo -0ZZuJl--0. d W'-W'-

N

N + h- LU CL >

W e OD

* <

Z J 0. N

ZW 0X >-443>A * -4

40W m: 1 0 co^ II3 J h D CO

3 > . e Z -4 . O oUJ 0 0 Ln

W 11 UJ I _00 0

0 > 0. 0 UJ 0 0 LQ 0Z 3 LLU t - JW-. ,- V. C. UJ

U U. 0 4 U. LL U O. OZ-W 0 3

%I0co0-

0C3 N

* LJ

U

LJ J

C3U. +

U* cu

c 0 Z .-4 LA 3CIt t II

a.J 0-C L -

U 3 3CwCWr'0W00uu ~3

II

00

N -03-4

0 t

N1 0-400 0"-4 -

Uj * UJ

I- .4 Ln -- :)Z -Z -- _O U- UJ. C:- _ O WZ00U _>) 0WZA

1-.4 N MI' r- r-

tC- N I 0P- w2 co lo I

210

CL

0.

0I

" -- 0N3*

r-

N_-4 m

co.,oC: _0 3r3 o

00

Page 211: 03137348

0 P- N Mt o.-4 -4 - -4 -4 -400000000000000

N NN NNN N0 0 O V1 0 n vo

r:T t ta: :

P- O00 c0000000VI C tD

cEoo

O - N "NNNNN00000N N N J N

00 a a aE E 3E: 3E 3

3: O

I 'OU ,,.

> 0 : .J :

I- "3 ., e U. a -e:z c" ~Z~ X

I. II--- O

V). . O.hv. 0 rD N

0 .J O .

. .O ._

Z Ln Q0

Z ~ O- O*W UJ . J C 0 U.

) -J . 0 X -J * U. 0 ? > 0 0 0

0 LI) 0 0 IL

CC < 4- X M X M W7 0 0 0 a 0 Uoce -o u 3 u\

II-cmw

z

0xaz4

b-d0.a7

0.00.

0.

0-II'0.

~C\ui>

0' ~

9- .

9L)-0I-

0.. 0

..40

P-0

..

0

0

LD

U,%

NI-U.

zV

0.0 *

6+*0

I *

cII0* -4

1tII >: O c

> r.U M M

0

N+u.

V)

0

ooI

<>0 4

I-4-c0 +

0 0u U.

> >Z I1

I - 0- .U. u

N

cocoI,Y0I

+ +

C) 4 0

* *0i.-0 · *t L e+

00C-'"-c - >_ ", * 11 U. UCI r , II I7

I,-I 1 V Z :

V I V I C (ll>U WUJZOMUM-CCYWN 00

2

211

..i No00NN o a

axw: r

N r o

N NNco co co C

O o OO O O000a a X X

Page 212: 03137348

- c M t tA %o C - W 0 t- N M QLt UN l rCo 0 0 1 a - .4 0-4c 4 C . 4 r( 111000000000000000000000000000000 a000

00000000000000000

f-4 N C N NOOO O OOO01000000000Z00ZXX_ J -J J J00000000O O O OO O

,,0 h- 0 O -C N M1't V zNN NN Ni m rn m rrm m m mOOOOOOOOOOO00000000000=J .J .J J - I _ _ J J Ji00(:00O000O

ccI.-CLa ae * Ch Ui- ac

I :W ,LI,-Z~

C ,O o

: O~ Z C"K

cc (::A ccr wE s: a:

ee C atI *X rI C t CCL U. (

U z 4'* V C:>

co J OI. LE

LI) OCOO

x aou0. j S I > o1YA cvX a L

,i _tn 0.a a Z a0 0 I~ vI o

a > CD

0 0 2 atI O > 4 WTCT 3:E U X V O fi _

4OO> C;3,,1'

Z

L 0 U3 O a -U.0 (A Z Y4 NC*C: a 2

· -- . O uJ MU*

OO: (tW VI

33 3E X Z.D, U_ o n

O 0Jcrs F LU , ) -X x - re L-unZ

C) di _ > O :ic O> y4 (

F 3Li

-_t LU0. clew0 W

>: Ca 3 t,> > _ Y CL

00 Y0 0 c yC U L)

: L~ 3 :>i! u)- a W :O X )

a: : a: aw: Xw:

Q Gt

in

:C3M

U)>3~

Z OOFC OU >

W >L)rLz .J >Cct--h--,2 CM i

I,L * _Z :]: O,

z o

U. 0 -L N -

.UZ >z cOe-,, U.,

WN~- a >._>

W AJ ,I,,.I CL , _, .. O OZ a )I * ¢c zZC30U, )

:A,, O _-LL , N

e O e,. re OI ~, _ _

., :r: )

I..1. O ;

OUJ3ZCDOZ, U, u Z Z 0100ta a: E

IU OL O 3E3EU.3E ~ 31CD ,-L)t.)w Z

LU3:J

a

_-i

.

+ LLI >

OOD

coa+ CZ* oa a

U. LL

>0 LL

c0 .* UJ+ a3;:>X rs

:C[ c CO _ C U., c -4 *rD cL telAJ

> c a ·1 .. ar

<3 C CD CO< .u o 1 DC > O11 * It :]: 11

1 3 1 >· 1 a cc3 o>~3a0¢ 1.,- -4~< 0 > CI O _CU. .. I >

wte-ch

Uz

W Z C

C aO

J JUJ .W a

0CC)O

- Ot r .

_4 *CL I. O ,

-dO O> LLUUJ Co +a :E-OWO C1,

IAJ - .00* co - U * _j0 *0 3W. le AJ ·

0 LAJ Ud ~. LAO W W JIt W O l

O i LU ( II 11if~ W -. Z < OII C < U. C <J J J Z..t ::U

C~aCin 4 .

Ao

- V-

zC -

t CL: U

- C

, -OZ r,

I..-t!. 0.*OO1n aJ _

r: O

I ZC

I a

Ir t Q

.J

:Z WJ

C C · J "-

.u,UJ1. e >-C 0: ., 'W · LUZ:3 v

) C 0

a c£cZ~ e,, aG (3

:; a :DL .J LAJ3 .J U.

rj3 (: -,

ce

C0 C

IfII nO inlY JW LL

0

II

X UJ ,

UW

Ye 0

,,-4

212

Page 213: 03137348

X 6 o N y t 0 r 0 t o O _ at o0 _ N o a c a N u% NO P- M c Pcc M M %t t 4 %t %t*t .t 4 4 4 0 0 0 0 0 0 us U) M U\ o o 0 o o o o o Pl I o00000000000000 000000000000000000000000000000000000000000000000000000000

* *

O

%ie *UA

N 0

0 *DI a ̂

0.s~ * * **:N. * *

>.Ih.. _ ^ 0. N* 410 #uf _ 1' - CiI~ I C .=0,Z O ,0 Q Il-I We,0 '- ,- 1,,- ~ 4~~ #4~ ef~t~1.4 a

* * * -~ ,- ,-4. QO I OW h IIL . .6 0 -i 4 .v D N(L. % - .- MN N . _ U.T Ne % N 1 N N I co U St 0

)I' -eb- 1- - - _ * Vl O IN , U _ Z N Z Z N II C UJ U 0I WW Z >

XC 0> ,% 4. )+ N -. n J W O .)(.'IN + * ** - J+ M .4 : 0 V NCO . 0I * -- - -- O - 00* W V:I n r O O- O. 0 * >1* -. J -, O

O 0 ' ·. t-St .M -- -* 4 4 * 1E -0I-0 S WI *',_ 00 4 V* v-- L0 - O (O 0o-oo1N O * * b .> U* _ I U > , * _ 0- -- N 0 N-+ ^ + +N -Z NjeW Io t eIa.- Fo *. N : - a O. X .- f 0 _-.- ,- N,'f M0 M OOO 0 t. 0 * > M NU--D _(',' > I1--E.. It ff1 II ffI II r I ,I* 0%N f1>.- N I Z ZO t Oh- ' II iN-. II ,-U C . 0 (A O 0 0 U o X _J 0 L 31 > 1 -' - -W eN I II *N U.I I '., , 11t IIU 1a N-,' I. i NI- NI IO C IN I 1 " 0 0 u . = ". .0 U I.' * ,1- L( I -A 0 co C D U - ' D-a.,,-,, o O _ -_ .f c*0 * , C -2: If Mc )( M ^ M It-11 > £ If Z> -0%O C > O N - I -OZ W O -NM QN IfO 11 > K=a, I %O Q>OE

'N. N N N f N e 4 O

O U UU213

Page 214: 03137348

,4 I a 0 0 - N Cf kA 4 Pa m (a 0 0 _ N m 4 u 0 I. 0 r. N M 4 U"N 0 .9 0I'o -O'c0 o 0 0 0c 0 a0 O 0 0 0 0 0 0 0 0" - 0 00 - 0 0 0

,i . I. J .. J 0 J .. 0 0 i 00 J J .i I J 0 0 00 0000 J J -J J - -O O OO 00000000000000000000 I > 4 >J 4 4 4 4 4 4 4 j 4 4 4 4 4 4 4 4 >J 4 4 4 4 4 4 4 4 4 4 4 4

A

_ -

- -

N N_-u LIJ I 0-I-

* >z_

N 0,, N :J:-',- ,, - +- " . , _'- - __.F 44 _

_ * _ 9'

>0>'-,-'- - -

O N 9'> W

, 9'.I UI I I Ua o

A > :>-

_ >

- : - '

> U >_00 WU + + >p * * - * +0 C)- Y - -4 + u+> I-

N W > _ I _ _0 * > II > > 0

t > U I UO V ' . W > a

V)z

Z

I-

- *UJ

U+ >

LU* ^

.I -Z 0

- *

> *UV)4LHO.r

IDO00O a

* 0

# ,* *

LL.

z-I cttI ·

* 9

I I

* S

9 -

* 0

J -

r-4 %t-4

Fn OD

40 O* ¢.--000* *# C* *-

N U U. N~ LL U. Vd

vZZ._ O O (S

0 ONN ·O 4 N : *4 O .- - 0ei 11 If 4

" _ I U. .

. Z-- *--NO -LH *Ww 0*. _ _ 1-ZL O,--LL U.*-

, Z' LL _4 > >

U

214

t n

000000

I-

t U

0u-

.. i_LU-4

_ .a 4 L~. LL ~00 -'_' 0 0-'*" -'

*9 9'

- 9.'

1-.'-'--a-',u-u->

0a

00 NN** N0 a :)

N* ON

- N WNU

-. c *.4 -- e

6 _! a C

- *_ N ,

* * 0N

U' U' : ++ + W3

ZZ* Z*z* 0* U.a. 0t II 0 It NI

" 9 I,- 9 0

NNNN_ _ _

Page 215: 03137348

0 0-4 N a -4 - -4

00 00-J-J-J-J-00000 : X

-4 4 -F .cN N N N0000000000,. ,.J 1 .. J J . J .JOOOOO O O OO

NN00 0O O--

r- W Cr 0-N m A 0 - 4 N 0 % O -4 N m .N ( N 4 n n n 0e n M P4 4 0-4 *t P4 Qn Fn ++¢

000000000000000000000000000000000000

_ h)))3 ) )2 2

0 >II - N-

NN -*'.N'- * U

0n * 0CO - .U

LA N N 4. e4* *4 r0 I Utc

r-. + 4 U.' 0+ 0- -. CO .4 VI U c O-4 N N *r-- 4+ N-

* t.-. '..*-* C u rCo .-- 00 -ZSO JOD- * * LL 0V\* 0r- * - * 0

N 11 It 1 I U

_ >N> >O5 ) N 4 a5 No NN<4,E _r r fit _ 0 - C

UInU)

40

t--

"- Z40 3

-4* +

* 0I *0 -N 0h

C) * 0IN it S 110 0 I 9J N

cl C-.LI) > 0 >4

0-

0409.

40 9 9. 0

0* 40LU 1 0C Nr a0S 409

(aJ ,- e.

· ·

LL I 0:* I

O LL '- -oI u~ -O C _

040 ?I- -7-O i r) FN NNN

4.0 0 0

0 . * *0 O_ N+ * I- . +*C. I *C.0- _ 00 '40

U. ..J CO lL U. LL

C ) c0 r - - n

9 c - - 4 q) I ~ I t i It

-4 N m ,1t O0U 6 U uU U 'L

Q r1i O _9 9 s0 9

215

0*

-I.'*

0Z

N _

O - * NN 40 4' 4

w _

4.>-0 IN r, -N

C< ZC*0* (.oN

w U. w

N I-

O ·* N* 6

-4 4· U'o4 011 * 11

* C

- I -

U. U. _.

4 W_r ) _

3C 3~_c _ _

LLZ UU_ _. i_

00CX)c-

SO

-4

3*

N

U-,,''

O C

3 .* -OCDS C

-0

'- U- Cocn _;

C L.

Page 216: 03137348

10 C% 0 '-4 N M %t

1 0000000: a> :: X :1.J JJ J J _J

04 d 7.4

000cooz z .j i -

+

_ m0N

( _

>4 0 +

O _

00 +-

N +

-4

_

_ >

OV +CY

U 0

c 00 > *Nt O4) 0C, 1 + NO0 0 *04 C:S S # *. Z -.

*O O O Om 0'->N0 U. U. -*

0 0 P N lum Ln Q %%O ,-4 4 .4I ..4 f.4 000000.J . .E .= .-a-a-a-a-.J

.,

UN

I-

+

4,

· _-,t >t +

-

-w +

, O_I>T .

_ _

U.'

,0(In

4.!0

(In

'0

v-4' h, _

%O O O

000_ .j -i0 00"'I>

0WC

a:i 30a: >0 '-> 49'- 4.4 -

CC

I >a o

> 0

4 >

a: Oo>W L-ZZ

* c >0- .Ox: *F.o I OZ4 C L I

99 I .- CI4 am.> 4OO Y L I F>1 S

> > v e >9..ULL Z e>

m i _ m4U- U >o-w .4

z-

714I-"4N

)CM

J"WI-x.10

0cr-

4.j

-co44

94

4l'-

If

49

49

r.- co 0 O

a0 a. J ..J

.I .000J X

z : : O ~ OOO

N 0N W

Le

* w

N W

4 W

0 a* .>* 0^ 4J z

~' 0 UZJ N O U

> 00 >: * 0 +z

0 0 -

00 C'-I 4' I* f4N · -0 00#,,, ,-. ,. ",'- "- w *I 00> > > *.0 >:= -=- Z 0 I N I-! 0 O *< S

0 �- f-. * J* -O aC) 0 0 a 0

U aO > > - 4

a- mI C ri 0 0 F9 - O-O C-- 9 - C.

P f- co

00J J J00

-aU _

U mw. UJ

. ,

J -WJ Wz 0a t

Z4 9a ,a 0 LWOW

tX IL.J

0)

O O

>34 0IZII00,,aago

0 UUU

- - Itp.4 .4p 000000OI > >

ao

-NNt

c*0* uO N 4

9 9U' '

0 L

M MI..

U

216

Page 217: 03137348

0 0 0000o0 0co co o co cO co 0% O\

.J -J J -J -J - -J -J00000000555 O DC:O

N m 1 UN

A -- 4 V- 0000O O O O.j i-.1 0 0 0

%O P- 0 a a N -.t u %O P' 0 -4C1 0 0 0 0 0 0 a 0 0 0 0 I- 00000000000000000000000000000000

N " 4- -%

N N N N00000' x | XI: x: x|-I J-J -J J 0 0 00

U"A

N

U.'Nr

m

m L

* 0_ 0

0 >+-0 .. C

> >O*

o n a :r >

-E ,.,0 * 0 >

11 0 D I0 I1t vo + O~ ·

> c > -NOZ-O rl. ci.,

.- o

~ c CiN

.J c a

0 3

> 0 11>I * ZCI U. I- *O 1

I--CO4

4

C<

X >,c o

I-I-.t

> >< )C

It 9 9 ' 04 9_OO C*.( 00

U. LA. L. I0 a V) W0F _*- C

:x

I

V II

30II> OI Z

U.J

,-4

ac

w

U.

u

LA4

cc

0 >4

I» I II I11 111 11 0I- -Jh- Z t--

J .J C- O O O i I O> > > y 0 LI

co-40

I

_ xQ a3 *

* : IN

Q- 1:: ,Ce>>% * *N 44> 1- _ _

"4 0- "4

217

.,4 N m

aJ00

J J 0Jb0 0

NN

-4

1'0,t0

,-4x

X -

n O n+

O CO O'

J4

Page 218: 03137348

! 0 O ,- N m -P-4 4 PN IN N N INN N N N N N N NX XX: z o X :o X :: 0 : 0JJ J I IJ I

0 :0:C D : 0

Ut 0 I.

NNN I

Z O ._ ,. _1OOO -

cooi0

000.J J. .J-i -

-- N M % u 0 P- a 0 0 0

NN N N INN N NINx _ j - - J J -J - -OOOOOOOOOC

i-

-JzU

3

0

I-0O

O0

o*0 .0J C.t-

-J O

-J 4

0L-W ¢ dC

: Lt 11 J

J X C . LJ 1 c

-

UJ

0W.J0

Wa0

4

L.W

wL)

U

0

0ct.-

* UIeq

-JC *( _

i JIV -. +

.90 11'0 lIii 11 i -!Q It -1

uV 0 0n

O >0 _I

W 0rI 0V 2

I* I

- *

C) _N

40 ,"e_> >4 > _

U. :: I,ii .11 > 0lI30u-I::-

w

0

u,U-

w

UJ

0

I- X0=0

I Wo zW O-

0

-J

IN

I W

O C-

Oa U

LIAcI00..L(u

I > -0

> II II II t+ 0 0 W OII C 0

- > Uj > >>-j0-J-10700

U

218

OC ax 0 0

INNNN0000-i i -0 C 0

Z 1 7

W cc a Z

0-4

Page 219: 03137348

0 - N U O O%00000000x x x x V

-, 4 - 4 .4 -4000000000000a:Y c CWW ce ccU W UJ LU LU

O N NN

0 000WW V) WZZx

4 so F at O o N u 4N N N NN M M n r, MM m M

0000000000000LU LJ W J W W W UJ U W WL UJ W

aSIt.

0N

%OO U I

-

O UJ_ J

IO

Z-OW*I 0eiz

0 _ I UJCO e- * O' 00i· IL .0 O

o- U. LL U.

zZUjJ*Lt

0 "4

+ 0N"4 0

* 4Z 0Wj 0

* + 4 I -

+ O I % O *tL .O 0 OU. I II a o11II 11 II -ON NOOU L0 U. a VI or _

0 00 0- C) 0 0 0

0 -+000z- * 00

,,DOOZ *

ooo I N N 0 1 o o

c it 11 l Z ac -00 - .-u, 0 Cye _e 0. 4_

z zLUO wO,* 0O* "-4 + m 00000o0II It II 0

C, ) a C V

zZ W

JN * N*-V) UI.N,-4+ I- I

0 00 - 0- I I 1- I00 00OC NN c N,-C7 V) CX o a

4, N U'

219

COO00000UI cc U

000 00w O Occ eCiuj uj uiLA (

CO a

000wUWJW

0 tV) 4A

ccwLU

zI,-

w0CL

0zt3

0(NC

00000N

0U.

0w

U-

LU.

azM i 0 lu~

II N0001 1I O

CO N3 U. U.

Page 220: 03137348

0 -1 4P,-000 00,.t

w I W L.U WU

0 0 I 1 0

0 Io l- Z -e 01l uJ

_ UJ L ZU. Me z c W

220

Page 221: 03137348

q N r !: t ) po 'M : NO a 0 a QOO v

O O O': ' <:> 00 ' 00

E4 E F H E-4 E EI H E E5 t3 52 : a tr :r se r 3 t: 3 CD U 30 0 0 xm ra m za :N m m m m:X

M -t Ln O M O' N M *_ vr t, N N N N0000000 0000O 00 a 00 O 0000O

E E- E- £- 1 E - E E E E4: mE m 5 3r ;r: :s m x

tM 5 5 : : :w;SB s :

0 0 C) O ON O NN N N 4 N M I00000000000000E E E E > Ew SI S 3 S S C: S:B :X:C M lM 3

(Y mM rQ 0 00a 0 a E - E-4 E-4 F-4:X Zs 3: tng

:^ 3 Clt 3

I

a

0 Z

Um_

Z tJ

-04

, _

Q .1 0

lO

1'4 ~ ~,.,~::i :":S

Z ,~ 04 4E 0

4 hN,..~ ;= zz

0 0 aU a

P- I I'-Cr 5

W _O

:m v r

n o 4(F c: Fto 8 V)

'31 Ui c

EHr In t ;>

EC:4_ a aE4 P'4. m)O O

H :> 511* sP

at a Est 1 \ \3 E lS D*\ a :1:a SL DJ 1< Eq O

f·t m a 's \ \a; c5 P1n :E a P] ; 1_t t:

c:th

E- *r: W

t: W 04a3 *

4 #Ez zft C1

N HHbd aW aC) Q OZO %iC-t a 3:

N O

t0 o t 4

Z f; W;a Z

Vt W V

3. in

0 0

u u: :a :Ia 00UV U

P0t -

F4

E-4

Er 3c4 nt EN: ( bd

3 42 *

t CIt m

S Z

o w: tWM X r27

t2 4 hd Z ZZ E-4 l ; v 0

5 VIatn

_ tQ CZ

ca U) 44 Z

M 3 lbPO} -4

F 3 Pt

0 030 C 1 r X M

U :a; uz t

a cr Ewr

a: g t

tr P

H4 :c

0 Ln

'4 O05EG 2

a: 4a4 =)V

N' CZHE 3 44 ai

Co ft CDw C4

3 03 :t X

E-4 E4~

5 4ff t *I

EH 52 :n:

Xa vs: C~ ~

3~- U; : 5 : 5 3

Z

I VC ; EnC:s eQ _- E · :3 5t

, zE

0 :s,\ :tr

P V~

tr U01CC

z

P4aC~t 4

04r4= :E P4

C4 E-xet Es: z

UX %E4r3

( ¢n

Z x *U~U5 E4

tn n

wuz ac a3 Q Z

0 0 Z 33e: 3c 2U 4 \0C UE r

X:: a: :|

OOU Q V

39+ -

* 04

Uj *+ 5CO 2q

o Z UL CM

co t* z

aNN~~~~~I*M o

- C4Q'0 L 00-- N N 0 N

En j.4 r -"3aP Z;c

," r 00~ r 1 0~F O 5 U

*rv Frq Ut

O z~ 3:: _ Y :t t P" Cr 3

,IC * O 11 az

I 4 4 ;2 = S::> E O VC* *

*i *e e (( )It"

F> N WO C O,C/ a· .· f) :t f

|l C ~ - 1t 1t

A

CNMm

UUcr.

+ I

S U)

O v

P cnO P4e P*T\ r nF9 Ct; O

x: I11 l tl I

m~ Po o - C> a _, _

U#A

'-On --

*

r~ U

N * Lzi o_ N

_H V)

? *- a£* 00

> U) -I

H 11 11': __

Ir X ^u Xo

0011it o _Il 1-0 1- ' P4 % -O "I Q U O c0 5 3 m i 3OM H O me o S3

.w C m

U221

Page 222: 03137348

r- 0:> 0 G- N m t0 :t 0000000t t0 0000000

mmmmmmmm

0 .,O r o a o NM -:It t _r -It u Ln n n0000000000

4 E4 E- E E 1 E E E

CX tr sc 3 31 5 5 U1 33 = ;= := : =x = = = w 0000000000

uO Ln UnoOOo00

E0 E0 H

c n:

S c O N ) - U i0 P cr OM N00000000oooooooooooooooE0 E 0 0 E 00 E o E o EOQO E00 E P

~~~3 ::3 S ¢ b

U

tnz

I:2

*|

U

E-4*U)

2z*

9-1C+

9)4

*2cm;2;psz-. 0"

U) U) :

cO (4 ,-

oQ 0 ro 0 00 0 09 0 0

N O O Y HII e' I I "'I

_ L0 Z

w LI 3 u -

*

O-r r

I cr _

0-40* * * t

- O0 ,, *

* * 2 * LN:~ __ i_ )

Un

I0 I

P- H* n0

O . Ua *

O 0O _

ig a 0

c. 0 uqcO iI -I *,

I0 00 o CO

-N *I . .I

't si r m O-

H-

II00I

H

-V

0 w

HU

N

0

I FCL

I _

-I +? +H r

O m %C U %O co ) CO c

In* I * . * !+ +N r++ I +

'-2 U %Q s % 9 :E c

- .4 0 0- r: : 0 0 0000 _ 0

i1 , 2 g 0 O O Q Q o Q, C: L 0 0 OCIVO O EO0 0 0 000i z S rV N N N N N N NE-4 0 0 - --

QMU Q Cm 2 :m

0 V9- 0rN N rn

U

222

0q-

0

r

Page 223: 03137348

r') -- LM g r-r a r 13 o 00 D 00 0 0 D 0I E" 4E4 EOc, C a X Ca 3 t 3 :sC

O COO

E E E -4E-

SW 3 pl 2C

N m r Uln 'N r-00000 a 0 a000o00:c FH4 1-4 E-r

39 tu t M cm

CD c0 00000004 m E4 E

: : 0:

0 acO Ca00 oo too:

O O0 E4 &4 4

m g3:a::z :tX o C M :S Cs ;S

rS CO0 a

( OE-4 E

0 UMt ts

ac oo 000M - -0 00 00

t Wr T- :5:rVO OO:- E-4E E E EH

31 :N a a 3D :I

N

t

0

' c0 11+ ^ _ a

iptf) - V* 5 a*

000 t000 · .0

0 o e -0-r I*t 0

tz 1V _NV

_ _SA,,, _, :

3 :^ 3H :^

)

- . +N 0 ++

xM Ct r Z VV) O V

N- 000.* 0 o0 000000000 0000 0 0 0 0 . 0 0 0 0 0* 9 . : . , OII I I I II II II II II

O 00O0 0000 O

O aO0 0

0 03 on

'- 00O

r- 1:00

N0

4-

0 E-! 0

r- -" N U.A O eM r Lr o 0 H N V-O," * O- O * LoO O S " O -L n1 z L . .0 O0 O + * 0n0o + Nq + P-+ + I +o

N X I + a P C a04: CI, N a

-- X ** * fbQt 4t N £ ,_O

E0 N-o O O * O O* a 4 o 0 o

IE .0,. . * *: * * * * .LC EII a II =5 I 11 II 1 II II II II II II II II P4 !i

fs VN N N C4 CV *s CV CV ea . N (N NN N N NN_1, O,

o~~~~~~~~~ paa

223

N04

4.

N0

cn

H

o

N

0-00

0NFlV

I

I

Page 224: 03137348

O ( N 0) 0 0 N 0T 0 0tO0 0000 Ln0 00O r r - v r v - r- N N CVN N Nt Nr- _- _- _ T- _- I- _ - r-v -T -r -v-r -

O Oao oaO OoC O OaO O O oOO OHE E- E -4 H E -4 E- E-4 E- E E E E- 4 E- E33 5: 3:3 : 3: 3: 3 t: : :33 r; 5: 3 ::c0 oooo (DOU oO 000 00 00 00 00en3 t m1 Cm :m : :3M :N 3 : :M m M : M :M ; t

P p E000: m3 :n

N M _:r u' ' r-r mM m

'- ,- . q -000000E3 E3 E 3: E

:t X 3 :" ~3 a

m cr og- N m :tTm 3 t : 4 tv V- q r T- -

E E E E E E-

M; t ; 3 3 M 3

C>c-N:3+4

0N

51t

C3

0 aa; +

N N3+*

= 04*

4* N_ :34

(0 0U0 00 au) C)- SO 00 0C) N

'~~~ 0 N03o ft1 r r) + ct D* ~ ** * 0 4m + * * **'*' * N foN r *5 Xr~ 3L o + m

j= :a X r *Q :3 * 0 Cli CIn :n w fI· 5- af :; fs5 *3 PX 1k~ 3: tn* 5 3 cu *t r

m * t Fn X 0 m 0 (0 * 'C0 90 m U; * * I * * 1 c"

ZNN PI N a N C0 o *l un LNJ JO N1 0 0000 00 *U)")04 *o 0000000 * * *'r * * * .0 .0 o + O O0 * . * o ( )N Q . :t. 00o.0.

: t1 I1 1 ii II IJ ii II I II II II !1 3 1 H II II_~~ - - _ _ _ _ __

0 0 0 0 Q C: o C0 0- 0 F * E . 0 0 NJ N N1 N t NN N t N N N(C S ht N 310 _ , u _ _S _ O a _- V '00

t( : 3 3 at : a M : 5 3 3 3 ( t1 : : : C

*0

Z:

+

In

030cc

0 0

0 _- OQ I

:3 " :0 :

0 Cr 0 O0CP . aN

, 0O 0 0

U M t C +_ +

V) %40 f -C _ + 4 + N * L C

0, It C '- O -- 4 O

*rn U m * _

* 0. I C *E- -t F4 W f 1 a r N

* 0 * NO0 0 0 0 C 0, a E.? >OO *t ) Ur 4 O QE4 ii E- II I II 11 I 11 II II II 1

0 0 0 0 00 0 W) tZun -4I - -' : f N N N - N N- N NNR, "I _ op - -0%K , -O

1-4 Z * M ; :W : H 3 P 3 c H M 3 :

224

Page 225: 03137348

m M u n N Mr un " r Wn uN

5 V WI' q- rT r- rC I- W- ul r W

r0 OQ00 0 O O oF · "r *I r. e:+ r *

E- C E E i E E H E-4

= W = t r: = W = = = = W

m 3 m m 5 : m M :M M

0 - N M UO t-r'IO \0 \o %l 14 \ov- C . - fE00004 0 E 0-E E-

clf rED r: L9 c tltW tz = s = = = =

co om0"D Uo V- T-ro a (D0 0 000E- EHr E

:s :X ;

V-N 77 -- u ojo > W CMOr- r r- t- r- t r r- fl W_, r-,,- q , ' I, ,.- 1, ,-C> J I l C> ) 0 C> C aaE EH P P E PE - HE- 0000000000m:~ t: 3: 3: :: :m: :X3 :: z:: :b ) :X :B t3 ~3 :: t3 3 t3

9-

txCt

_ +

VN O _N U N e UN 0o

s' O ::~ ,-' OOC * -0C> 0 0 00 0 * O0 >-N N - W0 P40 , 0 0 0 e

0 Cu> * ! On 0 0

O0 OON O Q" C> O 0 D NN NN N N NN N NNN -o

U)

04o

ct

NO 0

Z1- tl . I 0W. _ - a 0-4

+ Ul)0000 D000A 0

0* - 0 - 0 -, 0 _aw a* I = VO 000O _3 O 0 0 D O

11 1 1 i 1 11 I t 11 I 11 11 11

O- 0t 0n 0 U)0 O O O C) V4-0 o o o 0 o u o C: o _ r- ,n

N N N NN N N N N N Z00000 CL a r tO C>r 4r ,rrV ~rC

II II II H I I I I I I I f 0

U

225

.n 0 PI -tt

o>: 5 5

:a :;x m

f*

r r Nco

enD l-O Q I

0m E n r4 01 C , v*r

0 *

* .0

,0 _ _

0V0

C)

014 "H = "H

Page 226: 03137348

co co OD co OD CD co OD Mr .- r. r, .- r P V0000000000:c 3 t 3g D 3o r Z :13 tj Cjt3 U o V C3 63 o 31 35 ,X ;s 6 1 31 35 3 ;r

N M::r -- 0 "o a M CO M C7 M CN Cr V- r_ VI r- I' _- _-

E El E E4 1H=c :z : n a=: r : :0 3 V0 t0 0C 0 0 :3 3 mmm:m

0o000000 E4 E- E-

Mt rx M X

-t SLn000E E-4 E

36 mw

iQ rs CC 6 o3 r~C m > n Xo

oOOQ~aOOFF p

0 0 E 0 r q4:4 - EY- - EH

39 M o M M M M M M o O3: ; X a 33 tr:C 3c Dlc 33 gCX000 0000000053l3

v) u)It

0

+ cs0P I

0Q -

* LO E.4 4..

I W t 11 II .II Q H 1 I! wI.-1

0

*

O _

zC C%

. *um

Q 0

"CO Oi Z .O0* *

I -NV

U) E * 4

I :;G +u ( .*E* .EC15 U )' -

I'7Z0 11 .1111

a( H 0cnsw-(

2 _0IEx0 33r'3 3 3 1 r I -

Co

Q

0E-4

0r0"*

E4 0 0I !. 0P s'M 0 0

C) n 04

3 S >n :r ~n

U226

S4

ax

O*

LA

Z

25*

O**

I 03.

A * r

: *5 ]

Q% co

( ao*t *0

_ E-

s 3

* ** *

* *

O 3:

04 04rZod 3:* *

_ a

* *E- E-4

z a* *

04 04

E4 -

Z*

04N

* 0*-4rl a 0)04 OO_O+o E-

II 011IHm -

LI,,- r'a-ENQ1 rOn

, + E

0Q0

U)(N

* * 0EH N 04A3 O PJE: Q

0 * E-4a )W oo :ni 2 11 En_y ¢ pLw M o" CdX

-4

il

IH

H z_ H(n E--;6

HU

I..

0 tft 3

O mO C

I iCi! E-!1

O P

Page 227: 03137348

I- a CY ,o Nv- v N NN C? N N N

E- - E E E4 E4

5 ar rn a := = :w = z M

4 3 in tC PI XCN N N N C1N N N N IN NcO O 0 0 0 C000000E E E E-4

0 O 3 3 CDat :x ;x : 3 :

0 '"'

000E- E

M :: :

N rn -- n srn m n n

C 0000000m: D 3: De 3:C CC (3t3C2 X:S3 3

000E-4 E- E4

: D me

- N i 3 : -t "I :r: r tI:3N :N N N :

E64 E-4 E-4 E4 E E-4

M Mt M Ds M

04

z

0 0

H - NE-rU I.. E .

z O O

- 04 ~tn25 -O C~l :: (

U I O.%

o a *OD u11 1 +u 0 cX _ aO

M: I It II t II ,O

? --- f -- % -H . , 0 Icrz cr_-r--r--t04

U

U,11

t-!

o o

n Ut1 m O E-4 +II . V I r :; H 11 H

IO

4.04

I t

0u

F3

0I t

I "

E41 * E *

H EH_

:S O _

o 0 0 _ '0 U0) N + 0O 0

L~ 0 ... O l00 0," - 'r-CC)II rj r * ' . ^__ *lr1 3 ~'t : vD* (N o +_ + + £ ( + + * + J 4 ,. O4 °. °. °.. °. + '>0 4 e o o o C) * 0 o = .-.3 :mIH 't, I I+ N I t II I! t 1

4 0 3 O U 0 O Q 0 0,- *, _ 3 : :3 P- U P o ; :A* 0 C mb * A0 * * <*0 * * * .0

c n z LO* n Cu O n O* ** I; I I I I * N I I I °

. O W U0 . ) X ur r o W r Ln

(1 O fo00DO0 0 0, * I E p u 0 4 t r o or o # 0 N

0 Z __) -_-_(n n 6 0 : O O O ° O O

U

227

t = > r :orK c: u0 003E :-4E4

CrU O 3 : c

It L Ln Ul)NC UN N 10000> 1 E E4

OO I' 3:w 3 3

.>4

E-

0.

coU)

CNLnI

co

r-un

co

a:U.0O

U.)

0

Page 228: 03137348

m n Ul o rb a 0 q- (NLU L ul n L LA LA) %o cO \o o( N N N Na 0o o 00 o o o0 0-4 E E E E E4 4 Ef4 E4 E

0 : C ; tD 0 u t O : QM :M M :I 3 :m 3 3 31 : a: 3 : 3 31 :s :B a

O LO ~Co tDN cy N N

E- E-4 64 E4cm 39 at DsDLAore

C C

0 m: .-m

r V

0 00E-4 Ezr:EE.- 3 [-.-

mgmgml

CN N

0 0iIo Co

U ,-D I,~ O 0 0 - ,) oo S - i a:D

N o N , c N o¢ o N 1 N N(NC0000 00000000E4 E-4 E4 E E E4 E Et Ef- E 4HE-

CM :s 3 mm 3 X 3 mm m m 3 m3 3 3

0

a

0 0I-

0 :W 0

0LO

".0CO

I-Ir D11

_A ZH

a O

t:

.,4"(NO

.

(U+

Q a

0 0

O "O

0 t! ;Vv) De

a4

%0

SI,

O4

re I

0-

% :P

*

W I:t W

s Ln

Ob :Su CD

V)

00

'0 II.0

'Q-

03 C

lai

*

CO

lU:,0"-p0'1 coif 0

r

0r0

-4v)N000II

I-

:M

0

r;*

)0^ Q

_ 11

0l.b-4

E.4OA

M,M

( r.ro % Cor

11 IE-i - ' A Eo4 U:>f- tn ." _ 4..4 %0 S

0~~~~0

*h

N ^ rw co :t t

0 5 * A 0 100

M 11 -4 t? II 11 :04Z bE4 E-4 _ E-4C ~ e-4 u 1 0

H - H a- E-Z Lm LLn Ln)

U t3":HH 33 sIt3co 0%0 - NM --t UL 'o f coLn ull %O ' %l0 %. '. '.0 . \0'

00O

* I

fl- u) tn --rm* r I * * 0 - O I C -0V) UCIA

* + CZH4

0c O * * *

U U o 0 t0U U r o4 o o rr w o o.

P-- E-- E- v NU0 Un0 z0n Ln V)'O-O-O----

C: X o w :X M ts

0- N MOr- r- r1- r-

228

(N

0"

II

,

LAII-

Mt

Page 229: 03137348

cr 0 -4 rn -T Ln O

N N (1 N ( N C4N(a O O O C E-4 E- E fH E E-4 E40 0000000;w m tS 3 3:: M(3 V3 01 3 U3 3 3 33 3 :B 3 : X2 3

rW a3 CT

000E4 E1

P: :> :It

000000O N m

E E E4 E- E

\0 O * --Q OC O OI i0000'''E E-4 E 4 E E-4 E4

0000000mmmmmmm 3

I- T- qr q-

o M rn M0000

31 Es !E

r a: 0- -N m -- - - N N N NNmXm r Mm )") Mooo o o o

E0000 E0 E 0 E 0 E a: r 3 3

a~ a~ 3 :3 3 3 :X

+

0(N

U)

o mQ a

I

Ln E4

3 0

a C)

,"n% 1 !

0 - UL 0 .-II 31 I:3 30

Ih a A(FMF i

H

II

0oN

I

01

H 03-- tnHZ

0 HO tel

_ 4

'.~0~ In

4

V 0

00

I " N

a, 3 m F Ln nH t 4 N . _

H U en _ _ v) % --d

-z 1 r>1 + "-31= 0 :.0 -

Wi 1 * t + N * ONa 1. 0uO )0" * '"' 0 -N - -

. 0 * ** 0 * m * * : a

+ . (N 0....0 0 0 + -- ,- , .o -nEZ 4 +N++ § I* + + + N O cO O ) - N n -_ _

,,.. o' 0 e 00000--'"O ) *0 _

00~ .0 0.10 o00 Q0o0 0 ,-o4 ~..0o11 4 O S) A 0 3 - 0c O P 0 eO :3 3 _

F-4 000O .. 0 00 0 - t' l Z, - -

o E-4 C I - b?... - * . I - -..O -.U U " ~-I - * r* * -o - ° , " , -I

ln 3 0 0 * n 0 O 0 r 0q "m *" ' _ 3' o

0Z 4 QO ¢ a ** Or a,. ~ 13 a0 0C <;>, O r O~tl 0 CI

U

229

H

I

0m0 ·

0 0

IE - E-4

o9 P. 11 . W

3H H '.'. = -

I

Page 230: 03137348

. ~10 f" CO C) MN CCCN j N (n mm r i) mn000000

EV ME E EM E

21 3 33 :S :X

000000E~ E~ E ~ E ~ E

C1 :BI I:, :s :1 :

r- Cm O q N m ?r3 m m -t -It 3 -r > mmmmmmM '1Irmm m0000000OE E4 E-4 E F4 - E-4 E E: ; = = C : =:C :c0 0 0 0 0 C3 3 0 On Do Zs M :9 :s ;t :% :

X r o v- " n un :t r s 03 o-t Itt ;r Lnn n n unu 7u rm m ml (Y) M fn m M rn Mm

E4 E4 E4 E E -4 E 4 E E- 4H E- 4 E 4 w 3: =a= = :s sS = =; =r = C 3 V C 0 o X CcooOD C 0 O OVM :m M m m at sm or Dr m3 D a ;

2*43Pt,CL

.0

II o04 03 -3 2o E-L E+ %

'3 U it II

0

3CL

'0 3

13

0~0

IU 2o 3f U, o

3 O :3 :3

U

C)I

o

H

0 D 0 3

Oil HZ13 2aIII ,, I r .0 II H

*0 0oo· o r

0Ui Ln

tI I

No a L

.0 CD S0 ID.* 4 c3I :

Lo U') E ,r r

0 ,,., 0. r'.0- "n 11

I3 U 1 :

O

ol

U2*0I4CO

0+

Co U

I.I4.

i: +

Q U

OU_* z

S U :3 +

U

C.

U:

0 0

00 U 0 0+ to O V U

zc z + U tn

3 ro D Pr.

It I 11 I 1t

_o 3 m tc

U

230

Page 231: 03137348

r N4m ;: in vo b 0r- (1m- to Q o r. COo \o 'O r.o o o y0 14C C ) C> 0 C

E E- E- E- E E4 E4 E0 0000000; m 3 m Mt

U1 C (3 o 3 CO Po 33 3c : : 3t J 1 :

H

It

00NoI

Hr

0( -

e ,

0 H

I -030 O E0 --ZI in 1O4 U

m O'r N M:t JU) Oio r r- r- -> r- r--m 1in m M rym ( "0 0 0 C> 0 0 0 0e- E4 E E- E- E E-4

:11 o t3occot M 3m Mm t c : m :

4.

;s30

4.iLn

3 AH <p j:+ Iu

coo . g rC 00 i' 04<

bo. ; E Dt _iII ;' c

ou o~ ie w

L)

0 +I.

4O

,4zAC= ;

a3 0 "cr (

U U

231

Page 232: 03137348

,-4 N q <P Iu %O P- coO O C0 O O 0 0 00 0 C) 0 00 00 0 C) 0 00q, (Q t, ) U U . Q- .- t.- I- I- .- -> > > :>3 > > > >

s 0 N 000 0 0000 0 00s N m 0 0 % L w 00 0 o 0 N u0 'oO r, re _-4 0-4 4 4 _ 4 4 , 4 N NU NV NV N N N V N (n m m m00000000000000000000000000000000000000000000000000000000)- t )- )- -I-- .- -0-- I- 10 t .- l. I . t I. P--$ t -1' ~I.- .- -I.- I.- -O O)sO V3 O )Orr 5O)f*O)) 34 r *3O , V

0. 0cc:

- a

C- o 4 0.

O O Nn

3 Oa 0 ct

X jcd O 00 Q

O CLOD VN _ ' LL

*a a : r

O O. *c 1*

_ - CJ 0

U~0.0UDL 0'- 0' U... - a

^0 0'.

VL) ZV ~ 0' 0'O.O 0

-- V. U0 0Z 3 Z Z I t OL)O OCh J J J a Z

X C z O010 .l0UUO-Q(r

DU 7-C 000 VC -O0L)L)0

- C

04 *

030U.,J . r

0 U. 0.

QY

03/3 .U U ,0 . 3

1- 0.a ·Ire W F

Z Z C) s 5::X:a:T: T C) O

0.

1,

3

0V.-J0

03

U-3trU.3

.3

9.

43

I

39.

I-

0.

-a

V)aWUL -

O

a. 0. 3r _ "

Q).c, e> --0 C

IO'.

-O Z

U->

00 _ OcO Y C

c%,C U3Q ·C ..- I.Oc C _.0V ::C:

V,)

0

It I+ +O O

0 *

U

0.

I-0a0.

-4 if t 04O ' * '.O+ *+0 0O NO O-. N -4II t t a +

* *

00 D ( 0D .000 .. V > > C)

0

O-CD O000D0>0

a0

c

I*'U

N

it

N Z:71

~N co

I + +c, 0 CO o0 0+ -4 .4 ,-4 -.

O %O Cn

o. 4 - --_ _ _A _ _e k ~- 0l Ct-4 " -4 4

UOUUUU L)> > > > > >- .N U

2232

Page 233: 03137348

000000000000VUULULU U U U U

OO 0000 OO 0 0 0 0 O O

N t WN'o I. s N Os UE us n W s o NO0 o00000000000000000000000000>>:W>>>>>>" >>

o

000000000000

1- -I.- - .- I.a C3 a a a 0UU t )iDo t L CL I )I C

0oIUU.

I.

rw

u.

0 L O0

S OW.- * Qult 0 ,1* II PUCr * ) N %f CL o

_ ·0- 0!UO ," o>"_r _ C

,44.

.I-

ao-z

0 0O C * ^·

+ I * *+o 0oo

** *.O0

040 00 0 0 f 0* * *'0 *nf II1 * II

nN C.)

> > D- O >(DL LD C

o wON 0 "

00

,-.4 ' 00 oZooN O0 N * *> r> ...L0 O 10

0 4 *1

If 11 I II

O0000O000 _ ALD7'_>0»a V O LA O) o

4.4 4.~ em

Cl N CN F CY

II 1 II"U N N

V O00 %-- wJto

i)

N? *4

.. ,. .. , p- J* I+ S.,. O o + .4 I _

S 0 L

0_l0- N N N

_w _

U ¢. ~,.

O P- 00 0

0 U

233

-4 N

OO 0O

I, -

uIA

0' uN e%0* I +

I NO 4 .

o 0 I u

II II tl II

-A .4 -4O N F0 D

_ _ _v Q

0_10

+ I + O

II II II

_ _ <.~O fj .>:>:>L1

0'0tO 0et m U-,*+ +

(I .4 m

ii II It0 Nco - -

C)r 00a 0m 0)

U

CD I) L) LI

Page 234: 03137348

n , L 0 I, C O N 00 00ui"

00000000000000000000000000c rb rlb 1 . 1 1 II I.- 1o 0 I.-

> > > > > > >> > > > > C1

0.40C3

L') *03

- O O4 _0 0 %400 0*00 0(O. O O

"4 O O -4 * N U NI I ) I

V) 01 Ii

'- 0 O '4 " NV) 4.0 *t %O

+ 0 +.N>-oo00 I

.. IO 0 f 1O I

X _ a . ,a..

C~ O -Q CO * XN ,= * L ¢U.C * UJ 00m F vUOO

0o 0 orn . oN 1N ¢ Un I. ¢

+e + ++000000-4 .4 .4 i., 4 w,4

(rr o N o 1o CV00 O o O- S

II II II II tl I

' U 0 rU 0

VC C 0 Cr Io

N4N0

-4

.4

Ol

U

I

,.NO

>-

In Um C} P- M" N1*~O0 e * ·0I * Ul * ' I N: + + O+ :C +

N a .0 0 4 0II I II I ! · I It I

- - ^

L..4 - i -e - 4 .4

.L.) Q U Q 0 *~~~~~~~~(. SNI 6C I Iu v · e -0 6ao

U

234

O I 00 o00o o 00 C0 o co o 00000000U U Q Li c

13 O.-1- I.> > > 21b

O.4N0% O O000000

i . k-v o o

O O~ O000000I- , 1,.

~0 00O O O,

LO O000000. . .I-t-

Q Q 40 O ,.

0 C Q U L i.

ONO

O O0 0h-.-

O OO O-"40V Q#- 00

0 0O P 00

000eOO-O-

0U

24:

:CA

N 4.

O O

+4.* V*

00%0 co

H II

NNU,

L.) U

+0 00Z0 9 0

D *00

O+ +0 + O S- I. QC* *

:D- ·o *-4_"4

II II i

. .1 .0 4NoocU

· f0 CZ

O O00

0 0000 o

11 II -o 4C3 0 0L.) U

U

Page 235: 03137348

14 - do 2 PO P4 v-4 P4

00c0I D CD -) V- V O.

I+ +

0000" CDMOOt o

U II II

- --C 4 - N0 ' 0'

IN f N N U

000000I C CD 9 O

0

9"4 IL ·I I V r O0+ O0>4,.-40 "-4 4'

* O Z_-O%*o 00 U.w0

tO O ,~ P,,._ 0 C 4 a *S-eud' Ue U

"4 *>"44 C e1 1 II H I II

In , UN O O ,,UI _"4"._U' UU%,0 4 o0 -r-

» » »

0I 01 m 4 ¢ 4 1iNNNN NMMMMM0000000000t- I- I- - I- I- - I- I- - .-

,.

O +> u o

* 0qc 0s

n II.M -0 4

43 >>

N

0 0O0*Co *

U inII I- -

N OC00.. CO

O

.4IA

S.4

a34.O"4O~0N

0

It

0CD(3Li

N 0

_ ·

II

CD0 .

,O r~ Wo

000I)

v)

wOt

"4'P-4

I L

eN UN co

*zr > 0 * *>

* N 4 0"4 * * *-01 II . 4

4. Or. Q· _ _ CI /

0 0 O. SL

J O ¢. L C

U U

Cp 0 N erl 4t_O P4 P4 _ -_ 4 _O000000-4- - - --

U'

04"-

Ln MO.

OFAIt

o089

II e m"o 4 . LLUJ~l r-

. Io o_

U

235

Ov O O N

0 000 c~Imcm.)

+44.

0 - -aa aO O

>>>U

- 4w cl 4000

t.- .l--l k-

O0 · O 4 ·

I + + +

%O I' c 0,

O IJ Ia00n*-U CO U04" I 0 o'rto0000

Page 236: 03137348

m- --- L--ro o 9 a I ao 6P4 P-4 P-4 P4 W PW -000000000000013 U 0 0 0 0 0U f. ~ 13 I3 3

O NO 09 O

0 0000013 I3

, ,. LA ,0 0o

,- - -I. - -0 o 00 0 000000 o

k-

-

4-

+ _ .U A

-- A.

> +

- -.-

C> :' C

-- , _- - m

0Z0

'"4.4.A 1- -) r

L)

+

-4-: +

- -+

-

>., N >

(L 0 +. 0O 4 3.+ _

O0 + _

w - CO ->- - 0a _4 N N0 + +

,.14 _0_i - +

0 U) - 0 _U _ N _' N

: '0 > > i-4 o 3 - 3 _U. '-* 0 * 0OO '- + _ +

- F ~C-0 '4 -g _ Yoo 6 O - g _ 00rF 0 _ 0-_

r 9a- 0 _ 00 *-0 0 00

N U - _ _

C U. U V-> 0 0>C 3V C-->03o>34(

+

0

3C

r+

0'-4

*

N

3

0

It-

oo0

0 >

N

/)

039lI

-,4

-4

co 0 ,

ao c

_ A +00_'

ao co

v- CO PI 0: 3II

-s 00I Ic 0o,-OOO

> > >

O 4 ea0

U ,,-..J O

.*C * *I e. 00 >"_ 911

0 0000 O Q: 0 v AO O * C O

C 0

a z - u-

L U

236

-l- I -00031000e )

0 -4 N

000I- - -

000

00%O P- ,-

0 -t O O o

000 !,- ,- -000Q OL) -I-.

co 6 0

t--I.--

04 e0 ,000, CD uk----

A

frI0.*--

,_,

- 9

a-*

-0_ r

_ _

+ -_ _C

-_

- I.-7- ^

3 ^0 -_ __ _e_ ,;

,_ __ n

_C _

_ CC

-- _11 __ _3

, Y

_- _

_ 64I _I

_ Q

- +0 00-VC:>~ _a *

'-

N-

-,_

A

0.tI*

-

-AM

I II(_9-(.9-- f-~ 0 ._ -

_ _. _

* -a_

-- -_=I: _V- C-

* _ -_ §, _4

0 e'_ l Q

V -

3 _l 100.011> tl-3-- - -

- - -

-

, >* 3="-4

-4C

-

I0.

*

a

O-

9-

1

I'',..,t

-I-03 C3

0co

3

*0

(3

o:0

-4

Page 237: 03137348

w QI 0 . N t W% 0 P- 0 0 -4 N +0e - l (h al (IN rl N CY m 0 N 0 0 0"4 -) . ·o 4 P4 0.4-4 dPNNNNN00000000000000000

10 Q 1 I I. 0 000l

-4 - - N _ _

ON> OeC ^+ + ^+30JN 30 rf

W ,. I :E lU t 11 IA 00. t' 0I LZ : 11 Z IIN e ,, > a. u >I- It NO.I- II NO.Z,- OZN 0

tL ) t., a N

c~4

0NI O 0.)000.-h

fb. 0 00000_NNNN00000 V O010 I.-V-I.> > >0

4 N -- UP-4 _-4 vl P-d P-

NN00O D.0 ¢,.0Uk-kI-

_, _ -(In U N

m UIN x: CLVIAS> > o 0>^+ + F +30 30 30%0

"%0 0. 1% 0 0. "I,% 0 .sPC Or~ X cl sc X Ct CI n t LI --t U LIt) tin N0OO

Wa I a: 11 w: L 11 w UV*> D n*> > z~ ezi I Iz 1z

I-> tN -t> O .-l> N %-s L If N1 CL 1r + bJ C Z I VZ OZ Iz OZC) o O3 t: QI C3 l:>Z 30

OOOxOOOxOcOxcooo>oO>UuoON N

000- -

O .4 -

I-- .4

E II ZI N ,'

%O LIZU > o

00I N

,0N0

-O

-. 4 N .000D 00 OD04 P4 V4 0.40000' D i 0UUULJI- 1- - I.-C :l > >

O- O O000It II 11

L ) a0 zuuu

-, oi .-03

0. O - 4r LLt

_t *_ r

LMno .-

000a0 ¢.O

i-i-

O 0 U>0 *

It z.4 ..

NX-4 --N' I-4

_L Za: O

0LL

II

IC300

>II

a.3

>a4n :

IIlO o

I llJ >

>

> > Cd :

U

237

Page 238: 03137348

NNNNNNNNNO O N O O O N OO000000000s c0O j O c)

QQUQUQOUWU r10- I.-I.- I.-I.- I.-I- - t

C.

+

0

O0:'I

+-D , 04,1

C,..J CD 0,> :E co x j QO .3 of > u +Lx 0 - LU > > t

! CI z -I i.

U O > U > >

2:

v + ji O LL

In o 0

> J -l U.i11 ~ II Z

.J U.J .l-O E 3 U Z

> l WL

rm

238

10 - co

NNN0000 O DI. U- .

Page 239: 03137348

cunf~4.Uo'N N N N N000000000000

at o t at Pr acc c c e.

C C 0 0 c3 OU. U U U U IL

000000000000U.IL UL U. U.

00 C

ot O Ciz >:S t V) C3 cc> :O r v J

U. 04 *; L O C - lij64 ) 1 3 0 c _ :=3 a P :r Z . )4 CA j3 3 0 0o >at Z le 4 s >

L CLM 0 :0: *0 3Zctucoxo4 UQC. CZ 3

>.Q .4 ^ 0

a 4 3 33ZW.. ̂ *:0J U._jUZ! O crZ a ̂ I0g Z M .u,-

0 3j -3 C..> ^<0

03 U 0 3 ̂00 -ZNO tILO Io- ^ O CL V)O C _ :B; 3 :x

JC C U. 2

>> 0.03tfOZ:Q u z c- u, s=4 * ,-4 .0004umo~fz3c> U. , *

90 11UQ , . .Ot F-t *I atc

C 000000 -J _- _l : * a cC o

wzxzzzmO O a Q a UZ Z1CrL O -Q r

D _- Z3 r := V3 W a a O :zZs z Uzx oDO5OOOO CLY

O uu X E e U

0, c - l- .:

3 3 3.- I 11 4

,- N

3 3 3 3

-%n

4.

0U,'

,4.3

1 I

U %O

13 33

-4

I-

+ :,_ ..

-OIA

> -+ _.

I .4 ..

I -- ·o O _

.. 3 S>

> >

OD

3

0 oa o

3 33. N- N

, > _. 333N Z -a

- -

33 3II II II

9 3: 3

0-

._3

I I.'-t 0

_ M3 3

I- IH

>- ,N N

3 3

_ -_

_> 3

a *_- 3 _

N* _> >N

-- !

3Z -w -

-O IO

3 rt 3

I1 1 0 ^ :

,-4-. -

,-~ I. " *

U

239

,,4 ¢' M

00000000C. L .

. U. .U.U.

0 0o 0 00000000

U O U. UU U U. U

00000a U. aU.U..U.U.

- 4 ,--000000

U. I U.

-I m4 ,.000a a¢ ,U.U.U.

00000000U. U. U. U.ULI IL N

U. .IU.rj c3 13

0-

3+

UN

+

++ O I a

33 3II II

2 3 3I. _= _=

Page 240: 03137348

000 O "00000a. aL a. 0. a.

UU. U. U. U.

N 4 ) o r w 0 o

000000000000000000000000000a. aWaaWa.U. ,L U.ULL.U.

P N WI _t It

000000 ull 0 LO N00000L Q. CL C L

a L a a a. U. U. L U. L.

0 a ta0 O

L IU.

C 00

c

U. LL

O _ , NZ O %O O

. O Oc

U. U. LL. U.

. u a r- 0 C 0 r0000000000a a0. a.aC. O Q CL . UCL . CL .

ce w e w w w t

+fN-4N

-4-_4

N

_ N w

00 -4 * h-.ON 3 3

+ + Z -4 - O-_ * -- *> ww 0 3 0 >o O

II 1 II 1I II -.4 II

D00000l 1104 e 4 0

C) 3i3- : 3 3V 3333 30 C w

o -' -4

N

w -

t -> +

3 0 4* N.* N>0 I +N 0.N O0-

._ Z:,_W +

Z N

O +* 0_

0 I--.4

- -

r LU c

0

a.U.

0zZ

*

_ >

N I

,00

3 -3

I a

+NNL A> C)

+0

4 +N OI

4 3- eC

,,, ,Nt--C~

0-4

N

O -

4 3

N

7-

- Z N NO >Z --_ >LU N f-

11 I i :-Z O N

QVw-

-

NN

_ t

: 3ZU. ,+

IO 0U.-.4 , 0-4 N N .-

_ _ O _ 0 - - NNNN0 N0 , , N ON 1- 3 3 3. 3 3-_4 0 ' II 11 11 II II '"- II .

N N N N N .N .N NNN O N '

3 3 3 3 > -3 U-3 >:> > > >

240

3

-

*

N

3Z

>a

W-4. If~I IO- 3 -

C: r

+r4-4 33U N4 _

0 W

33m _n

,__

3 3

Page 241: 03137348

O Cc ab 6: a Co p Go o0 -4fl I- .- P. 0 (00000000000000 0 c0 00 U. U. U. LL LL

0 0 000 C L

Lt L IU.L U.

CO f- Co

0000. 0 A

Ul U

000" O 000

O a. .

IAL .I

N 0000000

. C, 0.0.0. C0. .00000000000000LL Uw w UwU w U CC

o 0 O O M 0 3o O WO70000000000000000000,0 0. a . L . CL JX a. CA L.

U .w IL Uw w U LL .

3

0 ZN *I,

> 0

- +L LN 0

N +> 0O O

Z O

N 0IN *II o o-

N + M M,0u. 3 2 3

V'>0

' 0

- 3> >3 C)> N

· UJ3 Z C)

_O U -N- . *.- CZ ,

O,- U. 0.r t 3 0II II 0 ^ D Jo

N - _ Z _S

a > > - O L-

-

'-3c

- +

-. - C^> O0 + ..I- INCO -0 :0> L

O N ce

0 - 3 0 - >

CO

00

-,

O O

O 3

I-

0 >OL- >*3 +

+ s.I)N0O->

L 3

UJ4 3 '-

' I II

' ·IU _,c _e y ^

, > _

_ I- CLL3 3F @ >

040O t ONO·D+3*0+ _N C

+ 3-ON

3 _ _> 3' --_* + +3

0; NA004N NO- U4

-'. + 34 3-

-0 '- > 3 _ _

* I :3 CC* -+ 3 3O 'N 0 -

II0 N "-N--N03 NU NC _-N LJ- - - --311 0

> N U' -_- - -+ - -L'C-

241

fn 't U-

40 00 000 0LLLL LL

-

*I.4

NII

zUIj

I-

I=0

0,

UI,

I-3

--0

. 0 -

It > -11 0' N

-4 --

C) -0»>

00

3

A

3II

W -

7 M--

Z 0 3U >0,-4

Page 242: 03137348

"O P - P N ,. -4 -4 , .I .4 m4000000U. La. U. U. U. U.

N 4 O NeN NN0000

O CO L o.

C ( D eu- -u u

,O P- co

C. C C00.. U.ot ;c au-u-u.C

0 N fq MV-4 4 "41000

- Ou ut13 C CLUJ cc c(D 0 0

000. . a.l U. U.

-I ,.4 -4 ,-4 m4 ,4 ,- 4 ,~ ,-- 0-40000000000U. LU LL..LWUW

o

NO3

000

_ _ _

- 3 » 3

- -

v II + 4+.N -- _ a It

! - I - - "_ I1-. 3 Z I- t- ->-N i.f N U. C

>>r 3 ~"' -t3 Z'f i , i3_t L0 333

)r 310 VO >)

I-

*>0O

- z

_'- 0

3

O

3

oU'u

3

o+

-

O ON q0

+ -

-o cc ~P- co s.-4 -4 - -4aCO Oo 0 CO 0

I It I I 1 1 11

-. 3 .- - I _D Ln N e + u Loa 3 =L 3 P 3 0p..' p.4 r 0

3 3 3 3'

-

P->

-4 U, +'0 0,O O- C f3

3 LF rr11 3 4-II Cl~

LA _

M Cn 0-r 4 n9.- rm.r a >0>

9-

-3

>,

11- -

_ . l- ZO .U>

-. 0

-

, ;- -O.-.

-

I->3

4.

0 >_.-,

3 Z. + azip. + rr. oa0 .. okO

h- e3 a. -V ) > 0 » -

O s'0 3

C* O.

- c + -'

-- :-0Z I (' - IUJ- !1 > I O- 11 0

3 -3.4.~'-

242

all - N

0000LL .L L U.

,-.4 -4

000CL L cLcc cc Cla O

-4 -4

Page 243: 03137348

- t .. 4I 04

a. . .

LL. LLLL

oo a,, 0 -..t %t in ulnU4 - -4 -

M. 3L.Uof at L cc

LL LL U.

_ _

-4 !_ _

33+ +

O w O

3 3++

0+ .i

O _ 0 33(v. ++

> 00

0 1 _3 4 _ - + 3

>- -- _ * _-o0Z 4. 3 N3 0* +-.0 N 3·-4 N +

O 1 .-. _ _

N O* --. 3N

. 3 _U M

, Z + 3 -Q L. - + 4

Z1C - --

_,=4 O +

Z+3 N z 3U. 0

0_u 033 + +- -0 I-+

u un U1-4 04-00

U. U. .

1-4 I.,-4 --4 .

3 3II

C 3 3

,, , Ur4; - -4 0 00M¢L

ILL U .

.- _0_ 0w U3 -+ 3cO CC

3 "-+30_ +

tI.0

3C -* 3N ++

^ O3:_ +

-+ 3O - +iL 3:J -+LL + '3 NE O-

3+ +N

IV + -43 3

iU + _ .LA I / 33 3

-4

n0 10 o % O,4 -4 .4 .--400000U . I.L tL UI,

nLL

3

U.-

0

I-

O >0 +> 0- -

OO _I

"--3Dr ! II

+>O tW + > cMN WN

243

Page 244: 03137348

aOQQ0 0 -40004 4O V)

I. _It tA

Io n o o

I W LU W(A w w wA

*r a

.oo ·

N * *

* '0**NZ

O' Z 0 -JI! WI 4 *

LA u *-4 JIN

0 ce j (a. U (r ZO X L-

000000n C 0

.-4

I-

,0

,0

4.,0

-,0

I

.0

U

IN .ca L I!I 11LI *

,.-( tNN0000

In If II uI

UJ

0N

0

N*

-4

4

N

'N (".) (~

000000I n , r ,

WW4w/ ) )

**

0

0

Nd

*N

U* 0

W 0N *+ f4 N

a,U

co

r-Un

.4*I *

U

* o ,

co so (

a 11 co

)I )..

4 4

UL LA

9 O

.4 a 0

It 00 coH *-* .)

X -

Q 0 11 fL x X r U )3

AO r.-NNOO0

In O 0444000o000V) V) m

44J W1WWwI) nini

eI

In nr444 U

,4- u ,0-t %O000000(.) / V)4 <3

V) b~) 4UJwww

z-J*

UJJ1*I C

* *3 -" _

N tOD0.)M

4 N .- U + IA . >- _..

t. * X -N- 1

0 . N )C---0 . o C * *>-* ,

'4 X ', Q >- ~ L0 O O O - II -LL . * t II - II >- I II 1 N 1

o O Lo U U W U U -e sJN -4 It

244

'-4 N ' .

z0000

w

CL

O 0J0.XCeL-

!,-,

.oO

,- L Za,.

0 UJ.

Z .O e

-z 000 0V) C Z UJq 4 ·0

o

00-

I.-0

O UJ

40a >0

CXO

..00I

CL

U."UNO4 00 N

) .LL

U

0O >u, L)

Page 245: 03137348

000000000000W WW CA V (A444444 a wwwwww3

% % t4000 000W 4 U

W cm to)

0 a, "4 (O M 00 0 , , r000000000000(A V A Ln VtA 4 4 4 a 4 <W UW U LU I m VI 0 V V)

4 ln % rL O O - N M ^ u% I 0 O NN A WA U,) L u % 1Q %O 0 0 % % 0 O F f r00000O00000000000000000000000000000000LUJ W LJ WUW U J J U W UJ W WJ t LW UJ

Vn t Vt m t u, Vt uc u, uu , Vt Vt v, Vt 0 u,

a3

rCi

I- -* 4

LU ) --

03~ * .- Z ZX 4 . I* C I. UJU

I .Z* * I- N * * Q N N _

..N O /) . --It N II ,0 II II11 3 It II .. .. 1V' r 3E :E3. :::vT3QI 0 .I

ao0

.

N0

.. j O':r

0

;' 1C- 4-

-NN

.

.. -- .- tJII LL. .. I

O Z0 *4 3W3

t WC) NO

N O.- N

W0 1 W

LJ 0. - 113I

M 3 3 >

0,-

- Wz-gO_J V.

1 -

0 J...* J

* J 00t I W > I .I. 1L.I UJ LJ t: LL lU> 0 .

N *w N 0

0 0

'0 0 N* I *

+ N IN * UI

U U

4 N4 3 co3 * .*

Nn

* I

0'0 CO

C ' :l O ~ J45 3 0P3 * PO 0 N 0 it N I3 - 4. LU

)- - > > cc

LLU. w r* *' II 0 0L

0<L<L040.30.300

245

- 0

00O O

4 4w wOO V

,0,0

-4

ao

¢.

0 I

LLU

II tiI tu0 .

000

O

LUV)

LU

0n

IIr

CLU') Ui

*'

I

I0 -4 V-4

10 ·, N I +

M I o

4It I

a WW-

Page 246: 03137348

O OO O O4 OO c0000000m .DD0 m .

00000O00

0I-4 N tOOOOON N C\N 0000000000

C C C C M

00000OOOOI- O~ ~= D DMDD00

U- %C f-- w 0 . P4 N m 0. un O000000000000000000000000O O O O I O O C O O.- O- O-

Z 0

z

x Ja rZ Z

z Z Z O C) ~:L Z --O i i-,.-

w O.

~ X { UU' tlJ ,.Z C Z 30 LL3

Z .0 L CO0 Z 3

J .- O Z ZU U c

Z)_ Z ZZ O O O O70000

22222-00

a: ~ ii~

LUIxr(il

Li C)

Lu 9.0, 0.u O2:.cecO MUJ 2:

Y TY:E: *

* tY( ^.0> :

IxI* IUL

Z Lo :r) tn

CL 3 ZplZ IL4*

0,

LD Xtn :Zz>.*C -3 Zr r7 L

ch lD13 *a :1* :

07'37* ;Z

a :X:3 .Dc :0.::3 LI

(A%.

*3 0Ci- :c00(CZ Li'.4

I--C.

I 0 > I4 N C

3 J

,L X 1L C

- 0

I - , x~- a:

- >-

U. ,'n .--LU z4 0 C

) r 0 VU UL L.

I-4 00

2: a 2: a:O O Q O

0-O0

0> .Z .j >.. -

_j cIL 3 0U. (A 0. . .

D 0 L X i

. I. VI 3! -Ui.;E Z , O wJO J Z< C0. . U.· . .. 0 3 U. 2:

Z L . ^O -i C3 >- -

-0 - . -3 O o > 0 3 0 - --:Ir U ,- I I ·z U o0 O 0 3 N ?LL C Z 3 * a, ftC) z U r C : a0- %O 4 N N U

0 0 0 . O>U3 4w c. - -Oo VO ^1 U)S C\. C C:. C, t* .L-3 .U*w0.0.0.0. 0.0..

0 C) 0 0 0 . -L 9 .U. > - - - - - -0J e L : F O U) ^ t Z. .. 'L-J * Z * * * U* CQ CL M CLO * *S * * * . * :-4 L) C) 0 0 U FF LL - 3 v c > - -> -- - - -_

00 0 L " . 0 0 0. 0. W . . U. .N .

O O OMM O O M C Y L

0 0 0 0 0 0 U. LL UUU. W14

m U CC)

.- _ _. _ r4 N N N N NZZZZZZ

- -- 0- C-

Lu N 9r 9 -9

- Lu w uJ Uw LU

0. >-- -

.. A 0 L.n (0 U. LL U. U. U-... b- " kc

L

246

00 0000001 .- iI000

O O 0000000L C.0.

000oO O O 0O O O O

D D m MO a O O

-4 N

O3 OO O

0.

0 0O

-uz-

9.Z-3

0.- >-zI

-.a>-

LA

I >.' U0_ *

O Q

41-

J 7CC 0-4

1-

Cc

J0. O

0!-0-0.

CD c c0(AuVI ce

Page 247: 03137348

0000000Oc O O O 0000000

"t tm N r-

o 0 (DC· om C

0 000

000

000CL Co o Oa 0

LA N )u U A tA '

00000000O) o O o 0 00

co oP. o000000a0 o

_) _ _

o a t:

_ N 4 UO 4 ?,- CO 6 o NO o O O %4 %O %4 O O O r t 000000000000000000000000000000000000

QL A. %O r co 0 -rNm0 m 4

N ,i N ,N t, ,-, _ ,,· ., v ,=, . 0.

>-- >- >.. - >- ->---

ZZZ ZzZ t II IIII II II I11t II

, - O % O r- O. 0.¢3.0,.O,. ).-0.

Z 2~ z Z Z Z2222 _ _

* 0 . 0

. C: 0.: OUJL I LULUr

LU LU UJ

, U U.-. 4-4-

UJ 1 J W

7-- =, c CL- -- - -U. U. U. CL .

U. IL U. IL LL,W M _ __

>- CL .

- I.-11 ;Z Z_ I

- CO cO

>- CL 7- )- )

; Z

*

p-4 N

¢2 C LJ LU

* 0

9- -.V)7 z. .U.U

LL U.,~ ._

_ P3 (

1.0.--t--> )> Z Z

-- 11 11Z Z -. II II 4 -4O~ Ch ,... ,

, Q C

0. .>-

IN N -4 _

II II ,,,) M M - M

- z- - -z - z * 0 .4

.-4N '* *0 o0C WLW 9 -

> > X- -. _

I-- -

u- U. U.-4- ..I _ _t

N * 9 .*4 N *

.tU U .

.. I . .LLL I_ _

X < -

, -4

I- -z ;If Lu

-4

>- 0.

Z I- _ V r4

I--C;W~

.

XI

Z =O-4

ulzc-4

U-.

LU

0a

- 0I. -0

X ON

.*9.

0 0I Noc · o

0+

I-

4- +

_ 09.,z) inZ

+ 0 0.InaZ

-) "[- 0 Z O

,-',-0 " C+ 51 - 4

,. __ - UI 4 ,.V) 4Z L

-X O + x9

9Z % OZ, Jl r I ·I _ 4 lUo_4Z

li _ c r cc) __~~ I0 I-- I- - - I -1 0

-- c-4dC N ce N - '.-y LJ"-MLL Uo -cO- Y O o U. a C. V).- X).LC w L0U ;CjC 1 0

7- "4 N -4 r4

V

247

LW

O wLL LLb-4 O-

' 4l+ Ip .- pir.114

', -_ _ 0

Page 248: 03137348

- I- I- 0- . . ) ,, 0

000000000D D nDD D:D ::DZ

0 0 0 O00000000

O .4 1 N 4 u' .O t- 0 Oo 00 0 0 , 07. 0 , 0 00000000000-00000000000, I--.- - - , 1,-_ - _ .-

00000000000

4 N in % r0 M 000000000000000000000000

X9e

i4

UI

A .

-'0L

X

re+

+X

* )(

WN . 9 V) *

-4NW 'cN

a, 9-· O

9-

0.=-C

04 V

O 0

00 'A

* 03 ,-4* 9Dt .~

W a

* ;DVN-_ W 9-

W :Z - Z0 . LL a: C) L 0_ 0 U.

_.

CU

-I--

w

X

ZLO '

U.

UJ0.WA Qa0

O Z O OO 0I *z _

97 X

-4 NIN,~N CJ

L)

LA-4

'4

0 -* CY

09.0.01

- o* -

- +

U- 0

r · -_e* e.0O

,, C'

- + 4

-, _- U,' -

t 't -% Lt A· + . +e 0 1- w 0 N. C

I- 0

W-- .0 .J,- 0, .- O . - .. O0 0 04 .a * .a

+ 4

9 + 9

C XU. 0 U.O. 00 .X · + X

'002- + ,t -

-e C· Ne -w - Se _ Ce

- - , - - - -- -. C- -C -U.L U. G WL L O C LL C C-MaU U. M u. LL -MU. - L

0 A O U A u0 LA on o0 00 0 .- N- r M, L+ u' 4 41t 4 .4 414 . 4 4.It

248

M t O

0000

O.

x w0 aOO-4

3 WXt 0 .X

,X

-Ur

-

-

t- O

.4

X0

N ,_

O 4-

I1 - JI-C

_ .4J

Page 249: 03137348

N ¢ . UA 0 O0 (w 0- ~-.4 "4 V-. V,, e.4 -- .4 N

000000000I,- 1,- - I- - - - -O O D D O O D ~OOOOOO0(DO ~1 C

_ N M 0 O 4NN N N NNN00000000000000

O O O

0000 CL

0 0 0

N - A -F - -4 - -V -4

00000000000000

wUI

-Jacr

-jO ,4 N< Y

11 11 I II I It II

ce a w w M: NLA'O~~~co, ,/ ,,3v' cx3~w'

0 -4 -

-oO oc

000

O O

000a- IL..i 1., 1-. 1.

-4 1-4 4 -1.0000o a o o

O- o- O- O

-J.1

U.ce

4

L"- -

UM

C

. U) ) UIL) 1I 11 It

' 4 , -4

a'O 0U

Q.XUNk l X-J ZD W1l I1 t

_' od _w

.3 0U

, , .ll ,z rWV, _

"4tf03

:D Z v3V)W

II 1 11

o o0NN-Y Q N

LM Z U)< 3II II

_ a3 C

V) uN

UJ : uLU _,/ .O

II II If

U vo I'-

3C < CLJ £ 43

cC ceL> 3 3if 11 _ _ cs at c

V) V )

N -4t L(0. 0. . 0.

: 3 3 3II I II tf

I N Ce ,_ _' _

CV z , 3

249

Page 250: 03137348

- --- 4 4 C000000000000oooooo 4''3oo

0o 000.0.

0)000

In U L UN U 0 0o

0000000. 0. . a. a .-a" -9-

00 0 0 0 0 0 o

o -I

O4O"-""m.:000

um %O a 4 N 0 c 9 .i f- 0O 0

0000000000000000OOOOOOOOOOOOOOOO:

0 0DO I.---.,-i0 aQC;

* $

Itt N NNN

*

-- 0. 0 ' ,

I II 3 I II It

11 I 1 I i 1 11 It

a. l .'I

V) ) un

00000 0,,4 _ _

It II II3 3311 11 I

0. 0.,I J-'1-i0 )

C> >0 0I4 N3 O 1 O O

0 f w o0-4Uv _ N U -4 4 4 n U U UN L U U tA

IxJO.02Z,N V)b * _

N AON,-'00.N ~%

>: >It II II

c a) O) O

O 0Z - -

3 0 0

N r-t 4

NNN NN N N

0. 0

I 3 3IIf 11 11

U

z.)

NN

4 *U ..

Z

I-N >

I

I

O N-,

N 3

-4 C-.IM '_ O1.0 %O %O %

De t or cV) V) A

_

UL. J U >7 OD

. -a. 0. I--

3I * oZ .3 11 1 11

a! a c cIn u, u, U) 0

250

1.-,nI- 1- o3 3 I III1 II II II

UA ^0 pc OC

I'-- -4 t -

tA - - -

U 4LJ

I1 I 11 II

O' O 4 N

0C)

ZZI IIA4._,1,_1

Y e C Y Ce Y w w Y w Cw w Y I Y Ce CC Y Y CcKV4 O v 0 0 0 A O 04 0 0 0 00 0 0 0 A

Page 251: 03137348

0o P 0 O '- N M 4 L O P- M (

ao co a., allc0 .Y. alloO, a.oI - .t- 1-

_ _ _ Da a a a a ( a a OO O O O O O

OOON0O0NNN000 000000000

000000000

N N('%i N~ N- c CI- C CI

000000 0 0 0 0 )

LA

-J4.-7

_ +

0 0J u- -

W N _0 Y +OD

M 0 Q N40 O 0 0 V..J . C,) ;/) _

0 .Z_ - _ 3 e _

0.I- -, -Z : rsZ =E

a a

c. U. 0 0 Ll

LUcc

Zzz-.

UJ-J

X0-..

ULN4,

S.

f - 1--+ X Z

'9 * ,, z

U O .· U ,

,.r 1- I- Z X-M o~ C) I W

Z : Z Z _N Z -O 0 I-r ' .IM M 4f\ Z ' t F -Zz I -

0 ' CY . -CL : CCQ.L U I-C 0L.U.'

"4"4 N '4 'L A(^ er r

0 N Z

LLU. > I. Z N' 4 . % . * ..w U 0 ' CL .LL

- - * : J'I U. r > %O ) 0Z LL > .Z - 4 . , >Mt 3 0 X _ 0

Z * _C ' X0 0 > x

.J . LA . ,-0zS F X -= , . 'Z c I x > a0 -O N 0 O .'UI U 3 4 wX0 L, 3U . I -Z I- - , 0. U "" X, * 0 .. * M . U.. Wm 0 .. 3 .

C 1-- *'- - .0"~ X - w-4 3 -.-.. (O X - -TZ > * 14.J L 4W * 04 3 4 0 ZO U. > -'

Z LU * 0 .X WC.

0 0 "C OC-O 0N' Q e- 0 U Z -- U.- U Z O .4 - 3 4 - .4 *. ! O -- *, ',0 U > >X X X X X N " 0n 1-X O - L - 0

'. 0 _ L : - , _ Z- t- O. ad4 - . W ._l .- O . CC)no ' 4 - c )(> -0 . -- a X NI0 ) -' W 1- - N .' ' 0 '-4 G Z -4 0't . : . O ..,I O * 0 . 0

N n * 00 0 C : z NN ' 1l I -1-Z r II I)t . lL- -4 WO _. 1. , O L) (- , .-e 11 .1.. _ .

1C- Z 1 FZZXZX-I : _ ZZ- z - O- c-C: G X 4 a _ .4

O ce O O lL WC C o 0 > ' Z O aO c C OtY OC L a U U C U L Lm - 4ULiL 4m u.QU

- N N ( _n 4.44It -t .+ - 0 LAI t4.

U

251

f4 N co O O

000IOO--

00- -

:) 0 0OOQ.Q,

Page 252: 03137348

NNNINN

00000- - -

:D : = ) 0 a 0 a 0

N M 4U .O I -N N N N NlN

a. CL. O . a. .-- I- -0.- 0-

O O O O OI

N Icr o MIN N N0000

0 0 0 c

N M N Y O M cr, O N )

N N N N N J V N N N000000000000aaa a a a a a a 00 0 0 I0000 �C CI - -0 0 1 0 1 0 C 00 0 0 C 0 C_ _ _ _ _ _ _ _ _

%t n %O ?4 M ( - UNt 4 4 S~5~~ t u 1 CIl L

cyC N Ci N rq N h) N0000000000 00 00- 0- I - C00 00 0O

- - .CL -

Z Z Z L N Z 0J W UJ U * W LAj U0 0) 0 0 1i- OZ Z Z > iLL Z Z

U. U. LL U * U.

a. . a. 1 aO z

> > > * L. > Zs _ * . _.4

"" - ,-.' 0 ,4. -x> :> > - 0 >

9 9 * 6 * > '_ -_ - - . -U.> > :> > x > a a aL * a. --- - 3 4. -9I I I N ^ I V3 3 3 0 , 3: U.

N N N N X N I- _-- _- - _ I

- - - ·- - .-- = I- . .- * .- 43 3 3 * x0 3 .> - - L. > 0

3 3 3 3 -i> > > > *>

_n X_ C- - 0 9.-- - 0 - W -

0 '.o coo . x-. xO .) L) U V . L)Z Z Z 0 4Z-4 N- r .- Z. -o 0-4 Co2 Z * , Z O Z I :E Z Zco H0 110c NO.-4 110 D

-- -- ---0 -.- cW --40.0.00.0.00.0. M.U.U. 00.M M.LM0.0M

I a 4 OIC~~~~rbIX r.

0'. 0 '.44. LA Ul

N e 4ulA U, Ln

Z Z L,3 N Z Z ZUJW W '. W w wO 0 0 t- 0 C Z Z > u.. Z Z ZU. U. . U. U. U.* 9. - 9- O 9.a a 0 'M a 0. 0.

0 0 > % 0 0 0> >J U. >

,- ,- 0 ,> 9 > 9 a >

- - 00 - 0 U. -U-

- - X ' - -> > > > >0. 0. CL - .

I 01 * 3 3"> - I.. X - Z V)- V) V)

3 3 c 3 3 3> * >

- - 3 0 4 _ - _x 3 3 a:4 3 3 3> > r > > >

a O a *- * 0. .

NO N - O M U M i Z Z C ._ *Z z _09. 0 L w 0 0N a .0 * >

_~ _~ - _0 o( - - -- --- C O ._ _ b

cZ Z G -4 cZ Z IZ

N _ U, , ) ^ O fl- N o -

011u.0I L0 10o 100-A a- c a -¢ o v ¢ o' _ 0 C

252

Page 253: 03137348

o 0 0m 000 0- I .- I. I . E

0000000

Z Z Z Z ' LU UJ wIJ WJ 00. 0O O lz O tr-- U.z z z zO Z IU U. IL LL. u X

a. .. O. I .3 X

:V) V) (A: 3:]=.. ·, - / l1 , /3 _ V A 0D O 0 0 I 0 - U. LL

, _, v _ ~) = ,D J

_ - I-- 3 0W> > :: 33: ,.

a a , ., k- S 3 I. X

Ln 9 t- .-- 3C : L ,O ' C- 4 I 3c *

-_ _ . _.. 0-,, J -,4'-, -" Z ." - . -409.-~ ~ 9 0" I- UI... .

3 3 :3 3 rJ' -[:: 9¢X. 13. 9_3. . 1 .. ~1. [::3{ . C-:.

,-a 4 ,-3 3 :3: 30 r -> :> > . : 9 .r'0 C~(L)Q. ~ cn~3C DC 1 C UF x w: r rr: un 3: O :3 3 : 0v C X> >Z> > 2^ * L0. 0.1 09. 09.LL0.9.9.

.4-~ Lr 0 '0~.4 Pv 3Q -1 0 114 tO +. 0' -44 0 0 w< - J

%0 Z Z O Z Z Z Z Z a0 Z Z '0 Z 0 2: 00 . ' a O , -C ta . 3 U x

n .0 '0

IU

I--

NNO 00C C

O

I- P. coNNN0. 3.a .:) :' :C C CO O O

t X00 _

a .

40 P..W I U.

X\ X.- ,9

4x, e

0 0sO Lu >_4o0 O 0

9. N. OI - a U.-O2 I .%J 1 X4.J .J m%*U. 0 *.,OW > 4LLw . 0

XU. - Ir U.-

X ,, -44 *> a. -.

LA) C.% 9. . - O-

"0 e.,-, <0.O U- V = UO9 0 3 f '" N

I X ,_-O O 1- 10 - r u -O C IX U 3 , = W='9. O- t - W -m. 9 . '.> X 4 N

OU. Ioa .9.,---X - 3 I 0 C

-. OQZ O 0.- Z

^ - N -= -I X - I -.*uoo 0 aN L z _04

000O O OCL Ca a

O O M0 0

4 UO f c co

00000O O a.. a. a. a..9 - '-00000M30 0 0

X.=

u O_ cZ U._ ruF

J X

3-

0 0

3 X xU)

J <LL X

I .*z -z 3 -9.) zN

X X

W :<

r O ' _C: o ,,. - -

!-- I.*r 0 Z I0 X

Z 3E ZE t-z 53z Ca.L U.. 0. U.

-

_ X

U.

,X

a .J/)CU.

30O. W- X..3 7

-4J0.

34- XM I

_ 4

0-4

-. - wL--4 0' 3 -' ,- _

0 IO

0a-

0%0

253

tvn4t n %OLt LCILf) LANNNN0000a 0 0 0ooo QQ

%+ UM % f c -4 N 4 Un%4 0 s O 4 r- ?-- p r p, rN N N N N N N 1 NJ NJ NJ NJ000000000000a .a. a.m am m m a

003 000000 m3 a = a a O O O 0 0 O 0 0 O

.4 N

Page 254: 03137348

N N IN N 000000a i a a -a aoCL 0 CL CL

0 0

08 0 _

'N MI ()00OaI CL

iD

0 O O O0000Ia .

000O r 0000000

0 00

7I 0 - N e 4 VI 9o

0000000000000000tCIotCotCcL XoW X X D D :D:) D

CL 0.MM =) C0 0 0

- N (wn tNNNNN0000 0:):L t. 4 C

. ..-3

U X3 0x

.. v, X3 3-0. -U I ..

Z ,. 0.0 ,= ,

, .-, .

3 32)-

3 3 0.0.

0 - 3 _ .

^- 3 _ 3 a :t:

11 0 1 ofn 4t

N

_ _ U .

_ _ 4'0 O OU

0 7

U. NX) -( - )

0. 0,, I 1

0 3N N 9.

I ) _ _ )t3 3 ,. .3 .03 .

* _ - _ * *

-4 -- 0: -d U- u t-Z Z :E r- Z - ZQ c O O O O oC

a.IIZI 1,r-I-

0

zt-

z0

-UZ

I-

I-.

I0

30DUVIco

I

-JC

0I3

_.

p..

0I,,,,

II

0 0> >

0 0 LLW OO XI *,,_ _-0 .3 3- 1J J s 3

O 3 ) 3

3 3 0-

3 30.0.- - 3 -

4 *_ pc _ F C _

9 - I~ - 0 9 C -~-0: -- 0:< - -b- . 0. 0.. LIC .. 0. ce ceCY-c W Qmu rmmu Ciamoma

CY---

: WL r OOcr -u-

U

0O.

3

CLV,,.

a

3C

-

-I

3.Z

O 0 I_

c 3-4I Oe-a pCOZ1 1 zC00_:'00.

-4 N (l 4t UsI - c o0 O -- P. IP. P- .- h- !- P- r- 0 0

-

LIM

. ,. O a.- - LX -.

9. 9. -U.0 0 4 0

a- a.. , a.0 nOOU_ 0--0.4 -_ -O e .Z - 0 *

3 3- ... 3-.- . -V

* L Z00 6 IN I .3 N 3 M 3* s 9 C * - 3 * -

3n 3 0- 0L N0 II a t _ P 99

4- - -O -- - 3 a.U. 0 3 CL .

0 0 ^0

254

aNNN cr N00 c00 O00 I 0 N0 CL Q Q. .OOO1- I,:3 MM =0 0 0

Page 255: 03137348

0 0 X O OL

) U.

0 s 0 .) 3)-0U

. O- aL

3 3- 'O

CC_ _ - U

0 03 0-i _ * 3 3 LIh

_- N .;D

.-on,*f 1-- r r 1-%o1-1-4rr

O -~ N A

0000

0 0_ 0> >

-J -J

_C_

U. U.O O_ __ -3 3-0

0.. u_ u- _

0 0_ -

- -_03 C)

C - 0- ._ -

- .-. O

Q O 'n 3.9 0-z

0I .'I0'. .-'. 0-(

It 0- HO

c ZZ-

00.00.r

. In 0 - M 0 O 4 N M0 0 0 0 0000000CLt' lCOP, CL0CO CL , s,

O OO O O O O O O O O~.t O. O. Q. 0, O. 0, O.!:t,-I-l-I,, I,I--I-t-I-

OIDOOOOOOO0 a

.0IA

4.lL

.

0 U.

O ILn it'J. .

X '-

.t

CN.

1 I-3 '.

(3 0-

oI- ( 1

0U

--3JL)

0N.

3-JU,.O.

I-3

1- 4 -4- 0a : 0c Z f

C I L --

Ut 0 I"- M 0a 4) 4co co 0 0 0 0

4 4 4 +t 4 - U!000000006 M C L C i M

0000000

X

4U

_ 0

L C- _ I- I

0 : so 3X" 1- X X .

-0 oL> J * 0U. 0LL- - -

C ' C

N .4 XU- ' * L.-- ^ . . 3 L_ _ 0 - F03 3 r -

N S : 0 L Z- t - C . X -

c- -7) LI 0 . W U3 3 3/ 4..- . . x 1

N Ma, 0',

O O n A n O00000000000C CL 0 M L M0 0M

0000000000

0) X

N.

0 i CL

. C)U ._* . X ,0 0 .I ..

>- t.J . 1 X

,. *) U. X -

L U. O eXI 4- c 0 -I

C .N-- 43 C 0- 0

3. .4 o.4 .

_ i U. *

Z 4 . ac -0- .4 .0 _

I - X-CCM U. 0. X U.

_¢ 4

+ . i 0a, O c

U-4

x

0L.

0 U.0. .

..

XX0"r

A.1-U-J4N 3

0--J

LJ

UUJz0I-

L.

U

I

1-VL-i-)

l-

O0ou

255

Page 256: 03137348

4 Ln 4 P. W al 0 IP'4%O %O O O O O P 1O-

Q 1 Q, tS , :L CL 01 :L

000 00000D

0 WO OO L)

_ e

LL UJ

co X -

e .W0 0,-4 -- co>

U- wCI W *-

X

w0

OX O

_x UJO, .0

z0J994

'-9 9.9. 9

0'-40u

X

U.

Nc.

X

Ip-$

p-U.

xa:

p-

9LLX

9.

Nco

-p -,-4x

> .

UW 9 -4

9-4

P.-U.

X

Z Z- X .ZD0I Cw -0 ". LL a. W LU. L. c 1J

0-4 N 000 O 0,-4 - -I NJ

-4 N m

-J3W

c.

x

X

X .ce300o O

I U

, -4

- 40C3

256

Page 257: 03137348

000000000000000ZZ 2 Z22222

< 0

I,-,<0. a a: L

0e 0. 0

0 0

0. UUO0. Z.; W

1 0

I 3Ct z

Z3 u LUau . c c 7

z ) o..uau1 .

0. . .3 0 .04 CL C 0

W U V) I a. V

: Z Z W 4

- 01

V 0 V

w z u a

WO 0

I 1- 4IZZ LLJ W

r a C5V. U1 C)

a - 0C' 0 - N M 't U - M O X 0 0 - N M t U 0 r0O 0 0 -4 - -- _ r4 -4-,-4,-IN N N N N N N N0000000000000000000000W W W .UI I 1. W II zW W U W U .UJ U W W WU U U

Z ZZ ZZ Z ZZ Z Z Z ZZ Z Z Z 2 Z ZZ

!-300

I--

._00

4

1-0t-

0.

C)

COrY.-I-0

':::41X

::2

I--cUJ 0: ,_4 040 N

J t) C)L14 iU.Wa. aa1 C qC0.- 11-1

V) a IN1- C470 0I

1-1-

J Q E

a 0> 0

V):LU

Z 0.-4

2: uJIU 4

Z ZI ,=0t U

. U.

- W

1.ZO

0.)-) 0X

4J U

T . L

WZ 04

:: ) U >3W Ee z oOZ

I4 0 >3U.J 0-

0 1 4

O W 4 J WOW 70WO 0.

0 c > 0- c: , :- J

CO 4

41- 4 0

- 0 00u a c O

U U t

00 .-40

a W

0' r

_ 0M4 0I.--

-4. : 1

J0 00 1- <

aIC 0 0 cO 00.

C CL atU :

30 .

U > 3e 0.0

C3 N >

3 0- .

: 3 C:-0 . 0.

1- > I. i0 0 IO L

40 % 0. 0 .0 C Z4 LL. -

O CL 3

r- oo o u

0 Z

1 0.

0) 0. 4

3 3 233 W4

3 0 .U 3%t 0 4 03U.>3Q.0f % Y

0l l 4 0

C.0.:3Ln

C0

C.4W3VU3.0.

0..

UJ3LLJ

0

UuJ uJ

0 wZ

J < Z4 0U 0 C

c:<0 3:0

W uJ JujE: O

cc ULU

Z3 0

L Z41

z0 0

0 00 00 Ou" Z Z

_ : CL c O

O UW > C01 v : 07744

ON n , M' et N C,000000000000000000WWW U UWWwwwJ U I

ZzzzzzzzzZ'ZZ222ZIca3UJ

Ecc

LIV)al3

1 :

4

0. UIU W

a WQ30 U0. uW

Qo XW

V cx

LU .-W

3LL LUCt.:

0 : OU 3)-W. : I-ZO Z :

u 0

d L L

< w w >

. < W UJ -D U. 01 ) . 0 0Z I 070LL. 0.400 a

Page 258: 03137348

,-N 4N 4 U4 , o I- 0 0 0 - N , U, O -r 00 a' 4 4 4 4 4 4 U4 U m LA U, 0 in U0 U oO O O QO O OO OO O O O O O O O O O O00000000000000000000t. Ia W LLI J WU. II ILU t W , W ,U .U W. WJ . I,I

Z Z Z Z Z 2Z Z Z Z Z Z Z Z

0.nDIfl

I:In-.

0

I X

,) u'. :- I U : . C

V) ": ... >LU -IO

Zv) lLU 1C

_ C U fU

I. I -:3 O

Z 0 0l i. o 0 i 0 F UJ I- U.4 L, ) I X o! U .J

2 Z 0 J ! l U.

0 e U : I C01 44 1 IJ.

0 F I 0 Z 3 g 0

0. O J> C : U.) LU 0

0U.

U0r C'C4

u O

V O

0

C0

W- Z

U-O 7 0Ch

Z UJZ -.J D CA:

4 Z (A

.JU-U.

LU3

0000W JJ AWWwwww444

z

U0

0E:m-00

W

CDo

CLA0

CD

t

0. 0

uJ'r4

0a:

Z0

o00.-000.-70

C>00

4-40O

00 V

UI 0r .,0 0 , , o-_N,O O O 0 !. - 1'-0000000000000000

t. LU U ll llJ W Ut W

44 < Z4 4 4 4 4Z2ZZZZZZ2

II

..10-J

W

U0C:C

3a-

Lu

-JU.

0.0I-

UI

258

00 0 O0 O O O

WLW J W LW

2r X 4ZZ Z ZZ

Page 259: 03137348

oQ, - N f atP - c c O w0000000000000000

LU W UI W L W U IU UJX a M a : :E

Z 4Z 4Z 4 Z 44Z 7 Z 77Z 7Z

a

W

1=-4.

a.u(Y

:0

cc

L -114

J 10C)UI

ccL)3ct

1-V)

LA. >

M ZuJE, ..

a>

Z iJ

Ur O P- a 0 0- N ,

00000000000000000UJ J W J UJ W AW

4 Z 4 4ZZZZZ 4 4 4 4ZZZZZzezzz

a.J

C.)U

V

a.

W

%t A %O .CT 6 O C,

Wo 0 oIJ UaJ aJ I

XZ Z 4 dc4 4z z z I-

3 aO

UJ aJV) _

X J a

ZU Z.

zw~0

U U- 0 ZLU a

. c , '.i CL aa X

0. '-*AJb aLU C:: <

C X,U4 X :W O cZ J

.- W...

1-a.'eWcz0 CZ , uJ

I V) a

=I0

-U.

a.

o s 0 V N M % UI N Ic w0C 00 0000 00000 0 -4 rl 4 -- d 4 .^00000000000WI W U U .. L LU UJ W

4 4 4 4 4 4 < < Z <4Zz ZZZZzz za.

U

C4

0nI0W

o"I

z0UZ J

U-2_a3:

Za

0u

co LL

c 0>4 a-J

W

a. u.wJ 0c 3

259

0J.

U-

0--

a.-4

a.

M -t

O 00 0Z4 z z

O 00 aw wr X44 44

Page 260: 03137348

O N N n ¢ U F? F 0 t O _ N w 0, UO M V4 4 -4 4 4 -4 -4 N N N N N N

ZZZ ZZZZZ Z ZZZ Z ZZZ ZZ

n u0) 4"I J

U' Z

I- ZJ 0

O 44 3C3 ,,'I C3 -

0 Z0 W0 w

ZW 0

00 4(.J

0W -OW W-C, D CC L

t ctr Y _ ,0O Z

, _3 > r 0_ 3 X C

3::: E. J U

0 u >3 V

LU 03

:w < U

~~a.~~~ ~ I. Ic U,0 0

0 L> U UJ UIE 0. . cL 0,*' U. ~-U >E

-r o. C ~:: ].0 4 1 10 ,,E : : - - ..000 IL X F O I-c 4 0V 0 C

0 VI U c r 3

vu- 4 WU I 3

01Z 0,, C. 0- 13) -tI cj c*S a U V0w uJ ?e L) o r aw 0 Qw 0

260

Page 261: 03137348

0000000000000Q 0

m 0a O 0O 0

iz o:;

V- C-r0000a aa aEn tn> ::wCZ; Cu u

r -0 aa0

u

tn r0 t',..WO 0 -- v- - -.- N N

ooo00000000000000U CU5 UU; uWu uu

NN000PS CL) U)

n ' F MCV NN00000000:>>> >V¢$ x X u Q Q

m - NCV M in Nm n m m00000000O O O O0 a C00000000wX z o J)uzU U)

: u :. Q a > wwl I X; m w wXS V Uu 3 U V V u

0 NO 00- co- -_ 1 r o

r

Mn MN n N n t pr N o NO uun un n un 4 ;n inur 4 44 _ 4 o

9 * 9 9 * 9 9 9 * . 9 * *9----- 9-94 4r; : :'X

0 Mv - o O M WNO0N 0 m rQ D Q 'IO o

9 9 " 9 9I * 9

0 aCO f0O 0 rON N C ,- 9 _

O I0 I eO r 9 9 990 90

W-0 M 00m99 9 C9 9f

N N 9-' 9- 9-

a o0 rC o bnO Q t O in 0o _ a acX 1> o a \9 a u, C9 9 9 9 9 Q9 a 9 W W CY W 7 t9 m 9 9 9 0 0

F W 40 Om '.C VNV- m m 9- , -W-amm W Wen UO O %YN o9- )0 0 M ·

F r"t us asn 00O

40 ot 4 4; 4,- .0 .m

z; 4 fA04

o L M N -* 90 990

to 009- f v 9- r

11 1: 1: I V-1, . *

_"·F r

0 0 O l-n I--to oa 0 p n 5lCa 0 m N o a a a r rfl r

M Nr N N N - v-- - - 9- 9-

O0 - 00 r, t-

9 C II. I.

M I,- M ~O 'PI n P ~g a ( a Q· C) N (I U t r- (7% a P N , C r F r9 ~,9,0,0 9- 9 O 0 0 9 N a 90 m N 9 9 ,1 9 9 9 9 9 9- 9 9 9o 9 r, r. 9 9 9

9-- 9 - 9- L O`I ; ( -444 m A44 44 VN N ,9-9 :- :o a o n u x o t C r7 X (Y1 o a; a m - r Q- r rs *n er MO a- , o r4 NO O r Lt'N 9- '. 0, Do N a n 0 h m W _ o m V I 0 rm * C rN NN 4 --" r " - L On L: - :t f 4t 4m r m 4 N N' 4 - v r_ -

co N - 9- m > 9 ;-t m - 0 3 co \0 53 VI l

V C r - 1: "I "I 1:

9 9 n n 9 e 9 9 99 9 0 9 9 9 O 9 r 9 9

- - U1 k 4 ;t 4 t r')M rM M N N N N _ - W-9-

Cm 5 M r r m r- CID . 3 0 M o-X t M u W0 M *:C a a Y) :1t 1 r n -I n M m --cr .r W * - W tO O ry N (" q a M

9 9 9 9 9 9 * * * 99 9 9 9 9 9 9 9 9 * 9 9 9 * *

N _-9 _ --- 9 _,4, Xt m 4t}x N -

r ONco

I I0 9 9 9r - 9o 0

Co IL *. a0 o k o ? C) a 4 ax 1: cn n 11: 8n r9 w 9 9S 9 9 9u9* 9- * 9- * * 9

N O -a L( '3 M ,o 0 -000- -.- N N O r

II 9 ' 9 94 9 99- 9- 9-1 9- 9- F 9- C- 9 ) E 7 C N

L O Ia W -4 0 N t m1 N %uO 0 m m * n r , sO t9 99 * 99 9 *9 9 *9*

NN NNN NN N _- I

a N a, M 0

_- - - - -' j _' _,_

.·l ..- .,,in C -a:a 0-0 ochCOON r mmoa O NNN- O t r C 0 - N fr b S 4 44t fI t- O 0 N N 0 a0 W W c m _'- N9 . 9 * , * . 9 * 9 9 . 9 9 , * 9 9 9 , 9 9 * . * 9 . 9 . . . 9 * . * 9

9- 9- N - V- - - - - 9- - -N N - - I- 9-9--

0 Q7 0 l 'c 0,- 00 C Oe C 4o o a ! ! ·t , b @ @ * @ * w

", ' c' m MM c m ' ' -o ,_- 9- 9 r9- I-W I- N N

9C3 9 9 90 c o

# 0 0 r 0

a n a w n a N ; rN N N N ff3 m Un r" c 0N

* 9 9 99 0 * 9 9 9 9

· N · rS ·3 S S 51 r C) 0 N No N ;T r-%N

- - - - - N

m >t -T 0 %. t ro M m G*o , 0 4 0 0 * )0 9 9 IU 9 0~ 9l

'9 9 009 9

T- 0 N N N c0 0 o ,n.. 0 r) 0 / 9- ;7s cO ~ m N N N N N N I n ) T Ltn i t _m 4 t e 4 in I ; I · O

? a * 9 9 9 * 9 * 9 * * * 9 * 9 9

a 9

-e,_

0 Wr D T- 3: W o c n mt rN M 9t 9 9 9 9 9 CS3 9 q9

0 S 9 * 0 0 * 0 *

N N N N N N N N N m rt J C' t? (Fl m : ; n C' rY 44 C) sN N t ' ( : xt 4 4 44 4 4

9- o0- N N cm') t) 4 nr: f C CO N C C 0m N tNr ) U N CO 0l9 N f) i 00N (e N N , e * , er , ·· · * * · a N , ) , 3 , , e r ·

9 9 9 9 9 9 9 9 9 9 * 9 9 9 * 9 9 9 9 9 9 * 9 * 9 9 9 9 * * 9 9 9 9 9 9

9- 00 N N N M 'I M ) "T n -4N NNN N N N N N N 9 . 9 * 9 . * 9 9

o rc O a' a W cW 0 aNNNN NNN Y) 9 9 a 9 * 9 9 9 9

COO U i ) Lr .o CO O °N N 1 N N M

9 9 9 9 * * * *m tC F1

* 9 9 * 9

9- 0 N N N )3 :v 0 0 0rn4 0 C * a O 0 0 I 0 0 t 4n U N NNNN N N N <Et cU N i ¢ N (U N m q q q N N m tt t t 9 * 9* ~ 0 l * 9 9 9f * 9 9 * 9 90 9 9 * * 9 * 9 * 9 * * 9

261

0 000 000 00I:= =~. ~

9- LO 9 9

r- n N cr un S

. .~

c un On Ll9- N N

9 . 9

- - - 9-

0 ° rrI . *

O 0a N949

9- 9-

Page 262: 03137348

3 M I O a' 0 - N M >-t

000000 000 000aa a a a a 000 a aCU U U) 1U) O U) C ) ) UC): IU U : :=, o U = UUU)UUUuUUuu

%O Q cO

00n n

W m Q;u u

MO 0- tNM t

O 0 O O C O 000000U UU)UU)U): : > I: Do.aS o a; a; ( a

m U4 M C C VUUUUU

000V)U1 U)

UUU

00 000 r 00o00

a> a :; tb- t :2 c:;lz U % 04

n 000 o00000 aCO ...a c C a 0jA ;; ; .j :; :

CO ( O 0C cl' o O - MM , 4 : a Os 4,:, c ,- :( I 4 N O N 3 J a-

0a OCI O O0 000 00 LSO 000I' >O 4 Ln U'- , -C o " oo r C..a- a a a n Sa a a. a ; a a aJ m a

In oo ooolnLOO Oct a00N N Va- o La ma a a a a a . a

ULUA x t

004)0 ¢00 -M- r- ," rN I N NV-

Z; C : 5 N N N

0 * cO 0

N - -

ar a N 00 a a a

e * * 0 * * 0 0 a #

- _ - . O n - -. t

a a n Ln a ao

,It - t :? - tun O N 0 Ir Ln

a u_ r a a g OL A ~

N 0 A 00 o Nt'- 0A; N ( :b .r OM N

* * ; ;3 C N

LAN 0a'LA* NO 000 000 omoAQoLar o a n a a a a a a a a a an a a a aN'Ch o C -ta LCOar : 0LA t; L OLA u

N F F ~ PL C P tI \(9 Ln Ln Ln Ln Cr) - nr ;; 4; a

o A n t n I N0m' cn o o o rN t o

- ; * -' N N N.. N; N '- r- -.:00r r > 0 000 0 00 0 EnL

aO O aI a a 9a ( a a a a a a aS aa CO O CO n U a 0 M o ca rb b Ln TI .: . ,2 t t . . . . . . 4 4 .

a a (3 t Fe3) U1 t f -T NN LA u LtA Lo r A z 4 .N N

0 V-°O N r n : Ln00 00,e'O L',-00000LA -4 :*t, 4; - 34D:

0 * 0 NN . 0 * 0U)n ra 0 ' I t a a a a( a

0' N a : L0 AIO0 : a

O 9 a a r nin : a a co

( N N N N N N o N. N

I N C4N- C44.~4** coN N0 14I ct N O

0 * * *

N C14 N N

Uo e * N uCrFa 90 9 aMI a c- a04 * .4 * .-

t- co 3

a- V- a- r-

C Tf) a- 0 n L0 L N N - LA - _0 e t nr- a N %O'.0 '.o N Qo 0 N% CO NV N 0 a co. a * , a * * .* * .a .

N a----- aVN N N N V-a-

Mt'00LA :t0L0*0L0 *0- OM M a T M Ln a R a a o a an aC Ua a r a o

a a a C X ) * 0 I I**C) , L LI- I IuI : n Ln n 'A 4 ; : 4 3

0 O :t r.0 .e'.

,- a --- a- a- - - Ln

a a a a

UlA LA " tt L -It, : * a a a a

1 L O Ln 0 a 0a M a O r- r0 a a a ' ra

- .r - r-n , jt .. .J g ,, n M nI m CV - - - CVNm

M a a a a

.Q Q - a3 a- a- -.S . .~ ',.y r**

r- >" O M N -I m t-

m r- : t" Mr rl X0 XD 14,

V-a, *' * *. .* .NV- oo o NNNN'

a- o

,- 4

Ln 00 0 N a' tOa- f· e an V-.cr ,rl: ,

UqOOa 94

4, ,,

crV -,NNL C

4 .4 C4t, --t I" XtoO Uit -T n mf,tsp *O* *OL* *N

a a a a a aI-a 7 ? V-a a a- a- N9 :1 1 9 " ,:"I " -0: 0 : L.n -C C' m " t- -L " 0 0 a' O'M- L A 0 r!Lf a 0n 0 a: r' .IO L0 LA L rD I C a 0 N m '- 0 M a M - m 0 a - *' "

a * e 9 * 0 g s * a a * 9 9 * a a * a a * a N V- -- V-a- - a-a- N NN

0 0'.0a-Ncoa a O - 0 CacD \ C P a q az a a i ar uV O N N-

0 * * * 0

V V- V- - ( N

" r- a 9 a a 9I a 9 9-r -r T -t -T O z C0 w

0 0 0 0 0 0 0 0 0 0'9- '.0 '.0 .0 N% CX a'a a a - a a a a

a-a-

a O a an aV- m a- r- o

11 1 1 4 N 0rF X * *

rN N O aO MO c0 -t

0 0 0 0 . 0 *

N -- N

. aV-aa-

O w a r· 0 a N a l a $ a r"a a a all N 9 a 9!- 0 4 : 4 --n t ,S o r r £D -£0 ,D s t r W rp

e . , . . . . 0 . . * . * 0 0 , 0

0N N u N ( O ma N A 0 C-O- N CO :t0 m m 0 's t o 0 a 0L L L L · L* ' ¢ I I. .l * . * * * * * L LA e L* L. L LA * ¢* L1 L* * . N N ' a a a a a a a a a a a a a a a a ~ a a · ~ a a a a

IV n )M M · _ 1 J9 * 9 9 * a 9

Ci 0t O T L O I O N N i N0 O a' 0N U rO M · · a · i) ·

0 * * * a * a a a * a a . a a * , 9 a 9 . a .

o a a cM i 9 a: a a 00 a(rO a n i.nrS a a a cl n c n aa cO a am a " a N a a n .I . . · l I . , t i , i* · · · * l . , l · . · I · * , ·* * * . ! . ,

0 m N * t ' wO co 0 0 a o rL N· ·e ill m m .m Il m l t * m Il

00 N N O LN 0a a a a a a a:1 - t - IT : T

* . 0 . * · * * . * . a

CO CO N ) uL co

a a a a tn, . . . *

262

m M M -0 0000 000VU U4 U2 cUuu u

.- ,N m00oo000::) UUU

I Q a L t LA

-. 0 Qa * 0r. .- _:.'

Na~

Page 263: 03137348

o mooooooo 0000000m U a; Wm m 2;cUUUUUUUu

- N m .I' ) 0 r, 0, o 0 -0000000 000000000000000urUy ) y U) U, to ) b) r' U1 y,

0 0 0 0 S 0 00 0u

OM0I _ 0 % O 000000000-000000000:t :* p. : :* :> to ::I.

VQV UUUU

v-NM000000q- - t0 a 0t: P :$r; A$ Xv j 000

Ct I( Io o- O0000000000O o0 0O0

EnC V) VL) U

UUVU

UN 0 9C m s O iO 1 U O 00'1\ O t:: O O M O- M, O U- C:) O O O O C;7 C 0 U in O t O Ifl00 o 0 o LA NCr O O r o_ N 000 000 L

4 ) La N O 0 9- N 44, Cr)Q 44 M t 4 . 9 W - ".o N 0)* 9-N N N N N* ; -4 *4 N N N N N A 4 -4 O 4 * r , 4 -* 4 A

oa o rt m o In m c o I a 4 0 r r. m ,a 00 n oo o 00 a n .o 0oo o o0 o0 N ' 0r, (, LA . N - ,0 o. 0 L,. M o r - ~ 04 N L a 0'D %o In rD. 04,r0 4" M MC

00 'r _ cO- r F a4 I- P- 0 Fv - C - o o 0 Ln 0 F w O N f% 'o 9- _ N 0%* ,. ,-* :,.: . . , ' 9 6 . . . 4 0 . * -'s NEN c r n "- N N' n "J .- ' ' _ 44 , 4 ;;

I S 0 9 0 ls o 9V) .r *t .n .) . .r

0 LA 0% L

0 9 9 - r- IF ,-N 04 rl-r-0m plsN4· sl0 rO -ee ' 0A 0Q400

c00 a s 0 r0 r o 'O M Ln t7N :9- N l- r- r- N4 m N t _*n r c4

. 9 9 9 9 9 , 9 , 9 9 0 , . 9 99- 9- - 9- _- r- 9-9-9-9-

9 o s o v n n O 9 9 r as o 9 L 0 9n o on o 9 r· c urcO0

9

9-

,! 4 · I I · n O. c 1 - · t O l a a N 0 en IIc a0 NI 4 · II fl' 0I en0 ·A '0 C 00 COm n m m e e e en en * r * t e n 4t 4 4 L L 4 4 4 L LA uL U L

9 9 * 9 9 * 9 9 9 * .0 9 S 9 9 9 * 9 9 9 0 9 9 * * 9 9 9 9 9 9 0 9 9 9

.- - 0 I r 4 3 - ; D ' ; A In O UnC aO o O 0Cm r mm re m er nm m n lnn r n e m m n rn n

* 9 , 9 9 9 * 5 * * * * . * l

* * 9 * 9 S 9 * IS * 9 9 9 9 9 * 9 9

00 ON N NNn ON r C a0 0 lt -t I - t I t I t I t I t 3 -I

O O O N N N i n4 Ln n - 0 U -r : t a -t =T _ * _S :t r -t 4 3 w

* 9 9 * 9 9 9 9 * * 9 * 9

263

Page 264: 03137348

(4 l O In 0 - (N m9-'-- -NNN- r- r- N - - r- 9-O 0 a C) O C> °U Vn M i VI A n En

UUUUUUUU: :N. : > 1 ,1 ; - :; :M. r; M M; Mi M Mx Mr MuU U U QU U

:t Uln

O O

U WU

ID r- a o N M :?Co a? aV 0 am a

F _ _ _f C

9 9 9 9 9 9 9 900 0000000w UUU > UUUUUw,%MMUwOwM

n ID r..S c 3

V _- - r-r0000001 to U- U. U04 CZW M Mu u : u u

0 VIN n :t:t :t t It -TT- 9- V9 T- 9-

O O O :31 tfa- U) to UPM C4 CZ C4: CZ

Q U u UUUUU

0- 0 r N M C 0 CO .co o o 0 0 . 0 " (No 0r- o 00 00 o a I 0, 00n w m 9 > * r9 9 9 9n 4 9 n C 9n 9 r9 , ; 9 S S 9 9 ;

%,00 '" o* * 1N N N N M en i

CDm In -9 C0%6 L

* * 9 *

I t r en M

n a : N O t r o o o a O n t Vn 1 I in_ c r a M N Co 9 9 n 9 0 o C 9 9 ( 9 144 C (N r' f9 ; t9 * ^O * f ) ( C ; * LA 4A t"x xN xx : : u @t wx Xx >:tto>

0 Ol o000 m n_9- 1 y C n9-l c C N m11 1 41 .: 4 4 r;%Q N- *m 0 (ClN r 9 c N " ' a r n

9- _-9- V N N N

** 0 CO (N C *t In 0 O a 1. n m

in ( N Y- -f- Y (N

J t- N O Q\Ir _

uD l U 00

· 0 .: ·.O·LAC9 9

p ONO M UN O

r 9 9 9 n N M MN M" 1 U; N ,"I

n or.9 C'-(N(N

a 0 0(N 9r-0M0f".r no c FO r(C ur o > o 9 * . 9 9 * 9

r4 f;-9-9-fr:

~ W-;t N 0 - :t 0N m r

n a m o O a - o

,r L A _ Q 4 r 4

COt 1 a; N 0 t9 9 r 9 co aM 0 e . * 0 * 0

c 0 n .9 9'

- :.: - -w ,

u( i M Ne t tn M WO 00 C 0 A

I t O Ooo COn Lo r01 e * I09 , 9 9-'- _ r- I-9-9-

r- r-) M _ M M " m 4:t r-9 C M s M 9 9 9 T 9 9 9

9-q - - N

N 00 ( N at N% t %O 1 %O I ' stO r- F Z%

e . . 9 * * *. *O0 90 M I9 9 r 9 M 9

- C N 9 0

9-'

V- #A N 0 M I Q 0· I- IO

· c o a N 3 _ Cp M 0 n r, 0 N N N T '1 rI N 4 M I' MM M M * 0 -T --Y LA? 3 In Lo I LAt ·r ·-' LA LA LA r- LA A LA Ln LA LA LA %o Lo r- CO

L CO1 CO 00 (N t Mt L ID C - (N it M t tr1 00 m ICO 0 N ( N M A e n CO 0

M M 9 M 9 9 9 9 9 9 0 5 9 9 5- 9 9 9 9 9 9 0 t > t 9 : 9 u 0 n n 9 U99 s5m mm >Xx~tt tteteew nununtwunlununnnuuns

264

0 -- N

0 000U V) L v

Vx paM

9n-- 9-

0 O 000U. UVU

o 0 u UZ9 C9 In 9

, 4 N(

0 '* f

_

Page 265: 03137348

u") o o c0 mr t T t Ct L0 oooo0000( 0 ) L Q (V

C U U U U

9-NV4

u v) uVI)

UO 9U0000l r)U

, o OLa Ln

UUU

0 u Ln Ln o :a n o0 00 r0 . O., - - 9 't 9- U LA 0

cn En 9O00 :

rj -j Cvv Q v

1.o O O "o~- - 00u n tn .uU:N tw > 3; 0; r;U V ? U

Ln kO P

I- r- 9-,O tO O

) 0n 0

U UU

V- 9- 9- %- 9- 9- q9 9- 9.9- t- V- "-

0000000000000UCJLUUUL)UUUUUL)

O 3 : LS a QOM OM N O ll t MN a Q O N

V 0 9 9z 9 4 9 LA 94 9n 9O L 0n 9 9 9 9z 9 9 9 Sn 9 9J 9I0a o o .Lon m n m in rtin r 0 a cr e N L0 N

M V i 9 f u m a p n o M r C 00 c m o n a Ln o u C) Co c- o a o4t O r : M 43 Ln c: - La (7 %) Mo I- . n '- MO 0 4 0 O m - LA 0 c M N co' C, Q: 4M N N N N N N N r4 4 4 r 4 vm m tn t A L 4 4 r 4 L L

a N 0 a) a) 0 f" LA LA 0 03 47 00 N a I" LAQ 00 0 rY n LA '9O a 00 a m LA LA (X LA L LA£. 4 c N C'" N \C X F V a9- 'c 9- Nc o ! '.0 x 04 - : n . Ci _ ;t 4Q ? 4 d N 9-) 4

-o - M -N .0 w N m - % N 9 - r- N . N ) 4 n N N N N N N N M m 4 m LALA a LA '.no ) 4 f% Lra 0 ( N0 M -S) 0 - Ca 1 -, Vo 00 a LA t, 0 La 0- ' .

I 9 9D r 9 9V 9e I 9" r 9 9 9 9 9 9 9~ 9n 9 9 9n 9 9r 9 9 9 9r

9- 9- 1r 9 N N N(U ' 9- 9-i 9"' w -L N CV NV IY C-" F 9- 9-

3 mO0' ;,

_-9

,m ' 'X in 'o oo L. r- ,) o r- m9 C'-9 N4m m 4 :t

9- (M T C N N 'O - 9n- a3 0 A0 4 N r- Ln0 an Ln r- r- r- 00'T 0 0 OM 0% Cr0 - N Lt in " I- OtA'"" 0 0 " - N M*n L - 0C N* I * * * 9 9 9 9 * * * * 9 9 * 9 N * * 9 9 9 9

_- 1" - 9 9- - - - - - - - - - - - N 9

0 r 4 up r. (1 t M fL O ' . :D O O * O , O ^ a

o ! e I s· e· ·

In o(3 I 0

9-

9 c9 0 9 r* 9 0 9 e *1 . . . . . . .

0 00 99 0m m M M M M

40 0 0 0 r

CI 0 9- 4t m * ! o N , (* 0" t 0 r- N N L · e 0 e n Ln L · r 0 0 M LA · N. 4 L o. 9 * 99 9 o 9 9 . * 9 . 0 9 * . . * . . * . , r . * 9 * 9 9 9

N 'o 'O 0 tN 0n( C O o 4 M tL l N0 UN 9- .0N 1 0 IN 0 F 0C 0C C) 0 ::A t C> 0 N0 m Ln 9-* 9 L9 U" L9 n 9 9 9 9 J 9 n 9 9 9 09 9 un n W 9 r 9 9 r 9 9 9 I9 .9 9 " 9n r 9 re * a * 0 * * * * 6 . o * * * * * 0 0 . . * * * * a . * , * * * * 0

N ..0 ' 00, CN ) ( 0rO N eO C rVS' W N 44 4 4 L AV LL An ' ·0 I o I iLn r i l ·O Ii* * a 9 * 9 9 * 9 9 9 9 . * 9 . .

Ln A Nl A N V C OM - N 4 40 e vw 4 M "9 9 9 r-9 9 9C 9o 9O 9 9 9D 9 9C 9-· 9 9--

265

O r r co00 c I,- c ao0 * . * " a

CTa N * *r- %0 4-0%0N

Page 266: 03137348

- r- a-a- a-Li)CJ0

Q aa U C Um W. Iu u u

rs 0 c 0

.> o o.oo000ca 4 0s a; u v? u u u

C 000UUW$ 05 rzu U

L'O D 0 ar - N u'O O'000 00r- - - - - - -

J NNNNNN NN N N00000000000 UUUUUUUUUQUU

rIn 0 o 0 r N 0 0 M r,a . * a a a . a a * a - a- 4 1D a n a- -: u - -

a a a UO a O a a a N 00 a a ar o.n -F O" m Ln U' O m O · 4 ,~ O~l'l0,- "-(' 0~1 .. 1' I~'~ r~ o .4 u)~' 4o~m

0 h 0 0 t, O U) 0 - in 0 N o Nf PI mO a N 3 Ln t rO - - 0 a a a * a a a a a . a

.- a- r- a- T- a- N _- V- V-

a co N · o o N - u-

_

an a a 1 0 io a a a a a n a a a

a * 0 a , a ' 0 0 a 0 a- F W a - 0'''',:',: Os 4Jc r VFP 39L r 1 N c. : a Cn O 0 r v LA 10O : w L _o N 0 M r c t m LA 0 a- o- T J % O Q 0 N N J a) S r U0) O co ON 0 a 0 o O O CO 0 CO Co O a- f a a 0 ON O O a - N o t

o o - F a 1a a a a a m n a u a oo a : u - n a a a a a a --t f o Lr LI o l Va- O O 0 % c oa- k W k rv W > a r cr O- ao a

O a- 0 0 0 L 0 L N CO N IN N IN M 1 t 0 L) ° 0 AN t -1-N A 0L 0 ON a- - a- O 0 LAL L e L LA *l u L n LA ' n ' n 0 I 0 ' n '0 0 o0 NO ' W '. 0 %D 0D r . ON r CO r O O 00 C

f LA LA L L LA L LA LA LA L A * . A L 0 .0 0 a.0 .0 .0 * '.0 .D .3 . r-0. 0. .a * a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a,.

266

L[ O ~0 roO o CC

C) :> :U t

u u

- N I-

o 0o00L) U)UU

UUU

co o o0N 00 a -Fu- v- r.- r~ 0U 0L C

UUU U

a .a_- a- a-

0

o

Page 267: 03137348

M 0 N ) M0 0 - - f- - V00000000

Pk N N w N N N ~ DL000000001 f)R(P

'' CO'O vJ O

0O-( t~0 0

0

0'-0NV-

NV-

NV. 9-

: -N

V-

4N OD

00 T-

9-I-N

mC0N

frN9-

0%CI-

9-

NfnNI-

0mN9-ID

NN

NV-

NCN

9-

Ln

U-

9-

N4c-N ulN

(N W-0V9 V- 0

:44t 0ON 4St 0- - - t-

0P~

fv)

MI

. o

* ·

N

v e

"00N,

0 e* Wo

_~' C7* 0

* 00 0

0 .2~ - 9 N NNc

o ooo0 Q00000000 04 D r0

L \000 00 00000 O

r U 0

9-

<N

0

0C>

00

O0

-

00

o0

4

0

09-

0* N

0 0O -

0 N00 C)

n 0J CaS

a -0 00O Q

00 0

, O r0 9-00

N -T

267

Page 268: 03137348

c N r U o I- w0 0. S N 4 0 N - MO0 0 0 0 0000 O C C 4 "4 - 44" -4 _40000000000000000000000000000,00000000< < < < 4 4 4 4 4 4 4 4 : 4 cc cw Y c e tx W WC aC c M W c C QC< < < < < < < < < < < ieL IC SYg le :le Je 14 I he heY G sk Y e r! l

N

N

4000,0

00

Coco

0

0

00

o0C4I

0"4

N

00 0O N0O

NO

U O

UO

0 00-400

0OO (N cOO 0

. "4 "4 .

'OnU " 4 4-4 N 4 %O O

~Ul , - 4

* U 0 _ 4* C\ J t CN

ON N N t

* O

N qNN "4' N

O - n-

,, co"· . 4 "_r 40PN4 O* "4

*O 4N N

_0 N

'0 O O' _. 4O e""O,

0 0' 0 · O O 0 · eO N0 "00_

N 0 *U% 4--aO -4 co060OO 00 U t ONO't 4 -4"4 N"44 N m o _N

P-N L _.4 U r- -"4" O 0 4

268

Page 269: 03137348

APPENDIX F

NOMENCLATURE LIST

269

Page 270: 03137348

APPENDIX F

NOMENCLATURE LIST

Average endurance power per electric generator, horsepower

Available hull volume, cu. ft.

Cross sectional area amidships, sq. ft.

Projected lateral area above water, sq. ft.

Available tankage volume, cu. ft.

Available arrangement volume in hull, cu. ft.

Average endurance power, horsepower

Average sea speed in North Atlantic Ocean, knots

Beam at midship waterline, ft.

Maximum beam of machinery box, ft.

Beam to draft ratio

Metacentric radius, ft.

Beam to draft ratio

Transverse moment of inertia coefficient

Block coefficient

Vertical center of

Vertical center of

Vertical center of

Vertical center of

Vertical center of

Vertical center of

Vertical center of

Vertical center of

Vertical center of

gravity

gravity

gravity

gravity

gravity

gravity

gravity

gravity

gravity

Vertical center of gravity

of weight group 1, ft.

of weight group 2, ft.

of weight group 3, ft.

of weight group 4, ft.

of weight group 5, ft.

of weight group 6, ft.

of weight group 7, ft.

of ship at full load, ft.

of ship loads, ft.

of light ship, ft.

270

AEDPWG

AHVOL

AM

AREA

ATVOM

AVAV

AVEDPW

AVSP

B

BEAMMB

BHRAT

BM

B/H

CALPH

CB

CG1

CG2

CG3

CG4

CG5

CG6

CG7

CGFLD

CGLDS

CGLSP

Page 271: 03137348

COGAS Combined gas turbine and steam plant

Cp Prismatic coefficient

CPM Machinery box prismatic coefficient

Cr Residual resistance coefficient

CR1( ) Cr arrays for

CR2( ) Taylor's Standard Series

CR3( ) Resistance estimate

Cv Volumetric coefficient

CVK Correction to minimum machinery box depth to account for

structures, ft.

Cwp Waterplane coefficient

Cx Midship section coefficient

CO Same as CALPH

DO Depth at forward perpendicular, ft.

D10 Depth at amidships, ft.

D20 Depth at after perpendicular, ft.

DAVG Average hull depth, ft.

DCMARG Design, construction weight margin (e.g., 10% as 0.10)

DECKHT Height of deck for payload items and raised deck, ft.

DELCF Frictional resistance correction

DEPMB Minimum machinery box depth

DHAMIN Minimum deckhouse volume, cu. ft.

DHSV Smallest deckhouse volume, cu. ft.

DHV Deckhouse volume, cu. ft.

DISPFL Full load displacement, tons

DISPLS Light ship displacement, tons

DISTOL Tolerance for displacement iteration

271

Page 272: 03137348

DPROP Diameter of propeller, ft.

DPTRY Displacement estimate, tons

DSEDPW Design endurance power, horsepower

DUR Duration of voyage for stores, days

DURPAS Duration of stores for passengers, days

DURTRP Duration of stores for troops, days

EAV( ) Array for storing 24 hour average electric loads, KW

EBT( ) Array for storing battle electric loads, KW

ECR( ) Array for storing cruise electric loads, KW

EDPWPE Power required per engine at endurance speed, horsepower

EHP Effective horsepower

EHPAPP Effective horsepower with appendages

EHPBH Effective horsepower bare hull

ELI4ARG Electric load margin (e.g., 3 as 0.30)

EMETYP Emergency electric plant type

ENCVOL Total internal volume of ship, cu. ft.

ENDUR Ship endurance range, nautical miles

EXCKG Excess center of gravity height beyond that required by

stability criteria, ft.

FO Freeboard at forward perpendicular, ft.

F7 Flare factor

F10 Freeboard at amidships, ft.

F20 Freeboard at after perpendicular, ft.

FAVG Average freeboard, ft.

FINST Fin stabilizers

FLDISP Full Load displacement, tons

272

Page 273: 03137348

FNDEN( ) Array for storing the calculated density for each function,

lbs./cu. ft;.

FRAUXB Fuel rate for auxiliary boilers, lbs. / hr.

FRCGAS Fuel rate for COGAS propulsion plants, lbs./hr.

FRDIEG Fuel rate for diesel electric generators, lbs./hr.

FRSTM All purpose fuel rate for steam plants, lbs./hr.

FSCORR Stability free surface correction, ft.

GM Metacentric height, ft.

GMBMIN Minimum GM/B stability value

GM/B Ratio of metacentric height to beam

H Full load draft, ft.

HABCVK Minimum height of machinery box above CVK, ft.

HCOR Correction to minimum machinery box depth to account for

hull shape, ft.

HTTYP Type of heating

HULMAT Type of hull material

HVAW Hull volume above waterline, cu. ft.

HVBW Hull volume below waterline, cu. ft.

ICONST Variable used to control printing status for miscellaneous

coefficients

IT( ) Array used to store payload item numbers

JHPOPT Variable used to set type of speed-power calculations

required

KB Height of the center of buoyancy, ft.

KELEC Variable used to set type of electric plant calculations

required

KG Height of the center of gravity, ft.

273

Page 274: 03137348

KGEOM Variable used to set type of geometry calculations required

KGTRY KG estimate, ft.

KW24AV 24 hour average electric load, KW

KWEMER Total emergency electric capacity installed, KW

KWINST Total installed ship service and emergency electric

capacity, KW

KWPEMG KW per emergency generator

KWPRD KW per diesel generator installed

KWPRGT KW per gas turbine generator installed

KWPRSG KW per steam turbine generator installed

KWPSSG KW per ship service generator

KWSSER Total ship service electric capacity installed, KW

L Length between perpendiculars, ft.

LB Length to beam ratio

LBP Length between perpendiculars, ft.

LBRAT Length to beam ratio

LEN Length between perpendiculars, ft.

LENMB Machinery box length, ft.

LMB Same as LENMB

LRD Raised deck length, ft.

L/B Length to beam ratio

MXDIS Maximum number of weight iterations

MXFCKW Maximum functional electric load, KW

MXITM Maximum payload item considered

MXVCG Maximum number of vertical center of gravity iterations

NACC Total number of accommodations

NACSC Number of accommodations for ships company

274

Page 275: 03137348

NB

NCOMP(

NCPO

NCREW

NE

NEEND

NELC(

NEMG

NFLAG

NGAVG

NGFCLD

)

)

Number of

Array for

Number of

Number of

Number of

Number of

Array for

Number of

Number of

Number of

Number of

load

NGTG Number of

NHSD Number of

NLSD Number of

NMSD Number of

NOFF Number of

NPASS Number of

NR Number of

NS( ) Array for

NSHFT Number of

NSHIP Number of

NSR( ) Array for

NSSG Number of

NSTG Number of

NTRP Number of

NTYP( ) Array for

boilers installed

storing functional component names

CPO's in ships company

enlisted crew in ships company

engines installed

gas turbine engines required at endurance speed

storing electric group names

emergency electricalgenerators

flag personnel on ship

electric generators for 24 hour electric load

ship service generators for maximum functional

gas turbine generators installed

high speed diesel generators installed

low speed diesel generators installed

medium speed diesel generators installed

officers in ships company

passengers on ship

nuclear reactors installed

storing specification names

shafts installed

ship being calculated

storing summary of results names

ship service generators

steam turbine generators installed

troops on ship

storing the type names

275

Page 276: 03137348

NWT( ) Array for storing the weight group names

P( ) Array for storing payload data

PASTYP Type of passageway

PCEND Propulsive coefficeient at endurance speed

PCMXSP Propulsive coefficient at maximum sustained speed

PPTYP Propulsion plant type

PRPTYP Propeller type

PRTOUT Variable used to control the amount of results printed

Q( ) Array for storing the quantity of each payload item used

RATFP Ratio of endurance power per engine to full power per

engine

RDAV Raised deck arrangements volume, cu. ft.

RHAV Required hull arrangements volume, cu. ft.

RPM Propeller revolutions per minute

RSSV Required superstructure volume, cu. ft.

RTAV Required tankage arrangements volume, cu. ft.

S( ) Array for storing ship specifications

SFCAED Average endurance specific fuel consumption, SHPbHR

SFCFP Full power specific fuel consumption, SHPlbmHR

SHFTYP Shaft type

SHP Shaft horsepower required at maximum sustained speed

SHPE Shaft horsepower required at endurance speed

SLRAT Speed to length ratio, knots/fti

SSETYP Ship service electric plant type

SSMAT Superstructure material type

T Tankage coefficient

TAAV Total available arrangements volume, cu. ft.

276

Page 277: 03137348

TANKVL Tankage volume, cu. ft.

THV Total hull volume, cu. ft.

TRAV Total required arrangements volume, cu. ft.

V( ) Array for storing volume of functional groups, cu. ft.

VCG Vertical center of gravity, ft.

VCG( ) Array for storing vertical centers of gravity

VCGTOL Tolerance for VCG iteration

VEND Ship endurance speed, knots

VM( ) Array for storing moment of weight groups, ft.--tons

VOLHUL Internal volume of hull, cu. ft.

VOLMB Internal volume of machinery box, cu. ft.

VOLSHP Total internal volume of ship, cu. ft.

VOLSST Internal volume of superstructure, cu. ft.

VOLTOT Total internal volume of ship, cu. ft.

VOMPSS Superstructure volume required for payload items, cu. ft.

VRLOAD Total weight of load items, tons

VSUS Maximum continuous sustained speed, knots

VTKREQ Tankage volume required, cu. ft.

VWT( ) Array for storing weight of functional groups, tons

V/Y10 " Ship speed to length ratio, knots/ft7

W( ) Array for storing weight group results, tons

WARM Weight of armor, tons

WBHS Weight of basic hull structures, tons

WBRGS Weight of bearings, tons

WDHS Weight of deckhouse structure, tons

WFAUXB Weight of fuel oil for auxiliary boilers, tons

WFELEC Weight of fuel oil for electric generators, tons

277

Page 278: 03137348

Weight of free flooding liquids, tons

Weight of functional group 4 (hull structures), tons

Weight of functional group 5 (ship systems), tons

Weight of fuel for propulsion use only, tons

Weight group 4 minus groups 450 and 451, tons

Weight group 7 minus groups 750 and 751, tons

Total weight of payload items input, tons

Weight of propellers, tons

Weight of shafting, tons

Weight of secondary structures, tons

Weight of BSCI weight group 1, tons

Weight of BSCI weight group 2, tons

Weight of BSCI weight group 3, tons

Weight of BSCI weight group 4, tons

Weight of BSCI weight group 5, tons

Weight of BSCI weight group 6, tons

Weight of BSCI weight group 7, tons

Weight of margin for design/construction, tons

WTSHIP Full load displacement of ship, tons

278

WFFL

WFG4

WFG5

WFPROP

WGP4

WGP7

WPAYIN

WPROP

WSHAFT

WSS

WTGP1

WTGP2

WTGP3

WTGP4

WTGP5

WTGP6

WT GP7

WTMARG