03_solar_drying-6in1

Upload: priya-rathnam

Post on 08-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 03_Solar_drying-6in1

    1/6

    Lecture3.

    December172007

    KamaruddinAbdullahLaboratoryofSolarConversionTechnology

    FacultyofEngineering

    DarmaPersadaUniversity

    [email protected]

    6/3/2008 1

    Outlines(Lecture3) Introduction

    Basicdryingtheory

    Thermophysicalpropertiesasbasisfordryingsystemdesign

    Solardrying

    Typesofdevelopedsolardryers TestPerformances

    Conclusions

    6/3/2008 2

    Introduction Highairtemperatureandhumidityulturaland inthe

    tropicsmakemanyagriculturalandmarineproductsaresusceptibletorapiddecompositionandtherefore,arenotsuitableforhumanconsumption.

    Duepoorpostharvesthandlingaround1220%ofharvestarereportedlosseveryyear

    Dryingcanextendshelflifeofproductsbyreducingitsmoisturetoalevelsaveforlongstorage

    6/3/2008 3

    Dryingtheory Thetermdryingrefersgenerallytothemoisture

    removalfromasubstance.Forexampleawetsolidsuchaswood,grainssuchascoffee,cocoa,roughriceetc. maybedriedbyevaporationofthemoistureeitherintogasstreamorwithoutthebenefitofthegastocarryawayvapor,butmechanicalremovalofsuchmoisturebyexpressionorcentrifugingisnotordinarilyconsidereddrying.

    6/3/2008 4

    Terminology(Treybal,1968)Moisturecontent,wetbasis,X, Massofmoisture

    withinasubstancedevidedbymassofthatsubstance,expressedin%w.b.

    Moisturecontent,drybasis,M, istheratiobetweenthemassofwaterwiththemassofdrymatterinsolid

    and

    is

    expressed

    in

    percent.(%

    d.b.) Equilibriummoisture,Me,expressedcommonlyin

    termsof%drybasisisthemoisturecontentofasubstancewhenatequilibriumwithagiventemperatureandRHsurroundingasubstance.

    6/3/2008 5

    Terminology Boundmoisture.Isthemoisturecontainedbyasubstancewhich

    exertsanequilibriumvaporpressurelessthanthatofpureliquidatthesametemperature. Boundmoistureisthetypeofmoistureheldbychemicalsolutionandincapillarywithinthesolid.

    Unboundmoisture.Isthemoisturecontainedbyasubstancewhichexertsanequilibriumvaporpressureequaltothatofpureliquidatthesametemperature. Suchconditioncanbeintheformfreewateronthesurfaceofsubstance.

    Freemoisture,istheportionofmoisturenotbeingheldbychemicalreactionwithinthesubstance.Onlyfreemoisturecanbeevaporated, andthefreemoisturecontentofasoliddependsuponthevaporconcentration inthegas.

    6/3/2008 6

  • 8/7/2019 03_Solar_drying-6in1

    2/6

    ThePsychrometric chart Psychrometric chartdescribes theallimportant

    propertiesofdryandmoistairusedduringdrying.Usingthepsychrometric chartonecanstudythedryingprocessinasimpleway.

    6/3/2008 7

    12

    3

    AbsoluteHumidityKg/kgdryair

    Drybulbtemperature

    Wetbulbtemperature

    EnthalpykJ/kg

    R

    H

    6/3/2008 8

    Dryingrate(%/h)

    Moisturecontent(%wb)

    Constantrateperiod

    Fallingrateperiod

    6/3/2008 9

    6/3/2008 10

    Moisturecontent(%db)

    Dryingrate(%/min.)

    6/3/2008 11

    S

    Basic equationMMe/MoMe=Aexp( kt)..(10a)M(A,Me,K)=A(MoMe)exp( kt)+Me.(10b)

    LinearizationusingTaylorexpansion

    Mi(A,k,Me)=Mi(A,k,Me)+dMi/dA (Ai)+dMi/dk (Ki)+dMi/dMe (Mei)..(10c)i=1,2.3..nwheredM/dA=(MoMe)exp(kt)dM/dk= Ak(MoMe)exp(kt)dM/dMe=Aexp(kt)+1

    Least Square Method

    The 1st iteration Let A=Ai, Me=Mei, K=Ki

    Substituting into eqs. (10a, 10c) will give the respective values of Ai,Ki,andMei.Me,new=Mei

    Mei,A new=AiAiKnew=KiKi

    Ai,Ki,andMei

    0.004?

    No Print Final value of A,K, and Me

    End

    Determination of drying parameters(Nishiyama, 1973)

    yes

    6/3/2008 12

    Dryingparameters(cont.) EquilibriumM.C.

    Thedryingconstant

    &

  • 8/7/2019 03_Solar_drying-6in1

    3/6

    Commodity Specific heat,Cp (kJ/kg)

    Latent heat of evaporation,Hfg (kJ/kg)

    Equilibrium m.c.Me (%,db)

    Drying constant, k(1/min.)

    1. Coffee berriesDyah W. (1997) Jusuf

    (1990)

    Cp=0.02125 M + 1.8175For 0.58%

    Me =

    3.7045+0.11716 t+0.007679 t2

    K= exp( 15.432-5976.4t )

    2. Cocoa berriesNelwan, 1998.

    Hfg/Hfgw=(1+ 0.7297 exp(-0.1361 t Me))at t =55 C and 7%

  • 8/7/2019 03_Solar_drying-6in1

    4/6

    Solardryingsimulation

    6/3/2008 19

    Energy balance in heat collector to calculate the value of plate temperature Tp,

    mp Cpp dTp/dt = Ap(600 sin( t/8)+300) - 1.5 h Ap (Tp - Tr) (1)

    Drying chamber temperature, Tr

    mr Cpa dTr/dt =mu Cp (Ta-Tr)+1.5 h Ap (Tp -Tr)+hw Aw(Tw-Tr)

    -U Ad (Tr-Ta)-Wd (dM/dt) Hfg+hf Af (Tf-Tr) .. (2)

    Temperature rice of the floor , Tf, which is painted black

    mf Cpf dTf/dt= Ap(600 sin( t/8)+300)-hf Af (Tf-Tr) -k Af (Tf-Tso)/xf (3)

    Temperature of hot water tank

    mw Cpw dTw/dt= [d(mb)/dt] CV-Uw At(Tw-ta)-hw Aw (Tw-Tr) (4).

    The ambient temperature change, Ta

    Ta = 4 sin ( t/8) + 28 (5)

    6/3/2008 20

    Daytime drying: W=300 kg; mu=0.05

    kg/s

    0

    20

    40

    60

    80

    100

    0 1

    1.5 2

    2.5 3

    3.5 4

    4.5 5

    5.5

    Time (h)

    Tp(C)

    Tr(C)

    Ta(C)I(t)/10

    Series1

    GHESolardryingsystem

    Integratedthefunctionofsolarheatcollectoranddryingchamberintoonecompartmenttoreduceconstructioncost

    Canbedesignwithdifferentconfigurationsaccordingthegeometryandproductholder:

    Stationary:

    Housetypewith:flatbed,cabinet,drums,trolleys,etc.

    Venturytypeortruncatedpyramidsorcones

    Recirculationtype:bunker,inclineddryingchambercollector

    6/3/2008 21

    Recirculationdryer Dryerwithinclinedcollectordrying

    chamber

    Airin $

    $$

    Grain

    in

    6/3/2008 22

    Workingprinciple:inclined

    collectordryingchamber Usespneumatic conveyortorecirculatethegrains

    Dryingprocessoccurswhenthegrainfallsintothecollectordryingchambersectionofthedryer

    Severaldryingcyclesareneededtoaccomplishdryingprocess

    Biomassstovecanbeoperatedforday andnightdrying

    Goodforsmalltomediumcapacitydryingofgrains(roughrice,corn,soybeans,etc.)

    6/3/2008 23

    Integratedcollectordryingchamber

    TheEnergybalance

    mg Cpg dTg/dz=hrW(TrTg) m HfgdM/dz IC2...(1)

    dTg/dz=z1(TrTg)+z2dM/dzz3I........................................(2)

    WaCpadTr/dz= hcW(TcTr)+(Ua+Ub)W(TrTa)+

    hrW(TrTg)+mHfgdM/dz......(3)

    dTr/dz=z4(TcTr)+z5(TrTa)+z6(TrTg)+z7dM/dz)............(4)

    Massbalance

    mM|zmM|z+z= (maCpT|z maCpT|z+z)/Hfg or

    Limz>0

    dmM/dz=madTr/dz/Hfg ....................................................(5)

    Mdm/dz= madTr/dz/Hfg mdM/dz............................(6)

    6/3/2008 24

    z

    z

    z+z

    Ua

    Ub

    I(t)mg

    ma

  • 8/7/2019 03_Solar_drying-6in1

    5/6

    Dryingofcorninrecirculationdryerinclined

    dryingchambercollectorsystem

    6/3/2008 25

    Solarrecirculationdryer

    GHEtypewithbunkerfortemporaryinstoredryer

    6/3/2008 26

    Airin

    Workingprinciple: Bunkertype

    Usespneumatic conveyortorecirculatethegrainsandvortex

    Dryingprocessoccurswhenthegrainfallsintoacyllinricaltypeheatexchangerlocatedatthecenterofthedryingchamber

    Severaldryingcyclesareneededtoaccomplishdryingprocess

    Biomassstovecanbeoperatedduringthenightofbadweather

    Goodformediumtolargecapacitydryingofgrains(corn,roughrice,soybeans,etc.)

    6/3/2008 27

    Experiments: Temporaryinstoredryer

    Capacity :

    266.4

    kg/h Dimension : 2,28m,height 3,09m Conveyor :CentrifugalBlower

    Model :CZR 200 Voltage : 220Volt, 50Hz Volume :450m3/h Size : 60mm Pressure :1200Pa Power Type :ElectricMotor,0.25kW Model :YY632 2 RPM :2840rpm Voltage :220Volt,50Hz,1,9A,

    Auxiliaryheater Type :Biomassstove Fuel :Charcoal,sawdust

    6/3/2008 28

    Sample:RoughriceIR64 AverageMC : 23,6 %wb

    Degreeofcleanliness : 97,2 %

    Dimension(LxWxth) : 9,87 1,94 2,37mm

    Bulkdensity : 463,92 gr/cm3

    Intactgrains : 97,8%

    Persentageofcrackedgrains : 2,2%

    6/3/2008 29

    TestresultsconductedbyMinistryofAgriculture:

    Bunkertypesolardryer(Prototype)

    1. Intial mass of grain

    2. Drying time (hr)

    3. Mass of grain after 10 hr drying

    4. Drying rate

    5. Average temperature at top section

    6. Average temperature at the middle section

    7. Temperature of polycarbonate wall

    8. Increase in cracked grains

    9. Homogenity in m.c.

    10. Fuel use

    ~ charcoal (18 kg)

    ~ Solar irradiation (1252,67 Wh)

    : 155 kg

    : 10

    : 14 0 kg

    : 0,74 %/hr

    : 40,34 0C

    : 38,12 0C

    : 40,65 0C

    : 1,4 %

    : 0.05 % 0.51 %

    : 4371 0,19 kJ/hr

    : 99%

    :1%

    6/3/2008 30

  • 8/7/2019 03_Solar_drying-6in1

    6/6

    Experiment2:inclinedcollectordrying

    chamber(Prototype) OverallDimension: : L:2630mm,W:1530mm,H:2520mm

    Holdingcapasity :93,31kg

    Recirculationcapacity :42,12kg/h

    Pneumaticconveyor :CentrifugalBlower,0,25kW,22V,ACTypeYY6322,RPM:2840

    Coveyorpipe:

    Diameter :420mm

    Length :1080mm

    Dryingchamber:

    Dimension :2270 1080mm

    Policarbonatethickness:1,2mm

    Blackenedmetalsheetthickness :0,5mm

    Inclinationfromh or izo nta l :200

    6/3/2008 31

    Testresultsinclinedcollectordryingchamber

    1. Initial mass

    2. Effective drying time

    3. Final mass after 7 hrs drying

    4. Drying rate

    5. Temperature in heating chamber

    6. Temperature of drying air

    7. Temperature of absorber

    8. Increase of cracked grains

    9. Homogenity in m.c.

    10. Energy consumption

    ~ Charcoal (12 kg)

    ~ Solar radiation (161,26 Wh)

    : 24 kg

    : 7 hr

    : 12 kg

    : 1,03 %/hr

    : 67,41 0C

    : 47,11 0C

    : 51,56 0C

    : 2,4 %

    : 0.04% 0.41 %

    : 34690,63 kJ/hr

    6/3/2008 32

    Conclusions

    1) SeveraldesignconfigurationsofGHEsolardryerhavebeendevelopedinIndonesiaandmanyhavebeendistributedthroughoutthecountry

    2) ThedryersmaybeusedasthemaincomponentofaSPU

    3) LaboratoryandfieldtestresultshaveshownthatthedevelopedGHEsolardryerscanbeusedtodryfoodcrops(roughrice,corn,soybeans),estatecrops(coffeeandcocoabeans, cloves, pepper,etc.,marineproducts(avarietyoffish,seaweeds,fishcrackers)

    6/3/2008 33