06 mpc jbr stanford

Upload: vuongtrinh

Post on 01-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 06 mpc jbr stanford

    1/25

    Robustness of Suboptimal Model Predictive Control

    James B. Rawlings

    Department of Chemical and Biological EngineeringUniversity of Wisconsin–Madison

    Insitut für Systemtheorie und RegelungstechnikUniversität StuttgartStuttgart, Germany

    June 24, 2011

    Stuttgart – June 2011   Distributed MPC   1 / 50

    Outline

    1   Inherent robustness of suboptimal MPCExponential stability for difference inclusionsNominal exponential stability of suboptimal MPCRobust exponential stability of suboptimal MPCFeasibility issueMain resultsRobust stability in absence of state constraints

    2   Proposal for nonlinear, distributed MPCModelObjective FunctionTerminal ControllerRemoving the terminal constraintCooperative control algorithmStability of distributed nonlinear cooperative controlExample

    Stuttgart – June 2011   Distributed MPC   2 / 50

  • 8/9/2019 06 mpc jbr stanford

    2/25

    Why study robustness of   suboptimal  MPC?

    Cooperative , distributed MPC is a special case of   suboptimal   MPC.Anything we establish about suboptimal MPC can be applied tocooperative, distributed MPC (and optimal MPC!)

    Suboptimal MPC has an interesting feature: a nonunique,point-to-set control law  u  ∈ κN (x ).

    Optimal  solution of nonconvex

    PN (x ) : minu∈U N 

    V N (x , u)

    cannot be computed online for  any  nonlinear model. Practitionersimplement only suboptimal MPC.

    We should know something about its inherent robustness properties.1

    1Pannocchia, Rawlings, and Wright (2011)Stuttgart – June 2011   Distributed MPC   3 / 50

    For suboptimal MPC; again, the basic MPC setup

    The system modelx + = f  (x , u ) (1)

    State and input constraints

    x (k ) ∈ X ,   u (k ) ∈ U   for all k  ∈ I≥0

    Terminal constraint (and penalty)

    φ(N ; x , u) ∈ Xf    ⊆ X

    Stuttgart – June 2011   Distributed MPC   4 / 50

  • 8/9/2019 06 mpc jbr stanford

    3/25

    Feasible sets

    The set of feasible initial states and associated control sequences

    ZN  = {(x , u) | u (k ) ∈ U, φ(k ; x , u) ∈ X for all  k  ∈ I0:N −1,

    and  φ(N ; x , u) ∈ Xf  }

    and  Xf    ⊆ X  is the feasible terminal set.

    The set of feasible initial states is

    X N  = {x  ∈ Rn | ∃u ∈ UN  such that (x , u) ∈ ZN }   (2)

    For each  x  ∈ X N , the corresponding set of feasible input sequences is

     U N (x ) = {u | (x , u) ∈ ZN }

    Stuttgart – June 2011   Distributed MPC   5 / 50

    Cost function and control problem

    For any state  x  ∈ Rn and input sequence  u ∈ UN , we define

    V N (x , u) =N −1k =0

    (φ(k ; x , u), u (k )) + V f   (φ(N ; x , u))

    (x , u ) is the stage cost;  V f   (x (N )) is the terminal costConsider the finite horizon optimal control problem

    PN (x ) : minu∈U N 

    V N (x , u)

    Stuttgart – June 2011   Distributed MPC   6 / 50

  • 8/9/2019 06 mpc jbr stanford

    4/25

    Suboptimal MPC

    Rather then solving  PN (x )  exactly , we consider using any(unspecified) suboptimal algorithm having the following properties.

    Let  u ∈ U N (x ) denote the (suboptimal) control sequence for theinitial state  x , and let  ũ  denote a  warm start  for the successor initialstate  x + = f  (x , u (0; x )), obtained from (x , u) by

    ũ := {u (1; x ), u (2; x ), . . . , u (N  − 1; x ), u +}   (3)

    u +  ∈ U  is any input that satisfies the invariance conditions of Assumption 3 for x  = φ(N ; x , u) ∈ Xf   , i.e., u + ∈ κf   (φ(N ; x , u)).

    Stuttgart – June 2011   Distributed MPC   7 / 50

    Suboptimal MPC

    The warm start satisfies  ũ ∈ U N (x +).

    The suboptimal input sequence for any given  x + ∈ X N   is defined asany  u+ ∈ UN  that satisfies:

    u+ ∈ U N (x 

    +) (4a)

    V N (x +, u+) ≤ V N (x 

    +, ũ) (4b)

    V N (x +

    , u+

    ) ≤ V f   (x +

    ) when  x +

    ∈ r B   (4c)

    in which  r   is a positive scalar sufficiently small that  r B ⊆ Xf   .

    Notice that constraint (4c) is required to hold only if  x + ∈ r B, and itimplies that  |u+| → 0 as   |x +| → 0.

    Condition (4b) ensures that the computed suboptimal cost is nolarger than that of the warm start.

    Stuttgart – June 2011   Distributed MPC   8 / 50

  • 8/9/2019 06 mpc jbr stanford

    5/25

  • 8/9/2019 06 mpc jbr stanford

    6/25

    Basic MPC assumptions

    Assumption 1 (Continuity of system and cost)

    The functions  f   :  Rn × Rm → Rn,   :  Rn × Rm → R≥0  and

    V f    :  Rn → R≥0  are continuous,  f  (0, 0) = 0,  (0, 0) = 0, and  V f   (0) = 0.

    Assumption 2 (Properties of constraint sets)

    1 The set  U  is compact and contains the origin. The sets  X  and  Xf    areclosed and contain the origin in their interiors,  Xf    ⊆ X.

    2 The set  U  is compact and contains the origin. The sets  X =  Rn and

    Xf    = levαV f    = {x  ∈ Rn | V f   (x ) ≤ α}, with  α > 0.

    Stuttgart – June 2011   Distributed MPC   11 / 50

    Basic MPC assumptions

    Assumption 3 (Basic stability assumption)

    For any  x  ∈ Xf    there exists  u  := κf   (x ) ∈ U such that  f  (x , u ) ∈ Xf    andV f   (f  (x , u )) + (x , u ) ≤ V f   (x ).

    Assumption 4

    There exist positive constants  a,  a1,  a2,  af    and r̄ , such that the costfunction satisfies the inequalities

    (x , u ) ≥ a1|(x , u )|a for all (x , u ) ∈ X × U

    V N (x , u) ≤ a2|(x , u)|

    a for all (x , u) ∈ r̄ B

    V f   (x ) ≤ af  |x |a for all  x  ∈ X

    Stuttgart – June 2011   Distributed MPC   12 / 50

  • 8/9/2019 06 mpc jbr stanford

    7/25

    Definition 5 (Exponential stability)

    The origin of the difference inclusion  z + ∈ H (z ) is  exponentially stable (ES) on  Z , 0 ∈ Z , if there exist scalars  b  > 0 and 0  < λ

  • 8/9/2019 06 mpc jbr stanford

    8/25

    Nominal exponential stability

    Theorem 7 (ES)Under Assumptions  1, 2.1, 3, and  4, the origin of the closed-loop system

    x + ∈ F (x ) = {f  (x , u ) | u  ∈ κN (x )}

    is ES on (arbitrarily large) compact subsets of  X N .

    Stuttgart – June 2011   Distributed MPC   15 / 50

    Robust exponential stability of suboptimal MPC

    Definition 8 (RES)

    The origin of the closed-loop system (6) is  robustly exponentially stable (RES) on int(X N ) if there exist scalars  b  > 0 and 0  < λ  0, there exists  δ > 0  such that for all sequences  {d (k )}  and{e (k )}  with  x (0) = x  ∈ C   satisfying:

    maxk ≥0

    |d (k )| ≤ δ,   maxk ≥0

    |e (k )| ≤ δ 

    x m(k ) = x (k ) + e (k ) ∈ X N ,   x (k ) ∈ X N ,   for all  k  ∈ I≥0,

    it follows that

    |φed (k ; x )| ≤ b λk |x | + ,   for all  k  ∈ I≥0.   (8)

    Stuttgart – June 2011   Distributed MPC   16 / 50

  • 8/9/2019 06 mpc jbr stanford

    9/25

    Robust exponential stability of suboptimal MPC

    Definition 9 (SRES)

    The origin of the closed-loop system (6) is  strongly robustly exponentially 

    stable  (SRES) on a compact set  C ⊂ X N , 0 ∈ int(C ), if there exist scalarsb  > 0 and 0  < λ  0, there exists  δ > 0 such that for all sequences  {d (k )}  and  {e (k )}satisfying

    |d (k )| ≤ δ  and  |e (k )| ≤ δ    for all k  ∈ I≥0,

    and all  x  ∈ C , we have that

    x m(k ) = x (k ) + e (k ) ∈ X N ,   x (k ) ∈ X N ,   for all  k  ∈ I≥0,   (9a)

    |φed (k ; x )| ≤ b λk 

    |x | + ,   for all  k  ∈ I≥0.   (9b)

    Stuttgart – June 2011   Distributed MPC   17 / 50

    Feasibility issue

    The warm start  ũ   is feasible for the  predicted  successor state

    x̃ + = f  (x m, u (0; x m))

    i.e., (x̃ +, ũ) ∈ ZN ,

    But it may not be feasible for the  measured  successor state

    x +m   = f  (x , u (0; x m)) + d  + e +

    (The  true  successor state, which is unknown, isx + = f  (x , u (0; x m)) + d .)

    So we have to resolve this infeasibility online. We make the followingassumption

    Assumption 10

    For any  x , x  ∈ X N   and   u ∈ U N (x ), there exists   u ∈ U N (x 

    ) such that|u − u| ≤ σ(|x  − x |) for some  K-function  σ(·).

    Stuttgart – June 2011   Distributed MPC   18 / 50

  • 8/9/2019 06 mpc jbr stanford

    10/25

    Feasibility issue

    Among various options for finding   p, we consider the following  feasibility problem (notice that x̃ + is known):

    Find  p   s.t.   ũ + p ∈ U N (x +m ) and  |p| ≤ σ(|x 

    +m  − x̃ 

    +|),   (10)

    Proposition 11

    Under Assumption 10 , for any  (x̃ +, ũ) ∈ ZN  and x +m   ∈ X N , the set of 

    solutions to   (10)  is nonempty.

    Stuttgart – June 2011   Distributed MPC   19 / 50

    Main results

    Theorem 12 (SRES of suboptimal MPC)

    Under Assumptions  1, 2.1, 3, 4, and  10 , the origin of the perturbed closed-loop system

    x + ∈ F ed (x )

    is SRES on  C ρ.

    Stuttgart – June 2011   Distributed MPC   20 / 50

  • 8/9/2019 06 mpc jbr stanford

    11/25

    Main results

    u

         U      N

    X N 

    S ρS 

    u0(x )

    C ρ

    ρ

    ZN 

    Figure: Sketch of the main sets involved in SRES.

    Stuttgart – June 2011   Distributed MPC   21 / 50

    Robust stability in absence of state constraints

    To this aim, we replace Assumption 2.1 with 2.2.

    Assumption 10 will not be necessary, whereas Assumptions  1, 3 and 4(with  V N (·) replaced by  V 

    βN (·) later defined) are required.

    We modify the cost function as follows:

    V βN (x , u) =N −1k =0

    (φ(k ; x , u), u (k )) + β V f   (φ(N ; x , u))

    Stuttgart – June 2011   Distributed MPC   22 / 50

  • 8/9/2019 06 mpc jbr stanford

    12/25

    Modified suboptimal MPC algorithm in absence of stateconstraints

    u+

    ∈ UN 

    (11a)V βN (x 

    +, u+) ≤ V βN (x +, ũ) (11b)

    V βN (x +, u+) ≤ β V f   (x 

    +) when  x + ∈ r B   (11c)

    Z̄ r   = {(x , u) ∈ Rn × UN  | V βN (x , u) ≤

     V̄ ,

    and  V βN (x , u) ≤ β V f   (x ) if  x  ∈ r B}

    X0  = {x  ∈ Rn

    |∃u ∈ UN 

    such that (x , u) ∈  Z̄ r }   (12)

    Stuttgart – June 2011   Distributed MPC   23 / 50

    Nominal exponential stability

    We have the following nominal stability result.

    Theorem 13 (ES without state constraints)

    Under Assumptions  1, 2.2 , 3, and  4, the origin of the closed-loop system

    x + ∈ {f  (x , u ) | u  ∈ κN (x )}

    is ES on  X0.

    Stuttgart – June 2011   Distributed MPC   24 / 50

  • 8/9/2019 06 mpc jbr stanford

    13/25

    Robust stability in absence of state constraints

    G ed (z ) = {u+ | u+ ∈ UN ,  V βN (x 

    +m , u

    +) ≤ V βN (x +m , ũ),

    V βN (x +m , u

    +) ≤ β V f   (x +m ) if  x 

    +m  ∈ r B}

    V̄ ρN (z m) = maxe ∈ρB

    V βN (z ) s.t.   z  = z m − (e , 0) (13a)

    S̄ ρ  = {z m ∈  Z̄ r   |  V̄ ρN (z m) ≤

     V̄ }   (13b)

    C̄ ρ = {x  ∈ Rn | x  = x m − e , e  ∈ ρB, ∃u   s.t. (x m, u) ∈  S̄ ρ}   (14)

    Stuttgart – June 2011   Distributed MPC   25 / 50

    Robust stability in absence of state constraints

    Theorem 14 (SRES without state constraints)

    Under Assumptions  1, 2.2 , 3  and  4, the origin of the closed-loop system

    x +

    ∈ F ed (x )

    is SRES on  C̄ ρ.

    Stuttgart – June 2011   Distributed MPC   26 / 50

  • 8/9/2019 06 mpc jbr stanford

    14/25

    The robust region of attraction

    The ideal, but unachievable, result would be that the robust region of attraction under nonzero disturbances is the entire nominal feasible

    set,  X N .

    This ideal result is approached reasonably closely, however, whenexcluding state constraints!

    When  |d |, |e | → 0,  C̄ ρ → X0  and SRES holds over a set approachingthe admissible set of initial conditions.

    These results for robustness of  suboptimal nonlinear MPC  all apply tocooperative, distributed MPC .

    Stuttgart – June 2011   Distributed MPC   27 / 50

    Requirements for distributed, nonlinear control

    Now let’s return to the setting of distributed, nonlinear MPC, anddeal with the nonconvexity issue.

    Two criteria in design:1   the optimizers should not  rely on a central coordinator2   the exchange of information between the subsystems and the iteration

    of the subsystem optimizations should be able to terminate beforeconvergence without compromising closed-loop properties.

    Stuttgart – June 2011   Distributed MPC   28 / 50

  • 8/9/2019 06 mpc jbr stanford

    15/25

    Distributed nonconvex optimization

    Consider the optimization

    minu  V (u ) s.t.   u  ∈U

    We require approximate solutions to the following suboptimizations atiterate  p  ≥ 0 for all   i  ∈ I1:M 

    u p i   = arg  minu i ∈Ui 

    V (u i , u p −i )

    in which  u −i   = (u 1, . . . , u i −1, u i +1, . . . , u M ).

    Define the step  υp 

      = u p 

      − u p 

     .

    Stuttgart – June 2011   Distributed MPC   29 / 50

    Algorithm

    To choose the stepsize  αp i  , each suboptimizer initializes the stepsize2

    with  αi 

    V (u p ) − V (u p i   + αp i  υ

    p i   , u 

    p −i ) ≥ −σα

    p i  ∇i V (u 

    p )υp i 

    in which  σ ∈ (0, 1).

    After all suboptimizers finish the backtracking process, they exchangesteps. Each suboptimizer forms a candidate step

    u p +1i    = u p i   + w i α

    p i  υ

    p i    ∀i  ∈ I1:M 

    2Armijo rule: (Bertsekas, 1999, p.230)Stuttgart – June 2011   Distributed MPC   30 / 50

  • 8/9/2019 06 mpc jbr stanford

    16/25

    Algorithm

    Check the following inequality, which tests if  V (u p ) is convex-like

    V (u p +1) ≤i ∈I

    1:M 

    w i V (u p i   + α

    p i  υ

    p i  , u 

    p −i ) (15)

    in which

    i ∈I1:M w i  = 1 and  w i   > 0 for all   i  ∈ I1:M .

    If the condition above is not satisfied, then we find the direction withthe worst cost improvement

    i max = arg maxi 

    {V (u p i   + αp i  υ

    p i   , u 

    p −i )}

    and eliminate this direction by setting  w i max  to zero and repartitioning

    the remaining  w i  so that they sum to 1.At worst, condition  (15)  is satisfied with one direction only.

    Stuttgart – June 2011   Distributed MPC   31 / 50

    Distributed nonconvex optimization — Properties

    Lemma 15 (Feasibility)

    Given a feasible initial condition, the iterates u p  are feasible for all p  ≥ 0.

    Lemma 16 (Objective decrease)

    The objective function decreases at every iterate, that is,V (u p +1) ≤ V (u p ).

    Lemma 17 (Convergence)

    Every accumulation point of the sequence  {u p }  is stationary.

    Stuttgart – June 2011   Distributed MPC   32 / 50

  • 8/9/2019 06 mpc jbr stanford

    17/25

    Distributed nonconvex optimization

    0

    1

    2

    3

    4

    0 1 2 3 4

    u 2

    u 1

    Figure: Nonconvex function optimized with Distributed nonconvex optimizationalgorithm

    Stuttgart – June 2011   Distributed MPC   33 / 50

    Distributed nonlinear cooperative control

    We have the following local models

    x +1   = f 1(x 1, x 2, u 1, u 2)   x +2   = f 2(x 1, x 2, u 1, u 2) (16)

    Collect these models to form the plantwide model

    x + = f  (x 1, x 2, u 1, u 2) = f  (x , u )

    in which

    x  =

    x 1x 2

      u  =

    u 1u 2

      f  (x , u ) =

    f 1(x 1, x 2, u 1, u 2)f 2(x 1, x 2, u 1, u 2)

    for which  x  ∈ Rn,  u  ∈ Rm, and  f   :  Rn × Rm → Rn.

    At each time step  k , we require the inputs to satisfy

    u 1(k ) ∈ U1   u 2(k ) ∈ U2   k  ∈ I0:N −1

    in which each  Ui  ∈ Rmi  is compact, convex, and contains the origin

    in its interior.

    Stuttgart – June 2011   Distributed MPC   34 / 50

  • 8/9/2019 06 mpc jbr stanford

    18/25

    Distributed nonlinear cooperative control

    The objective function for each subsystem   i  ∈ I1:2   is defined

    V i 

    x (0), u1, u2

     =

    N −1

    k =0

    x i (k ), u i (k )

     + V if  

    x (N )

    We define plantwide objective

    x 1(0), x 2(0), u1, u2

     =  ρ1V 1

    x (0), u1, u2

     + ρ2V 2

    x (0), u1, u2

    To simplify notation we use  V (x , u) for the plantwide objective.

    Assumption 18

    For each   i  ∈I

    1:2, there exists a  K ∞   function  αi (·) such that

    i (x i , u i ) ≥ αi (|x i |)   ∀(x i , u i ) ∈ Rni  × Ui    (17)

    Stuttgart – June 2011   Distributed MPC   35 / 50

    Distributed nonlinear cooperative control

    Denote the plantwide terminal penalty  V f   (x ) = ρ1V 1f   (x ) + ρ2V 2f   (x ).

    We define the terminal region  Xf    to be a sublevel set of  V f   . Fora > 0, define

    Xf    = {x   | V f   (x ) ≤ a}

    Assumption 19

    The plantwide terminal penalty  V f   (·) satisfies

    αf   (|x |) ≤ V f   (x ) ≤ γ f   (|x |)   ∀x  ∈ Xf  

    in which  αf   (·) and  γ f   (·) are  K ∞   functions.

    Stuttgart – June 2011   Distributed MPC   36 / 50

  • 8/9/2019 06 mpc jbr stanford

    19/25

    Distributed nonlinear cooperative control

    Defining  (x , u ) = ρ11(x 1, u 1) + ρ22(x 2, u 2), we require the followingstability assumption.

    Assumption 20

    The terminal cost  V f   (·) satisfies

    min(u 1,u 2)∈U1×U2

    V f  

    f  (x , u 1, u 2)

     + (x , u )

    s.t.   f  (x , u 1, u 2) ∈ Xf  

    ≤ V f   (x )   ∀x  ∈ Xf  

    This assumption implies that there exists a  κif   (x ) ∈ Ui   for all   i  ∈ I1:2such that

    V f  

    f  (x , κ1f   (x ), κ2f   (x ))

     +

    x , κ1f   (x ), κ2f   (x )

    ≤ V f   (x ) (18)

    s.t.   f  (x , κ1f   (x ), κ2f   (x )) ∈ Xf  

    Stuttgart – June 2011   Distributed MPC   37 / 50

    Removing the terminal constraint

    To avoid coupled input constraints, must remove the terminal stateconstraint.

    For some  β  ≥ 1, define the modified objective function

    V β(x , u) =

    N −1k =0

    (x (k ), u (k )) + β V f   (x (N )) (19)

    Define the set of admissible initial (x , u) pairs as

    Z0 = {(x , u) ∈ X × UN  | V β(x , u) ≤ V , φ(N ; x , u) ∈ Xf  }   (20)

    The set of initial states  X0   is the projection of  Z0  onto  X

    X0  = {x  ∈ X | ∃u  such that (x , u) ∈ Z0}

    Stuttgart – June 2011   Distributed MPC   38 / 50

  • 8/9/2019 06 mpc jbr stanford

    20/25

    Distributed nonlinear cooperative control

    Proposition 21 (Terminal constraint satisfaction)

    Let  {(x (k ), u(k )) | k  ∈ I≥0}  denote the set of states and control sequences generated by the suboptimal system. There exists a  β > 1  suchthat for all  β  ≥ β , if  (x (0), u(0)) ∈ Z0, then  (x (k ), u(k )) ∈ Z0  withφ(N ; x (k ), u(k )) ∈ Xf    for all k  ∈ I≥0.

    For the remainder of the talk, we replace the plantwide objective with themodified objective  V (·) ← V β(·) and hence the terminal constraint issatisfied.

    Stuttgart – June 2011   Distributed MPC   39 / 50

    Cooperative control algorithm

    Let ũ ∈ U be the initial condition for the cooperative MPC algorithmsuch that  φ(N ; x (0), ũ) ∈ Xf   .

    At each iterate  p , an approximate solution of the followingoptimization problem is found

    minu

    V x 1(0), x 2(0), u1, u2   (21a)s.t.   x +1   = f 1(x 1, x 2, u 1, u 2) (21b)

    x +2   = f 2(x 1, x 2, u 1, u 2) (21c)

    ui   ∈ UN i    ∀i  ∈ I1:2   (21d)

    |ui | ≤ δ i (|x i (0)|) if  x (0) ∈ B r    ∀i  ∈ I1:2   (21e)

    Stuttgart – June 2011   Distributed MPC   40 / 50

  • 8/9/2019 06 mpc jbr stanford

    21/25

    Cooperative control algorithm

    Let the input sequence returned by distributed nonconvexoptimization algorithm be  up̄ (x , ũ).

    The first input of this sequence  κ¯p 

    (x (0)) = u ̄p 

    (0; x (0), ũ) is injectedinto the plant and the state is moved forward.

    To reinitialize the algorithm at the next sampling time, we define thewarm start

    ũ+1   = {u 1(1), u 1(2), . . . , u 1(N  − 1), κ1f  

    x (N )

    }

    ũ+2   = {u 2(1), u 2(2), . . . , u 2(N  − 1), κ2f  

    x (N )

    }

    in which  x (N ) = φ(N ; x (0), u1, u2).

    Stuttgart – June 2011   Distributed MPC   41 / 50

    Nominal stability results

    Theorem 22 (Asymptotic stability)

    Let Assumptions  18 -20  hold and let V (·) ← V β(·)  by Proposition 21.Then for every x (0) ∈ XN , the origin is asymptotically stable for the closed-loop system x + = f  (x , κp̄ (x )).

    Stuttgart – June 2011   Distributed MPC   42 / 50

  • 8/9/2019 06 mpc jbr stanford

    22/25

    A nonlinear example

    Consider the unstable nonlinear system

    x +1   = x 21  + x 2 + u 

    31 + u 2

    x +2   = x 1 + x 22  + u 1 + u 

    32

    with initial condition (x 1, x 2) = (3, −3).

    For this example, we use the stage cost

    1(x 1, u 1) =1

    2(x 1Q 1x 1 + u 

    1R 1u 1)

    2(x 2, u 2) =1

    2(x 2Q 2x 2 + u 

    2R 2u 2)

    For the simulation we choose the parameters

    Q  = I R  = I N  = 2   p  = 3   Ui  = [−2.5, 2.5]   ∀i  ∈ I1:2

    Stuttgart – June 2011   Distributed MPC   43 / 50

    Distributed nonlinear cooperative control

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 2 4 6 8 10

    x 1

    x 2

    Figure: State trajectory (p  = 3)

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 2 4 6 8 10

    x 1

    x 2

    Figure: Centralized state trajectory(p  = 10)

    Stuttgart – June 2011   Distributed MPC   44 / 50

  • 8/9/2019 06 mpc jbr stanford

    23/25

    Distributed nonlinear cooperative control

    -3

    -2

    -1

    0

    1

    2

    3

    0 2 4 6 8 10

    u 1

    u 2

    Figure: Input trajectory (p  = 3)

    -3

    -2

    -1

    0

    1

    2

    3

    0 2 4 6 8 10

    u 1

    u 2

    Figure: Centralized input trajectory(p  = 10)

    Stuttgart – June 2011   Distributed MPC   45 / 50

    Distributed nonlinear cooperative control

    10−10

    10−810−6

    10−4

    10−2

    100

    102

    104

    0 2 4 6 8 10

    V (x (k ), ū (k ))

    p̄  = 3p̄  = 10

    Figure: Open-loop cost to go versus time on the closed-loop trajectory fordifferent numbers of iterations.

    Stuttgart – June 2011   Distributed MPC   46 / 50

  • 8/9/2019 06 mpc jbr stanford

    24/25

  • 8/9/2019 06 mpc jbr stanford

    25/25

    Further Reading I

    D. P. Bertsekas.   Nonlinear Programming . Athena Scientific, Belmont,MA, second edition, 1999.

    G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under whichsuboptimal nonlinear MPC is inherently robust.  Sys. Cont. Let., 2011.Accepted for publication.

    Stuttgart – June 2011   Distributed MPC   49 / 50

    Acknowledgments

    The author is indebted to Luo Ji of the University of Wisconsin andGanzhou Wang of the Universität Stuttgart for their help in organizing thematerial and preparing the overheads.