07 modelisation_ondes

55
SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 1 Semaine 7 Modélisation de la propagation d’ondes guidées Ramy Mohamed Été 2011

Upload: ramy

Post on 01-Dec-2014

294 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 1

Semaine 7 Modélisation de la propagation d’ondes

guidées

Ramy Mohamed

Été 2011

Page 2: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 2

A little bit of Philosophy

Physical World

Mathematical World

Engineering (Numerical World)

Page 3: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 3

Plan

• Objectives of session: • What is special about guided waves, both physically and numerically.

• Identify the major Numerical Methods that is used in modeling guided waves propagation.

• Understand the major factors controlling the accuracy and validity of a numerical simulation of a guided waves propagation

• Organisation of session: • Strong Form schemes (Finite Difference & Spectral Schemes)

• Break

• Weak Form schemes ( Finite Element & Spectral Element)

• Devoir

Page 4: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 4

Reminder

• At the beginning there was ODE

Given , Find a differentiable function defined for (a) (b) For all In order to have a solution, should be continuous in time and bounded in u, L > 0

Page 5: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 5

Discretization

Exact Approximate

We need to achieve a prescribed accuracy with the minimum number of function evaluations.

Page 6: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 6

Discretization

• Types of Errors: Discretization errors: Numerical approximation

issue. Round-off errors: Implementation issue

• Numerical Scheme Attributes • Accuracy, Stability and Convergence

Page 7: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 7

FD Schemes

• Forward Operator

• Backward Operator

• Central

Page 8: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 8

– Local approximation error – Exact solution – Approximate solution

Order of accuracy The numerical scheme has order of accuracy if

Accuracy

Page 9: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 9

Stability of FD Schemes

• Lax-Richtmyer Stability (zero Stability) as in bounded interval [0, t] • Absolute Stability

Page 10: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 10

Stability Sensitivity of the algorithm to small perturbations in input (error driven).

–Numerical Stability –Algorithmic Stability

Page 11: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 11

Convergence of Explicit FD Schemes

FD Scheme is Consistent if Convergence = Stable time step + Consistency

Page 12: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 12

FD Schemes

Leapfrog (2nd Order)

Crank-Nicolson (2nd Order)

Runge-Kutta

(2th Order)

Page 13: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 13

Polynomial Approximation

The unknown solution Is Approximated by

Lagrange Polynomials

– An example of Algorithmic stability

– Barycentric-Remerez Algorithm is more stable

Page 14: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 14

Differentiation Matrices

Interpolation Spectral

(Global Support)

FD

(local Support)

FD FD

Spectral

Page 15: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 15

Spectral Schemes

• To overcome Runge Phenomenon

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1x 10

-3 equispaced points

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

equispaced points

-1 -0.5 0 0.5 1-4

-2

0

2

4x 10

-5 Chebyshev points

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Chebyshev points

Page 16: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 16

Spectral Schemes

100 101 102 103 10410-15

10-10

10-5

100

N

erro

r

Convergence of fourth-order finite differences

N-4

100 101 10210-15

10-10

10-5

100

N

erro

r

Convergence of spectral differentiation

Page 17: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 17

Prelude to Guided Waves Simulation

• Types of PDEs: Elliptic : Time Independent, Equilibrium

phenomena. Parabolic : Time dependent, and diffusive Hyperbolic : Time dependent, wavelike, with a

finite speed of propagation

Page 18: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 18

Prelude to Guided waves Simulation

Hyperbolic Parabolic

Page 19: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 19

Wave Equation in 1D

Strong Form: find such that • Governing Equation

• Initial Conditions

• Boundary Conditions Essential Natural

Page 20: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 20

FD Schemes for 1D Wave Equation

2nd Order Temporal-Spatial Scheme: Courant Friedrichs Lewy (CFL) Condition:

Page 21: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 21

FEM Boundary Conditions

• Essential Boundary Condition At least one point of the boundary should have an essential BC.

• Natural Boundary Condition

Common nodes satisfy the essential BC.

Page 22: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 22

FEM Static

• System of equations: strong form, difficult to solve, over complex geometry.

• Weak form: requires weaker continuity on the dependent variables.

• Weak form is often preferred for obtaining an approximated solution.

• Formulation based on a weak form leads to a set of algebraic system equations – FEM.

• FEM can be applied for practical problems with complex geometry and boundary conditions.

Page 23: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 23

FEM Static

•Exact at the nodes •There exists at least one point in each element at which the derivative is exact •The derivative is 2nd order accurate at the midpoints of elements

x

F ( x )

nodes elements

Unknown function of field variable

Unknown discrete values of field variable at nodes

Page 24: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 24

Preprocessing

FEM Static

• Step 1: Domain discretization (Meshing) • Step 2: Displacement interpolation (Element Order) • Step 3: Formation of FE equation in local coordinate system • Step 4: Coordinate transformation or mapping • Step 5: Assembly of FE equations • Step 6: Imposition of displacement constraints • Step 7: Solving the FE equations

Solver

Page 25: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 25

FEM Static Step 1

• The solid body is divided into N elements with proper connectivity – compatibility.

• All the elements form the entire domain of the problem without any overlapping – compatibility.

• There can be different types of element with different number of nodes. (Conforming vs Non-Conforming Elements)

• The density of the mesh depends upon the accuracy requirement of the analysis.

• The mesh is usually not uniform, and a finer mesh is often used in the area where the displacement gradient is larger.

Page 26: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 26

• 2D solid elements are applicable for the analysis of plane strain and plane stress problems.

• A 2D solid element can have a triangular, rectangular or quadrilateral shape with straight or curved edges.

• A 2D solid element can deform only in the plane of the 2D solid.

• At any point, there are two degrees of freedom (dofs) in the x and y directions for the displacement as well as forces.

FEM Static Step 2

Page 27: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 27

FEM Static Linear Triangular Element

•Less accurate than quadrilateral elements •Used by most mesh generators for complex geometry (Unstructured Meshing) •A linear triangular element:

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

Page 28: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 28

FEM Static Linear Rectangular Element

•Non-constant strain matrix •More accurate representation of stress and strain •Regular shape makes formulation easy

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

η

ξ

Page 29: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 29

FEM Static Element Distortion

• Use of distorted elements in irregular and complex geometry is common but there are some limits to the distortion.

• The distortions are measured against the basic shape of the element – Square ⇒ Quadrilateral elements – Isosceles triangle ⇒ Triangle elements – Cube ⇒ Hexahedron elements – Isosceles tetrahedron ⇒ Tetrahedron elements

Page 30: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 30

FEM Static Element Distortion

• Aspect Ratio Distortion

b

a

3 Stress analysis10 Displacement analysis

ba

Rule of thumb:

Page 31: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 31

FEM Static Element Distortion

•Angular Distortion

skew Taper b a

b<5a

<120°

>60°

Page 32: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 32

FEM Static Increasing Accuracy: h adaptation

Page 33: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 33

FEM Static Increasing Accuracy: p adaptation

Page 34: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 34

FEM for Guided Waves Transient Analysis

We need To march the system in time (find the solution at discrete time steps a) Accuracy b) Stability

Page 35: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 35

Time Integration Transient Analysis

• The direct integration method is basically using the finite difference scheme for time marching.

• There are mainly two types of direct integration method: implicit and explicit.

• Implicit method (e.g. Newmark’s method) is more efficient for relatively slow phenomena.

• Explicit method (e.g. central differencing method) is more efficient for fast phenomena, such as impact, explosion and guided waves.

Page 36: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 36

Transient Analysis

Central Difference Method

1) Explicit 2) A special initialization procedure is needed

Page 37: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 37

Transient Analysis

1- Identify the frequencies contained in the loading.

2- Choose a FE mesh that can accurately represent the static, and accurately all frequencies up to about

3- Perform a Direct time integration

analysis.

Page 38: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 38

Transient Analysis Amplification factor Vibration Period T

Page 39: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 39

Transient Analysis

Page 40: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 40

Transient Analysis

Page 41: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 41

Transient Analysis

Numerical Dispersion: Higher frequency modes propagate numerically, while not representing a physical phenomena

Page 42: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 42

Time Integration Transient Analysis

• Time Step (CFL Condition)

• For 1% Numerical Dispersion 20 Points per minimum Wavelength

Page 43: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 43

Spectral Element

Mapping (Superparametric)

Page 44: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 44

Spectral Element

Page 45: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 45

Spectral Element

Page 46: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 46

Spectral Element

Page 47: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 47

Numerical Dispersion

Page 48: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 48

CPU time

Page 49: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 49

Spectral Element

S0 interaction with Notch

Page 50: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 50

Spectral Element

A0 interaction with notch

Page 51: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 51

SEM vs FEM

Page 52: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 52

Spectral Element Time stability FEM mesh (quartic Quad)

Page 53: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 53

Spectral Element Time stability SEM mesh (Quad 3X6)

Page 54: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 54

Thanks

Questions

Page 55: 07 Modelisation_ondes

SURVEILLANCE DES STRUCTURES – GMC 724 Modélisation ondes guidées 55

Types of PDEs

2

0( 0

0 - 4ac)

Ellipticb Parabolic

Hyperbolic

< = >