090731 design of reinforced plastic pips 1004 rev.02

42
1 of 42 2 ISSUED FOR INFORMATION 31/07/09 GG LS 1 ISSUED FOR INFORMATION 05/05/09 GG LS 0 ISSUED FOR INFORMATION 10/04/09 GG LS REV.NO REASON FOR ISSUE DATE OF ISSUE PREPARED BY APPROVED BY APPR. BY CLIENT ORIGINATOR: CLIENT PROJECT NO.: SDRL CODE: - - SUPPLIER PROJECT NUMBER: SUPPLIER DOCUMENT NUMBER: 09/004 09/004-CI-0001 CLIENT: DOCUMENT TITLE: DESIGN OF REINFORCED PLASTIC PIPES according BS7159 & AWWA M45 LT LT LT CHECKED BY COOLING WATER PIPING BANDIRMA CCPP - TURKEY PAGE : FIBERPIPE

Upload: kbrozzz

Post on 05-Dec-2015

223 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

1 of 42

2 ISSUED FOR INFORMATION 31/07/09 GG LS

1 ISSUED FOR INFORMATION 05/05/09 GG LS

0 ISSUED FOR INFORMATION 10/04/09 GG LS

REV.NO REASON FOR ISSUE DATE OFISSUE

PREPARED BY APPROVED BY APPR. BYCLIENT

ORIGINATOR: CLIENTPROJECT NO.: SDRL CODE:

- -

SUPPLIER PROJECTNUMBER:

SUPPLIER DOCUMENTNUMBER:

09/004 09/004-CI-0001

CLIENT: DOCUMENT TITLE:

DESIGN OF REINFORCED PLASTIC PIPES according BS7159 & AWWA M45

LT

LT

LT

CHECKEDBY

COOLING WATER PIPING

BANDIRMA CCPP - TURKEY

PAGE :

FIBERPIPE

Page 2: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

TABLE OF CONTENTS

1. Design Basis2. Item List3. Tested Modulus of Elasticity for Filament Wound Pipes 4. Resin Characteristics5. Minimum Mechanical Properties of Reinforced Laminate Layers 6. Unit Thickness7. General

7.1 Factors for Design 7.2 Conditions for Design 7.3 Fluid Characteristics7.4 Resin Characteristics7.5 Glass Characteristics7.6 Construction of Chemical Barrier7.7 Construction of Top Coat

8. Pipe8.1 Pipe Input Data8.2 Pipe Output Data8.3 Construction of Mechanical Reinforcement

8.48.5 Design Calculation for Pipe subjected to Vacuum8.6 Design Calculation for Pipe with Specified Stiffness8.7 Buried Pipe

9. Butt Joint9.19.2 Butt Joint Output Data9.3 Construction of Mechanical Reinforcement9.4 Design Calculation9.5 Mechanical Properties

10. Flange10.110.2 Flange Output Data10.3 Calculation Parameters10.4 Operating conditions10.5 Bolting up conditions10.6 Results

11. Elbow11.1 Elbow Input Data11.2 Elbow Output Data11.3 Construction of Mechanical Reinforcement11.411.5 Mechanical Properties11.6 Design Calculation for Elbows subjected to Vacuum11.7 Design Calculation for Elbows with Specified Stiffness

12. Tee12.1 Tee Input Data12.2 Tee Output Data12.3 Construction of Mechanical Reinforcement12.4 Design Calculation for Tee subjected to Internal Pressure 12.5 Mechanical Properties12.6 Compensation Design

Design Calculation for Pipes subjected to Internal Pressure and Bending Moments

Design Calculation for Elbows subjected to Internal Pressure and Bending Moments

Butt Joint Input Data

Flange Input Data

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 2/42

Page 3: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

13. Reducer13.1 Reducer Input Data13.2 Reducer Output Data13.3 Construction of Mechanical Reinforcement13.413.5 Mechanical Properties13.6 Design Calculation for Reducer subjected to Vacuum13.7 Design Calculation for Reducer with Specified Stiffness

14. Cap14.1 Cap Input Data14.2 Cap Output Data14.3 Construction of Mechanical Reinforcement14.414.5 Mechanical Properties14.6 Design Calculation for Caps subjected to Vacuum

Design Calculation for Reducer subjected to Internal Pressure

Design Calculation for Caps subjected to Internal Pressure

09-004_CI0001-02 .xls 3/42

Page 4: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

1. Design Basis

The design of pipes and fittings is basec on rules according to BS7159 and BS6464.This standards includes a method of calculation for an appropriate laminate construction based on the allowable unit loading and unit modulus for the type of composite concerned.

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Page 5: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

2. Item List

ITEM N° T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100 T80 T600 T300

NDNominal Diameter [mm] 2400 2000 1600 500 400 350 300 250 200 150 100 80 600 300

p Design Pressure [bar] 6,2 6,2 6,2 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5

pW Operating pressure [bar] 4,3 4,3 4,3 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5

TMaximum Design

Temperature[°C] 60 60 60 60 60 60 60 60 60 60 60 60 60 60

pe Design Vacuum [bar] 0,4 0,9 0,4 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,4 0,4

ρc Content Specific Gravity [kg/dm3] 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tl Liner Thickness [mm] 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65

ttc Top Coat Thickness [mm] 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2

Proposed resinReinforcement

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

Choosen resinReinforcement

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

Proposed resin linerisopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

Choosen resin linerisopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

εd Allowable Design strain[mm/mm

]0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002

σRShort Term Failure Stress [Mpa] 240 240 240 240 240 240 240 240 240 240 240 240 240 240

εR Short Term Failure Strain[mm/mm

]0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013 0,013

SFST Short Term Safety Factor 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 5/42

Page 6: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

3. Tested Modulus of Elasticity for Filament Wound Pipes

Winding angle ° 55 # 65 70 75

ELAM ta N/mm2 12500 9000 - - -

ELAM tc N/mm2 24000 27000 # - -

G12 N/mm2 10730 10730 ww - -

v12 0,3 0,3 - - -

v21 0,55 0,5 - - -

4. Resin Characteristics

isopthalicpolyester

vinylester MTvinylester MHT vinylester HT

HDT ° 105 125 145 180

Relative density kg/dm3 1,12 1,15 1,15 1,15

5. Minimum Mechanical Properties of Reinforced Laminate Layers (Table 2 BS6464:1984)

Ultimate tensile unit strenght u

(see B.3 of BS6464:1984)

Unit modulus X(see B.4 of

BS6464:1984)

Lap shear

strenght(see B.5

of BS6464:

Specific gravityPoisson's Modulus

Poisson's Modulus

N/mm

(width per kg/m2

glass)

N/mm

(width per kg/m2 glass)N/mm2 kg/dm3 v12 v21

Chopped Strand Mat 200 15898 5 1,5 0,3 0,3Woven Roving 250 17278 5 1,7 0,3 0,3Continuous Rovings 500 28000 5 1,9 0,3 0,01

Unidirectional Roving 1,7 0,3 0,01Mortar 3500 1,12 0,3 0,3

6. Unit Thickness(fig.2 BS6464:1984)

CSM Percentage Glass Content by Mass mgcsm 35 %WR & UR Percentage Glass Content by Mass mgwr 56 %CR Percentage Glass Content by Mass mgcs 75 %

CSM Thickness tcsm 2,05 mm per

kg/m2 glass

WR & UR Thickness twr 1,10 mm per

kg/m2 glass

CR Thickness tcr 0,69 mm per

kg/m2 glass

( )( )RCSM

CSM

dmg

mg−+=

100

56,2

1

( )( )RWR

WR

dmg

mg−+= 100

56,2

1

( )( )RCR

CR

dmg

mg−+= 100

56,2

1

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 6/42

Page 7: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150

7. General

7.1. Factors for Design (par. 14.4.1 BS6464:1984)

Design Factor K =3k1k2k3k4k5 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6 6

Factor relating to Method of Manufacture k1 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5Factor Relating to Long Term Behaviour k2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2Factor relating to Temperature k3 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0Factor relating to Cyclic Loading k4 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1Factor relating to Curing Procedure k5 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1Resin Strain Failure εR mm/mm 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035Allowable Resin Strain ε =min(εRx0,1;0,0020) mm/mm 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020

Chopped Strand Mat Allowable Strain εCSM =uCSM/(XCSMK) mm/mm 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020

Woven Roving Allowable Strain εWR =uWR/(XWRK) mm/mm 0,0023 0,0023 0,0023 0,0023 0,0023 0,0023 0,0023 0,0023 0,0023 0,0023Continuous Roving εCS =uCR/(XCRK) mm/mm 0,0028 0,0028 0,0028 0,0028 0,0028 0,0028 0,0028 0,0028 0,0028 0,0028Allowable Design Strain εd =min(ε;εCSM;εWR;εCR) mm/mm 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,0020 0,0020

7.2. Conditions for Design

Design Temperature T °C 60 60 60 60 60 60 60 60 60 60Design Pressure p MPa 0,62 0,62 0,62 0,75 0,75 0,75 0,75 0,75 0,75 0,75Operating Pressure pW MPa 0,43 0,43 0,43 0,55 0,55 0,55 0,55 0,55 0,55 0,55Design Vacuum pe MPa 0,04 0,09 0,04 0,06 0,06 0,06 0,06 0,06 0,06 0,06Number of cycles expected in lifetime N cycles 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000Wind ConditionsWind Speed VS m/s 0 0 0 0 0 0 0 0 0 0Wind Dynamic Pressure qs =0,613VS

2 Pa 0 0 0 0 0 0 0 0 0 0Seismic ConditionsEquivalent Acceleration as g 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

7.3. Fluid Characteristics

Fluid water water water water water water water water water waterSpecific Gravity ρc kg/dm3 1 1 1 1 1 1 1 1 1 1

7.4. Resin Characteristics

Liner Resinisopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicvinyleser LT

isopthalicvinyleser LT

HDT Liner Resin °C 105 105 105 105 105 105 105 105 105 105Relative Density of Liner Resin dl 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12

Mechanical Reinforcement Resinisopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicpolyester

isopthalicvinyleser LT

isopthalicvinyleser LT

HDT Mechanical Reinforcement Resin °C 105 105 105 105 105 105 105 105 105 105

Relative Density of Mechanical Reinforcement Resin

dmr1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,12

7.5. Glass Characteristics

Surface Veil - - - - - - - - - -Chopped Strand Mat (CSM) - - - - - - - - - -

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 7/42

Page 8: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Roving (CR) - - - - - - - - - -Woven Roving (WR) - - - - - - - - - -Unidirectional Roving (UR) - - - - - - - - - -

7.6. Construction of Chemical Barrier

Adivised Chemical Barrier[C veil tissue /

800 kg/m2 [C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM][C veil tissue /

800 kg/m2 CSM]Thickness mm 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65

7.7. Construction of Top Coat

Used Top Coat Barrier [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] Thickness mm 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2

09-004_CI0001-02 .xls 8/42

Page 9: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

7. General

7.1. Factors for Design (par. 14.4.1 BS6464:1984)

Design Factor K =3k1k2k3k4k5

Factor relating to Method of Manufacture k1

Factor Relating to Long Term Behaviour k2

Factor relating to Temperature k3

Factor relating to Cyclic Loading k4

Factor relating to Curing Procedure k5

Resin Strain Failure εR

Allowable Resin Strain ε =min(εRx0,1;0,0020)

Chopped Strand Mat Allowable Strain εCSM =uCSM/(XCSMK)

Woven Roving Allowable Strain εWR =uWR/(XWRK)Continuous Roving εCS =uCR/(XCRK)Allowable Design Strain εd =min(ε;εCSM;εWR;εCR)

7.2. Conditions for Design

Design Temperature TDesign Pressure pOperating Pressure pW

Design Vacuum pe

Number of cycles expected in lifetime NWind ConditionsWind Speed VS

Wind Dynamic Pressure qs =0,613VS2

Seismic ConditionsEquivalent Acceleration as

7.3. Fluid Characteristics

FluidSpecific Gravity ρc

7.4. Resin Characteristics

Liner Resin

HDT Liner ResinRelative Density of Liner Resin dl

Mechanical Reinforcement Resin

HDT Mechanical Reinforcement Resin

Relative Density of Mechanical Reinforcement Resin

dmr

7.5. Glass Characteristics

Surface VeilChopped Strand Mat (CSM)

Società a Socio Unico

VETRORESINA ENGINIA GROUP

T100 T80 T600 T300

6 6 6 6

1,5 1,5 1,5 1,5

1,2 1,2 1,2 1,2

1,0 1,0 1,0 1,0

1,1 1,1 1,1 1,1

1,1 1,1 1,1 1,1

0,035 0,035 0,035 0,0350,0020 0,0020 0,0020 0,0020

0,0020 0,0020 0,0020 0,0020

0,0023 0,0023 0,0023 0,00230,0028 0,0028 0,0028 0,0028

0,0020 0,0020 0,0020 0,0020

60 60 60 600,75 0,75 0,75 0,75

0,55 0,55 0,55 0,55

0,06 0,06 0,04 0,041000 1000 1000 1000

33 33 33 33

680 680 680 680

0,00 0,00 0,00 0,00

water water water water1 1 1 1

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

105 105 105 1051,12 1,12 1,12 1,12

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

isopthalicvinyleser LT

105 105 105 105

1,12 1,12 1,12 1,12

- - - -- - - -

09-004_CI0001-02 .xls 9/42

Page 10: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Roving (CR)Woven Roving (WR)Unidirectional Roving (UR)

7.6. Construction of Chemical Barrier

Adivised Chemical BarrierThickness

7.7. Construction of Top Coat

Used Top Coat BarrierThickness

T100 T80 T600 T300

- - - -- - - -- - - -

[C veil tissue / 800 kg/m2 CSM]

[C veil tissue / 800 kg/m2 CSM]

[C veil tissue / 800 kg/m2 CSM]

[C veil tissue / 800 kg/m2 CSM]

1,65 1,65 1,65 1,65

[C veil tissue] [C veil tissue] [C veil tissue] [C veil tissue] 0,2 0,2 0,2 0,2

09-004_CI0001-02 .xls 10/42

Page 11: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

8. Pipe

8.1 Pipe Input Data

Geometrical Input

Configuration Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal

Type of Support BuriedSimply

SupportedSimply

SupportedBuried Buried Buried Buried Buried Buried Buried Buried

Nominal Bore ND mm 2400 2000 1600 500 400 350 300 250 200 150 100

Distance between Joints mm 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200 11200

Maximum Distance between Supports to limite deflection to 1/300 of the span Lmax mm 0 15430 13117 0 0 0 0 0 0 0 0

Maximum Deflection f mm 0 0 0 0 0 0 0 0 0,00 0,00 0,00

Assumed Distance between Supports / Pipe Lenght L mm 0 0 0 0 0 0 0 0 0 0 0

Minimum Width of Support mm 268 245 219 122 110 102 95 87 77 67 55

Coefficient of thermal expansion 1/°C 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05 1,8E-05

Internal Loads

Design Pressure p N/mm2 0,62 0,62 0,62 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75

Design Vacuum pe N/mm2 0,04 0,09 0,04 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06

Operating pressure pW N/mm2 0,43 0,43 0,43 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55

8.2 Pipe Output Data

Pipe Thickness

Pipe Mechanical Reinforcement Thickness tr mm 19,3 16,9 13,3 7,0 7,0 5,6 5,6 4,2 4,2 2,8 2,8

Internal Liner Thickness tl mm 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7

Top Coat Thickness ttc mm 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2

Pipe Total Thickness tt =tr+tl+ttc mm 21,1 18,8 15,1 8,8 8,8 7,4 7,4 6,0 6,0 4,6 4,6

Pipe Diameters

Pipe Structural Diameter D =ND+2tl mm 2403,3 2003,3 1603,3 503,3 403,3 353,3 303,3 253,3 203,3 153,3 103,3

Pipe Outside Diameter Do =ND+2tt mm 2442,2 2037,6 1630,3 517,6 417,6 364,8 314,8 262,1 212,1 159,3 109,3

Mean Pipe Diameter Dm =ND+tt mm 2421,1 2018,8 1615,1 508,8 408,8 357,4 307,4 256,0 206,0 154,6 104,6

Pipe Specific Gravity

Pipe mechanical reinforcement specific gravity SGP =SGiti/tr kg/dm31,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9

WeightsStiffener Ring Weight WSR O+d3+d4)(2A2ρ2+2A3ρ3+Akg/m 72,9 81,1 38,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Pipe Mechanical Reinforcement Weight WR =πDtrρr kg/m 276,2 202,6 127,1 20,9 16,8 11,8 10,1 6,3 5,1 2,5 1,7

Pipe Mechanical Reinforcement + Stiffeners Rings Weight WR+SR =WSR+WR kg/m 349,0 283,6 165,5 20,9 16,8 11,8 10,1 6,3 5,1 2,5 1,7

Pipe Liner Weight WL =πNDtlρl kg/m 18,7 15,6 12,4 3,9 3,1 2,7 2,3 1,9 1,6 1,2 0,8

Pipe Top Coat Weight WTC =π(DO-2ttc)ttcρtc kg/m 1,7 1,4 1,1 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0,1

Pipe Total Weight WT =WR+SR+WL+WTC kg/m 369,4 300,6 179,1 25,2 20,2 14,7 12,6 8,4 6,8 3,8 2,6

Weight of Contents WC =((πND2)tlρl)/4 kg/m 4523,9 3141,6 2010,6 196,3 125,7 96,2 70,7 49,1 31,4 17,7 7,9

8.3 Construction of Mechanical Reinforcement

Continuous Cross Roving Grammature g/m2 2051 2051 2051 2024 2024 2024 2024 2024 2024 2024 2024

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 11/42

Page 12: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Continuous Cross Roving Angle θ 55 55 55 55 55 55 55 55 55 55 55

Longitudinal Unit Modulus XLAMa N/mm 8603 8603 8603 8603 8603 8603 8603 8603 8603 8603 8603

Circumferential Unit Modulus XLAMc N/mm 16518 16518 16518 16518 16518 16518 16518 16518 16518 16518 16518

Poisson Modulus for Continuous Cross Roving vac 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30

Poisson Modulus for Continuous Cross Roving vca 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55

CSM-Chopped Strand Mat

UR-Unidirectional Roving

WR-Woven Roving

CPR-Continuous Parallel Roving

CCR-Continuous Cross Roving

CPR Grammature g/m2 840 0 840 0 0 0 0 0 0 0 0

CPR Layers n° 4 0 1 0 0 0 0 0 0 0 0

CPR Thickness t mm 2,3 0,0 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

CPR Neutral Axis z mm 8,47 0,00 6,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

CPR Momet of Inertia I mm3 215,2967625 0 25,51469998 0 0 0 0 0 0 0 0

CRR Grammature g/m2 2051 2051 2051 2024 2024 2024 2024 2024 2024 2024 2024

CRR Layers n° 12 12 9 5 5 4 4 3 3 2 2

CRR Thickness t mm 16,9 16,939 12,7 7,0 7,0 5,6 5,6 4,2 4,2 2,8 2,8

CRR Neutral Axis z mm -1,16 0,00 -0,29 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

CRR Momet of Inertia I mm3 405,0296953 405,0296953 170,8719027 28,15708446 28,15708446 14,41642724 14,41642724 6,081930243 6,081930243 1,802053405 1,802053405

Total Mechanical Reinforcement thickness t mm 19,3 16,9 13,3 7,0 7,0 5,6 5,6 4,2 4,2 2,8 2,8

Mechanical Reinforcement Neutral Axis z mm -1,1563 0,0000 -0,2891 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm OK!>2 mm

Mechanical Reinforcement Laminate Sequence

[ / / /4xcpr840/12xccr2051/ / / / / / ]

[ / / / /12xccr2051/ /

/ / / / ]

[ / / /1xcpr840/9xccr2051/ / / / / /

]

[ / / / /5xccr2024/ / /

/ / / ]

[ / / / /5xccr2024/ / /

/ / / ]

[ / / / /4xccr2024/ / /

/ / / ]

[ / / / /4xccr2024/ / /

/ / / ]

[ / / / /3xccr2024/ / /

/ / / ]

[ / / / /3xccr2024/ / /

/ / / ]

[ / / / /2xccr2024/ / /

/ / / ]

[ / / / /2xccr2024/ / /

/ / / ]

8.4 Design Calculation for Pipes subjected to Internal Pressure and Bending Moments

Loads on pipeAxial Unit Load(pressure) Qap =Dp/4 N/mm 373 311 249 94 76 66 57 47 38 29 19

Axial Unit Load(moments) Qam =MD/(πD2)+Ft/(πD) N/mm 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Axial Unit Load (pressure and bending moments) Qa =Qap+Qam N/mm 373 311 249 94 76 66 57 47 38 29 19

Circumferential Unit Load (pressure) Qcp =Dp/2 N/mm 745,0 621,0 497,0 188,7 151,2 132,5 113,7 95,0 76,2 57,5 38,7

Circumferential Unit Load (deflection) Qcm N/mm 298,1 0,0 0,0 130,8 120,3 89,1 77,6 74,1 68,2 51,1 50,0

Circumferential Unit Load (pressure and deflection) Qc =Qcp+Qcm N/mm 1043,1 621,0 497,0 319,5 271,5 221,6 191,4 169,0 144,4 108,6 88,8

Shear N/mm 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Compressive Load Qac =FC/(πND) N/mm 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Buckling

Permissibile Axial Compressive Load to prevent buckling Qp =0,6trXLAMa/(SF*ND) N/mm 256 260 194 176 220 161 188 127 158 94 141

Permissibile Bending Load to prevent buckling Qm =1,3QP N/mm 332 338 252 229 286 209 244 165 206 122 183

Permissibile Shear Load to prevent buckling Qs=1,169trXLAMa(tr/ND5)1/

4(ND/L)1/2/SF N/mm 2389293716 2248501179 1489774314 861020966 1017879192 680993031 764456468 458803304 542386719 270276176 366333142

Safety Factor for Buckling SF 4 4 4 4 4 4 4 4 4 4 4

09-004_CI0001-02 .xls 12/42

Page 13: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Interaction Criterion for Buckling=abs(Qac/Qp)+abs(Qam

/Qm)+(S/Qs)2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

OK!<1 OK!<1 OK!<1 OK!<1 OK!<1 OK!<1 OK!<1 OK!<1 OK!<1 OK!<1 OK!<1

Mechanical PropertiesLongitudinal Unit Modulus XLAMa =(Ximini)a N/mm 219832 211738 160827 87063 87063 69650 69650 52238 52238 34825 34825

OK! OK! OK! OK! OK! OK! OK! OK! OK! OK! OK!

Circumferential Unit Modulus XLAMc =(Ximini)c N/mm 500618 406538 328423 167161 167161 133729 133729 100296 100296 66864 66864

Longitudinal Tensile Modulus of the Laminate ELAMta =XLAMa/tr N/mm2 11419 12500 12108 12500 12500 12500 12500 12500 12500 12500 12500

Circumferential Tensile Modulus of the Laminate ELAMtc =XLAMc/tr N/mm2 26004 24000 24726 24000 24000 24000 24000 24000 24000 24000 24000

Longitudinal Flexural Modulus of the Laminate ELAMfa =(EiIi/ΣIi)a N/mm2 9376 12500 11331 12500 12500 12500 12500 12500 12500 12500 12500

Circumferential Flexural Modulus of the Laminate ELAMfc =(EiIi/ΣIi)c N/mm2 29790 24000 26167 24000 24000 24000 24000 24000 24000 24000 24000

Laminate Design Longitudinal Unit Loading ULAMa =XLAMaεd N/mm 439,2 423,1 321,3 174,0 174,0 139,2 139,2 104,4 104,4 69,6 69,6

OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa OK!>Qa

Laminate Design Circumferential Unit Loading ULAMc =XLAMcεd N/mm 1000,2 812,3 656,2 334,0 334,0 267,2 267,2 200,4 200,4 133,6 133,6

OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc OK!>Qc

Axial Stress Capacity σca =ULAMa / tr N/mm2 23 25 24 25 25 25 25 25 25 25 25

Axial Stress (pressure) σap =(pWD/4) / tr N/mm2 13 13 13 10 8 9 7 8 7 8 5

59% 51% 54% 40% 32% 35% 30% 33% 27% 30% 20%

Axial Stress (moments) σam =Qastr N/mm2 0 0 0 0 0 0 0 0 0 0 0

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Residual Axial Stress (thermal effects) σar =σca-σap-σam N/mm2 9 12 11 15 17 16 17 17 18 17 20

41% 49% 46% 60% 68% 65% 70% 67% 73% 70% 80%

Circumferential Stress Capacity σcc =ULAMc / tr N/mm2 52 48 49 48 48 48 48 48 48 48 48

Circumferential Stress (pressure) σcp =(pWD/2) / tr N/mm2 27 25 26 20 16 17 15 17 13 15 10

52% 53% 53% 41% 33% 36% 31% 35% 28% 32% 21%

Circumferential Stress (deflection) σcm N/mm2 15,5 0,0 0,0 18,8 17,3 16,0 13,9 17,7 16,3 18,3 18,0

30% 0% 0% 39% 36% 33% 29% 37% 34% 38% 37%

Residual Circumferential Stress σcr =σcc-σcp-σcm N/mm2 9,6 22,5 23,5 9,3 14,8 14,5 19,0 13,6 18,3 14,5 19,8

19% 47% 47% 19% 31% 30% 40% 28% 38% 30% 41%

Poisson Modulus vac =(miniXivi/nimiXi)ac 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,30 0,30 0,30

Poisson Modulus vca =(miniXivi/nimiXi)ca 0,45 0,55 0,51 0,55 0,55 0,55 0,55 0,55 0,550 0,550 0,550

Axial Strain (pressure) εap =σap/ELAMta-vcaσcp/ELAMtc mm/mm 0,00071 0,00043 0,00054 0,00034 0,00027 0,00030 0,00026 0,00028 0,00023 0,00026 0,00017

Axial Strain (moments) εam =σam/ELAMfa-vcaσcm/ELAMfc mm/mm -0,00023 0,00000 0,00000 -0,00043 -0,00040 -0,00037 -0,00032 -0,00041 -0,00037 -0,00042 -0,00041

Circumferential Strain (pressure) εcp =σcp/ELAMtc-vacσap/ELAMta mm/mm 0,00068 0,00075 0,00073 0,00059 0,00047 0,00052 0,00044 0,00049 0,00040 0,00045 0,00030

Circumferential Strain (deflection) εcm =σcm/ELAMfc-vacσam/ELAMfamm/mm 0,00052 0,00000 0,00000 0,00078 0,00072 0,00067 0,00058 0,00074 0,00068 0,00076 0,00075

8.5 Design Calculation for Pipe subjected to Vacuum

Pipe without Stiffening Rings

Safety Factor SF 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Minimum Wall Thickness tm=(ND+2tr)(SFpet/2ELAMt

c)0,33 mm 30,3 35,5 21,1 7,8 6,3 5,5 4,7 3,9 3,2 2,4 1,6

Buckling, increase t or

use ribs

Buckling, increase t or

use ribs

Buckling, increase t or

use ribs

Buckling, increase t or

use ribsOK! OK! OK! OK! OK! OK! OK!

Minimum Stiffeness S =ELAMfc(tm3/12)/(ND+tr)

3 Pa 4808 10574 4801 7353 7501 7437 7551 7471 7651 7551 8063

09-004_CI0001-02 .xls 13/42

Page 14: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Pipe with Stiffening Rings - Fixed Distance between Rings

Maximum Distance between Stiffening Rings Jmax=(250Xlamc/(SFpet))(td/(ND+2tmm 8779 3433 6059 4396 6081 4271 5341 3439 4748 2671 4713

Choosen Distance between Stiffening Rings J mm 2240 2000 2000 1000 1000 1000 1000 1000 1000 1000 1000

Outside Sructural Diameter Do =ND+2tr mm 2439 2034 1627 514 414 361 311 258 208 156 106

Minimum Wall Thickness tm=Do(0,4SFpetJ/(ElamtcDo))^0,4mm 11,15 13,65 8,53 3,85 3,38 3,12 2,85 2,55 2,24 1,88 1,50

OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr OK!<tr

Shell with Stiffening Rings - Fixed Laminated Thickness

Stiffness factor of the Stiffening Ring EI =0,18(ND+2tt)JDs2pet mm4 1,48735E+11 1,76369E+11 39610468650 883154784,4 458371862,6 305289894,3 194251990,7 111603590,9 58077682,13 24281498,84 7558891,9

OK!<EiIi OK!<EiIi OK!<EiIiIncrease t,

ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach ribs

Diameter of Neutral Axis of Stiffening Ring Ds =ND+2y mm 2471,6 2079,2 1652,8 507,0 407,0 355,6 305,6 254,2 204,2 152,8 102,8

Construction of Stiffening Ring

Section 4 Hoop Modulus of Elasticity Ei N/mm2 40683 40683 40683 40683,24324 40683,24324 40683,24324 40683,24324 40683,24324 40683,24324 40683,24324 40683,24324

Dimension (see fig.) bi mm 250 250 250 0 0 0 0 0 0 0 0

Dimension (see fig.) di mm 44 52 31 0 0 0 0 0 0 0 0

Section Area Ai =bidi mm2 11000 13000 7750 0 0 0 0 0 0 0 0

Section Neutral Axis yi mm 41 43 29 6,965029762 6,965029762 5,57202381 5,57202381 4,179017857 4,179017857 2,786011905 2,786011905

Section Moment of Inertia Ii =bidi3/12+Ai(y-yi)

2 mm4 2,102E+06 3,074E+06 6,653E+05 0 0 0 0 0 0 0 0

Section Stiffness Factor EiIi Nmm 8,550E+10 1,250E+11 2,706E+10 0 0 0 0 0 0 0 0

EiAi N 4,475E+08 5,289E+08 3,153E+08 0 0 0 0 0 0 0 0

EiAiyi Nmm 1,846E+10 2,271E+10 9,075E+09 0 0 0 0 0 0 0 0

Rib Hoop Modulus of Elasticity Ei N/mm2

Dimension (see fig.) bi mm

Dimension (see fig.) di mm

Section Area Ai =bidi mm2

Section Neutral Axis yi mm 36 40 26 3,482514881 3,482514881 2,786011905 2,786011905 2,089508929 2,089508929 1,393005952 1,393005952

Section Moment of Inertia Ii =bidi3/12+Ai(y-yi)

2 mm4 4,341E+06 5,416E+06 1,257E+06 1263,462758 1133,897814 485,0266707 450,2006712 149,8824552 134,5999625 28,13754195 23,17900709

Section Stiffness Factor EiIi Nmm 1,522E+11 1,813E+11 4,256E+10 30323106,2 27213547,54 11640640,1 10804816,11 3597178,924 3230399,099 675301,0069 556296,1702

EiAi N 5,407E+08 5,855E+08 3,536E+08 7500824,081 6731633,342 4499167,698 4176117,398 2471694,735 2219672,864 1044029,349 860045,406

EiAiyi Nmm 1,936E+10 2,319E+10 9,329E+09 26121731,48 23443013,29 12534734,77 11634712,79 5164628,217 4638026,268 1454339,098 1198048,37

Fig.1 - General Stiffening Rib Configuration

09-004_CI0001-02 .xls 14/42

Page 15: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

8.6 Design Calculation for Pipe with Specified Stiffness

Pipe without Stiffening Rings

Pipe without Stiffening Rings Stiffness S =ELAMfc(tt3/12)/Dm

3 Pa 1251 1185 1217 5186 10026 7696 12126 8889 17148 12126 39827

Pipe without Stiffening Rings Stiffness Factor EI =ELAMfc(tt3/12) Nmm 17712951 9720713 5109905 675770 675770 345994 345994 145966 145966 43249 43249

Stiffening Rings

Stiffening Ring Stiffness SR =EiIi/(Ds3BR) Pa 24441 51814 26169 5186 10026 7696 12126 8889 17148 12126 39827

Stiffening Ring Cooperating Lenght BR =b1+2b2+1,73d3+b4 mm 413 389 360 45 40 34 31 25 22 16 13

Distance between Stiffening Rings J mm 2240 2000 2000 1000 1000 1000 1000 1000 1000 1000 1000

Pipe with Stiffening Rings

Pipe with Stiffening Rings Mean Stiffness S =S(J-BR)/J+SRBR/J Pa 5522 11037 5711 5186 10026 7696 12126 8889 17148 12126 39827

Pipe with Stiffening Rings Stiffness Factor EI =SDm3 Nmm 78181345 90561620 23981211 675770 675770 345994 345994 145966 145966 43249 43249

Neutrl Axis of pipe with Stiffening Rings z mm 18 22 14 3 3 3 3 2 2 1 1

OK! Rib close to External

Rib is too high, Increase

Rib is too high, Increase

OK! Rib close to External

OK! Rib close to External

OK! Rib close to External

OK! Rib close to External

OK! Rib close to External

OK! Rib close to External

OK! Rib close to External

OK! Rib close to External

8.7 Buried Pipe

(according AWWA M45)

Geometrical Input

Height of Solil above Top of the Pipe H mm 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

Height of Water above top of Pipe HW mm 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

Minimum Trench Width BdMIN =1,25Do+305 mm 3358 2852 2343 952 827 761 699 633 570 504 442

Trench Width Bd mm 3500 4000 4000 1000 1000 1000 1000 1000 1000 1000 1000

Specific Weight of the Soil SGS kg/dm31,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,9 1,9 1,9

Specific Weight of the Water SGW kg/dm31 1 1 1 1 1 1 1 1 1 1

Special Installation Case None None None None None None None None None None None

Native Soil see table 5-6 pag.51

Type of Soil Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive

Granular Soil Standard Penetration Resistance blows/ft >0-1 >0-1 >0-1 >0-1 >0-1 >0-1 >0-1 >0-1 >0-1 >0-1 >0-1

Unconfined Compression Strenght UCS kg/cm2 >1-2 >1-2 >1-2 >1-2 >1-2 >1-2 >1-2 >1-2 >1-2 >1-2 >1-2

Native Modulus of Soil Reaction E'n N/mm220,68 20,68 20,68 20,68 20,68 20,68 20,68 20,68 20,68 20,68 20,68

Soil Description Stiff Stiff Stiff Stiff Stiff Stiff Stiff Stiff Stiff Stiff Stiff

Foundation Bedding see table 5-5 pag.49

Soil Classification Group Name SM SM SM SM SM SM SM SM SM SM SM

Soil Type Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Pipe Zone Embedment Soil Stiffness Category SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3

Equivalent Bedding Angle ° 180 180 180 180 180 180 180 180 180 180 180

Proctor >95% >95% >95% >95% >95% >95% >95% >95% >95% >95% >95%

Bedding Coefficient (Degree of Support Provided by the Soil) KX 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083

Pipe Zone Embedment see table 5-5 pag.49

Soil Classification Group Name SM SM SM SM SM SM SM SM SM SM SM

09-004_CI0001-02 .xls 15/42

Page 16: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Soil TypeSilty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Silty sand, fines>12%

Pipe Zone Embedment Soil Stiffness Category SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3

Proctor 85% 85% 85% 85% 85% 85-95% 85-95% 85-95% 85-95% 85-95% 85-95%

Backfill soil modulus E'b see table 5-4 pag.48 N/mm26,9 2,8 2,8 6,9 6,9 6,9 6,9 6,9 6,9 6,9 6,9

Modulus of Soil Reaction E' =ScE'b N/mm26,9 4,8 4,8 6,9 6,9 6,9 6,9 6,9 6,9 6,9 6,9

External Loads

Vertical Soil Load on Pipe WC =H*SGS N/mm20,022 0,022 0,022 0,022 0,022 0,022 0,022 0,022 0,023 0,023 0,023

Live Load on Pipe WL N/mm20,01 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Axles Number na 3 3 3 3 3 3 3 3 3 3 3

Wheels per Axle nw 2 2 2 2 2 2 2 2 2 2 2

Distance between axles La mm 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

Distance between wheels in an axle Lw mm 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Pipe Cover depth H mm 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

Trench width Bd mm 3500 4000 4000 1000 1000 1000 1000 1000 1000 1000 1000

Backfill Soil Slip Angle sigma 35 35 35 35 35 35 35 35 35 35 35

Acting Transversal Lenght X mm 1680 1680 1680 1000 1000 1000 1000 1000 1000 1000 1000

Acting Axles naa 2 2 2 1 1 1 1 1 1 1 1

Acting Wheels per Axle nwa 1 1 1 1 1 1 1 1 1 1 1

Total Acting Wheels Nwa 2 2 2 1 1 1 1 1 1 1 1

Total Acting Area Awa mm25344821 5344821 5344821 2824074 2824074 2824074 2824074 2824074 2824074 2824074 2824074

Maximum Live Load on Pipe WL N/mm20,01 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Total Acting Force Pt N 62311 103544 74928 0 0 0 0 0 0 0 0

Wheel Acting Force Pw N 31155 51772 37464 0 0 0 0 0 0 0 0

tons 3 5 4 0 0 0 0,0 0,0 0,0 0,0 0,0

Axle Acting Force Pa tons 6 10 7 0 0 0 0,0 0,0 0,0 0,0 0,0

09-004_CI0001-02 .xls 16/42

Page 17: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Fig.2 - General truck Configuration and Distribution of Live Loads on Pipe

09-004_CI0001-02 .xls 17/42

Page 18: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Pipe Deflection

Deflection Lag Factor to compensate for the time-consolidation rate of the soil DL 2 2 2 2 2 1,5 1,5 1,5 1,5 1,5 1,5

Installation Conditions Ka 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75

Initial Conditions Da mm/mm 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Vertical Deflection Dy/Dm mm/mm 0,013 0,017 0,018 0,010 0,009 0,007 0,007 0,007 0,006 0,007 0,005

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

OK! Less than 5%

Strain due to Deflection

Shape Factor relate Pipe Deflection to Bending Strain Df see table 5-1 pag.42 5,5 4,5 5,5 5,5 4,5 5,5 4,5 5,5 4,5 4,5 4,5

Rerounding coefficient rC (1-pW)/3 0,86 0,86 0,86 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82

Strain εcm =Dfrc(Dy/Dm)(tt/Dm) mm/mm 0,00052 0,00061 0,00080 0,00078 0,00072 0,00067 0,00058 0,00074 0,00068 0,00076 0,00075

Stress σcs =εcmELAMfc N/mm2 15,5 14,6 20,8 18,8 17,3 16,0 13,9 17,7 16,3 18,3 18,0

Allowable Buckling pressure see par. 5.7.5 pag.52

Water Buoyancy Factor RW 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67

Empirical Coefficient of Elastic Support B' 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24

Design Factor FS 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Allowable Buckling Pressure qa N/mm2 30,43 22,24 13,51 0,15 0,29 0,22 0,35 0,26 0,49 0,35 1,14

Number of Lobes formed at Buckling n 2 2 2 2 2 2 2 2 2 2 2

K 1,4 1,6 2,5 785,5 1216,8 1591,8 2151,7 3102,3 4790,7 8504,2 18573,5

Typical Pipe Installation Conditions N/mm2 0,07 0,12 0,07 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09

OK! Less than qa

OK! Less than0 qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

Live Load Conditions N/mm2 0,04 0,05 0,04 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03OK! Less than

qaOK! Less than

qaOK! Less than

qaOK! Less than

qaOK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

OK! Less than qa

Buoyancy

Uplift Force FUP =(πDo2/4)SGW N/mm 46,8 32,6 20,9 2,1 1,4 1,0 0,8 0,5 0,4 0,2 0,1

Soil Weight above the Pipe WS =DOSGSRWH N/mm 35,3 29,5 23,6 7,5 6,0 5,3 4,6 3,8 3,2 2,4 1,7

Water Weight inside the Pipe WW =(ND2/4)ρC N/mm 45,2 31,4 20,1 2,0 1,3 1,0 0,7 0,5 0,3 0,2 0,1

Pipe Weight WP N/mm 3,7 3,0 1,8 0,3 0,2 0,1 0,1 0,1 0,1 0,0 0,0

Safety Factor SF 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5

WP+WW+WS N/mm 84,3 63,9 45,5 9,7 7,5 6,4 5,4 4,4 3,6 2,6 1,8

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

WP+WS N/mm 39,0 32,5 25,4 7,7 6,2 5,4 4,7 3,9 3,3 2,5 1,7

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

ama

mXLCL DDEkEI

DkWWD+

++

=3

3

)2/('061.0

)2/()(

09-004_CI0001-02 .xls 18/42

Page 19: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

8. Pipe

8.1 Pipe Input Data

Geometrical Input

Configuration

Type of Support

Nominal Bore ND

Distance between Joints

Maximum Distance between Supports to limite deflection to 1/300 of the span Lmax

Maximum Deflection f

Assumed Distance between Supports / Pipe Lenght L

Minimum Width of Support

Coefficient of thermal expansion

Internal Loads

Design Pressure p

Design Vacuum pe

Operating pressure pW

8.2 Pipe Output Data

Pipe Thickness

Pipe Mechanical Reinforcement Thickness tr

Internal Liner Thickness tl

Top Coat Thickness ttc

Pipe Total Thickness tt =tr+tl+ttc

Pipe Diameters

Pipe Structural Diameter D =ND+2tl

Pipe Outside Diameter Do =ND+2tt

Mean Pipe Diameter Dm =ND+tt

Pipe Specific Gravity

Pipe mechanical reinforcement specific gravity SGP =SGiti/tr

WeightsStiffener Ring Weight WSR O+d3+d4)(2A2ρ2+2A3ρ3+A

Pipe Mechanical Reinforcement Weight WR =πDtrρr

Pipe Mechanical Reinforcement + Stiffeners Rings Weight WR+SR =WSR+WR

Pipe Liner Weight WL =πNDtlρl

Pipe Top Coat Weight WTC =π(DO-2ttc)ttcρtc

Pipe Total Weight WT =WR+SR+WL+WTC

Weight of Contents WC =((πND2)tlρl)/4

8.3 Construction of Mechanical Reinforcement

Continuous Cross Roving Grammature

Società a Socio Unico

VETRORESINA ENGINIA GROUP

T80 T600 T300

Horizontal Horizontal Horizontal

Buried Encastrè Encastrè

80 600 300

11200 11200 11200

0 13131 7701

0,00 0,00 0,00

0 0 0

49 134 95

1,8E-05 1,8E-05 2,5E-05

0,75 0,75 0,75

0,06 0,04 0,04

0,55 0,55 0,55

2,8 7,5 3,4

1,7 1,7 1,7

0,2 0,2 0,2

4,6 9,4 5,2

83 603 303

89 619 310

85 609 305

1,9 1,9 1,9

0,0 0,0 0,0

1 27 6

1 27 6

1 5 2

0,1 0 0

2,1 32 9

5,0 283 71

2024 2024 2024

09-004_CI0001-02 .xls 19/42

Page 20: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Continuous Cross Roving Angle θ

Longitudinal Unit Modulus XLAMa

Circumferential Unit Modulus XLAMc

Poisson Modulus for Continuous Cross Roving vac

Poisson Modulus for Continuous Cross Roving vca

CSM-Chopped Strand Mat

UR-Unidirectional Roving

WR-Woven Roving

CPR-Continuous Parallel Roving

CCR-Continuous Cross Roving

CPR Grammature

CPR Layers

CPR Thickness t

CPR Neutral Axis z

CPR Momet of Inertia I

CRR Grammature

CRR Layers

CRR Thickness t

CRR Neutral Axis z

CRR Momet of Inertia I

Total Mechanical Reinforcement thickness t

Mechanical Reinforcement Neutral Axis z

Mechanical Reinforcement Laminate Sequence

8.4 Design Calculation for Pipes subjected to Internal Pressure and Bending Moments

Loads on pipeAxial Unit Load(pressure) Qap =Dp/4

Axial Unit Load(moments) Qam =MD/(πD2)+Ft/(πD)

Axial Unit Load (pressure and bending moments) Qa =Qap+Qam

Circumferential Unit Load (pressure) Qcp =Dp/2

Circumferential Unit Load (deflection) Qcm

Circumferential Unit Load (pressure and deflection) Qc =Qcp+Qcm

Shear

Compressive Load Qac =FC/(πND)

Buckling

Permissibile Axial Compressive Load to prevent buckling Qp =0,6trXLAMa/(SF*ND)

Permissibile Bending Load to prevent buckling Qm =1,3QP

Permissibile Shear Load to prevent buckling Qs=1,169trXLAMa(tr/ND5)1/

4(ND/L)1/2/SFSafety Factor for Buckling SF

T80 T600 T300

55 55 55

8603 8603 8603

16518 16518 16518

0,30 0,30 0,30

0,55 0,55 0,55

0 829 829

0 1 1

0,0 0,6 0,6

0,00 3,48 1,39

0 8,11521343 1,62252061

2024 2024 2024

2 5 2

2,8 7,0 2,8

0,00 -0,29 -0,29

1,802053405 28,1570845 1,80205341

2,8 7,5 3,4

0,0000 -0,2853 -0,2853

OK!>2 mm OK!>2 mm OK!>2 mm[ / / /

/2xccr2024/ / / / / / ]

[ / / /1xcpr829/5xccr2024/ / / /

/ / ]

[ / / /1xcpr829/2xccr2024/ / / /

/ / ]

16 113 57

0,0 0,0 0,0

16 113 57

31,2 226,2 113,7

46,7 0,0 0,0

77,9 226,2 113,7

0,0 0,0 0,0

0,0 0,0 0,0

176 162 60

229 211 78

433070619 847654763 214482086

4 4 4

09-004_CI0001-02 .xls 20/42

Page 21: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Interaction Criterion for Buckling=abs(Qac/Qp)+abs(Qam

/Qm)+(S/Qs)2

Mechanical PropertiesLongitudinal Unit Modulus XLAMa =(Ximini)a

Circumferential Unit Modulus XLAMc =(Ximini)c

Longitudinal Tensile Modulus of the Laminate ELAMta =XLAMa/tr

Circumferential Tensile Modulus of the Laminate ELAMtc =XLAMc/tr

Longitudinal Flexural Modulus of the Laminate ELAMfa =(EiIi/ΣIi)a

Circumferential Flexural Modulus of the Laminate ELAMfc =(EiIi/ΣIi)c

Laminate Design Longitudinal Unit Loading ULAMa =XLAMaεd

Laminate Design Circumferential Unit Loading ULAMc =XLAMcεd

Axial Stress Capacity σca =ULAMa / tr

Axial Stress (pressure) σap =(pWD/4) / tr

Axial Stress (moments) σam =Qastr

Residual Axial Stress (thermal effects) σar =σca-σap-σam

Circumferential Stress Capacity σcc =ULAMc / tr

Circumferential Stress (pressure) σcp =(pWD/2) / tr

Circumferential Stress (deflection) σcm

Residual Circumferential Stress σcr =σcc-σcp-σcm

Poisson Modulus vac =(miniXivi/nimiXi)ac

Poisson Modulus vca =(miniXivi/nimiXi)ca

Axial Strain (pressure) εap =σap/ELAMta-vcaσcp/ELAMtc

Axial Strain (moments) εam =σam/ELAMfa-vcaσcm/ELAMfc

Circumferential Strain (pressure) εcp =σcp/ELAMtc-vacσap/ELAMta

Circumferential Strain (deflection) εcm =σcm/ELAMfc-vacσam/ELAMfa

8.5 Design Calculation for Pipe subjected to Vacuum

Pipe without Stiffening Rings

Safety Factor SF

Minimum Wall Thickness tm=(ND+2tr)(SFpet/2ELAMt

c)0,33

Minimum Stiffeness S =ELAMfc(tm3/12)/(ND+tr)

3

T80 T600 T300

0,00 0,00 0,00

OK!<1 OK!<1 OK!<1

34825 89060 36822

OK! OK! OK!

66864 190373 90076

12500 11819 10970

24000 25263 26836

12500 10486 8236

24000 27733 31904

69,6 177,9 73,6

OK!>Qa OK!>Qa OK!>Qa

133,6 380,4 180,0

OK!>Qc OK!>Qc OK!>Qc

25 24 22

4 11 12

16% 47% 57%

0 0 0

0% 0% 0%

21 13 9

84% 53% 43%

48 50 54

8 22 25

17% 44% 46%

16,8 0,0 0,0

35% 0% 0%

23,0 28,5 28,8

48% 56% 54%

0,30 0,30 0,30

0,550 0,484 0,410

0,00014 0,00051 0,00075

-0,00038 0,00000 0,00000

0,00024 0,00059 0,00059

0,00070 0,00000 0,00000

2,5 2,5 2,5

1,3 7,9 3,7

OK!Buckling,

increase t or use ribs

Buckling, increase t or

use ribs

8381 5026 5002

09-004_CI0001-02 .xls 21/42

Page 22: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Pipe with Stiffening Rings - Fixed Distance between Rings

Maximum Distance between Stiffening Rings Jmax=(250Xlamc/(SFpet))(td/(ND+2t

Choosen Distance between Stiffening Rings J

Outside Sructural Diameter Do =ND+2tr

Minimum Wall Thickness tm=Do(0,4SFpetJ/(ElamtcDo))^0,4

Shell with Stiffening Rings - Fixed Laminated Thickness

Stiffness factor of the Stiffening Ring EI =0,18(ND+2tt)JDs2pet

Diameter of Neutral Axis of Stiffening Ring Ds =ND+2y

Construction of Stiffening Ring

Section 4 Hoop Modulus of Elasticity Ei

Dimension (see fig.) bi

Dimension (see fig.) di

Section Area Ai =bidi

Section Neutral Axis yi

Section Moment of Inertia Ii =bidi3/12+Ai(y-yi)

2

Section Stiffness Factor EiIiEiAi

EiAiyi

Rib Hoop Modulus of Elasticity Ei

Dimension (see fig.) bi

Dimension (see fig.) di

Section Area Ai =bidi

Section Neutral Axis yi

Section Moment of Inertia Ii =bidi3/12+Ai(y-yi)

2

Section Stiffness Factor EiIiEiAi

EiAiyi

Fig.1 - General Stiffening Rib Configuration

T80 T600 T300

6459 6325 2527

1000 1000 1000

86 615 307

1,31 3,60 2,32

OK!<tr OK!<tr OK!<tr

3974541,01 1032574994 128378402

Increase t, ridesign rib or approach ribs

Increase t, ridesign rib or approach

ribs

Increase t, ridesign rib or approach

ribs

82,8 607,5 303,4

40683 40683 40683

0 0 0

0 0 0

0 0 0

3 8 3

0,000E+00 0,000E+00 0,000E+00

0,000E+00 0,000E+00 0,000E+00

0,000E+00 0,000E+00 0,000E+00

0,000E+00 0,000E+00 0,000E+00

1 4 2

2,087E+01 1,821E+03 7,584E+01

5,008E+05 5,049E+07 2,420E+06

7,743E+05 1,067E+07 2,577E+06

1,079E+06 4,020E+07 4,325E+06

09-004_CI0001-02 .xls 22/42

Page 23: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

8.6 Design Calculation for Pipe with Specified Stiffness

Pipe without Stiffening Rings

Pipe without Stiffening Rings Stiffness S =ELAMfc(tt3/12)/Dm

3

Pipe without Stiffening Rings Stiffness Factor EI =ELAMfc(tt3/12)

Stiffening Rings

Stiffening Ring Stiffness SR =EiIi/(Ds3BR)

Stiffening Ring Cooperating Lenght BR =b1+2b2+1,73d3+b4

Distance between Stiffening Rings J

Pipe with Stiffening Rings

Pipe with Stiffening Rings Mean Stiffness S =S(J-BR)/J+SRBR/J

Pipe with Stiffening Rings Stiffness Factor EI =SDm3

Neutrl Axis of pipe with Stiffening Rings z

8.7 Buried Pipe

(according AWWA M45)

Geometrical Input

Height of Solil above Top of the Pipe H

Height of Water above top of Pipe HW

Minimum Trench Width BdMIN =1,25Do+305

Trench Width Bd

Specific Weight of the Soil SGS

Specific Weight of the Water SGW

Special Installation Case

Native Soil see table 5-6 pag.51

Type of Soil

Granular Soil Standard Penetration Resistance

Unconfined Compression Strenght UCS

Native Modulus of Soil Reaction E'n

Soil Description

Foundation Bedding see table 5-5 pag.49

Soil Classification Group Name

Soil Type

Pipe Zone Embedment Soil Stiffness Category

Equivalent Bedding Angle

Proctor

Bedding Coefficient (Degree of Support Provided by the Soil) KX

Pipe Zone Embedment see table 5-5 pag.49

Soil Classification Group Name

T80 T600 T300

76227 4410 3602

43249 988916 100543

76227 4410 3602

12 51 24

1000 1000 1000

76227 4410 3602

43249 988916 100543

1 3 1

OK! Rib close to External

OK! Rib close to External Surface of PipeOK! Rib close to External Surface of Pipe

1300 1300 1300

1300 1300 1300

417 1078 693

1000 1500 1000

1,9 1,9 1,9

1 1 1

None Embankment Embankment

Cohesive Cohesive Cohesive

>0-1 30-50 30-50

>1-2 >1-2 >1-2

20,68 20,68 20,68

Stiff Stiff Stiff

SM GW GW

Silty sand, fines>12%Well graded gravel, fines <5%Well graded gravel, fines <5%

SC3 SC2 SC2

180 180 180

>95% >95% >95%

0,083 0,083 0,083

SM GW GW

09-004_CI0001-02 .xls 23/42

Page 24: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Soil Type

Pipe Zone Embedment Soil Stiffness Category

Proctor

Backfill soil modulus E'b see table 5-4 pag.48

Modulus of Soil Reaction E' =ScE'b

External Loads

Vertical Soil Load on Pipe WC =H*SGS

Live Load on Pipe WL

Axles Number na

Wheels per Axle nw

Distance between axles La

Distance between wheels in an axle Lw

Pipe Cover depth H

Trench width Bd

Backfill Soil Slip Angle sigma

Acting Transversal Lenght X

Acting Axles naa

Acting Wheels per Axle nwa

Total Acting Wheels Nwa

Total Acting Area Awa

Maximum Live Load on Pipe WL

Total Acting Force Pt

Wheel Acting Force Pw

Axle Acting Force Pa

T80 T600 T300

Silty sand, fines>12%Well graded gravel, fines <5%Well graded gravel, fines <5%

SC3 SC2 SC2

85-95% 85-95% 85-95%

6,9 13,8 13,8

6,9 20,7 20,7

0,025 0,025 0,025

0,00 0,10 0,10

3 3 3

2 2 2

1500 1500 1500

2000 2000 2000

1300 1300 1300

1000 1500 1000

35 35 35

1000 1500 1000

1 2 1

1 1 1

1 2 1

3314364 6045174 3314364

0,00 0,10 0,10

0 604517 331436

0 302259 331436

0,0 30,2 33,1

0,0 60,5 66,3

09-004_CI0001-02 .xls 24/42

Page 25: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Fig.2 - General truck Configuration and Distribution of Live Loads on Pipe

T80 T600 T300

09-004_CI0001-02 .xls 25/42

Page 26: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Pipe Deflection

Deflection Lag Factor to compensate for the time-consolidation rate of the soil DL

Installation Conditions Ka

Initial Conditions Da

Vertical Deflection Dy/Dm

Strain due to Deflection

Shape Factor relate Pipe Deflection to Bending Strain Df see table 5-1 pag.42

Rerounding coefficient rC (1-pW)/3

Strain εcm =Dfrc(Dy/Dm)(tt/Dm)

Stress σcs =εcmELAMfc

Allowable Buckling pressure see par. 5.7.5 pag.52

Water Buoyancy Factor RW

Empirical Coefficient of Elastic Support B'

Design Factor FS

Allowable Buckling Pressure qa

Number of Lobes formed at Buckling n

K

Typical Pipe Installation Conditions

Live Load Conditions

Buoyancy

Uplift Force FUP =(πDo2/4)SGW

Soil Weight above the Pipe WS =DOSGSRWH

Water Weight inside the Pipe WW =(ND2/4)ρC

Pipe Weight WP

Safety Factor SF

WP+WW+WS

WP+WS

a

XLCL

EkEI

kWWD

++

=('061.0

)(

T80 T600 T300

1,5 1,5 1,5

0,75 0,75 0,75

0,000 0,000 0,000

0,003 0,012 0,012

OK! Less than 5%

OK! Less than 5%OK! Less than 5%

4,5 5,5 5,5

0,82 0,82 0,82

0,00070 0,00080 0,00089

16,8 22,2 28,5

0,67 0,67 0,67

0,25 0,25 0,25

2,5 2,5 2,5

0,67 0,28 0,25

2 2 2

28388,7 547,6 2183,1

0,09 0,07 0,07

OK! Less than qa OK! Less than qaOK! Less than qa

0,03 0,13 0,13OK! Less than qa OK! Less than qaOK! Less than qa

0,1 3,0 0,8

1,5 10,2 5,1

0,1 2,8 0,7

0,0 0,3 0,1

1,5 1,5 1,5

1,5 13,4 5,9

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

OK! No Buoyancy of Fill in Pipe

1,5 10,6 5,2

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

OK! No Buoyancy of Empty Pipe

09-004_CI0001-02 .xls 26/42

Page 27: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100 T80 T600 T300

9. Butt Joint

9.1. Butt Joint Input Data

Geometrical Input

Nominal Bore ND mm 2400 2000 1600 500 400 350 300 250 200 150 100 80 600 300

Internal Loads

Design Pressure p N/mm2 0,62 0,62 0,62 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75

9.2. Butt Joint Output Data

Butt Joint Thickness

Overlay Thickness tOVL mm 35,0 28,7 24,4 9,8 8,3 6,8 6,8 5,3 3,9 3,9 2,4 2,4 11,2 8,3

Safety Factor SF 8 8 8 8 8 8 8 8 8 8 8 8 8

Minimum Overlay Lenght 6:1 taper LOVL mm 1190 990 800 300 240 210 180 150 120 100 100 100 360 140

Internal Lamination Thickness til mm 2 2 2 0 0 0 0 0 0 0 0 0 2 0

Internal Lamination Sequence [2csm450/1wr500][2csm450/1wr500][2csm450/1wr500] [2xcsm375]

Internal Lamination Lenght Lil mm 595 495 400 0 0 0 0 0 0 0 0 0 180 0

Butt Joint Specific Gravity

Joint Specific Gravity ρl =SGiti/tr kg/dm31,58 1,58 1,58 1,57 1,57 1,56 1,56 1,56 1,56 1,56 1,55 1,55 1,57 1,57

Weights

Joint Mechanical Reinforcement Weight WJ kg 415,2 236,5 129,0 6,0 3,2 2,0 1,4 0,8 0,4 0,2 0,1 0,1 10,0 1

Internal Lamination Lenght WIL kg 13,5 9,3 6,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0

Top Coat Weight W tc kg 2,1 1,5 1,0 0,1 0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,2 0,0

Total Weight W kg 430,8 247,3 136,0 6,1 3,3 2,1 1,5 0,8 0,4 0,2 0,1 0,1 11,1 1,2

9.3. Construction of Mechanical Reinforcement

CSM-Chopped Strand Mat Grammature g/m2 600 600 600 450 450 450 450 450 450 450 450 450 450 450

CSM-Chopped Strand Mat Layers n° 17 14 12 7 6 5 5 4 3 3 2 2 8 6

CSM-Chopped Strand Mat thickness mm 20,9 17,2 14,8 6,5 5,5 4,6 4,6 3,7 2,8 2,8 1,8 1,8 7,4 5,5

WR-Woven Roving Grammature g/m2 800 800 800 500 500 500 500 500 500 500 500 500 500 500

WR-Woven Roving Layers n° 16 13 11 6 5 4 4 3 2 2 1 1 7 5

WR-Woven Roving Thickness mm 14,1 11,4 9,7 3,3 2,8 2,2 2,2 1,7 1,1 1,1 0,6 0,6 3,9 2,8

Mechanical Reinforcement Thickness mm 35,0 28,7 24,4 9,8 8,3 6,8 6,8 5,3 3,9 3,9 2,4 2,4 11,2 8,3

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

OK! Ulamc>Qc

Mechanical Reinforcement Laminate Sequence[17xcsm600/16xwr800]

[14xcsm600/13xwr800]

[12xcsm600/11xwr800]

[7xcsm450/6xwr500]

[6xcsm450/5xwr500]

[5xcsm450/4xwr500]

[5xcsm450/4xwr500]

[4xcsm450/3xwr500]

[3xcsm450/2xwr500]

[3xcsm450/2xwr500]

[2xcsm450/1xwr500]

[2xcsm450/1xwr500][8xcsm450/7xwr500][6xcsm450/5xwr500]

9.4. Design Calculation

Load on Butt Joint

Axial Unit Load Qa N/mm 372,5 310,5 248,5 94,4 75,6 66,2 56,9 47,5 38,1 28,7 19,4 15,6 113,1 56,9

Circumferential Unit Load Qc N/mm 745,0 621,0 497,0 188,7 151,2 132,5 113,7 95,0 76,2 57,5 38,7 31,2 226,2 113,7

9.5. Mechanical Properties

Longitudinal Unit Modulus XLAM a =(Ximini)a N/mm 383318 313234 266512 101913 86120 70327 70327 54533 38740 38740 22947 22947 117706 86120

Circumferential Unit Modulus XLAM c =(Ximini)c N/mm 383318 313234 266512 101913 86120 70327 70327 54533 38740 38740 22947 22947 117706 86120

Laminate Design Longitudinal Unit Loading ULAM a =XLAMaεd N/mm 766 626 532 204 172 141 141 109 77 77 46 46 235 172

Laminate Design Circumferential Unit Loading ULAM c =XLAMcεdN/mm

766 626 532 204 172 141 141 109 77 77 46 46 235 172

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 27/42

Page 28: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150

10. Flange

10.1. Flange Input Data AWWA AWWA AWWA ANSI B16.5 ANSI B16.5 ANSI B16.5 ANSI B16.5 ANSI B16.5 ANSI B16.5 ANSI B16.5CLASS D CLASS D CLASS D CLASS D CLASS D CLASS D CLASS D CLASS D CLASS D CLASS D

Design pressure p MPa 0,62 0,62 0,62 0,75 0,75 0,75 0,75 0,75 0,75 0,75Axial Load on Flange Fa N 0 0 0 0 0 0 0 0 0 0Inside diameter of flange B mm 2400 2000 1600 500 400 350 300 250 200 150Bolt circle diameter C mm 2755,9 2260,6 1759,0 635,0 539,7 476,2 431,8 361,9 298,4 241,3Outside diameter of gasket or outside diameter of flange, whichever is the lesser GO mm 2876,6 2362,2 1854,2 698,5 596,9 533,4 482,6 406,4 342,9 279,4Diameter of bolt holes d mm 60,2 53,8 47,5 31,7 28,6 28,6 25,4 25,4 22,2 22,2Bolt diameter db mm 57,2 50,8 44,5 28,6 28,6 25,4 22,2 22,2 19,1 19,1Washer external Diameter dw 105 92 78 50 50 44 39 39 34 34Number of bolts n 68 64 52 20 16 12 12 12 8 8Actual bolt area Ab =π(db/2)2n mm2 174346 129651 80652 12820 10256 6077 4653 4653 2279 2279Thickness of hub at back of flange s mm 55 43 29 16 14 12 12 10 9 9

OK! OK! OK! OK! OK! OK! OK! OK! OK! OK!Effective gasket contact width under pressure 2b" mm 5 5 5 5 5 5 5 5 5 5Gasket factor m 0,5 1,25 1,25 0,5 0,5 0,5 0,5 0,5 0,5 0,5

Gasket or joint-contact-surface unit stress for soft rubber without fabric or asbestos reiforcement y MPa 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0

Young's modulus of flange laminate ELAM MPa 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000Bolt nominal design stress at atmospheric temperature Sa MPa 213 213 213 213 213 213 213 213 213 213Bolt nominal design stress at design temperature Sb MPa 213 213 213 213 213 213 213 213 213 213Safety Factor SF 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3Design flange flexural stress σff MPa 25 25 25 25 25 25 25 25 25 25

10.2. Flange Output Data

Minimum Flange thickness t mm 162 127 85 45 42 35 34 29 25 25

Minimum bolt area Am =MAX(Am1;Am2) mm2 68574 41052 18776 3333 2609 1879 1702 1120 710 452OK! OK! OK! OK! OK! OK! OK! OK! OK! OK!

Minimum Bolt torque T =MAX(TO;TB) kgm 275 160 86 29 28 25 20 14 12 9Bolt load Wb =W/n Kg 24093,14 15767,65 9670,73 5016,71 4930,85 5016,61 4453,03 3136,56 3270,47 2257,49Hub height hu =6s mm 595 495 400 150 120 105 90 75 60 50Maximum pitch of bolts =2db+(6t/(m+0,5))ELAM

0,25 mm 586 313 229 189 178 153 143 129 111 111OK! OK! OK! OK! OK! OK! OK! OK! OK! OK!

10.3. Calculation Parameters

Diameter at location of gasket load reaction HP G' =C-(2b"+d) mm 2690,75 2201,8 1706,5 598,3 506,1 442,6 401,4 331,5 271,2 214,1R =(C-B)/2-s mm 122,95 87,3 50,475 51,5 55,85 51,1 53,9 45,95 40,2 36,65

Effective Bolt Circle Lenght Le =πC-nd mm 4555,8152 3647,484353 3049,4044 1359,9113 1187,5176 1153,1264 1051,7397 832,14238 759,65125 580,26631Effective Gasket Width inside B.C.D. wi =(C-B)/4 mm 88,975 65,15 39,7375 33,75 34,925 31,55 32,95 27,975 24,6 22,825Effective Gasket Width outside B.C.D. wo =(Go-C)/4 mm 30,1625 25,4 23,8125 15,875 14,3 14,3 12,7 11,125 11,125 9,525Lenght of Inside Effective Gasket Li =π(C-wi) mm 8378 6897 5401 1889 1586 1397 1253 1049 860 686Lenght of Outside Effective Gasket Lo =π(C+wo) mm 8753 7182 5601 2045 1740 1541 1396 1172 972 788Hydrostatic end force on area inside of flange HD =πB2p/4+Fa N 2804814 1947787 1246584 147262 94248 72158 53014 36816 23562 13254Radial distance from bolt circle to circle on which HD acts hD =R+s/2 mm 150,45 108,8 64,975 59,5 62,85 57,1 59,9 50,95 44,7 41,15Radial distance from bolt circle to circle on which H'T acts h'T =((C+d+b")-B)/4 mm 105,2625 79,85 52,85 42,925 43,325 39,95 40,55 35,575 31,4 29,625Total hydrostatic end force H' =π(C-d)2p/4 N 3538676 2371415 1426380 214397 153873 118013 97288 66699 44936 28277

eff L

M

σ6=

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 28/42

Page 29: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Hydrostatic end force due to pressure on flange face H'T =HD-H' N 733862 423627 179796 67134 59625 45855 44273 29884 21374 15024Radial distance from bolt circle to circle on which H'P acts h'P =(d+2b")/2 mm 32,575 29,4 26,225 18,35 16,8 16,8 15,2 15,2 13,6 13,6Compression load on gasket to ensure tight joint H'P =2b"πG'yp N 13102,523 26803,98998 20774,37 3524,2779 2981,1751 2607,1292 2364,4412 1952,6962 1597,4999 1261,1531Radial distance from bolt circle to circle on which HR acts hR =(GO-(C+d))/4+d/2 mm 45,2 38,85 35,675 23,8 21,45 21,45 19,05 17,475 16,675 15,075

Balancing reaction force acting outside bolt circle in opposition to moments due to HD, H'P and H'T

HR =(HDhD+HT'h'T+H'Ph'P)/hR N 11054408 6345790,313 2552034,9 491954,32 398919,67 279531,58 262823,59 169873,96 104713,85 66839,83

Basic gasket seating widht effective under initial tigthtening up b'O =GO-C mm 120,65 101,6 95,25 63,5 57,2 57,2 50,8 44,5 44,5 38,1Effective gasket seating width for calculation of minimum seating loads using y factor b' =4(b'O)^0,5 mm 43,936318 40,31873014 39,038443 31,874755 30,252273 30,252273 28,509647 26,683328 26,683328 24,690079

10.4. Operating conditionsLoad acting on flange F =H'+H'P+HR N 14606186 8744009 3999190 709875 555774 400152 362476 238526 151248 96378Bolt stiffenes kb N/mm 47672630 35451542 22053352 4673787 3739030 2215721 2035694 2035694 997075 997075Flange stiffenes kg N/mm 407760 342548 270615 165717 162694 143477 127637 124513 106679 106679Bolt load in operating conditions Fa' =Wm2+F/(1+kg/kb) N 16383334 10091298 5028777 1003343 788936 601993 534364 376388 261638 180599Tensile load on single bolt fa' =F'a/n N 240931 157677 96707 50167 49308 50166 44530 31366 32705 22575Minimum bolt area at operating conditions Am1 =F'a/Sb mm2 68574 41052 18776 3333 2609 1879 1702 1120 710 452Bolt Stress under Operating Loads σbo =F'a/Sb MPa 93,97 77,83 62,35 78,27 76,93 99,05 114,84 80,89 114,80 79,24Bolt Torque required in operating conditions TO =σbo(Ab/n)db kgm 275,4 160,2 86,0 28,7 28,2 25,5 19,8 13,9 12,5 8,6

10.5 Bolting up conditionsMinimum required bolt load for gasket seating Wm2 =12,56Cyb'O^0,5 N 1901020 1430969 1078067 317775 256336 226176 193274 151610 125008 93536Minimum bolt area for gasket seating Am2 =Wm2/Sa mm2 8925 6718 5061 1492 1203 1062 907 712 587 439Bolt Stress Required to Seat the Gasket σbg =Wm2/Ab MPa 10,9 11,0 13,4 24,8 25,0 37,2 41,5 32,6 54,9 41,0Bolt Torque required to seat gasket TB =σbg(Ab/n)db kgm 32,0 22,7 18,4 9,1 9,2 9,6 7,2 5,6 6,0 4,5

10.6 Results

Flange design bolt load, based on actual size bolts used to provide greater of Fa' and Wm2 W =MAX(F'a;Wm2) N 16383334 10091298 5028777 1003343 788936 601993 534364 376388 261638 180599

Design Moment M =HRhR Nmm 499659224 246533953,6 91043845 11708513 8556826,8 5995952,4 5006789,4 2968547,5 1746103,5 1007610,4

09-004_CI0001-02 .xls 29/42

Page 30: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

10. Flange

10.1. Flange Input Data

Design pressure pAxial Load on Flange Fa

Inside diameter of flange BBolt circle diameter COutside diameter of gasket or outside diameter of flange, whichever is the lesser GO

Diameter of bolt holes dBolt diameter db

Washer external Diameter dw

Number of bolts nActual bolt area Ab =π(db/2)2nThickness of hub at back of flange s

Effective gasket contact width under pressure 2b"Gasket factor m

Gasket or joint-contact-surface unit stress for soft rubber without fabric or asbestos reiforcement y

Young's modulus of flange laminate ELAM

Bolt nominal design stress at atmospheric temperature Sa

Bolt nominal design stress at design temperature Sb

Safety Factor SFDesign flange flexural stress σff

10.2. Flange Output Data

Minimum Flange thickness t

Minimum bolt area Am =MAX(Am1;Am2)

Minimum Bolt torque T =MAX(TO;TB)Bolt load Wb =W/nHub height hu =6sMaximum pitch of bolts =2db+(6t/(m+0,5))ELAM

0,25

10.3. Calculation Parameters

Diameter at location of gasket load reaction HP G' =C-(2b"+d)R =(C-B)/2-s

Effective Bolt Circle Lenght Le =πC-ndEffective Gasket Width inside B.C.D. wi =(C-B)/4Effective Gasket Width outside B.C.D. wo =(Go-C)/4Lenght of Inside Effective Gasket Li =π(C-wi)Lenght of Outside Effective Gasket Lo =π(C+wo)Hydrostatic end force on area inside of flange HD =πB2p/4+Fa

Radial distance from bolt circle to circle on which HD acts hD =R+s/2Radial distance from bolt circle to circle on which H'T acts h'T =((C+d+b")-B)/4Total hydrostatic end force H' =π(C-d)2p/4

eff L

M

σ6=

Società a Socio Unico

VETRORESINA ENGINIA GROUP

T100 T80 T600 T300

ANSI B16.5 ANSI B16.5 AWWA AWWA

CLASS D CLASS D CLASS B CLASS B

0,75 0,75 0,75 0,75

0 0 0 0

100 80 600 300

190,5 152,4 749,3 431,8

228,6 190,5 812,8 482,6

19,0 19 34,9 25,4

15,9 16 31,75 22,225

28 30 56 39

8 4 20 12

1583 804 15827 4653

9 9 50 124

OK! OK! OK! OK!

5 5 5 5

0,5 0,5 0,5 0,5

5,0 5,0 5,0 5,0

11000 11000 11000 11000

213 213 213 213213 213 213 2136,3 6,3 6,3 6,3

25 25 25 25

25 25 46 25

347 277 4256 970

OK! OK! OK! OK!

5,04 6,81 39,67 14,38

1588,39 2129,22 6247,48 3234,74

50 50 300 744

104 105 198 117

OK! OK! OK! OK!

166,5 128,4 709,4 401,4

36,25 27,2 24,65 -58,1

446,0734 402,07872 1655,49538 1051,73971

22,625 18,1 37,325 32,95

9,525 9,525 15,875 12,7

527 422 2237 1253

628 509 2404 1396

5890 3770 212058 53014

40,75 31,7 49,65 3,9

28,625 24,1 47,3 40,55

17325 10482 300631 97288

09-004_CI0001-02 .xls 30/42

Page 31: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Hydrostatic end force due to pressure on flange face H'T =HD-H'Radial distance from bolt circle to circle on which H'P acts h'P =(d+2b")/2Compression load on gasket to ensure tight joint H'P =2b"πG'ypRadial distance from bolt circle to circle on which HR acts hR =(GO-(C+d))/4+d/2

Balancing reaction force acting outside bolt circle in opposition to moments due to HD, H'P and H'T

HR =(HDhD+HT'h'T+H'Ph'P)/hR

Basic gasket seating widht effective under initial tigthtening up b'O =GO-CEffective gasket seating width for calculation of minimum seating loads using y factor b' =4(b'O)^0,5

10.4. Operating conditionsLoad acting on flange F =H'+H'P+HR

Bolt stiffenes kb

Flange stiffenes kg

Bolt load in operating conditions Fa' =Wm2+F/(1+kg/kb)Tensile load on single bolt fa' =F'a/nMinimum bolt area at operating conditions Am1 =F'a/Sb

Bolt Stress under Operating Loads σbo =F'a/Sb

Bolt Torque required in operating conditions TO =σbo(Ab/n)db

10.5 Bolting up conditionsMinimum required bolt load for gasket seating Wm2 =12,56Cyb'O^0,5Minimum bolt area for gasket seating Am2 =Wm2/Sa

Bolt Stress Required to Seat the Gasket σbg =Wm2/Ab

Bolt Torque required to seat gasket TB =σbg(Ab/n)db

10.6 Results

Flange design bolt load, based on actual size bolts used to provide greater of Fa' and Wm2 W =MAX(F'a;Wm2)

Design Moment M =HRhR

T100 T80 T600 T300

11435 6713 88574 44273

12 12 19,95 15,2

980,76596 756,33843 4178,71093 2364,44117

14,275 14,275 24,6 19,05

40569,281 20340,065 601689,257 106980,807

38,1 38,1 63,5 50,8

24,690079 24,690079 31,8747549 28,5096475

58875 31579 906499 206633

865516 439600 4945807 2035694

91855 92418 180856 122612

127071 85169 1249495 388169

15884 21292 62475 32347

276 148 4256 970

80,29 105,95 78,95 83,42

5,0 6,8 39,7 14,4

73844 59075 374975 193274

347 277 1760 907

46,7 73,5 23,7 41,5

2,9 4,7 11,9 7,2

127071 85169 1249495 388169

579126,49 290354,43 14801555,7 2037984,37

09-004_CI0001-02 .xls 31/42

Page 32: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100 T80 T600 T300

11. Elbow

11.1. Elbow Input Data mitred elbow mitred elbow mitred elbowpipe+joint pipe+joint pipe+joint

Geometrical InputNominal Bore ND mm 2400 2000 1600 500 400 350 300 250 200 150 100 80 600 300

Bend Radius multiplier 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5

Mean Pipe Bend Radious R mm 3600 3000 2400 750 600 525 450 375 300 225 150 120 900 450

Elbow Angle ° 90 90 90 90 90 90 90 90 90 90 90 90 90 90

Internal LoadsDesign Pressure p MPa 0,62 0,62 0,62 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75

Design Vacuum pe MPa 0,04 0,09 0,04 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,04 0,04

11.2. Elbow Output Data

Overlay Thickness t mm 35,0 30,8 26,6 12,7 9,8 9,8 8,3 6,8 5,3 5,3 5,3 2,4 9,8 35,0

Internal Liner Thickness tl mm 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65

Top Coat Thickness tc mm 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2

Total thickness tt =tr+tl+ttc mm 36,8 32,6 28,4 14,6 11,6 11,6 10,1 8,7 7,2 7,2 7,2 4,2 11,6 36,8

Elbow DiametersPipe Structural Diameter D =ND+2tl mm 2403,30 2003,30 1603,30 503,30 403,30 353,30 303,30 253,30 203,30 153,30 103,30 83,30 603,30 303,30

Pipe Outside Diameter Do =ND+2tt mm 2473,70 2065,25 1656,81 529,11 423,22 373,22 320,27 267,33 214,38 164,38 114,38 88,49 623,22 373,70

Mean Pipe Diameter Dm =ND+tt mm 2436,85 2032,63 1628,41 514,56 411,61 361,61 310,14 258,66 207,19 157,19 107,19 84,25 611,61 336,85

WeightsElbow Mechanical Reinforcement Weight Ws kg 2361,61 1442,24 796,51 37,14 18,27 14,00 8,74 5,00 2,51 1,42 0,64 0,18 40,99 37,25

Elbow Liner Weight Wl kg 105,53 73,28 46,90 4,58 2,93 2,24 1,65 1,15 0,73 0,41 0,18 0,12 6,60 1,65

Elbow Top Coat Weight Wtc kg 9,84 6,85 4,39 0,44 0,28 0,22 0,16 0,11 0,07 0,04 0,02 0,01 0,62 0,19

Elbow Total Weight W kg 2476,98 1522,37 847,80 42,16 21,48 16,46 10,55 6,25 3,31 1,87 0,84 0,31 48,21 39,09

Flexibility, Stress Intensification Factors and Pressure Stress MultiplierPressure Stress Multiplier 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

11.3. Construction of Mechanical Reinforcement

CSM-Chopped Strand Mat Grammature g/m2 600 600 600 450 450 450 450 450 450 450 450 450 450 600

CSM-Chopped Strand Mat Layers n° 17 15 13 9 7 7 6 5 4 4 4 2 7 17

CSM-Chopped Strand Mat thickness mm 20,9 18,5 16,0 8,3 6,5 6,5 5,5 4,6 3,7 3,7 3,7 1,8 6,5 20,9

WR-Woven Roving Grammature g/m2 800 800 800 500 500 500 500 500 500 500 500 500 500 800

WR-Woven Roving Layers n° 16 14 12 8 6 6 5 4 3 3 3 1 6 16

WR-Woven Roving Thickness mm 14,1 12,3 10,6 4,4 3,3 3,3 2,8 2,2 1,7 1,7 1,7 0,6 3,3 14,1

Mechanical Reinforcement Thickness mm 35,0 30,8 26,6 12,7 9,8 9,8 8,3 6,8 5,3 5,3 5,3 2,4 9,8 35,0

OK! Ulama>Qa OK! Ulama>Qa OK! Ulama>Qa

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Q

a

OK! Ulama>Qa

OK! Ulama>Qa

OK! Ulamc>Qc OK! Ulamc>Qc OK! Ulamc>Qc

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

OK! Ulamc>Q

c

NO! Ulamc<Qc

OK! Ulamc>Qc

NO! tmin<t NO! tmin<t NO! tmin<tOK!

tmin>tOK!

tmin>tOK!

tmin>tOK!

tmin>tOK!

tmin>tOK!

tmin>tOK!

tmin>tOK!

tmin>tOK!

tmin>tNO! tmin<t

OK! tmin>t

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 32/42

Page 33: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100 T80 T600 T300

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Mechanical Reinforcement Laminate Sequence [17xcsm600/16xwr800][15xcsm600/14xwr800][13xcsm600/12xwr800][9xcsm450/8xwr500][7xcsm450/6xwr500][7xcsm450/6xwr500][6xcsm450/5xwr500][5xcsm450/4xwr500][4xcsm450/3xwr500][4xcsm450/3xwr500][4xcsm450/3xwr500][2xcsm450/1xwr500][7xcsm450/6xwr500][17xcsm600/16xwr800]

11.4. Design Calculation for Elbows subjected to Internal Pressure and Bending Moments

Load on ElbowAxial Unit Load (pressure and bending moments) Qa =pDm/4 N/mm 378 315 252 96 77 68 58 48 39 29 20 16 115 63Circumferential Unit Load Qc =mpDm/2 N/mm 755 630 505 193 154 136 116 97 78 59 40 32 229 126

Axial Stress σa =Qa/t N/mm2 11 10 10 8 8 7 7 7 7 6 4 7 12 2

Allowable Axial Stress σaall =Elam taεd N/mm2 22 22 22 21 21 21 21 21 20 20 20 19 21 22

Circumferential Stress σc =Qc/t N/mm2 22 20 19 15 16 14 14 14 15 11 8 13 24 4

Allowable Circumferential Stress σcall =Elam tcεd N/mm2 22 22 22 21 21 21 21 21 20 20 20 19 21 22

Residual Axial Stress σar =σaall-σa N/mm2 11 12 12 13 13 14 14 14 13 15 17 13 9 20

Residual Circumferential Stress σcr =σacall-σc N/mm2 0 1 3 6 5 7 7 6 6 9 13 6 -3 18

11.5. Mechanical Properties

Longitudinal Unit Modulus XLAM a =(Ximini)a N/mm 383318 336596 289873 133499 101913 101913 86120 70327 54533 54533 54533 22947 101913 383318

Circumferential Unit Modulus XLAM c =(Ximini)c N/mm 383318 336596 289873 133499 101913 101913 86120 70327 54533 54533 54533 22947 101913 383318

Laminate Design Longitudinal Unit Loading ULAM a =XLAMaεd N/mm 766 673 579 267 204 204 172 141 109 109 109 46 204 766

Laminate Design Circumferential Unit Loading ULAM c =XLAMcεd N/mm 766 673 579 267 204 204 172 141 109 109 109 46 204 766

Longitudinal Tensile Modulus of the Laminate ELAM ta =XLAMa/t N/mm2 10953 10937 10916 10507 10442 10442 10392 10321 10210 10210 10210 9579 10442 10953

Circumferential Tensile Modulus of the Laminate ELAM tc =XLAMc/t N/mm2 10953 10937 10916 10507 10442 10442 10392 10321 10210 10210 10210 9579 10442 10953

11.6. Design Calculation for Elbows subjected to Vacuum

Safety Factor SF 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Minimum Wall Thickness tmin =Do(SFpet/2ELAMtc)0,33 mm 42,8 46,7 28,7 10,6 8,5 7,5 6,4 5,4 4,3 3,3 2,3 1,8 10,9 6,5

11.7. Design Calculation for Elbows with Specified Stiffness

Pipe without Stiffening Rings Stiffness S =ELAMfc(tt3/12)/Dm

3 Pa 3156 3769 4828 19819 19526 28797 30240 32321 35574 81463 256903 102165 5952 1194730

09-004_CI0001-02 .xls 33/42

Page 34: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

12. Tee

12.1. Tee Input Data

Geometrical InputInternal Diameter of the Main Pipe DiM mm 2400 2400 500 500 500 400 400 250 200 150

Internal Diameter of the branch DiB mm 2000 1600 500 250 150 400 150 100 150 80Reduced tee Reduced tee Equal tee Reduced tee Reduced tee Equal tee Reduced tee Reduced tee Reduced tee Reduced tee

Structural Thickness of Main Pipe trM mm 19,3 19,3 7,0 7,0 7,0 7,0 7,0 4,2 2,8 2,8

Thickness of Branch Pipe trB mm 16,9 13,3 7,0 4,2 2,8 7,0 2,8 2,8 2,8 2,8

Thickness of Branch adjacent to the junction tBJ =tB+tr mm 80,8 72,7 26,5 19,3 16,4 22,1 13,5 10,5 9,1 7,6

Thickness of Main adjacent to the junction tMJ =tM+tr mm 83,2 78,7 26,5 22,1 20,6 22,1 17,7 11,9 9,1 7,6

Internal LoadsDesign Pressure p bar 6,2 6,2 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5Allowable Design Strain εd mm/mm 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002Safety Factor SF 5 5 5 5 5 5 5 5 5 5

12.2. Tee Output DataReinforcement Thickness tr mm 63,9 59,4 19,5 15,1 13,6 15,1 10,7 7,7 6,3 4,8Main Overlay Thickness tmo mm 24,4 22,9 8,3 6,8 5,3 6,8 3,9 3,9 3,9 2,4

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Collar Thickness tc mm 39,5 36,5 11,2 8,3 8,3 8,3 6,8 3,9 2,4 2,4Minimum Main Overlay lenght taper 1:6 L =3LB mm 4080 3260 1140 570 450 900 450 400 450 380

Minimum Branch Overlay lenght taper 1:6 LB mm 1040 830 320 160 150 250 150 150 150 150

Pressure Stress MultiplierPressure Stress Multiplier m 2,5 2,4 2,5 1,9 1,6 2,4 1,8 1,7 2,2 1,8Stress Intensification Factor SIFT 2,2 1,9 2,0 1,3 0,9 2,0 1,1 1,0 1,6 1,1Pipe Factor T 0,09 0,13 0,11 0,27 0,58 0,11 0,37 0,47 0,16 0,36Pipe Factor λZ =(DiB/(2tB))2(2tM/DiM) 10,6 7,9 9,4 3,7 1,7 9,0 2,7 2,2 6,2 2,8

12.3. Construction of Mechanical Reinforcement

Hole CompensationCSM-Chopped Strand Mat Grammature g/m2 300 300 450 450 450 450 450 450 450 450CSM-Chopped Strand Mat Layers n° 18 17 6 5 4 5 3 3 3 2CSM-Chopped Strand Mat Thickness mm 11,1 10,5 5,5 4,6 3,7 4,6 2,8 2,8 2,8 1,8

WR-Woven Roving Grammature g/m2 800 800 500 500 500 500 500 500 500 500WR-Woven Roving Layers n° 13 12 5 4 3 4 2 2 2 1WR-Woven Roving Thickness mm 11,4 10,6 2,8 2,2 1,7 2,2 1,1 1,1 1,1 0,6

UR-Unidirectional Hoop Roving Grammature g/m2 420 420 420 420 420 420 420 420 420 420UR-Unidirectional Hoop Roving Layers n° 4 4 0 0 0 0 0 0 0 0UR-Unidirectional Hoop Roving Thickness mm 1,8 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

CPR-Continuous Parallel Roving Grammature g/m2 840 840 840 840 840 840 840 840 840 840CPR-Continuous Parallel Roving Layers n° 0 0 0 0 0 0 0 0 0 0CPR-Continuous Parallel Roving Thickness mm 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

mm 24,4 22,9 8,3 6,8 5,3 6,8 3,9 3,9 3,9 2,4OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALCOK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALAOK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB

Mechanical Reinforcement Laminate Sequence [18xcsm300/13xwr800][17xcsm300/12xwr800][6xcsm450/5xwr500][5xcsm450/4xwr500][4xcsm450/3xwr500][5xcsm450/4xwr500][3xcsm450/2xwr500][3xcsm450/2xwr500][3xcsm450/2xwr500][2xcsm450/1xwr500]

CollarCSM-Chopped Strand Mat Grammature g/m2 300 300 450 450 450 450 450 450 450 450CSM-Chopped Strand Mat Layers n° 27 25 8 6 6 6 5 3 2 2

Società a Socio Unico

VETRORESINA ENGINIA GROUP

09-004_CI0001-02 .xls 34/42

Page 35: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

CSM-Chopped Strand Mat Thickness mm 16,6 15,4 7,4 5,5 5,5 5,5 4,6 2,8 1,8 1,8

WR-Woven Roving Grammature g/m2 800 800 500 500 500 500 500 500 500 500WR-Woven Roving Layers n° 26 24 7 5 5 5 4 2 1 1WR-Woven Roving Thickness mm 22,9 21,1 3,9 2,8 2,8 2,8 2,2 1,1 0,6 0,6

mm 39,5 36,5 11,2 8,3 8,3 8,3 6,8 3,9 2,4 2,4OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc NO! Uc<Qc OK! Uc>Qc NO! Uc<Qc OK! Uc>QcOK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa

Mechanical Reinforcement Laminate Sequence [27xcsm300/26xwr800][25xcsm300/24xwr800][8xcsm450/7xwr500][6xcsm450/5xwr500][6xcsm450/5xwr500][6xcsm450/5xwr500][5xcsm450/4xwr500][3xcsm450/2xwr500][2xcsm450/1xwr500][2xcsm450/1xwr500]

12.4. Design Calculation for Tee subjected to Internal Pressure

Load on TeeQc =mp(DiM+tM)/20 N/mm 1895,7 1762,8 466,4 369,4 304,8 370,6 274,8 161,6 168,0 103,9

Qa =mp(DiM+tM)/40 N/mm 947,8 881,4 233,2 184,7 152,4 185,3 137,4 80,8 84,0 51,9

Circumferential Stress σc =Qc/t N/mm2 29,7 29,7 23,9 24,5 22,4 24,5 25,7 20,9 26,8 21,7Allowable Circumferential Stress σcall =Elam tcεd N/mm2 31,9 32,0 24,9 24,8 24,5 24,8 24,0 24,0 24,0 23,0Residual Circumferential Stress σcr =σacall-σc N/mm2 2,2 2,3 1,0 0,3 2,1 0,2 -1,7 3,1 -2,8 1,3

12.5. Mechanical Properties

Hole CompensationLongitudinal Unit Modulus Xa =(Ximini)a N/mm 265540 246949 86120 70327 54533 70327 38740 38740 38740 22947

Circumferential Unit Modulus Xc =(Ximini)c N/mm 323594 305003 86120 70327 54533 70327 38740 38740 38740 22947

Laminate Design Longitudinal Unit Loading Ua =XLAMaεd N/mm 637 593 207 169 131 169 93 93 93 55

Laminate Design Circumferential Unit Loading Uc =XLAMcεd N/mm 777 732 207 169 131 169 93 93 93 55

Longitudinal Tensile Modulus Ea =XLAMa/t N/mm2 10899 10799 10392 10321 10210 10321 10015 10015 10015 9579Circumferential Tensile Modulus Ec =XLAMc/t N/mm2 13282 13338 10392 10321 10210 10321 10015 10015 10015 9579

CollarLongitudinal Unit Modulus Xa =(Ximini)a N/mm 488156 450973 117706 86120 86120 86120 70327 38740 22947 22947

Circumferential Unit Modulus Xc =(Ximini)c N/mm 488156 450973 117706 86120 86120 86120 70327 38740 22947 22947

Laminate Design Longitudinal Unit Loading Ua =XLAMaεd N/mm 1172 1082 282 207 207 207 169 93 55 55

Laminate Design Circumferential Unit Loading Uc =XLAMcεd N/mm 1172 1082 282 207 207 207 169 93 55 55

Longitudinal Tensile Modulus Ea =XLAMa/t N/mm2 12360 12354 10479 10392 10392 10392 10321 10015 9579 9579Circumferential Tensile Modulus Ec =XLAMc/t N/mm2 12360 12354 10479 10392 10392 10392 10321 10015 9579 9579

TotalLaminate Design Longitudinal Unit Loading Ua =XLAMaεd N/mm 1809 1675 489 375 338 375 262 186 148 110Laminate Design Circumferential Unit Loading Uc =XLAMcεd N/mm 1948 1814 489 375 338 375 262 186 148 110

12.6. Compensation DesignLaminate unit loading of the compensation UC =pDIM/2 N/mm 744 744 187,5 187,5 187,5 150 150 93,75 75 56,25

ALC=UCDIB N/mm 1488000 1190400 93750 46875 28125 60000 22500 9375 11250 4500

Load capacity lost within diameter dC in axial direction ALa =ALC/2 N/mm 744000 595200 46875 23437,5 14062,5 30000 11250 4687,5 5625 2250

ACc

=(L-DIB)UC (hole comp.) N/mm 1615383,644 1215130,677 132279,7056 54010,752 39264,048 84391,8 27893,016 27893,016 27893,016 16521,984

Aca=(L-DIB)Ua (hole comp.)

N/mm 1325577,677 983843,2224 132279,7056 54010,752 39264,048 84391,8 27893,016 27893,016 27893,016 16521,984Pull out load Qb =pDIB/2 N/mm 620 496 187,5 93,75 56,25 150 56,25 37,5 56,25 30

Load carrying capacity of the compensation in axial direction

Circumferential Unit Load (pressure)

Axial Unit Load (pressure)

Load capacity lost within diameter dC in circumferential direction

Load carrying capacity of the compensation in circumferential direction

09-004_CI0001-02 .xls 35/42

Page 36: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

12. Tee

12.1. Tee Input Data

Geometrical InputInternal Diameter of the Main Pipe DiM

Internal Diameter of the branch DiB

Structural Thickness of Main Pipe trMThickness of Branch Pipe trBThickness of Branch adjacent to the junction tBJ =tB+trThickness of Main adjacent to the junction tMJ =tM+tr

Internal LoadsDesign Pressure pAllowable Design Strain εd

Safety Factor SF

12.2. Tee Output DataReinforcement Thickness trMain Overlay Thickness tmo

Collar Thickness tcMinimum Main Overlay lenght taper 1:6 L =3LB

Minimum Branch Overlay lenght taper 1:6 LB

Pressure Stress MultiplierPressure Stress Multiplier mStress Intensification Factor SIFT

Pipe Factor TPipe Factor λZ =(DiB/(2tB))2(2tM/DiM)

12.3. Construction of Mechanical Reinforcement

Hole CompensationCSM-Chopped Strand Mat GrammatureCSM-Chopped Strand Mat LayersCSM-Chopped Strand Mat Thickness

WR-Woven Roving GrammatureWR-Woven Roving LayersWR-Woven Roving Thickness

UR-Unidirectional Hoop Roving GrammatureUR-Unidirectional Hoop Roving LayersUR-Unidirectional Hoop Roving Thickness

CPR-Continuous Parallel Roving GrammatureCPR-Continuous Parallel Roving LayersCPR-Continuous Parallel Roving Thickness

Mechanical Reinforcement Laminate Sequence

CollarCSM-Chopped Strand Mat GrammatureCSM-Chopped Strand Mat Layers

Società a Socio Unico

VETRORESINA ENGINIA GROUP

2400 200 150 2000 600 2000 2400 2000

500 200 150 300 300 1600 1000 800Reduced tee Equal tee Equal tee Reduced tee Reduced tee Reduced tee Reduced tee Reduced tee

19,3 2,8 2,8 19,3 9,3 19,3 19,3 19,3

7 2,8 2,8 5,1 5,1 13,3 13 12

58,9 12,0 10,5 43,8 23,1 65,2 61,9 53,6

71,2 12,0 10,5 58,0 27,3 71,2 68,2 60,9

7,5 7,5 7,5 7,5 7,5 6,2 6,2 6,2

0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,0025 5 5 5 5 5 5 5

51,9 9,2 7,7 38,7 18,0 51,9 48,9 41,6

28,9 3,9 3,9 24,5 8,3 19,9 22,9 20,1

Pad reinforcement

Integral reinforcement

Integral reinforcement

Pad reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

Integral reinforcement

23,0 5,3 3,9 14,2 9,8 32,0 26,0 21,51140 500 450 680 680 3260 2040 1640

320 150 150 190 190 830 520 420

1,4 2,4 2,3 1,3 2,0 2,5 1,9 1,9

0,7 1,9 1,8 0,5 1,3 2,2 1,3 1,20,94 0,12 0,14 1,47 0,26 0,09 0,27 0,29

1,1 8,3 7,1 0,7 3,8 10,7 3,7 3,4

450 450 450 450 450 300 300 30020 3 3 17 6 15 17 14

18,5 2,8 2,8 15,7 5,5 9,2 10,5 8,6

500 500 500 500 500 800 800 80019 2 2 16 5 10 12 13

10,5 1,1 1,1 8,8 2,8 8,8 10,6 11,4

420 420 420 420 420 420 420 4200 0 0 0 0 4 4 0

0,0 0,0 0,0 0,0 0,0 1,8 1,8 0,0

840 840 840 840 840 840 840 8400 0 0 0 0 0 0 0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,028,9 3,9 3,9 24,5 8,3 19,9 22,9 20,1

OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALC OK! ACC>ALCOK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALA OK! ACA>ALAOK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB OK! UALC>qB

[20xcsm450/19xwr500][3xcsm450/2xwr500][3xcsm450/2xwr500][17xcsm450/16xwr500][6xcsm450/5xwr500][15xcsm300/10xwr800][17xcsm300/12xwr800][14xcsm300/13xwr800]

450 450 450 450 450 300 300 30016 4 3 10 7 22 18 15

09-004_CI0001-02 .xls 36/42

Page 37: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Società a Socio Unico

VETRORESINA ENGINIA GROUP

CSM-Chopped Strand Mat Thickness

WR-Woven Roving GrammatureWR-Woven Roving LayersWR-Woven Roving Thickness

Mechanical Reinforcement Laminate Sequence

12.4. Design Calculation for Tee subjected to Internal Pressure

Load on TeeQc =mp(DiM+tM)/20

Qa =mp(DiM+tM)/40

Circumferential Stress σc =Qc/t

Allowable Circumferential Stress σcall =Elam tcεd

Residual Circumferential Stress σcr =σacall-σc

12.5. Mechanical Properties

Hole CompensationLongitudinal Unit Modulus Xa =(Ximini)a

Circumferential Unit Modulus Xc =(Ximini)c

Laminate Design Longitudinal Unit Loading Ua =XLAMaεd

Laminate Design Circumferential Unit Loading Uc =XLAMcεd

Longitudinal Tensile Modulus Ea =XLAMa/t

Circumferential Tensile Modulus Ec =XLAMc/t

CollarLongitudinal Unit Modulus Xa =(Ximini)a

Circumferential Unit Modulus Xc =(Ximini)c

Laminate Design Longitudinal Unit Loading Ua =XLAMaεd

Laminate Design Circumferential Unit Loading Uc =XLAMcεd

Longitudinal Tensile Modulus Ea =XLAMa/t

Circumferential Tensile Modulus Ec =XLAMc/t

TotalLaminate Design Longitudinal Unit Loading Ua =XLAMaεd

Laminate Design Circumferential Unit Loading Uc =XLAMcεd

12.6. Compensation DesignLaminate unit loading of the compensation UC =pDIM/2

ALC=UCDIB

Load capacity lost within diameter dC in axial direction ALa =ALC/2

ACc

=(L-DIB)UC (hole comp.)

Aca=(L-DIB)Ua (hole comp.)

Pull out load Qb =pDIB/2

Load carrying capacity of the compensation in axial direction

Circumferential Unit Load (pressure)

Axial Unit Load (pressure)

Load capacity lost within diameter dC in circumferential direction

Load carrying capacity of the compensation in circumferential direction

14,8 3,7 2,8 9,2 6,5 13,5 11,1 9,2

500 500 500 500 500 800 800 80015 3 2 9 6 21 17 148,3 1,7 1,1 5,0 3,3 18,5 15,0 12,323,0 5,3 3,9 14,2 9,8 32,0 26,0 21,5

OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>Qc OK! Uc>QcOK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa OK! Ua>Qa

[16xcsm450/15xwr500][4xcsm450/3xwr500][3xcsm450/2xwr500][10xcsm450/9xwr500][7xcsm450/6xwr500][22xcsm300/21xwr800][18xcsm300/17xwr800][15xcsm300/14xwr800]

1291,3 180,9 131,0 963,0 447,4 1585,8 1457,0 1189,3

645,7 90,4 65,5 481,5 223,7 792,9 728,5 594,6

24,9 19,6 16,9 24,9 24,8 30,6 29,8 28,6

25,5 24,0 24,0 25,5 24,9 32,3 32,0 29,5

0,6 4,4 7,1 0,6 0,1 1,8 2,2 0,9

307223 38740 38740 259844 86120 209765 246949 246463

307223 38740 38740 259844 86120 267819 305003 246463

737 93 93 624 207 503 593 592

737 93 93 624 207 643 732 592

10628 10015 10015 10611 10392 10553 10799 12290

10628 10015 10015 10611 10392 13474 13338 12290

244051 54533 38740 149292 101913 395197 320830 265055

244051 54533 38740 149292 101913 395197 320830 265055

586 131 93 358 245 948 770 636

586 131 93 358 245 948 770 636

10604 10210 10015 10530 10442 12343 12323 12300

10604 10210 10015 10530 10442 12343 12323 12300

1323 224 186 982 451 1452 1363 1228

1323 224 186 982 451 1591 1502 1228

900 75 56,25 750 225 620 744 620

450000 15000 8437,5 225000 67500 992000 744000 496000

225000 7500 4218,75 112500 33750 496000 372000 248000

471894,528 27893,016 27893,016 236977,4544 78541,0752 1066991,215 761286,6893 496869,0048

471894,528 27893,016 27893,016 236977,4544 78541,0752 835703,76 616383,7056 496869,0048

187,5 75 56,25 112,5 112,5 496 310 248

09-004_CI0001-02 .xls 37/42

Page 38: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

13. Reducer

13.1. Reducer Input Data

Geometrical InputLarger Pipe Nominal Diameter ND mm 500 500 400 250Smaller Pipe Nominal Diameter nd mm 400 350 300 200Reducer Angle α ° 22,6 22,6 22,6 22,6Reducer Lenght L 250 375 250 125

Internal LoadsDesign Pressure p MPa 0,6 0,6 0,6 0,6Design Vacuum pe MPa 0,09 0,09 0,09 0,09

Allowable Design Strain εd mm/mm 0,002 0,002 0,002 0,002

13.2. Reducer Output Data

Larger Pipe Structural Thickness t mm 8,3 8,3 6,8 3,9Smaller Pipe Structural Thickness t mm 6,8 5,3 5,3 3,9Internal Liner Thickness tl mm 1,65 1,65 1,65 1,65Top Coat Thickness tc mm 0,2 0,2 0,2 0,2Larger Pipe Total Thickness tt =tr+tl+ttc mm 10,1 10,1 8,7 5,7Smaller Pipe Total Thickness tt =tr+tl+ttc mm 8,7 7,2 7,2 5,7

Reducer DiametersLarger Pipe Structural Diameter D =ND+2tl mm 503,3 503,3 403,3 253,3Smaller Pipe structural Diameter D =ND+2tl mm 403,3 353,3 303,3 203,3Larger Pipe Outside Diameter Do =ND+2tt mm 520,3 520,3 417,3 261,4Smaller Pipe Outside Diameter Do =ND+2tt mm 417,3 364,4 314,4 211,4Larger Pipe Mean Diameter Dm =ND+tt mm 510,1 510,1 408,7 255,7Smaller Pipe Mean Diameter Dm =ND+tt mm 408,7 357,2 307,2 205,7

Pressure Stress MultiplierPressure Stress Multiplier 1 1 1 1

13.3. Construction of Mechanical ReinforcementLarger Pipe DiameterCSM-Chopped Strand Mat Grammature g/m2 450 450 450 450CSM-Chopped Strand Mat Layers n° 6 6 5 3CSM-Chopped Strand Mat thickness mm 5,5 5,5 4,6 2,8

WR-Woven Roving Grammature g/m2 500 500 500 500WR-Woven Roving Layers n° 5 5 4 2WR-Woven Roving Thickness mm 2,75 2,75 2,20 1,10Mechanical Reinforcement Thickness mm 8,29 8,29 6,81 3,87

OK! Ulama>Qa OK! Ulama>Qa OK! Ulama>Qa OK! Ulama>QaOK! Ulamc>Qc OK! Ulamc>Qc OK! Ulamc>Qc OK! Ulamc>Qc

OK! tmin>t OK! tmin>t OK! tmin>t OK! tmin>t

Mechanical Reinforcement Laminate Sequence [6xcsm450/5xwr500][6xcsm450/5xwr500][5xcsm450/4xwr500][3xcsm450/2xwr500]

Smaller Pipe DiameterCSM-Chopped Strand Mat Grammature g/m2 450 450 450 450CSM-Chopped Strand Mat Layers n° 5 4 4 3CSM-Chopped Strand Mat thickness mm 4,6 3,7 3,7 2,8

WR-Woven Roving Grammature g/m2 500 500 500 500

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Page 39: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

WR-Woven Roving Layers n° 4 3 3 2WR-Woven Roving Thickness mm 2,20 1,65 1,65 1,10Mechanical Reinforcement Thickness mm 6,81 5,34 5,34 3,87

OK! Ulama>Qa OK! Ulama>Qa OK! Ulama>Qa OK! Ulama>QaOK! Ulamc>Qc OK! Ulamc>Qc OK! Ulamc>Qc OK! Ulamc>Qc

OK! tmin>t OK! tmin>t OK! tmin>t OK! tmin>t

Mechanical Reinforcement Laminate Sequence [5xcsm450/4xwr500][4xcsm450/3xwr500][4xcsm450/3xwr500][3xcsm450/2xwr500]

13.4. Design Calculation for Reducer subjected to Internal Pressure

Load on Larger Diameter PipeAxial Unit Load Qa =pDm/4 N/mm 76,5 76,5 61,3 38,4Circumferential Unit Load Qc =mpDm/2 N/mm 153,0 153,0 122,6 76,7Axial Stress σa =Qa/t N/mm2 9,2 9,2 9,0 9,9Allowable Axial Stress σaall =Elam taεd N/mm2 20,8 20,8 20,6 20,0Circumferential Stress σc =Qc/t N/mm2 18,5 18,5 18,0 19,8Allowable Circumferential Stress σcall =Elam tcεd N/mm2 20,8 20,8 20,6 20,0Residual Axial Stress σar =σaall-σa N/mm2 11,6 11,6 11,6 10,1Residual Circumferential Stress σcr =σacall-σc N/mm2 2,3 2,3 2,6 0,2

Load on Smaller Diameter PipeAxial Unit Load Qa =pDm/4 N/mm 61,3 53,6 46,1 30,9Circumferential Unit Load (pressure and bending moments)

Qc =mpDm/2N/mm 122,6 107,2 92,2 61,7

Axial Stress σa =Qa/t N/mm2 9,0 10,0 8,6 8,0Allowable Axial Stress σaall =Elam taεd N/mm2 20,8 20,8 20,6 20,0Circumferential Stress σc =Qc/t N/mm2 18,5 18,5 18,0 19,8Allowable Circumferential Stress σcall =Elam tcεd N/mm2 20,8 20,8 20,6 20,0Residual Axial Stress σar =σaall-σa N/mm2 11,6 11,6 11,6 10,1Residual Circumferential Stress σcr =σacall-σc N/mm2 2,3 2,3 2,6 0,2

13.5. Mechanical Properties

Larger Pipe DiameterLongitudinal Unit Modulus XLAM a =(Ximini)a N/mm 86119,6 86119,6 70326,5 38740,3Circumferential Unit Modulus XLAM c =(Ximini)c N/mm 86119,6 86119,6 70326,5 38740,3Laminate Design Longitudinal Unit Loading ULAM a =XLAMaεd N/mm 172,2 172,2 140,7 77,5Laminate Design Circumferential Unit Loading ULAM c =XLAMcεd N/mm 172,2 172,2 140,7 77,5Longitudinal Tensile Modulus of the Laminate ELAM ta =XLAMa/t N/mm2 10392,3 10392,3 10320,9 10014,6Circumferential Tensile Modulus of the Laminate ELAM tc =XLAMc/t N/mm2 10392,3 10392,3 10320,9 10014,6

Smaller Pipe DiameterLongitudinal Unit Modulus XLAM a =(Ximini)a N/mm 70326,5 54533,4 54533,4 38740,3Circumferential Unit Modulus XLAM c =(Ximini)c N/mm 70326,5 54533,4 54533,4 38740,3Laminate Design Longitudinal Unit Loading ULAM a =XLAMaεd N/mm 140,7 109,1 109,1 77,5Laminate Design Circumferential Unit Loading ULAM c =XLAMcεd N/mm 140,7 109,1 109,1 77,5Longitudinal Tensile Modulus of the Laminate ELAM ta =XLAMa/t N/mm2 10320,9 10210,0 10210,0 10014,6Circumferential Tensile Modulus of the Laminate ELAM tc =XLAMc/t N/mm2 10320,9 10210,0 10210,0 10014,6

13.6. Design Calculation for Reducer subjected to Vacuum

Safety Factor SF 2,5 2,5 2,5 2,5Larger Diameter Minimum Wall Thickness tmin=Do(0,4SFpetJ/(ElamtcDo))^0,4mm 3,7 4,3 3,2 1,9Smaller Diameter Minimum Wall Thickness tmin=Do(0,4SFpetJ/(ElamtcDo))^0,4mm 3,2 3,5 2,7 1,6

13.7. Design Calculation for Reducer with Specified Stiffness

Page 40: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

Larger Pipe without Stiffening Rings Stiffness S =ELAMfc(tt3/12)/Dm

3 Pa 6794,8 6794,8 8195,8 9332,2Smaller Pipe without Stiffening Rings Stiffness S =ELAMfc(tt

3/12)/Dm3 Pa 8195,8 6942,9 10914,9 17924,7

Page 41: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

T2400 T2000 T1600 T500 T400 T350 T300 T250 T200 T150 T100 T80 T600

14. Cap

14.1. Cap Input Data

Geometrical InputCap Nominal Diameter ND mm 2400 2000 1600 500 400 350 300 250 200 150 100 80 600Cap Height h mm 600 500 400 125 100 87,5 75 62,5 50 37,5 25 20 150

Internal LoadsDesign Pressure p MPa 0,62 0,62 0,62 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75Design Vacuum pe MPa 0,04 0,09 0,04 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,04

14.2. Cap Output Data

Structural Thickness t mm 42,5 35,0 35,0 24,4 24,4 24,4 24,4 24,4 24,4 24,4 24,4 24,4 12,7Internal Liner Thickness tl mm 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65 1,65Top Coat Thickness tc mm 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2Total thickness tt =tr+tl+ttc mm 44,3 36,8 36,8 26,3 26,3 26,3 26,3 26,3 26,3 26,3 26,3 26,3 14,6

Cap DiametersStructural Diameter D =ND+2tl mm 2403,30 2003,30 1603,30 503,30 403,30 353,30 303,30 253,30 203,30 153,30 103,30 83,30 603,30Outside Diameter Do =ND+2tt mm 2488,67 2073,70 1673,70 552,59 452,59 402,59 352,59 302,59 252,59 202,59 152,59 132,59 629,11Mean Diameter Dm =ND+tt mm 2444,33 2036,85 1636,85 526,30 426,30 376,30 326,30 276,30 226,30 176,30 126,30 106,30 614,56

14.3. Construction of Mechanical Reinforcement

CSM-Chopped Strand Mat Grammature g/m2 300 600 600 600 600 600 600 600 600 600 600 600 450CSM-Chopped Strand Mat Layers n° 29 17 17 12 12 12 12 12 12 12 12 12 9CSM-Chopped Strand Mat thickness mm 17,8 20,9 20,9 14,8 14,8 14,8 14,8 14,8 14,8 14,8 14,8 14,8 8,3

WR-Woven Roving Grammature g/m2 800 800 800 800 800 800 800 800 800 800 800 800 500WR-Woven Roving Layers n° 28 16 16 11 11 11 11 11 11 11 11 11 8WR-Woven Roving Thickness mm 24,6 14,1 14,1 9,7 9,7 9,7 9,7 9,7 9,7 9,7 9,7 9,7 4,4Mechanical Reinforcement Thickness mm 42,5 35,0 35,0 24,4 24,4 24,4 24,4 24,4 24,4 24,4 24,4 24,4 12,7

NO! Ulam<Q

NO! Ulam<Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q OK! Ulam>Q

NO! Ulam<Q

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! Ulam>Qe

OK! tmin>t OK! tmin>t OK! tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

OK!tmin>t

Mechanical Reinforcement Laminate Sequence [29xcsm300/28xwr800][17xcsm600/16xwr800][17xcsm600/16xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][12xcsm600/11xwr800][9xcsm450/8xwr500]

14.4. Design Calculation for Caps subjected to Internal Pressure

Load on CapShape Factor KS 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45Unit Load Q =0,5pNDKS N/mm 1079 899 719 272 218 190 163 136 109 82 54 44 326Stress σ =Q/t N/mm2 25 26 21 11 9 8 7 6 4 3 2 2 26Allowable Stress σall =Elam tεd N/mm2 25 22 22 22 22 22 22 22 22 22 22 22 21Residual Stress σr =σall-σ N/mm2 -1 -4 1 11 13 14 15 16 17 18 20 20 -5

Società a Socio Unico

VETRORESINA ENGINIA GROUP

Page 42: 090731 Design of Reinforced Plastic Pips 1004 Rev.02

14.5. Mechanical Properties

Unit Modulus XLAM =(Ximini)c N/mm 525340 383318 383318 266512 266512 266512 266512 266512 266512 266512 266512 266512 133499

Laminate Design Unit Loading ULAM =XLAMεd N/mm 1050 766 766 532 532 532 532 532 532 532 532 532 267

Tensile Modulus of the Laminate ELAM t =XLAM/t N/mm2 12366 10953 10953 10902 10902 10902 10902 10902 10902 10902 10902 10902 10507

14.6. Design Calculation for Caps subjected to Vacuum

Unit Load Qe =0,66pNDKS N/mm 91,872 172,26 61,248 28,71 22,968 20,097 17,226 14,355 11,484 8,613 5,742 4,5936 22,968

Stress σe =Qe/t N/mm2 2 5 2 1 1 1 1 1 0 0 0 0 2Residual Stress σer =σall-σe N/mm2 23 17 20 21 21 21 21 21 21 21 22 22 19

Shape factor end convex to pressure Ke 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8

R0 =0,5DoKe 2240 1866 1506 497 407 362 317 272 227 182 137 119 566Safety Factor SF 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5Minimum Wall Thickness tmin =1,7Ro(SFpe/ELAM)0,5 mm 10,8 14,4 7,7 3,1 2,6 2,3 2,0 1,7 1,4 1,1 0,9 0,8 3,0