0971264627aquaculture_timmons_2010b1

Upload: ali-sahin

Post on 16-Jul-2015

105 views

Category:

Documents


0 download

TRANSCRIPT

Aiuaculture CENTERC)CU8H@PQU8CUU)2nd Edition 1j^CNALLH. l11CNSANOJA1SA!8L!lNGCayugaAquaVentn 2010 NRC PublicationNo.401-2010 C)CU8H@QU8CUU)--r...,,1LHA11 B.TIMMONS CornellUniversity Biological and Environmental Engineering Department 302 Rifey-Robb Hall,lthaca,NY14853 [email protected] JAMES . EBELING Aquaculture SystemsTechnologies,LLC 108 Industrial Ave. NewOrleans,LA70121 [email protected] NRC Publication No. 401-2010 Copyright20 I 0 by CAYUGA AQUA VENTURES 126 Sunset Drive Ithaca, NY14850 ISBN978-0-9712646-2-5 Cayuga Aqua Ventures,2010 Allrights reserved.Nopart of thispublicationmaybereproduced,stored inaretrievalsystemortransmittedinanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,without thepriorwrittenpermissionofthepublisher,CayugaAquaVentures, 126SunsetDrive, Ithaca, N14850. NoresponsibilityisassumedbythePublisherforanyinjuryand/or damag tps orppcp asamatterofproductsliability, negligenceorothenise,orfromanyuseoroperationof anymethods, products, instructionsorideas contaiqed inthematerialherein. Printed in theUnitedStates NRC Publication No. 401-2010 DEDICATION Wewouldliketoeo-dedicatethisnew text toDr.Wheaton(Fred)andDr.W.D.Youngs. FredwasJamesEbeling'smajorprofessorfor hisPhDatUniversityofMaryland.Ifact, manyofusintheindustryhadFredasour majoradvisor.Frcdwaswayaheadof his time 1 n1977and wrote whatbecameknownasthe AquaculturalEngineer'sBible,"Aquacultural Engineering",in1977.Thistextwasthefoundationformanyteaching programsaroundtheworldandremainspopularstill.Mostofthe technicalinformationpublishedinthis1977 textremainsvalidtoday30 yearslater!Fredwasaco-authoronourearliertextin2002 "RecirculatingAquacultureSystems"byTimmons,Ebeling,Wheaton, Summerfclt andVinci (2002by Cayuga Aqua Ventures, lthaca, NY). Frcdhaschairedover50graduatecommittees.ManyofthePhD studentshavegoneontobetheleadersintheaquacultureresearchand teachingcommunity.Frcdhasalwaysbeenavery supportiveindividual and hascontinued to mentor us as we progress through ourcareers. Dr.Whcalondevelopedoneofthefirstaquaculturalengineering researchandextensionprogramsin theU.S.Hisresearchhasincluded recirculatingsystems,seafoodprocessing,automationofoyster shocking,andavarietyofothertopicsrelatedtoaquacultural engineering.Hehaspublishedwidelyproducingover100ariclesand threebooks.Hewasoneofthefoundingmembersof andhasservedas presidentoftheAquacultural Engineering Society.Dr.Wheaton recently retired(June2010)asDirectoroftheUSDANortheasterRegional Aquaculture Ccntcr (5years) andwasformerly Chairmanand Professor, DepartmentofBiologicalResourcesEngineering,Universityof Maryland,CollegePark,Maryland;Dr.Wheatonwasafacultymember for 42 yearsatthe Universityof Maryland. We8 oweagreatdealofgratitudetoDr.Wheatonforhiscareer effortsasadeveloperandsupporterof theaquaculturccommunity.For this andmnny other reasons, we dedicate this book to him. NRC Publication No. 401-2010 Oursecond dedicationgoestoDr. WilliamD.Youngs, ProfessorEmeritus, DepartmentofNatural Resources,Comell University.Dr.Youngs spentover30yearsat Comellteachingand mentoringstudentsin fisheryscienceand aquaculture.Dr.Youngs ismostrecognizedfor oneofteseminaltexts . in fisheries"Principlesof Fishery Science", thatheco-authored 1th nr. w.Harry rvcrhart, bookthatmanykeepintheirpersonalhbranes (published 1981,CorellUniversity Press,p.349). For me (Timmons) it wasaphone call from Bill in 1984 tht was ny introductiontotheworldofaquacultureand,inparticula,recnculatmaquaculture.Thephonecallwentsomethinglike"What SI,epumpdo need tomove 1000gpmofwaterngainst10 feet ofhead?I_ responded withmyownqcstion,"Whydoyou want toknowthat?Illtookme underhiswingandwespentmanyhourstogeerbUJldmgtherecirculating aquaculture systemat theComell Dauy Resarch farm. wasalsothefirstGeneralManagerofmycommercialaquaculture-venture, Fingerlakcs Aquaculturc (sec Chapter17). t"teI tly value Bill'sBillhas always been aconstnnt msptra tono !. .. adviceonawidevarietyofsubjects,butIconstderhimunequaled_ m experienceandscientifcknowledgeon fsheriesmanagemetasapphd torecirculntingaquaculture.Ialsohavthehonorofbemgthe npersonthatBillevertooksiin andfailedtoevenhaveafshstnke. Wehope to eliminatethat dJstmctJOn soon. Thanks Bill! July2010 NRC Publication No. 401-2010 NRC Publication No.401-2010 CREWCRAquaculture hasalong historywithits originsdating back to atleast 475 BC in China(Milne,1973). Troutculturestarted inGermany in1741 (Leitritz andLewis, 1980) butit wasn't until the1880's that trout culture cametotheU.S.ThiswasthefirstU.S.aquacultureefort.However, aquaculture was not of muchimportance until the late1940s whenit was discovered that aquaculture methods could be used to raise fsh for planting innatural waters as a means to supplement natural spawning. At this time theU.S.fshandWildlifeServicebegangrowingtrout(Oncorhynchus mykiss),bluegill(Lepomismacrochirus),largemouthbass(Micropters salmoides), and otherspeciesforplanting. From its U. S. initiation in the 1880s the U.S. thetrout industrygrewslowly untilthe late 1940s or early 1950s when it began to expand more rapidly. In the 1960s the U.S. camsh(Ictalurus punctatus)industrygotitsstartandbegantogrowrapidly. Although the catfsh industry had its ups and downs over the years, it is an excellentsuccessstory.Thecatfshindustrystaredfromessentiallyno commercial production in 1960 to over 600 million pounds of production in 2000.With theriseofthetroutandcatfish industries inthe U.S. there has beenexperimentationandnowcommercialproductionofmanyother species of fsh including but not limited to striped bass (Morone saxatilis), salmon (several species), yellow perch (Percaflavescens), tilapia (several species),bluegill,smallmouthbass(Microptersdolomieu),several speciesofbait fsh,goldfsh(Carassiusaura/us), koi,redfsh,sturgeon (several species), a wide variety of tropical fsh, and a variety of other fish species. Tremendous progs mben made in fish culture in development ofproductionsystems,nutrition,genetics,engineering,diseasecontrol, physiology, basic understanding of fsh biology and other areas. However, much remainstobe doneinall ofthese areas. ShellfishaquaculturehasbeenpracticedintheU.S.sinceaboutthe 1850's, but serious cuturereallybecame more popular only in thelast30 years.Speciessuchasbluemussels(Mytilusedulis),variousspeciesof oysters and clams, shrimp, lobsters, crabs, andothers have been raised in aquaculturesettings.MostshellfishaquacultureintheU.S.usesleased bottomsystems,rafandrackculture,up-wellers, and/orsomefoating systemsusingeitherIinc cages.U.S.shellfshcultureisalmost exclusively done insaltorbrackish waterwhile, except forsalmon, most fish culture is in fresh or brackish water. However, salt water fsh culture is rapidly increasing. Development of shellfsh culture is lagging behind fish culture inareasofnutrition,engineering,diseasecontrol, genetics, basic Foreword biologyandotherareas. Aquaculturehasbeenthefastest growing segmentofU.S.agriculture formorethan15yearsandisprojectedtoremainthatwayforthe foreseeablefuture.Thisrapidgrowthrateisdrivenbyseveralfactors including:1)manyfisherieshave reached theirsustainable yield, 2) food safetyconcersofconsumers,and3)consumerdemandforhighquality, safeaquaticproductsthatarclow infat andhigh in protein. Theconsumertrendthatseesmoremealseatenawayfromthehome alsocontributestoaquacultureproductionasmostseafoodiseatenin restaurants and other eating places. These businesses need a reliable supply thatcanprovideproductsonaregularbasisyeararound,somethinga naturalfishery canrarelyprovide. Althoughtheftureof aquacultureisbrightintheU.S.terealsoare risks.Regulationofwatersupplies(bothquantityandquality),waste discharges,andhealthregulationsarebecomingmoreandmoreonerous andcostlytotheindustry.Competitionforcoastalsites,thepublic's concernsaboutenvironmentalfactors rangingfrom pollutiontoconcers aboutthevisual "pollution"ofaquaculturefacilitiesinfrontofvacation homes on the shore, and the recreationaluse of waters that are also suitable foraquacultureareonlyafewofthecloudsontheaquaculturehorizon. These and other concerns are encouraging the aquaculture industry to move fromopenpondandcageculturesystemstothemorecloselycontrolled recirculating systems. Typically recirculating (closed) aquatic production systems have higher capital andoperating coststhan many of the extensive systems suchas cage cultureinnaturalwatersandracewayand/orpondculturesystems. However,whenthecontrolprovidedbyrecirculatingsystemsandthe beneftsthisenvironmentalcontrol provides intermsof marketing, waste control,productquality,productavailability,andotherfactorsare considered-- thenrecirculating systems become much more atactive. Thus, thistextis designedprimarilyforrecirculatingsystems,which theauthors feel willbethesystemsof choiceformostnewaquacultureventures. The infom1ationprovided in thistext does, however, also apply toopen,semiclosed, and closed systems. Theobjectives of this text arethe practical application of aquacultural engineeringandhowtodesig,constuct,andmanageanaquatic productionsystem.Itprovidesthereaderwithessentialinforation necessarytogetstartedinaquacultureproductionandi t emphasizes practical information rather than in-depth theoretical discussions. It does not provide the readerwithinformation on genetics,basic biology, marketing, andalloftheotherareasimportanttodevelopmentofasuccessful aquaculture operation. Many of these topics arctouched onin the text, but iii arepresentedonlyin sufficient detailtoallowthe reader tounderstanthe relationshipofeachoftheseaspectstoproductinoffish.There _Isn_o attempt to present in-depth discussions of thesetoptcs.Ratherthe object IS toprovidesuficient information sothe reader can:1) look at asystem and makeagood judgmentastohowwellthesystemswiloperate,2)work withasystemsdesignertodevelopanaquaticprodutiOnsystemofyour own,and3)knowwhattolookforwhenshoppmgforaquacultural production systems.__ Theauthors of this textcombinedhave over50yearsof expencncem aquaculturalengineering. MichaclB.Timmons,Ph.D.Dr.Timmons receivedhis B.S. in Agricultural Engineering fromtheOhioStateUniversity,hisM.S.in Agricultural Engineering from the University ofHawaii,andhisPh.D.fromCornll University.Dr.Timmonshasworkedm aquaculturalengineeringfor25yearsaa researcherteacherandextensionspcciahst. Hehaspuilished.. idelyandhasservedasprimat? editoronmany fthe Aquacultural Engineering Society meeting proceedmgs and forth sene of bi-annualmeetingssponsoredbyVirginiaTechonWaterRcctrulat10n Systems.Hewasoneofthefoundersoft1AuacultralEnmeenng Society and hasserved in severalofcerposttlons mcludmg Pres1det.Dr. TimmonswasaJ. ThomasClarkProfessorshipofEntrepreneurs_lup _and PersonalEnterprise(1999-2006)at Cornell Univrsitywherehe_ 1` stlla professor in the Department of Biological and Envtr?nmental Englll_eennDr. Timmons has been a principal investor (he put bt hous on th lm!) 1_n the design, construction, and operation of a commercta_l rectrcultmg ti_laptl farm (-500 tons per yearof produt_ion) an+thus povtdes the vtcwpomt of a commercial aquaculturist in addthon to hts expenence as a.researcher and extensionspecialist. JamesM.Ebeling,Ph.D.Dr.EbelinghasaB.S. and M.S.inphysics from Albion Colleg inA_lbio, Michiganandashg S Umvers1tym Pullman, Washington, respectively. He has a s_ccond M.S.in agriculturalengineeringfromWashmgton StateUniversityandhasthreeyearsoffo trainingattheUniversityofCali_fornia Davts n aquaculturalengineering.HeobtamedhtsPh.D.m jy Foreword 1OO_1CB Hc5OUCc5 LD_1HccIH_ OD \hc DVc5Ij 1 LOc_c 1BIK 3| U h DO mBHG. ,-JBn W cc c WOKcG OH \Dc K1HcUC5 O D1O11IcI5OQcIBIH_OD BQUBCUlUJ85j5IcD5.1H1OVcHDc2006JB1 1 lDD . . Dc5WB55c cCIcUB5 B U I_ I hcHOI hQcC\BH5I5 LBDU1G8Ic (LOUDC 1O 1HIcDB J1XCDBD_cOhCDOI5 B5D1H_IOH LL}I1OHd1I. 1Dc1L_ DB5 Dccu 1HVOVcG 1H BQUBCUIUJc O OVcI 25 G D1I U 20jcBI5 BH B5CU UIc OVcI 5QcC\c5 O1 115H.1c ScDI IDIcc jcBI5 BI IDc 1H D U

. BICU lUIcc5cBIC BH IBHH_ LcHIcI 1DVc51Ij O G. BWB 85 B Ic5c8JCHCOO HBI

OI BHG ODjcBI B5 QIOjcCI DBHB_c OI Ic Gc5 BCOD5IIUCIOH O1 IDct5DBOBIIDc1OID LBO1HB hI8Ic. LHG1D 1f HVcIS1I} c H_ B 5O 5QcDI 1Vc jcBI5 B5 B Ic5c8CD BHG cXIcH5 1KIOD B55OCIBIc BI IDc\ cIOH !c5cBICH BuU XIcH51OD LcHIcI \DO hI8Ic L 1H..- DVcI51Ij 1KcIOD1WHcIcDcWB5IC5QOH51DcO!Gc51 COD5IIUCI1OH G :IH 1 .- BD DBHuHDCcO1c BQUBCU IUIc 1BC1lC5 BHG 1O! DB1DIB1H1D_ IDc 115H B 1 L I 1. .5 Wc B5 I \HccH cI QUdCUIUIc XIcD5IOH 1OgIBD 1c 5QcHI 1 1 I r. SIXjcI5 I IDccS WBIc D5II\U!C B5 Bu 1HVIOcDIB HcScBCD 1r K.

D .H_Hcc WO! H_ HB5\C CU BQQHcU Ic5cBICD B5 Wc B5 IDc BQQ1CBI1OD O DO ! I. .H\ O1H_ 8DUCOHQ) cI COHUO IO D\OO_CB BDU BQUBIC cCO5j5IcD5 L 1D I.C t G. I. c H_ IS UDcu Y DQ Ojc B5 B Hc5cBICD 1D_1Dcc Dj PQUBCuIUIc s5IcD5cCHDOO_c51L,1cW\!cBD51P.1 [email protected] 504-837-5575. 1 I5.CODPU_U5\ 1,/!U^ACKO\VLEDGEMENTS HcDOOK BUIDOI5WOUG11KcIOcXQIc55IDc1I51DCcIcBQQIcC1BI1ODIOLI.TIcU HCBIOH WDODB5 DccD 1DVOVcGJHBQUBCUlU8cD_1HccI1H_1OIOVcI38jcB!5. 1ICU UcVcOQcG IHc 11!SI BQUBCUIU!B cH_1LccI1D_ CUII1CUUH 1DIDc1.h.,WH1CD WB5O11cIcUuIIDC1L1Vc!51IjO8[!BDU,BDGUIDOIcG IDc1ISI BQUBCUIUI cu_1uccI1D_ IcXIDOOK /QUBCUIUIB 1D_1DccIJH_ JOHD1cj BHU hOH5 1cW `OIK OI1_1D cU1I1OD (1977).IGUIc5 O1 IH5CUIIJCUUD B!c OCBIcG IDIOu_DOUI IDc .h. BHU 1H HBHj 1DIcOI1ODBOCBI1OD5. 1c DB5 QuD15DcU WUcj QIOUUC1H_ OVcI 2008II1Cc5 BuU IDIccDOOKS.1cW85OHcO \Dc1OUHU1D_DcDDcI5OBHGDB55cIVcUB5QIc51UcHIO1 IDc PQUBCUIUB 1D_1HccI1H_ hOCcIj. 1c 5 CUIcDIj cHQOjcG B51IO1cS5OIBDU LhB1IDBD,LcQBIIHcHI O1OO_1CBHc5OUICc51D_1HccIH_1L1VcIS1Ij O1 B[BDU, LOc_c 1BIK BI_BDG. c W1 BWBj5 DccX\IcHcj _IBIc1U\ 1OI B IDcDcQ1!cU DB5 _1VcDU5 OVcI IDcjcBISBHU1 uH1S 5515IBDCcBHU SUQQOI!1D CIcI1D_ IH15 ucWIcXI.cWOUU BSO1KcIOQmI1IUBIjlDBuKI.JOc)DKJDS,11IcCIOIBDGIDc LODScII1OD 1UDU5 1Ic5DWBIcI 1DSIJIUIc {hDcQHcIU5IOWD N) WDO5UQQOIIcU IHc GcVcOQHcDI LGWI1I1D_ O1 IDc cBcI DOOK !cI1IIUI1D_PQUBCUIUc hj5IcH5 {QuD15DcU 1D 2002)8DG WHO cO-5QOD5OcG IDcLODc-1CSDWBIcI!u5I1IUIchDOII LOUI5c!IOD 1999, WDCD1D5I1_BIcUIDcWI1I1H_ O1 IDc 5I IcXI (Wc _OI I1cG O1 QI1HI1H_ 5O DBHjDBDGOuI5 5O WcWIOIc IDcDOOK 1D5IcBU)

Dc 5I IcXIWB5 11HBHC1Bj5UQQOIIcU1D QBI DjIDc1OIIDcB5IcO1 Hc_OuB 1QUBCUIUIC LCDIcI BHU CODIHUc5 IO U15II1DUIcIDc DOOK. P5O IO IHc H11h {IU1| Hc5OUICc5, 1_I1Cu1D0c BDG1Lg1DCCI1u_ hcIV1Cc5, B 1BDU !I0D\ \U\!CBCD QIO_IBD, IDBCB 1`, 5cCWWW.1!1h.OI@1O!BCODQcIc15IO1BVBJBDcQUDJCBI1OH5BLUIc5OUICc1BICJ15)WHO_C c0IhcMCO5OHCHBIcI1B5QIcV1OU5jQUD\5JcU1D1!11h-LD_1HccI1u_ PSQcCI5 O1 1HIcHS\Vc PQUBCUIU!c.c OWc B UccQ UcDI O1_IBI1IUGc IO 1I. HBu 11cGIBD1IB(1IO1c55OI1cQBIIHcDI O1 1O1O_1CB BDG1_!1CUIUIB 1D_1DCIJD_ 1H1VcI51IjO1LB11OO11B LBV5 LP 95616 1.h.1. QDOHc 530-752-2780, [email protected]) WDO CBIc1uj cG1IcU IDc cHI1Ic IcXI,ChBQIcIDjCDBQ\cI(ID15 WB5 IO Dc BDc IOIIBD5BIcIDccHIIcIcXI 1DIO hQBD15DCU!IcHIj BVB1BDc OD WWW.I-B-V.ucI) BDU HBUcHBHj IDOu_DI!\5U__cSI1Ou5 BDG COIIcCIcU HDj H1SIBKc5 WcDBG OVcI-OOKcG DBDKjOU HBU\''PHU\DcDM. LI\KOgBCHC {Hj IcCcHI _IBUUBIc 5\UUcD\] U\UB !L IcXI cG\I\H_ BuCCOuVcISIOHO1 QIcV1OU5 11c5 1uIO CBDcI 1cUj1OJ1! !OI IHc QI1uIc!. DBHK jOU1I1K!11DjWcWOUG 1KcIOcXQIc55 OuI lJBuK5IO IDc 5cVcIBIcV1cWcITO1IDc J5I IcXI IDBIDBGc IDcDOOKBS QIBCIJCBBDU COHQcIcB5 QO551Dc.\U!IDDK5 _O IO cBCD O1 !DCH.viAcknowledgements JohnEwartExtension Donald WcbstcrExtension MichaclIannelloIndustr y JerryReddenIndustry GlennSnappandIndustry TerryMcCarthy ThomasLosordoResearch GordonDurantGoverment William FoulkrodSecondary Education Aquaculture ExtensionSpecialist, DelawareSeaGrantMarine AdvisoryService,Graduate CollegeofMarineStudies, Universityof Delaware. MarineScienceEducator, University ofMaryland CooperativeExtension General Manager,Fingerlakes Aquaculture,Groton, NY Director, WorcesterCounty EconomicDevelopment Offce, SnowHill, MD 21863 E-mail:[email protected] PastManager, AquaMar, Pocomoke, MD Owners, WaterManagement Technologies, BatonRouge, LA Professor, NorthCarolinaState University FishCultureCoordinator-Technical Development, Fish CultureSection, Fish andWildlifeBranch,Ontario MinistryofNaturalResources Teacher, SecondaryEducation, Syracuse, NY vu We would also liketothankseveral individuals who made contributions to thebook, specifically: Chapter4CultureUnits: Dr.StevenT.Summerfelt.Director,AquacultureSystems ResearchThe ConservationFundsFreshwater Institute,1098 TurerRad, Shepherdstown,WV 25443; 304-876-2815 ph; 304-870-2208 fax; E-mail [email protected] Chapter5Solids Capture: Dr.Steven3. SummerfeltandDr.BrianVinci.TheConservationFundsFreshwaterInstitute,1098Turer Road,Shepherdstown, WV25443; 304-876-2815ph; 304-870-2208 m,[email protected]@freshwaterinstitute.org Chapter 9 Denitrifcation: Dr.Jaap van Rijn.Head,DepartmentofAnimalSciences,TheRobertH. SmithFacullyof Agricultre,FoodandEnvironment, The HebrewUniversityofJerusalem, P.O. Box12, Rehovot 76100, Israel.voice: 972-8-9489302,E-mail:[email protected] Chapter1 1Ozonation and UV-Irradiation: Dr. Helge Liltved. ResearchManager, Environmental Technology; NorwegianInstitutefor WaterResearch,BranchOfficeSouth, Televeien3,N-4879Grimstad,Norway;Interet http://www.niva.no;Phone:+479 1576029;E-mail: [email protected] Dr.StevenT.Summerfelt.Director,AquacultureSystems Research,TheConservationFundsFreshwaterInstitute,1 098 Turner Road,Shepherdstown, WV 25443;304-876-2815 ph; 304-870-2208fax;E-mail:[email protected] Chapter15SystemManagement andOperations: Mr. Don Webster. MarineScienceEducator, SeaGrant Extension Program,UniversityofMarylandCooperativeExtension,WyeResearch& EducationCenter,PO Box169,QueenstownMD 21658; Phone: 410-827-5377 ext127; E-mail:[email protected] Dr. J0c M. Regenstein. Professor,Departmentof FoodScience, Corell University,Ilhaca,NY 14853; E-mail: [email protected] N11 Acknowledgements Chapter16 Fish HealthManagement: Dr._ JulieBebak-Williams(VMD,PhD).VeterinaryMedical OfiCer, USDA ARS, AAHRU, 990WireRd., Aubur,AL 36832; phonePH:334-887-3741;E-mail: [email protected] Dr . Alicia C. Noble, Consulting Veterinarian, Freshwater Institute, Shepherdstown,WV,USA;E-mail: [email protected]. Dr.PaulR.Bowser.FishPathologistandProfessorof Aquatic AnimalMedicine,CollegeofVeterinaryMedicineCornell University.Dr.Bowseris alsooneof theprojectleadrs of theAquaticAnimal Health Program at CorellUniversity: AquaticAnimal HealthProgram:htt./ /web.vet. corell.edu/ubl ic/FishDisease/ AquaticProgAQUA VETProgram: http://www.aquavetmed.info/Phone 607-253-4029;E-mail: [email protected] Mr. _G_reg Wooster. ResearchTechnician, Collegeof Veterinary Med1cme, CorellUniversity, Ithaca,NY14853;phone 607-253-4028;E-mail:[email protected] Chapter18FishNutritionandFeeding: Dr. H. George Ketola. Research Physiologist, Tunison Laboratory of AquaticScience, USGS, Great Lakes ScienceCenterCortland NYandAdjunctAssistantProfessor,Departmentf NaturaiResources, CorellUniversity,Ithaca,NY Dr.Paul D. Maugle. P.D.M.andAssociates,NorichCT Chapter19Aquaponics: Dr. James Rakocy. University of the Virgin Islands, AgriculturalExperimentStation.K, Box10000.Kingshill,St.Croix,VI00850.E-mail: [email protected] Appendix:Softwareand Computing: Ms.RosaAguirre,Aquacul ture Consultant.SacramentaCA.Email:[email protected] I7Theoriginalversionofthispublicationwassupportedby theCooperativeStateResearch,Education,andExtensionService (CSREES),U.S.Depattmentof Agriculture,underAgreement No.97-38500-4641,awardedtotheNortheasterRegionalAquaculture Center (NRAC).NRAC was locatedatthe University of Massachusetts Dartmouth at that time,but is currentlylocated at theUniversityofMaryland College Park,Maryland. Any opinions,findings, conclusions, orrecommendations expressed in this publication arc those ofthe authors and do not necessarily reflect the views ofthe U.S.Departmentof Agriculture, theNortheastern RegionalAquacultreCcntcr, or theUniversityofMaryland. 7Acknowledgement TABLEOFCONTENTS Foreword................................................................................................. i Ackno\ledgcmcnts .............................................. ......................................^Chapter1:Introduction to Recirculating Aquaculturc Technology 1.0Background................. . ...... .............................. ....................... ) 1.1TheOptimist icView ...............................................................2 1.2RecirculatingAquacultureSystems(RAS) .............................2 1.3RASAdvantages ......... ............................................................1.4WorldMarketNeeds............ ................................................. 10 1.5MarketDynamics . . . . ................ ..............................................11 1.6Overviewof RecirculatingAquacultureSystems (RAS) ... ...13 1. 7CanRAS Compete ....... ......................................... ................15 1.8IsAquacultureFor You ......................................................... 22 1.9SomeQuick Case Histories ...................................................23 1.10HistoryLesson on Failures .......... .......... ... .............................24 1.11Interact ions BetweenObjectives,Resources, Business Strategy, andDesign........................................... ...................26 1.12Tem1inologyand nomcnclature ............................................. 28 1.13Websitesfor Reference ..........................................................30 1.14Summaryand the Comell ShortCourse .... ........................... .35 1.15Refcrences ............................ .................................................37 Chapter 2:Water Quality 2.0Introduction..... ................. ............. ........................................ 39 2.1PhysicalProperties ................................................................40 2.2WaterQuantityRequirements...............................................42 2.3WaterSources...................................... ..................................44 2.4WaterQualityStandards................................. .......... .... ........ .47 2.5WaterQualityParameters ....... ...... ...................... .. . . . . . .. . . ........50 2.6Mcasurerent s .......... .. . .. ............ ............................................. 66 xi xii Table of Contents Chapter 3:Mass Balances, Loading Ratesand Fish Growth 3.0Introduction ........................................................................... 79 3.1ProductionTerms .................................................................. 87 3.2Water QualityDesignTargets ...............................................88 3.3Fish Growth ....................................................... .................... 95 3.4Design Exainples ................................................................. lOI 3.5References ........................................................................... 1 J 5 Chapter 4:Culture Units 4.0Introduction .........................................................................119 4.1CultureTanks ......................................................................l20 4.2Stocking Density ................................................................. 123 4.3Design Examples .................................................................127 4.4CultureTank Engineering ................................................... 129 4.5Tank Water Vclocitics ......................................................... l30 4.6RoundTans ........................................................................ l34 4.7Corcll Dual-DrainDesign.................................................. l44 4.8Raccways ..................... . ................... ....................................15l 4.9CarryingCapacityIssues .....................................................163 4.10StockManagementIsses................................................... 165 4.11ScaleIssues .......................................................................... 166 4.12MechanismsTo RemoveDead Fish ....................................167 4.13References ........................................................................... 170 Chapter 5:Solids Capture 5.0Overview ............................................................................. 177 5.1SolidsBalance ..................................................................... 180 5.2Basic Design Parameters for Round Tanks .........................182 5.3Solids Generation ......... .................................. ..................... 183 5.4TSSPhysical Characteristics ............................................... l83 5.5RemovalMechanisms ........................................... .............. 185 5.6Design Example-Solids Capture ....................................... 224 5.7References......................................... ..................................234 Tableof Contents Chapter 6:Waste Managemnt Disposal 6.0Introduction ......................................................................... 245 6.1EPA EffluentLimitationGuidelines - 2004 ........................ 247 6.2Waste Management .............................................................250 6.3Waste Characteristics .......................................................... 251 6.4WasteManagementOverview ............................................ 253 6.5Storage,Thickening,AndStabilization ...............................253 6.6Utilization/Disposal ............................................................. 276 6.7DesignExample-GeoBags . . .............................................. 279 6.8References ........................................................................... 283 Chapter 7:Bioflltration 7.0Introduction ...................................... ...................................293 7. LNitrifcation(AutotrophicBacteria) ....................................293 7.2Nitrifcation(Microbial Floc) .............................................. 300 7.3ImpactofWater Quality Factorson Nitrifcation............... 303 7.4Bioflters ..............................................................................309 7.5References ........................................................................... 332 Chapter : Biofllter Design 8.0Introduction ................................. . . . . ................... . . . .............. 337 8.1Generalized EngineeringConsiderations ............................ 338 8.2Deign Parameters: bdyou start?............................. 340 8.3Design Example:Biofltration............................................. 347 8.4DesignExample:Trickling Tower ...................................... 348 8.5DesignExample:RBC ........................................................353 8.6Design Example-FloatingBeadBioflter..........................354 8.7BasicDesign Concepts:Fluidized-BedSandBioflter.. . . . .. 358 8.8DesignExample:MicrobeadBioflter. ................................ 378 8.9Design Example:MovingBedBioReactor ......................... 380 8.10References ........................................................................... 382 xiii xivTableof Contents Chapter 9:Denitrification 9.0Introduction ...... .......... .........................................................387 9. 1Background... ......................................................................388 9. 2Unit ProcessesforDenitrification .......................................392 9. 3FactorsControllingDenitrification.....................................396 9.4Effect ofDenitrificationon Alkalinit ........................ ........400 9.5Effect of Denitrification onPhosphate Removal.................402 9.6Effluent versus On-line Treatment ......................................403 9.7 Types ofReactors .................. ............................................. .404 9.8MBBR ProcessesforDenitrifcation ...................................407 9.9DesignofDenitrifcationReactors ................... ...................410 9.10Design Example................................ ................................. .412 9. 1 1 References ..................... ......................................................41 7 Chapter10:GasTransfer 10.0Introduction . ........................................................................425 10. 1Dissolved Gases-Fundamentals ....................................... .426 10.2Gas Transfer ..................... ...................................................436 l0.3Gas TransferOptious................. ......................................... . 441 10.4Degassing:CarbonDioxide(Nitrogen) ...............................456 10.5Design Example-Aeration/Oxygenation .......................... .466 10.6References ... .................. ...... ....... .........................................467 Chapter11:OzontionandUV-Irradiation 11.0Introduction ....... ......... ......... .. ....... ... .. ..... ................... ..........471 11.1UV Irradiation .....................................................................471 1 1 .2Ozonation. . ........... . . ....... ........... .. ................................ ........ .474 11.3Factor InfluencingDisinfection Effeciency........................489 11.4AquacultureWastewaterCharacterization ..................... .... .493 11.5Inactivation OfFish Pathogens............................. ..............494 1 1 .6Other MethodsofDisinfection ............................................501 1l.7DesignExampleInfluentTreatment.......................... ..... ....505 1 1 .8Conclusions . . . . . . ....................... . . .. ........................................508 1 1 .9References...... .................... .. . . . . ........................................... 509 Table ofContents Chapter 12:Fluid Mechanics and Pumps 12.0FluidMechanics .................. ................................................5 17 12. 1Frictional Losses....................... ........................... ................ 521 12. 2FittingLosses............................. . . . ......................................526 12.3DesignExample:Head Loss. ........... ...................... .............533 12.4Measurement ofFiow .................. . . ... .. .................................536 12.5Pumpsand Pumping .... .............. ........................................ ..544 12.6Airlift Pumps .......... ..... .. .......................... ............... .............553 12.7Design Example- Circulation .............................. ...............556 12. 8References .. ... ......................................................................56 1 Chapter 13:System Monitoring and Control 13.0Introduction ......................... .......... .......................... ....... .....563 13.1 Parameters to Monitor ................ ............ ............... ....... .......564 13.2MonitoringSensorsand EquipmentOptions .......................570 13.3Automatic PhoneDialers.....................................................576 13.4BackupsSystemsarenot an Option! ............. ......................578 13.5ComputerBasedSystems ....... ......... . ......... .. .......... ..............581 13.6Design Example-Monitoring .... . . . .. ...................................584 1 3.7System Designand Maintenance .................. ................. ......585 13.8Construction Hints ...............................................................586 Chapter 14:Building EnvironmentalControl 14.0Introduction ..... .................... .... ..... . . ............ .... ..................... 589 14 . 1 Heat Transfer .................. .................................................. ...59 1 14.2Air QualityControl .............................................................594 14.3Building Considerations ......................................................599 Chapter 15:System Management andOperations 15.0IntroductionandSiteselection ............................................ 603 15.1BackupSystems ................................. . . .. ............... ..............604 15. 2Labomto)1am!mcs ............. .. .. ...... ..................................... 6 1 115.3QuarantineFacilities .... ... . . .. ....................... ...................... ....61 3 15.4WasteManagement ................ :............................................ 61 3 7Y71 Table of Contnt15. 5Storage-Feedand Chemicals............................................614 15. 6Fish ProductHandling .........................................................61 5 15.7TransportingLive Fish ........................................................617 15.8PurgingandOf-Flavor .......................................................640 15.9Post Harvest Handling .........................................................641 15. 10FeedStorage ........................................................................643 1 5. 1 1 Handling Fish ......................................................................645 1 5. 1 2Labor. . . . .. . .. .......................................................................... 646 1 5. 1 3Acccss .. ................................................................................ 647 15. 14Operations...........................................................................647 1 5. 1 5MiscellaneousOperations................................................... 655 15. 16Record KeepingandMaintenance ............... ........................656 15. 17Howt Collect, Analyze&Interpret Data ..... . ....................661 1 5. 1 8CareandUseof Laboratory Animals ..................................662 15.19References ...........................................................................662 Chapter 1: 1ishHealth Management 16.0Biosecurity ........................................................................... 663 16.1Practices to ReducetheRisk ofPathogenIntroduction ......665 16.2Practices toReduce PathogenSpread .................................. 671 16.3ReducingSusceptibilitytoInfectionand Disease ............... 674 16.4MonitoringandSurveillance ...................................... . .. ......675 16.5Biosecurity Check ...............................................................679 16.6Diagnosis ................................................. . .. . .. ...................... 683 16.7Treatment. ............................................................................ 692 16.8Aquaculture Chemotherapeutics......................................... 696 16.9Treatment Calculations ........................ ................................ 701 16. 10Fish DiseaseDiagnosticServices ........................................ 705 16. 1 1 References ............. .............................................................. 706 Chapter17:Economic RealitiesandManagementIssues 17.0Introduction ......... .. .............................................................. 707 17. 1CaseHistoryof FingerlakesAquaculture(FLA) LLC........ 707 17. 2LessonsLeared ..................................................................709 Table ofContents 17.3Investment Choices .............................................................713 17.4SpeciesSelection ................................................................. 714 17.5Competitivenessof RAS ..................................................... 715 17.6Infastructure&Capitalization ............................................ 716 17.7Scale Effectsand Risk .........................................................725 17. 8Labor Requirements ....................... . ....... .................. ........... 728 17.9Predicted CostsofProduction ............................................. 729 17. 10Predicted CostsofRAS ProducedTilapia........................... 735 1 7. 1 1 Economic Comparison to Broilersand Catfsh ................... 739 17. 12References ........................................................................... 742 ChapterI: Fish Nutrition andFeeds 18.0Introduction ............... .. .................... ... . .......... . .. . . .. ............... 743 1 8. 1 FeedManagement .......................... .....................................743 18.2Selection ............................................ . ................................. 745 18.3GrowthPerformance. . ..................... ................. . .................. 747 18.4Feed Quality ........................................................................ 748 18.5Physical Characteristics ............ .................... ....................... 749 18.6Practical Feed Formulation ................ ............................... . ..751 18.7Important Aspects Of Aquaculture Feeds ...........................758 18.8PhysiologicalRelationships . ........................... . . .. . . .. ............. 762 18. 9Water ChemistryAndDietaryNeeds ..................................765 18. 10FunctionalAna mDigetion ............................ .. .. .......767 1 8. 1 1 Minerals .......... ... ....... ......................... . ........... . . .. .................. 770 18. 12Vitamins .............................................................................. 773 18. 13Feedstuf Selection ............. . . . . .. ........................................... 782 18. 14Feedstuff Digestibility ......... . .... . ... . . . .. ... .......... ..................... 791 18. 15Pelleted,Expandedand Extruded Feeds ............................. 796 18. 16Floating Feeds . . ....... .. . . . .. ... . . . . .. . . . ............................... .... ...... 799 18. 17Summary ............................................................... .............. 80I 1 8. 1 8Bctcrcuccs.......... -------............................................... 80 1 xvii xviiiTable of Contnts Chapter19:Aquaponics:IntegratingFishandPlantCulture 19.0Introduction .........................................................................807 19. 1SystemDesign ..................................................................... 810 19.2Fish Production .................................................................... 815 19.3Solids .......................... ......................................................... 821 19.4Biofltration ........................................................ .. .. . .. . . . .. . . .. . 826 19.5Hydroponic Subsystems ...................................................... 830 1 9.6Sump ............................ ........................................................ 834 19.7Construction Materials ........................................................ 835 19.8 Component Ratios . . . . .. .. ....................................................... 836 19.9Plant Growth Requirements.......................... . . .. .. . . . .. . .. .. . .. .. .839 1 9. 10Nutrient Dynamics.............................................................. 841 19. 1 1 Vegetable Selection .............................................................846 19.12CropProduction Systems .................................................... 850 19. 13Pest and Disease Control .. ...................................................850 19.14Approaches to System Design ............ .. . .. .. . .. . . .. . . . .. .. . . . . .. .. .. . .852 19. 15Economics . . .. . . . .................................................................... 858 19. 16Prospects For The Future ..................................................... 860 19. 17References ...................... .................................................... 861 Appendix Appendix Directory . . .. . . .. . .. ............................................................... 865 1oclesA-1 A-2 A-3 A-4 A-5 A-6 A-7 Conversion actors For Conunonly Used Termsin Aquaculture ..................................................... 867 Fish Health Conversion Factors ............................................... 874 Broad List of Conversion Factors:Inch:Pound (IP) toSystem Interational(SI) ......................................................................875 PhysicalProperties of Water ................................................... 877 Percentageof Free Ammonia (as NI-h)in Freshwater at Varying pHand Water Temperatures .................................................... 878 Dissolved Oxygen (mg 02per Liter, ppm) atSaturationin Freshwater,BrackishWater, and Seawater at Different Temperatures ........................................................................... 879 HardnessConversion toOtherUnitsof Measure .................... 880 Table of Contents A-8Standard U.S.AtmosphericPressureat Different Altitudes .... 880 A-9AlkalinitySupplement Properties ........... ................................. 881 A-10Opening SizesofU.S.Sieve SeriesDesignation Number. ...... 882 A-llDryAir Components ............................................................... 882 A-12Solubilityof Four Major Gases in Water................................. 882 A-13Maximumand Minimum MonthlyAverageOutside Temperatures for SelectedUSA Locations in Degrees .......883 A-14Unit AreaThermalResistance's (R-Values) ofTyical Building Construction and Insulation Materials....................................884 A-15Allowable Concentrations of Carbon Dioxide at Standard TemperatureandPressuretothe Nearest25ppm.................. 885 A-16Valve Basics and Selection Tips . . . .......................................... 886 A-17Plastic Propertiesfor Various Types of Pipes .........................887 A-18Size and Propertiesof PVC Pipe Schedule 40 and 80 ............. 888 A-19PVC Pipe Friction Chart for Pipe and Length Loss for Schedule 40 .............................................................................................889 A-20PVC Pipe Friction Chart for Pipe and Length Lss forSchedule 80 ................................................ ............................................. 890 A-21Tank VolumesforVariousDepths and Diameters................. 891 A-22Temperature Equivalents Between Celsius and Fahrenheit .... 892 A-23Electrical Measurements .......................................................... 893 A-24Maximumlength of wirein feet for 2%maximumvoltagedrop. If voltage dropis greater than 2%, effciency of the equipment in thecircuit is severelydecreased and thelife of the equipment will be decreased ..................................... ................................ 894 A-25Current caringcapacity of hard-usageflexible cords(TypeS, ST,SO,STO,SJ,SJT,SJO,SJTO) ......................................... 895 A-26Full load currents inamperesforsingle phase altrating-current notors ...................................................................................... 895 A-27Full load currentsin amperesfor three phase squirrelcageand wound rotor motors................................................................. 895 A-28Recommended pipe sizes for standard air (0.075 lbs/f3)for three pipe air velocities ........................... ................................. 896 A-29Area Under the NormalDistribution Curve ............................ 897 A-30Percentage Points of the Student's t-Distribution.................... 899 xix 77Table ofContentsSupplementalJnormo!onDeterminingStatisticalSignifcance ............................................... 900 Factors toInvestigatePriortoSite Selection .................................. 905 Calculating Volumeof RoundTanks.............................................906 LaboratorySafetyProcedures ......................................................... 908 Information ResourcesforAquaculture .......................................... 915 Brief Description of Sofware . . . . . ................................................... 922 Glossary Definition o_fTermsUsedin Aquaculture ......................................925 Summay _Listof Symbols..............................................................929 AbbreviatiOns/nits ........................................................................ 935 1d\. .. . . . . . .. .. .........................................................................................939

CHAPTER1INTRODUCTION TO RECIRCULATING AQUACULTUE TECHNOLOGY 1.0BACKGROUND RecirculatingAquaculture Systems(RS)have evolvedoverthe pastthirty yearsthroughresearch anddevelopmentbyuniversityand commercialresearch and demonstrationfacilities andthrough continuous refinementof eachsubsystemprocess.Thetwopr:m authors andtheother contributors tothistext havebeen atthe forefont of thisactivity. ThefocusofourworkhasbeenondevelopingRAStatcanproducefood fsh onaneconomicallycompetitivebasis.Butinaddition,the contentof this bookhasgenerallyapplicabletoallforms of aquaculture. The USisknownfor beingaleaderinagricultureand agricultureis the leadingeconomicbusinesssectorintheeconomyofseveralstates. However,overthepastseveraldecades,thenumberoffarms has continuedtoshrinkasindividualfnns becomelarger andlarger and animalproductivitycontinuestoincrease.Icr example,NewYorkhad 5,620dairyfarms in2008,compared to 8,700 dairyfms in2001,and 13,000daityfarms in1988, whilethe totalnumber of cowsbeingmilked onlydecreasedabout22%(from800,000 to 626,000 cows; NYhas6.7 of thetotalUScows).Aquaculture isstil!seenasapossiblealterative agricultural enterprise intheUSA,butremainsasbeingasignifcant challengetodo s in W proftblemanner. Webelievethatindoor aquaculturein particularoffers anopportunit for foodproductioninthe USA,butmustbeapproachedwithcautionandby theprospective aquacultmalistdoingtheir"homework" frst.Thisbookcanbean excellentstartingpointfor thoseconsideringcommercialaquaculture or any for ofaquaculture,evenatthehobbylevel.ChapterI 7isanindepth discussionontheeconomicsofaquaculture andsomepersonal experiencesfromthe authors.Wehopeyouenjoy readingthe restof the book. In thischapter, we'llreview somebasicbackgroundinaquaculture, somemarketreafities,and ft marketopportunities.We'llconclude withsomestandarddefnitionsandwebsitesfor further information. Finally,thisbook isanupdated ver.sion of theoriginaltextwewrote severalyears ago(Til1 ons,etal.,2002).The"YellowBook"hasbeen extensivelyrewrittentoreflect thelatestinformation availablefrom2 ChapterIIntruction researchuniversitiesandcommercialequipmentsuppliers.Inaddition, tvonewchaptersonbiofltrationanddenitrificationhavebeenadded andaconsistentdesignexampleforanOmegaFishCommercial ProductionSystem.Some chapters remainlargely thesame, for example hapter3MassBalances,Loading Rates, andFishGrowth.Somethings JUSt never change! 1.1THEOPTIMISTIC VIEW PeterF.Dmcker,aworldrecognizedbusinessleaderandeconomic fo!ecaster,predictsthataquaculture -thefarmingof nquaticorganismswillbeoneofthreemajoreconomicopportunitiesinthenew millennium.Everyoneeverywhereiseithereatingmorefshorthinking they should!Changesin dietary patters and thefact that the US Surgeon Generalnowrecommendseatingfshasasignifcant proteinsourcefor thedietarestrongindicatorsthatopportunitiesinaquaculturewill continue to expand.TheUScatfishindustryisareadyexampleof how fastaquaculturefish marketscan grow;i.e., thismarket grewby100,000 tons (220million lbs) in themid90's.The Chileansalmonindustryhas rownfrom$159 millionindustryin1991to exporting over $1. 7 billion m2005,and now employs53,000 people.The productionof tilapia has beenexponentialin the last severalyears to the point that the US market demandfortilapiahasgonefromessentiallynothingtoimportingthe equ1va!ent of270,000tons(600millionlbs)in year 2005. Webelievethataquacultureisthemostprobableandfeasible solution to providing the seafoodproducts forthis ever increasing market demandandshrinking supplyof product from the oceans. Aquacultureis anenvironmentallyresponsiblealterativetofishing.Itprovidesa consistentandreliablesourceofhighquality,freshseafoodthatis nutritious,safe to eat, and can be reasonably priced. 1.2RECIRCULATINGAQUACULTUR SYSTEMS (RAS) Fisheries products arethelastmass marketed foodbeingsuppliedto consumersby"hunter-gatherers".Thismethodofbringingproductto marketisrapidlybecomingobsolete,andi snolongerabletomeet cunentmarketneeds.Asaresult,aquaculturcisthefastestgrowing segmentofagriculture,andisnowsupplyingoverhalfofallseafood consumed (see Tablel . l ).Note thatwhen the portion of wild catchused foranimalfeedsis removed(33% of total), aquaculture supplied seafood accountsfor45%of the totalsupply. Recirculating AquacultureSystems (RAS)3 Table1.1Contributionsfrom Wild Catch ad Aquaculture (fsheries datafrom theFAOFisheries Global lnfom1ationSystem site, Nu20I0www.fao.orLfiis Million Ton Production1950196019701980199020002007 2020 estimated Wild Catch19.234.763.768.285.996.899.3129.8" Aquaculture0.62.03.57.316.845.755.4103.21 Total19.836.767.275.51 02.7142.5154.7233.0 %from 3%5%5%1 0%16%32%36%44% Aquaculture World Population2.5563.0403.7094.4535.2836.0826.6707.202 (billions) Per Capita Food Fish5.28.01 2. 11 1 .312.915.61 7.017. lc suey,^JN: Approximately 33% of theCapture Fisha converted to fishmeal/oil Assumes1.5% increasein capture fisheries productionper year (Delgadoetal. 2002) 8 Assumes 2.8% increase inaquaculture production per year(Dclgado et al.2002) cAs projectedby Delgado etal.(2002) AQUACULTURSYSTEMS Seafoodis onlyasgood asthe water inwhichitlives.Aquaculturists contol thequalityof the water,sotheseafoodthey producecan befiee of environmentalcontaminants.Consumershavedemonstrated amarked preferenceforcultured/farmedseafoodbecauseiti smoreconsistentin qualityandpresentationandi ttendstohaveamildertastethanwild seafood. Aquaculturesystemscanbeextensive,semi-intensive,orintensive, dependinguponthenumberof organismsgrownpervolumeof water andthewater sourceandsupply.Pondcultureisextensive,cageculture issemi-intensivebutintensivewithinthecage,andRASareintensive systems.Pondandcagesystemsareopen-air,andthereforethereis alwaysariskof airorwater-bornecontaminants.Becausewaterqunlity controlismoredifficultinpondandcagesystems,thenumberof 4Chapter 1Intoductionorganismsthatcanbegowneffectivelyislimited.Int hisbookasnoted by thetitle,wearc concentratingonrecirculatiogaquaculturesystems (RAS).The principlesofRASforthewaterenvironmentcanbe employedinthe open air, but youlose totalcontrolof the environment. Typical Raceway type system Conventionalaquaculturcmethods,suchasoutdoorpondsystems andnetpensystems,arenotsustainableinthe longterm,due to significantenvironmentalissuesandtheirinabilitytoguaranteethe safety c! theirproductsto theccnsumcr. Conversely,indoorfish productionusingRASissustainable,infinitelyexpandable, cnvironmentaJJycompatible,andhastheabilitytoguaranteeboththe safetyandthe qualityof thefsh producedthroughout the year. Outdoorpond(warmwatersystems,e.g.,catfish)andnetpen aquacultmesystems(coolwater,e.g.,salmon)aredisadvantagedby their: Largefootprint requirements Limitedappropriate naturalsites Environmentalissues with respectto the managementof thefish excrement Geographicallimitationsduetotheneedfor aperfect growing climate Vulnerabilityto disease,predators,and natUTaldisastersvia their outdoor uncontrollable environment RecirculatingAquacultureSystems (RAS)5 Typical net-pen aquacultureOutdoorpondandnetpen-basedsystemsaresignificantly disadvantagedwithrespecttothepotentialfordisease,whichcould resultincultureloss.Diseasesinfishsystemsarctransferredbydirect water contactwithdiseasedorganisms.Indoor systems start withpo t able waterand unlessdiseasedfshorfishcarryingdiseasesareintroduced intotheculuresystem,thereisminimalpotentialfordisease introduction.Andif thereisadiseaseevent,effectivetreatmentismuch moremanageabletbanwhatafishcultralistfaces withtraditional outdoor systems. Theoutdoorpondandnetpen-basedsystemsarealsodisadvantaged bytheirinabilitytosupplyaconsistentproductduetodifficulties controllingthegrowingcycles,whichthencreatespeaksandvalleyscisupplyavailabletothemarket.Finally,issuesrelatedtoescapementare of major concer:particularlywithbiotechnologymodifiedspecies.In such cases,RASbecomestheonlyacceptableculturetechniquebecause theanimalscannct escape moor RASandwill,therefore, nothave anyimpact on the naturalpopuiations. 6ChapterIIntroduction Typicalpondaquaculture operation (note leveesin ackground to separate ponds) 1.3RS 1OVA`3AL1SIndoorRSoffers theadvantageofraisingfishinacontrolled environment,permittingcontrolledproductgrowthrates andpredictable harvestingschedules.RSconsereheatandwater throughwater reuse aferreconditioningbybiologicalfiltrationusingbioflters.RSallow effectiveeconomiesof scale,which results inthehighest productionper unitareaandperunitworkerofanyaquaculuresystem.RSare environmentallysustainable;theyuse90-99%lesswaterthan conventionalaquaculturesystems;lessthan1%of thelandarea;and providefor environmentallysafe wastemanagementtreatment.Table1.2providesacomparisonof waterusedper kgof fishproduced.TheRS assumesatilapiaculturesystemwithadensityof100kg/m3,a1% feedingrate,andafeedconversionof1to1andasystemvolume dischargerateof 5%per day.Somecurrentcommercial RSareusing lesswater(2or3%systemdischargeperdayandof coursesomeuse muchmore),higher densitiesandsimilarfeedconversions.RSallow year-roundproductionof consistentvolumesof product,andcomplete climatecontroloftheenvironment.BecauseRScanbesetupto RSAdvantages 7 produce the same volume of fsh every week, week in and week out, they haveacompetitiveadvantageoveroutdoortankandpondsystems, which areseasonal and sporadic in harvest. Table 1.2Wtcr and Land Use Per kg of Production of Aquaculture Productsand a RelativcComparison to u IntensiveRAS Tilapia 1m(RS assumed to discharge 5% ofs@stem volume per da Species and SystemProductionWaterRatioof System's 0.niloticus(ile tilapia) RS produced 0nilolicus (Niletilapia) ponds I punctatus(Channelcatfish) ponds S gairdneri(Rainbowtrout) raccways Panaeidshrimp pond (Taiwan) Intensityrcquired Land or Water Use to RASUse (kga/ y) (Liter/g)LandWater 1,340,000.50 17,40021 ,00077 4203,0003,000-5,000 448 80150,00021 0,00094,200 1 1 ,000-3204,200-1 1 ,00021 ,340 177 "does not account for landusedexternal to uilding space RSdesignedaquaculturesystemsareinfnitelyscalable.Therearc noenvironmentallimitationstothesizeof theintendedfshfarmtobe builtbecausewastestreamsarecontrollableinenvironmentally sustainable ways. RSofrahighdegreeofenvironmentalcontrol.Thisnotonly mitigates the risksof outdoor aquaculturc (natural disaster, pollution, and disease)butalsoallowsfor optimizedspeciesgrowthonayear-round basis.Asimilaroptimizationcanbeobservedinthedomesticpoultry industry,wherecc werebioughtindoorsandthecostof environmentalcontrolwasmorethanrecoveredbyhighergrowthrates, improvedfeedconversion,andmoreeffcientuseoflabor.Thisis demonstratedbythefactthatbroilergrowersproduceI ,000,000kgof chickenperman-yearofeffort.Inadditiontothegrowthadvantages affordedbyRStechnology,thelowenvironmentalimpactofthese 8Chapter1Introduction systemsmeansthattheycanbebuiltclosertotheconsumerand replicated rapidly. Indoor aquacultureisprobablytheonlypotentialmethodthatcould beused toensure a100% safesourceof seafood, freefrom all chemicals and heavy metals.Withincreasing consumer concers about foodsafety, aquacultureproducersusingRAShavean unprecedentedopportunityto meetthedemandsforsafeseafood.Attributesoffresher,safer,and locallyraisedproductarcclearadvantagesfor RASproducedseafood. BecauseRAScanbesetuptoproducethesamevolumeof fishevery week, weekin and week out, these systemshave a competitive marketing advantageoveroutdoor tankandpondsystems,whichareseasonaland subject toenvironmental disaster beyond the controlof the operator. WATER REQUIREMENTS, USE,ANDCONSERVATION Traditionalintensivefshfarmingsystemsusefowingwater resources for twopurposes: totransportoxygen to the fish, and tocarry the waste producedin the system (metabolic by-products andothermaterials)awaysothattheydonotaccumulate in/around the fishIto undesirable levels. More recently,the carrying capacity of a flowing water fsh farmhas alsobecomelimitedbyimpositionofstateorfederaldischarge regulations.Forexample,traditionaltroutculturerequiresrelatively largevolumewaterresourcestoproducefshinasingle-passtankand serial-reuse raceway system. ClearSpringsTroutCompany (Buhl,Idaho),establishedin1966, produced10millionkilogramsof troutin2004,andistheworld's singlelargestproducerofrainbow troutfor humanconsumption (personalcommunication,Randy "HULEOF TI1UM"50 lb production per gal/min of fow per annum (6kg/yr per Lpm) MacMillan,ClearSpringsFoodCompany).AccordingtoMacMillan (2006),ClearSpringsnon-consumptivelyuses22.6m3/s- (360,000 galmin)ofwaterfowfor uptofveserial-reusesthroughconcrete raceways.Theonlyeffluenttreatmentiseitherquiescentzonesettling withintheracewaysorsometimesfll-fowsettlingfollowingthe raceways.Lowphosphorousfeedsareusedtohelpminimizeefluent phosphorusandcomplywithNPDESpermitrequirements.MacMillan also said that dependingonfacilitydesign,theyproduce37to71 lb(17 to 32 kg) per gpm offlowper annum(4.5 to8. 5 kg per Lpm). RS Advantages9 Fortunately,serial-reusesystemsmaynothavetoactuallycapture largepercentagesofwastesolidsfor theiraveragedischargetomeet concentration-basedefuentlimitsonTSS(totalsuspendedsolids),even inIdahowherepermits issuedbyNPDES(NationalPollutionDischarge EliminationSystem-EPApromulgated)limitfshfarm effluentsto monthlyaveragesuspendedsolidsconcentrationof5mg!L(net). Similarly,serial-reuse systems maynot have tocapture large percentages of wastesolids undertypicalfsh productionlevels,i.e.,50lb production peryearper1gal/minor6kg/yrperLpm,becauseasimplemass balanceshowsthatonlyabout5mg/Loftotalsuspendedsolids concentration would be addedto theflow if averaged over the entire day. Also,nutrientlimits(P,K,etc.)arebecomingadischargeissue. However,becauseof thelargewatervolumesusedinsingle-passand serial-reuseproductionsystems,itisnot realistic for farmssuchas Clear Springs TroutCompany toremovenutrientsfrom their efuents (IDEQ, 1998).Therefore,some treatment(ofenusing setling basins)isusedto ensurethatspikesinTSSarenotdischarged,althoughoverallwaste captureefficicncicsmayonlybe25-50%withinserial-reusesystems (Mudrak,1981);thistopicisdiscussedindetailinChapter5Solids Capture. Toabatetheenvironmentalimpactofaquaculture,production practicesandtechnologiesarebeingadoptedtominimizewaste production,conservewater,andconcentatewastesintosmallerflows duringfshculture,thustheheightenedinterestinRAS.As mentioned above,taditional flowing water systems can produce approximately6 kg offishannuallyfor eve1y1Lpmof waterfow.Byreusingorrecycling 80to90%ofthewaterpriortodischarge,partial-reusesystemscan produce much as 4 kg o!Hshannuallyfor everylLpmof make-up waterflow,i.e.,400lboffshannuallyfor everygallonperminuteof waterfow.Andof courseintheextremecasewherea100%RASis employed,theproductionisbaseduponratesofevaporationwhich meansthatseveral100 foldincreases in production perunitof water can be achieved compared tofowthroughproduction. Fullyrecirculatingsystems,becauseof theirextremelylowmakeup water requirements,canreadily capture from96%(Heinenet al.1996) to 100% of the waste produced,depending upon the percentageof make-up waterpassedthrough thesystem.Icomparison,awelloperatedserialreuseracewaysystemcantypicallyachieveoverallwastecapture efficienciesofonly25-50%(Mudrak,1981 ).Additionally,byusing "Cornell-typc"dual-draincircular culture tanksand eitherbeadfltersor microscreenflters,recirculatingsystemscanproduceamuchsmaller andmoreconcentratedwastestream,whichcanbetreatedmore 1 0Chapter 1Intoductioneconomicallyand effciently(Timmonsetal.1998;Summerfeltetal. 2000A;2000BSummerfelt,1996;1999).Thus,partial-reuseandfullyrccirculating systemsoffer keyadvantagesover traditionalfishculturein serial-reuseracewaysystems,including80-100%reducedwater resourcerequirements(respectively)andanoverallwastecapture efciencyof80-100%(respectively).Also,solidsremovalfrom dualdraincirculartanksissorapidandeffectivethatpartial-reuseandfllyrecirculatingsystemscantreat andreturwatertotheculturetankswith

1A.Du

20000 ; 1

13.0%115000\ 2.0%\D-lbo/yrRTC110000 l.O%5000^ OIOW0.0% 0 1960 1965 13JU J9?5 1980 1985 1990 1995 200 2005 20YearFigure1.1Grothof US broilerproductionfrom 1930 to2009inmillionsof poundsreadytocook(RTC) weight (lefordinateaxis)andcompoundedgrowth ratefor preceding years (right ordinate axis).HicksandHolder(200 I)reviewedsalmonproductioncostsfor net penoperationsthatproduceonthe average1. 36 millionkgper cycleof 18months.Salmonfarming continuestoincreaseinscaletofurtherreducecostsof production.Productivityper person for anetpen operationis1 36,000to204,000kgperpersonperyear.Thepresent workloadpernetpenfarm isaboutfveindividualsthatcarefora placementof 500,000smellthatwillberearedtoamarket sizeof 4kg withacullingandmortalitydownto400,000animals.Thistranslates into213tonperpersonperyear.Inaddition,therearenetchanging crewsandd1vers,sothesupportwouldbe about1-2additionalflltime people.Thus,itrequiresamaximumof 7people, whichreducesthenet productivityfor anetpenoperationto 152tonperperson.Thisiswhy thescalei s beingdrivento evenlargerplacementsof smolts,sothat the laborcostperunitofmeatproducedisfurtherreduced.Somesalmon operationsare basicallydoublingthestockingnumberspersiteusing Can RAS Compete 19 almostthesamenumberofpeopleto managethesite,making productivity 450,000 kg/year perfull-time equivalent{worker. Table1.8 Comparison Of ProductionCosts ($/g)forNetPenSalmon (Cunent and Most Efcient Operations),Large Scale RAS Produced Tilapiaand Commercial Broiler Production (Ti lapia And Broiler Figuresarc from Timmons et al., 2002) Cost/kg Efficient TilaiaSalmonSalmonBroilers Costs of Goods Sold (COGS) Direct Labor & Benefts $0. 1 7$0.20 Feed$0.46$1.26 Oxygen $0. 11$0.00 Other Operating Costs S0.04$0.31 Utilities- Lleat $0.22$0.00 Utilities - Electric $0.09$0.00 Fingcrlings $0. 1 8$0.35 Insurance $0.00$0. 1 1Health Treatments $0.00$0.02 COGS ($/kg fish produced) Sl .27$2.25$1.76$0.66 UsingtheHicksand Holder numbers,acomparisonis madein Table 1. 8 among: Large-scaletilapia RAS production Currentmost efcient salmon producers Broiler production Althoughbroilercostsof productionarerelativelylowcomparedto theotherfishproducts,thepercentbreastmeatfrom awholechickenis only15%.Using15%breastmeatyieldand similarotherpricesforpackagingetc,Table1.9summarizestheFOBcostsfor thepremium flesh piecesof ananimalcarcass. 20 Chapter 1Introduction Table 1.9Premium FOB Prices ($/Kg) For Fish Fillets and Broiler Breast BasedUpon Costsof GoodsSold(COGS);AssumesFillet Yield of 3 t% Tilapia, 50% Salmon and15% Broiler Breast Meat Cost $/gEficientTilaEiaSalmonSalmonBroiler COGS ($/kgfishproduced) $1.27$2.25$1.76$0.66 Finance Operations$0.07$0.07$0.07 $0.07 Finance Capital $0.04$0.04$0.04$0.04 Depreciation $0.09$0.07$0.07$0.07 Haresting/ProcessingPackaging$0.55$0.55$0.55$0.55 TotalCost of Production ($/kg) $2.02 $2.97S2.49 $1.39 Cost perkg dressedweight (83% yield) $2.43 $3.58$3.00$1.67 Fillet cost perkg$6.52$5.95$4.98 $9.25 (31% tilaia &50% salmonfilleticlds2 The relatively low percentage yieldfor broiler breast meat has been a distinct disadvantage for the broilerindustry.This hasbeenaddressedby steadilyprogressingto afurther processed product (seeTable1. 1 0).It shouldbe\ surprise to theseafood industry thatmarketing wholefish productshasnofutureif thebroilerindust canbeused asanyguideto consumer preference and asameanstoadd valuetocarcass partsthatare not readilymarketed. Table1.10Product Form(% basis) for Marketing Broiler Products (Source:www.dpichicken.or/fagfacts/) Further YearWhole BirdCut-upProessed 196283152 t96578t 93 197070264 197561 327 19805040 1 0 198529531 719901 85626 19951J5336 200094645200384250 2009l l 41 48 Can RAS Compete21FEED COST ADVANTAGE FOR AQUACULTURE Beingcompetitivelongterm in the commoditymeatmarket will depend to alargedegree on the cost of feed usedto growthe animals and theassociatedefficiency of convertingfeed energy into meatflesh.Both feedpriceingredientsandfeedconversionefciencywillimpactthe ultimatecompetitivenessof a commodity meat.Table1 . 1 1showscurrentingredientprices andcost per Kcalprovided for ration mixes for ahogs, broilers,three typesof tilapiadietsandasalmondiet(Timmons,205). Feedto gainratiosor fg (dryweightoffeed twetweightofammal gain)arcroughly 2.5,2.0,1.2,and1 . 1 for hogs, poult, salmonand tilapia,respectively.Forster (1999)pointsoutthough thatwhen recruitmentisconsidered;feed usedfor maintainingbreeding stock and reproduction,theconversioneffciencyfor broilersincreasesabout25% or afg of 2.5.Thisisalargeadvantagefor fshproductionthatusesa plantbased(lowfshmeal)dietasultimately,thecostsoffeedwill dominatethecostofproduction, sinceallother costinputscanbe reducedbyincreasingscaleandobtainingassociatedproduction effciencies.Sofeedconversioneficiencycoupledwithproductivityper unitareafor indoor RSproducedfsh (low-fshmealfeed) should allowto commandastronglong-tenn advantageinhavingthelowest possibleproduction costs.Productivityfor broilerchickensisaround 76 kgper square meterof buildingspaceper yearand indoorwarm-water fshsystemsusing2.4mdeep tankswillproducearound 290kg per squaremeterof buildingfloor area (assumingtank spaceis40%of foor coverage). Table1. 1 1Relative Cost ofFccd for Various Commodity Animals ComponentCost$/tonHogBroilerTilapia Protein16%24%36% ME of diet, Kcal/kg3,4653,3002,800 Fat (bulk)$5706%6% Cor$14870%59%15% Soy (48%)$33523%30%52% Wheat$17720% Fish Meal(62% Protei n) $15372.5%10% Fish Oil$9812% BlendedIngredient Cost S/1 000 Kca1 .034.04 .080 BlendedIngredient Cost $/ton$215$264$405 Salmon 55% 4,400 20% 50% 28% . 1 39 $ 1 1 1 0 22Chapter 1IntroductionGENETICIMPROVEMENTSIN AQUACULTURE . _ Ifwcnbeanoptimisticprojectionistfordiscussionsakethe om1a_tton. Table1 . 1 1 isveryexcitingforthepotentialo'ftiapia productionM_theUS.CurrentUStilapiagrowerdietsat36%protein wouldbeeastly- $560/tonor3timestheblendedd" B1d" mgretentcost . rot e tetswtllrun180 pertonoronlyabout1. 3timestheblcndengredtentcost.Now,tf theUStilapiaindustryachievedalargescale mdustr,tenonecouldexpectsimilareconomiesof scaleonthefeed costssuppltedtothe farm,orsomething morelike $240/ton.This would ut te cost of the feedcomponent by over half compared to current costs mthtsLndevelopedUSindustry.Atsomepoint,theUSmightactual! rt rytgtocapturesme f the500,000ton(wholefishequivalcn`. tJiapt_a arketthatlSbemgsuppliedbynon-USproducers.Even ore oplt.mJsn: can be generated if one could anticipateimprovementsin tegcnet1cperfonnanceo the _c_urrenttilapiastrains.As anexampleof hatcanhappnwhenumversttlesandindustrycooperateisthestead 1provcents1 broilerprformanceovertheyears(seeTable1 . 1 2wthtates,feedconversiOneficiency,and mortality parametershave atmp_rove? by at_leat actors of2. Imagineif suchimprovements could be realized111 the tJiapta mdushy. An industryis waiting to be bor. Table1.12USBriler Performancefm1925 to 2009 (at1onalChicke Counctl 11 Year 1925 1940 1950 1960 1970 1980 1990 2000 2009 Market AgeAveragedays1 1 2 85 70 63 56 53 48 4647 Market Weight kg,live weiht 1 . 14 1 . 311 .40 1. 52 1 .641 .78 1.98 2.28 2.56 Feedto Meat Gain kg of feedto kg of broiler,live ei bt 4.70 4.00 3.00 2.50 2.25 2.05 2.00 1 .95 1 .92 1.8Is AQUACULTURE FoR You MortalityPercent18 1 2 1 0 6 5 5 5 5 4 1 bThere seems.o beanassumption that given alterate formsof animal 1USandry,acunentlyunsuccessfuldairyor hogfanner couldbecome a IsAquaculture For You 23 successfulfishfarmer.LetuscallthatGeneralFalsehood#1 . Fish fai1lllngandRASaquacultureinparticular aregenerallymorecritically dependentuponexpertmanagementandpreciseactivitythanareother formsoffam1ing.Thus,itisunlikelythatafannerwith"average" managementskillswouldbesuccessflinfishfarming.Ontheother hand,asuccessfuldairyfannercouldprobablybeasuccessfluserof RAStechnology.Theimportanceof goodmanagementtoasuccessful RASfarmcannotbeoveremphasized.Poormanagementisalmost always the pr1J!ary reason forfailurein aquaculture ventures. Experience withflow-throughracewaysoroutdoorpondshasalmostnothingtodo withunderstandinghowtoeffectivelyandefficientlymanageanRAS Ja'Lcncra al8chuod 81 "A currently !! Successful dair orhogfarmer could become a successfulftsh farmer 1.9SOME QUICK CASE HISTORIES Theauthorshavebeeninvoledin severalRASstartupventuresin theirpublicinstitutionandprivateroles.Some haveresultdinfailure. FailureisvaluableinthatI accentuatesproblemsthatmustbe recognizedandaddressed.The seniorauthor ledtwoComell University technologytransfercfiortsthatwereunsuccessful.Laterin1997,he startedaprivatelargetilapiafarm thatwasstill operatingin2006and wasproducingover500tonsper yearoftilapia.(Chapter17 provides detailsonthisoperation).Thefirsttechnologytransferfailure(mid 1980's)involved a verysuccessfulintegrated turkey farm.This business had130 employees,a processing plant, anextensivedistribution network forfreshand frozen turkey products,and a restaurant.The second failure in theearly1990's wasacooperativetroutfarmthatconsistedof seven membersnamedtheNorthernFreshFishCooperative(NFFC).The cooperativemembersweresmart,talented,experienced,andsuccessfl people- allwithcollegedegreesandsomewithadvanceddegrees. Failure of the first two effortshad the followingcommon elements: Individuals had no previous experiencewith indoor fish culture Technologythat was Imrintensive EngineeringTechnology was poor Sensitive species (brook and rainbow trout) Enterprise was essentially an expensive hobby ventre 24 Chapter1Intoduction Comelldesignedtheaquaculturesystem thatwasimplementedatthe turkeyfarmandassistedthemwiththeirimplementation:four10,000 gallon(38 m3)culturem designedfor0.7 lbs per gallon(84kglm3)at harvestdensity.TheturkeyD rantheirtroutoperationfor2years beforeabandoningtheeffort.Solidsaccumulationwasprobablythe primaryreasonforfailure,eventhoughtherewasareasonablyadequate solidssettlingchamberinthesystem.Theturkeyfarmtroutfailureand subsequentanalysisledtheCorellefortstofocusonthedevelopment ofnewbioflterdesigsandmoreenergyefficientmetodtomove water betweensystemcomponents.Severalyears were spent refningthe applicationof rotatingbiologicalcontactors(RBC's),whichreplacedthe submergedrockfilterdesigns,andtheuseof airlifpumpstomovethe water betweensystemcomponents. TheeffortswiththeNortherFreshFishCooperativeincluding layoutsoftheirsystemcomponentsaredescribedbyTimmonsetal. ( 1993).Again,thisparticularsystemdesignhadbeensuccessflly operatedbyComellforthreyearsbeforethetechnologytransfereffort andhadachievedhighcarryingcapacity(0.7lb/gal,84kglm3),excellent feedconversions( I to1 )andhighfshgrowthrate(aninchpermonth, 25mm/month).Thissystemwasquiteamazingandefficientinthatthe airlifpumpsmovedwaterfromtheculturetanktothesolidssettling chambertothebiofltrationchamberandbacktotheculturetankona totalwaterleveldifferentialof 1. 5cm.Thesystemalsoemployedfoam fractionators(Weeksetal.1992;Chenetal.1992;Chenetal.1993, Chenetal.1 994a,b;c;Timmonsetal.1995)intheculturetankto removefnesolids,provideoxygenandC02removal,andincreasethe circularmotionintheculture tanktoassistin solidsremoval. 1. 10HISTORY LESSON ONFAILURES In1992,PeterRcdmayne(EditorofSeafoodLeader, January/Februyissue1992)didastoryonthefinancialfailuresinthe aquacultureindustry.Hementionedseveralnotablefailuresandtheir reasonfordemise: Idaho-basedJ.R.SimplotCo.closedthedoorsonitstwo-year old,intensivetilapiaoperation,losingmorethan$20millionin the process.Reason:inadequatebiofilter. Bodega Farmsshut downits$9.5millionsteelhead, coho salmon andabalonefarmnearBodegaBay,CA.Reason:StateofCA HistorLessonsonFailures25 wouldnotallowtwomillionfngerlingsacrosstheborder,and they hadnoplaceelsetogo(nofsh,nocash). AquacultureTechnologiesofLouisiana(ATL)wentbankrupt leaving2,000acresof catfshpondsinSt.LandryParishand$9 millionindebtstosome300creditors.Reason:bad management. NAIADCorp,largestcatfshfarmingandprocessingventurein Texasfled Chapter1 1(Augustof1991) afer starting processing itsowncatfish.Reason:lackofoperatingcashrelatedtopoor cashflow management. BlueRidgeFisheries(Martinsville,VA)thelargestindoor catfshoperationintheworld(atthattime,1991)lostitsassets tobankforeclosure.Reason:theRASwas notcost effective(this facilitywasresurrectedasatilapiafacilityandiscurrentlythe largestproduceroftilapiaintheUS(inexcessof2,000ton), essentiallyunder thesamemanagementstructure). Inthe1990's,thefollowingscenarios unfolded: Fish& Dakotalostseveralhundredtonsoffshanddidnot reopenitsdoors.Reason:Newmanagementeliminatedsomeof the24hourcoverageandapoweroutageandfailureofthe "automatic"stand-bygeneratorkilledthefsh. SunflowerPqacm (Kansas)losttheirfsh(notthe enterprise)whentheirroof cavedin;thiswasamilitaryfacility thathadbeenunusedformanyyearsandhadclearspantimber tmsses;whenthetrussesregainedsomemoisture,they structurallyfailed. NortherFreshFishCooperative(centralNY),lastmemberof thecooperativegaveupwhenhelostallhistroutbecausehis dialerhadnotbeenhookeduptoalerthimofalackofwater (hadIc qo duringacleaningoperation);the2ndto lastmember went outofbusinesswhenhiswellwentdry. PerchoperationinWesternPennsylvaniaclosedtheirdoors whentheirnewsystemhadfnallyreacheddesigncarrying capacityandthenthelinerin theirculturevessel "broke". 26ChapterIIntroduction SoutherPennsylvaniaperchgrowerfnallygaveupafertheir initialstockingofperchshowedgrowthratesafactionofwhat was anticipated.Theykeptopentheirbasiloperationthatwason thesameproperty. Becareful.Rememberthefollowingruleof thumb. "Rule of Thumb" Onlyinvestwhatyou can afford toLOSE! Thehistorylessonaboveshouldtellyousomething.Theearly aquaculturcventures(1980's)werelargescale,sinceonpapertherewere large profitstobemadeandgoinglargescalemaximizedprofits.The moralofthestoryhereisthattheauthorsknowofno successful operation inexcess of,00ton/ear that didnot start outby building andoperating amuchsmaller scale operation.Mid90'ssaw asteadyinfux of individualstryingtolaunchaquacultureoperations.Thethemeduring this periodwas "highvalue"species,asin,we knowwe cannot compete usingRASinthemajormarketfshspecies,butwecanproducesuchand-suchandsellthemfor$40/kg.This isatotal myth. Youmustbegoodandbe extremelyefficientat whateverspeciesyou are growing.If a particularspeciesisretailingat highvalues, there isareason. Inthe2000era,we areseeingpeoplebeingmuchmorecautious aboutenteringthe aquaculture arena.Beingin aquaculturedoesnotmean youhavetoraisethefshyousell.Adviceweoftengiveistobuyfish fromsomeoneelseandthendevelopamarketforyourproductbased uponserice.If youcanbesuccessfulherefrst,thenyouhaveagood chanceofbeingevenmoresuccessflifyouraise yourownproductand controlthesupplychainoveroneadditionalstep.Thisisfurther discussedinthe nextsection.Readthisnextsectioncarefullybeforedecidinguponwhat roleyouwant to play in the aquacultureindustry, particularlyfor yourfrststeps. 1. 11INTERACTIONS BETWEENOBJECTIVES, RESOURCES, BUSINESS STRATEGY, ANDDESIGN Theauthorsfrequentlyreceivecallsfromindividualswhodesireto enteraquaculturewiththecallershavingtheinherentassumptionthat "aquaculture"meansgrowingfsh.Andofcourse,evetyone'sobjective istohaveaprofitableenterprise.TheeconomicsofRASarethoroughly reviewedinChapter1 7 andthereaderis encouragedtoreadthischapter Objectives, Resources,Stategand Deign27 beforestartinganaquacultureventure.But,thefirstrulei nRAS aquacultureisto neverinvestmorethanyoucanafordtolose.Tere Mmanyhard-luckstoriesforeverytaleof success.Some families havelost evergintheirpursuitofsomethingtheyjustwantedtodo.One thingiscerain:poorskillsfromoneprofessiondonotbecomegreat skillsinaquaculture.Youhavetobe goodatitto makeaprofitandthis generallyentailsseveralyearsofbands-onexperience.Thisbookgives youa headstart,but is nosubstituteforreal experience. Therearecountlesswaystobecomeinvolvedinaquacultureand perhapsyourlast choiceshouldbetoactuallytryingtoraisefish(there arelotsof peoplewhohavefshtheywanttosellandarenotwillingto dothemarketingandsupportofacustomerbase).Youshouldreview yourownshorttermandlongtermobjectives,thenaturalresources availabletotheenterprise,themanagementandbusinessskillsavailable for thisenterprise(referredto asbusiness strategy),and finally thedesign ofasystemtoachievetheseobjectives.Ifanyoneofthesestepsis ignoredorcomponents are missingorinsufficient,then thesuccessof the plannedoperationisunlikely.Designofaphysicalsystemshouldbethe last step in the planningprocess. Dependingonthereader'sownperspective,designisconstrainedby objectives,resources,andbusinessstrategyorthedesignexpressesthe objectresultingfromconsideringthem.Althoughthereisinteraction betweenallcomponents,theobjectivesmustbedeterminedfirst,andthe resources availabletopursuetheobjectivesmustbeidentifed. Table1 . 1 3listssomesimpleexamplesthatwillhelptoconveyour thoughtsbehindtheinteractionsamongtheresources,businessstrategy, andresultingdesign.Theobjectivesforeachcasearcsimilarandnot specificenoughtodefneadesignotherthanstating apossiblestructure. Selecting different managementstrategiesthatresultinalteratedesigns, asshowninthesecondandthirdcase,mayapproachtheidentical objective.Thesameresourcesarcgivenforeachcaseandareagaintoo broadtobeof valueindesignbut showdependencyuponcomponents. Forexample,apersonneednotpossesswaterasapersonalresourcein ordertoworkintheaquaculturcindustry.Why notconsider buyingfsh fromagrowerwhoisnotinterestedinmarketingtheirproduct?These examplesshowthatobjectives,resources,andstrategymustbespecifc toaffectanappropriatedesign. 28Chapter 1IntoductionTable1. 13Exomle Interactions of Obtives, Resources,Strate and Desig ObjectivesResourcesBusinessDesign Stratc Have anannual income of$50,000 Have an annualincome of$50,000 from Aquaculture Same Have an annual income of$50,000 from buying, roLssing tilapia fillets Have an annualincome of $50,000 fromselling tilapia fngerlings Produce1 14,000 kg per year oftilapia $500,000; fnancialinstitutions, water,market, knowledge Same SaeSae Same Same Investat a net profit of I 0% Buy and Sell Buy, hold briefly & sell Buy, process, & sell Maintain brood stock,incubate andhatch eggs, and maintain hatLheryMuintain ndvanced growout system (needs more specificobjectives,harvest size) 1.12TERINOLOGY AND NOMENCLATURE Not necessary Not necessary Holding tanks,transport capability Processing focilityBreeding tanks, eggincubator, fngerling production RASor pond Aprima1y requirementfor discussingRAStechnologyisacommon baseof terms.Thereisafairlywellacceptedterminologythatisnowinuse among theaquacultrecommunity, havingbeen derivedfrom a report fledtheEuropean InlandFisheries AdvisoryCommissionin 1987. ThefOlloving arc the definitions andterminology that will beused Terminology and Nomenclatre29throughout the chapters to come.Commonlyused conversionfactors areprovidedin the Appendix. CarryingCapacity:Themaximummassofaquaculturedproduct thatcanbe maintainedwithinaculture system;usually expressedas mass per unit volume of the culturesystem FlowThroughRate:Thevolumeof newwaterperunittime passingthroughaculture tank; refers tothemake-up water specifically. MeanHydraulicResidenceTiMe(T):Refers tothetime requiredatagivenrateof flowfor acompletevolumeof water ina tank to be exchanged,V (volume of tank) /Q(fowrate) PercentageReplacement:Thepercentage ofthetotalsystem volumereplacedper day PercentageRecycle:Th_e percentage of the totalsystemvolume tat isretained,ona dailybasis ProductiontoCapacityRatio(P/Cratio]: Thisistheratioof systemoutputper yeartothemaximumcarryingcapacity of the system.P/Cratiosof3arc typicalof highdensitysystemsforfast growingfish. Reuse(serialreuse):Waterisreusedinmultipletanks,moving inonedirectionnever usedin tbesametanktwice(asNOT recycled); ofenreferred to as serial reuse Recycle(RecirculatingAquaculturcSystemsorRAS):Waterfows fromatank (s)toatreatment process andthen isreturedto the tank, hencethe termrecirculatedorrccirculating aquaculturesystemsorRS.RASaregenerallyregarded as systemsthat discharge lessthan 20-50% of thestanding water i n thesystemvolumeper day.SomeRASmaydischargemore water,but \ccomcincreasinglymore like aflow through system. SpecifcSurfaceArea:Surface areaofthemediaperunit volume;usuallyreferring to thesurface area ofaparticularmedia usedinIltration or settling components 30Chapter IIntroduction StoLkingDensity:Massofculturedproductpervolumeof tank (ignorestheefectsof fishdisplacingpartof thewater volume) TotalBiomass:Massof culturedproductintheculture system TotalSystemVolume:Volumeofwaterintheculturetank, pipes,reservoirs,treatmenttanks,andpumps 1.13WEBSITESFOR REFERENCE Thereaderisalsoreferredtothefollowinglistofwebsitesthat containvastamountsof informationthatcanbeuseful forboththenew andexperiencedaquaculturalist: AlterativeFarming Systems Information Center (AFSIC) http://www.nal.usda. gov/afsic/ The AFSICis one ofl 0informationcentersat theNationalAgricultural Library.AFSICservesasanationalclearinghouseforaquaculture informationandprovides materialsforaqua fam1ers, consumers,industry personnel,educators,govermentagencies,associations,libraries,the media,students,scientists,andprospective farmers. Aquaculture without Frontiers http://www.aguaculturewithoutfrontiers.org/guocu!ture winou! 1ronticrs (AwF)isanindependentnon-profit organizationthatpromotesandsupporsresponsibleandsustinable aquacultureandthealleviationof poverty byimprovinglivelihoodsin developingcountries.Forme in2004, AwFisregisteredasacharityin theUKandasanon-proftorganizationintheUSA.AwFhasbeen establishedforthespecifcpurposeofpromotingandsupporting responsibleandsustainableaquaculturetoassistinpoveryalleviation throughimprovingrurallivelihoodsindevelopingandtransition countries.Initswork,AwFdrawsontheexperienceofrespected professionalsfrom every relevant discipline.AwFalreadyhasadatabase of more than80 volunteers. Websites for Reference U.S. TroutFarmersAssociation ht://www.ustfa.org 3 1Troutinformationforboththeconsumerandindustry.Informationfor the consumerincludes:Tipsandhandling, farm-raisedtrout,trouttips, handlinghow-to's,prep pointers, and nutritionalvalues.Industry informationincludes:SalmonidMagazine,QualityAssurance, membershipinfo,andotherinteretresources,aswellasatroutrecipe book. AmericanTilapiaAssociation htt://ag.arizona.edu/azagua/ata.html Accesstoinformationaboutthefsh,whichisthefastestgrowing aquaculturecropintheUnitedStatesandaroundtheworld.Wepleased toprovide thisinfonnationtothosealreadyproducingtilapia for thefoodindusty,for thoseinterestedin joiningtheindustryandto potential customers andconsumersoffarm-raisedtilapia. AquaculturalEngineering Society http://www.aesweb.org/Newsletter- Thelatestquarterlynewslettcrof the AESisnowon-line. Philosophy&Purpose- The oficialphilosophy, purpose and operation of AESforyourreference.Offcers&Board - The current AESofficers andboard of directors.On-lineApplication - Usethis electronicversion of thememberapplicationto joinAES! Aquaculture Network Information Center (AquaNIC) http://aguanic.org Anexcellentclearinghouseof aquacultureinformationavailableonthe intemet.Italsoprovidesinformationonhowtoobtainaquaculture informationthatis notontbeintemet. AquaticEco-Systems http://www.aguaticeco.com Oneof theworld'slargestaquacultureproductssuppliers.Usefllinkfor fnding equipmentandprices. 32Chapter1Intoduction Aquatic Network - Information Service for the Aquatic World http://www.aguanet.com/ Subjectareascovered includeaquaculture,conservation,fsheries, marinescienceandoceanography,maritimehetitage,ocean engineering,and seafood.Cayuga Aqua Ventures, LLC http://www.bee.cornell.edu/agua Publisher'swebsiteof thistextbook.Thesitealsohasthesofwareand descriptionsthatwasinearlier versionsofthetext.Nowprovidedas free-ware. Cornell Aquaculture Resources Short Course http://www.bee.cornell.edu/outreach/aguaculture/short-course Thisis the yearlycoursewe put on each year, typicallyin mid July.See linksonlef sideof page FINS http://www.actwin.com/fish/index. phpAn archiveofinformationaboutaquariums.Itcovers bothfreshwater andmarine,tropicalandtemperate. Holder Timmons Engineering,LLC http://www.holdertimmons.com I Thisis theauthor'ssitefor hisprivateengineeringservices company.It alsoshowstheassociateswiththecompany.Listedhere justforconveniencetothe reader. National Fisheries Institute http://www.aboutseafood.com/ NationalFisheries Institute isthelargest trade associationservingtheUS seafoodindustry.NFIhasalwaysbeenaclearinghouseofbusinessrelatedinformation.Thiswebsiteoffers dozensoflinksto goverment statistics,seafood companiesandotherwebresources.Amembers-only sectionadds promotionalmaterials,HACCPinformationandthelatest newson impor alerts,legislativeupdatesandmore. Websites for Reference 33 Natural Resources, Agricultural, and Engineering Service (NRAES) http://www.nraes.org/SeaWeb http://www.seaweb.org Toaddress thegrowingissueofsalmonandotherfnfishfaringin NorthAmerica,in1998SeaWebestablishedaninformation clearinghouscon aquacultureissues.We focus1 educationaloutreacheffors on salmon farming inthestates of Maineand Washingtonandthe provincesofNewBrunswick, NovaScotia,andBritishColumbiabut collectandanalyzeinformation on variousfarmed speciesfrom aroundthe world. Seafood NIC http://seafood.ucdavis.edu/ HostedbytheSeaGrantExtensionProgramatUCDavis,theSeafoodNetwork InformationCenter, or Seafood NIC, isanon-linehome to the HACCPAlliance.It offers pageafter pageof seafood-safety infom1ation, aswellastrainingmaterials,seminarschedulesandtheFDA'soficial fisherhazard andcontrolguides.ThesiteprovidesgenericHACCP plansfor scoresof seafood products and procc_sses. USDA Regional Aquaculturc Centers Thereare four regionalaquaculturc centcrs that aresponsoredbythe USDA;they are: NortheasternRegional Aquaculture Center Dr.ReyHm ,OUniversityof Maryland 21 13 AnimalSciencesBuilding College Park,M 20742-231 7 Phone:(301) 4056085; Fax. (301) 31 4-9412 Email:[email protected] Website:http://www .orae. u md.ed u/ Represents:Connecticut,Delaware,Maine,Maryland,Massachusetts,NewHampshire, New Jersey, New York,1q yIv,BIsVem1ont, West Virginia,and the Districtof Columbia. North Central RegionalAquaculture Centcr (NCRAC) 34 Chapter lIntroductionDr.Tcd Batterson, Director MichiganStateUniversity 13 NaturalResourcesBuilding East Lansing,MI48824-1222 Phone:51 7-353-1962;Fax:517-353-71 81Email:[email protected] Wcbsite:www.ocrac.org Represents:Illinois,Indiana, Iowa,Kansas,Michigan, Missouri, Minnesota, Nebraska,NorthDakota, Ohio, SouthDakota,Wisconsin SouthernRegionalAquaculture Center (SRAC) Dr.CraigS.Tucker,Director MississippiState University 127 ExperimentStation Road P.O.Box197 Stonevi lle,MS 38776 Phone:662-686-3285;Fax:662-686-3320 Email:[email protected] Website:http://www.msstate.edu/dcpt/srac Represents:Alabama,Arkansas,Florida,Georgia, Kentucky,Louisiana, Oklahoma, Mississippi, North Carolina, Puerto Rico,South Carolina, Tennessee, Texas,Virginia,ViJginIslands WesternRegionalAquaculture Center(WRAC) Dr. GrahamYoung,Director Schoolof Fisheries Box355020 Scattle,WA98195 Phone:206-685-2479;Fax:206-685-4674 E-mail:[email protected] Website:http://www .fish. washington.edu/wrac Represents:Alaska, Arizona,Califoria,Colorado, ldaho,Montana, Nevada,NewMexico,Oregon,Utah, Washington,Wyoming Websitcs for ReferenceCenter forTropical Subtropical Aquacultore (CTSA) Dr.Cheng-Sheng Lee,Executive Director The Oceanic Institute MakapuuPoint 41-202KalanianaoleHighway Waimanalo,H1 96795-1820 Phone:808-259-31 07; Fax:808-259-8395 Email:[email protected] Website:http://www.ctsa.org Represents:AmericanSamoa,Commonwealth ofthe NortherMarianaIslands,FederatedStates of Micronesia, Guam,Hawaii,Republic ofPalau, Republicofthe Marshall Islands World Aguaculture Societ(WAS) htt://www.was.org/35 Aninterationalnonproftsocietywithover4,000membersin94 countries. Foundedin 1 970, ,itsprimaryfocusistoimprove communicationandinformationexchangewithinthediverseglobal aquacultre community. 1.14SUMMARYANDTHECORNELLSHORTCOURSE Theauthorshavespentsignificantorallpartsof theircareers in aquaculture.Comell has periodicallyhostedaone-week shor course uat hundredsof professionalshaveattended.Thecoursewaseo-hostedwith theConservationFund'sFreshwaterInstitute(ShepherdstownWV)forseveralyears.The courseisnowonceagain(2007andforard) being sponsoredbyCorellUniversity.We willholdthecourseinvarious partsof thecountryandaround theworldonanas-neededbasisalong withtheannual summer!-week coursethatis heldi n July.Thecourseis alsooffered in aDistanceLearingfonnat (secdetailsfor both thehands onand thedistanceversionsat: WWW.BEE.CORNELL.EDU/AQUA Thematerialsdevelopedoverthe yearsfor thisshortcourseare the primary materialsbeingusedin thisbook. 36 ChapterIIntduction TheRASshortcourseemphasizespractical"howto"applications andconcludeswithaseriesofspreadsheetsandcomputer programsto make themanytediouscalculationsnecessarytodesignandmanagean RASeasier.However,thecomputerprogramsaremuchmoreuseflto theuserifthebasicfndamentalsarefirstunderstood.Thisbook attemptstoprovideasolidfoundationfor understandingthebasicsand alsoicludes thecomputer software inthe Appendix.Exampleproblems are 1venthroughouttheChaptersandtheseexampleproblems(with solutwns)canbeused` afirstJ whenusingthesoflware.Havefun andenjoythebook. Past students of the Short Course can be seenat: WWW.BEE.CORNELL.EDU/AQUA References371.15REFERENCES Chen,S., Timmons,M.B., Aneshansley,D.J., Bisogni, J.J.,1992. Protein infoamfractionationappliedtorecirculatingsystems.Prog.FishCult. 55(2):76-82. Chen,S.,Timmons,M.B.,Aneshansley,D.J.Bisogni,J.J.,1993. Suspendedsolidscharacteristicsfrom recirculatingaquacultural systems and designimplications. Aquaculture1 1 2: 1 43-155. Chen,S.,Timmons,M.B.,Aneshansley,D.J.,Bisogni,J.J.Jr.,1994a. Suspendedsolidscharacteristicsfromrecirculatingaquacultural systems and designimplications.Aquaculture1 1 2: 1 43-155. Chen,S.,Timmons,M.B.,Bisogni,J.J.,Aneshansley,D.J.,l994b. ModelingsurfactantremovalinfoamfactionationI:Theoretical development.Aquacult.Eng.1 3: 1 01-120. Chen,S.,Timmons,M.B.,Bisogni,J.J.,Aneshansley,D.J.,1994c. ModelingsurfactantremovalinfoamfactionationII:Experimental investigations. Aquacult.Eng.13: 121-1 38.Delgado,C.,Rosegrant,M,Meijer,S, Wada,N,& Ahmed,M.,2002. Fish as Food: Projectionsto 2020. Paper presentedin the IIFET 2002 TheBiennialMeetingofInterationalInstitutefor Fisheries Economics and Trade, August1 9-23, Wellington, NZ. DelmarvaPoultryIndustry,In