1 2 3 4 5 6 7 8 9 10 - iowa state universityclass.ece.iastate.edu/ee330/lectures/ee 330 lect 19...

74
1 2 6 7 3 4 5 9 8 10 2 3 4 1 2 3 4 11 John Heiling David Orona Scott Melvin Peter Bonnie Michael Miller Benjamin Meis Patrick Schmidt Yeap Yeoh Andrew Snawerdt Arisa Tajima Samuel Jones Christian Hurst Kyle Perkins Brian Anderson Korbin Stich Ashlyn Freestone Nathaniel Byrne Caleb Redman Dalton Strauser Joseph Freeland Adam Cha Brendan Bartels Braden Rosengren Benjamin Wiggins Jongik Lee Garrett Lassek Aaron Haywood James Tran Richard Jiles Adam Dau Mitchell Wheaton 5 5 Mehdy Faik Samuel Christy Robert Buckley Kurt Turner Arbaaz Khan Chengrui Yang Kebei Wang Lyle Bishop Logan Boas Xinian Bo Liuchang Li Mukund Choudhary Yulin Song Jiangning Xiong EE 330 Spring 2016 Seating

Upload: dinhtu

Post on 31-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

1 2 6 73 4 5 98 10

2

3

4

1

2

3

4

11John

Heiling David Orona

Scott Melvin

Peter Bonnie

Michael Miller

Benjamin Meis

Patrick Schmidt

Yeap Yeoh

Andrew Snawerdt

Arisa Tajima

Samuel Jones

Christian Hurst

Kyle Perkins

Brian Anderson

Korbin Stich

Ashlyn Freestone

Nathaniel Byrne

Caleb Redman

Dalton Strauser

Joseph Freeland

Adam Cha

Brendan Bartels

Braden Rosengren

Benjamin Wiggins

Jongik Lee

Garrett Lassek

Aaron Haywood

James Tran

Richard Jiles

Adam Dau

Mitchell Wheaton

55

Mehdy Faik

Samuel Christy

Robert Buckley

Kurt Turner

Arbaaz Khan

Chengrui Yang

Kebei Wang

Lyle Bishop

Logan Boas

Xinian Bo

Liuchang Li

Mukund Choudhary

Yulin Song

Jiangning Xiong

EE 330 Spring 2016 Seating

EE 330

Lecture 19

Bipolar Process Flow

Simplified Multi-Region Model

AF

CEBC

V

V1βII

t

BE

V

V

ESB e

β

AJI

q

kTVt

VBE=0.7V

VCE=0.2V

IC=IB=0

Forward Active

Saturation

Cutoff

VBE>0.4V

VBC<0

IC<βIB

VBE<0

VBC<0

A small portion of the operating region is missed with this model but seldom operate in

the missing region

0<IB

Review from Last Lecture

Further Simplified Multi-Region dc Model

Equivalent Simplified Multi-Region Model

C BI βI

BEV 0.6V

q

kTVt

VBE=0.7V

VCE=0.2V

IC=IB=0

Forward Active

Saturation

Cutoff

VBE>0.4V

VBC<0

IC<βIB

VBE<0

VBC<0

A small portion of the operating region is missed with this model but seldom operate in

the missing region

Review from Last Lecture

0<IB

Bipolar Process Description

p-substrate epi

Components Shown

• Vertical npn BJT

• Lateral pnp BJT

• JFET

• Diffusion Resistor

• Diode (and varactor)

Note: Features intentionally not to scale to make it

easier to convey more information on small figures

• In contrast to the MOSFET where process parameters are independent of

geometry, the bipolar transistor model is for a specific transistor !

• Area emitter factor is used to model other devices

• Often multiple specific device models are given and these devices are used directly

• Often designer can not arbitrarily set AE but rather must use parallel

combinations of specific devices and layouts

A A’

B’B

C

C’

D

D’Top View

Layer Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

A A’

B’B

Dimmed features with A-A’ and B-B’ cross sections

A A’

B’B

BE

C

E

B

C

EC Blateral pnp

E

C

B

vertical npn

B

C

E

E C

B

L

G

DS

W

Resistor

Diode (capacitor)

GDS

S

D

G

n-channel JFET

Detailed Description of First

Photolithographic Steps Only

• Top View

• Cross-Section View

A A’

B’B

n+ buried collector

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

A A’

B’B

Mask 1: n+ buried collector

A-A’ Section

B-B’ Section

Photoresistn+ buried collector maskExposureDevelop

A-A’ Section

B-B’ Section

Implant

A-A’ Section

B-B’ Section

Strip Photoresist

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

A-A’ Section

B-B’ Section

Grow Epitaxial Layer

Note upward and downward

diffusion of n+ buried collector

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

Grow Epitaxial Layer

A A’

B’B

Isolation Diffusion

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

A

B

Mask 2: Isolation Deposition/Diffusion

B’

A’

A-A’ Section

B-B’ Section

Isolation Deposition/Diffusion

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

Isolation Diffusion

A A’

B B’

Have created 5 “islands” of n- material on top of p-- substrate

A A’

B’B

p-base diffusion

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

A A’

B’B

Mask 3: p-base diffusion

A-A’ Section

B-B’ Section

p-base Diffusion

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

p-base Diffusion

A A’

B B’

A A’

B’B

n+ emitter diffusion

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

A A’

B’B

Mask 4: n+ emitter diffusion

A-A’ Section

B-B’ Section

n+ emitter Diffusion

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

A A’

B B’

n+ emitter Diffusion

A-A’ Section

B-B’ Section

Oxidation

A

B’B

p-substrate

n+ buried collector n+ buried collector

A

B

A’

B’

Oxidation

A A’

B’B

contacts

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

A A’

B’B

Mask 5: contacts

A-A’ Section

B-B’ Section

Contact Openings

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

A

B B’

Contact Openings

A’

A A’

B’B

metal

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

A A’

B’B

Mask 6: metal

A-A’ Section

B-B’ Section

Metalization

A-A’ Section

B-B’ Section

Pattern Metal

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

A

B B’

A’

Metalization

A A’

B’B

A A’

B’B

p-substrate

n+ buried collector n+ buried collector

Pattern Metal

B’B

A A’

A-A’ Section

B-B’ Section

E

C

B

vertical npn

B

C

E

E

B

C

EC Blateral pnp

C B E B C E

A-A’ Section

B-B’ Section

GDS

S

D

G

p-channel JFET

BE

C

E

B

C

EC Blateral pnp

E

C

B

vertical npn

B

C

E

E C

B

L

G

DS

W

Resistor

Diode (capacitor)

GDS

S

D

G

n-channel JFET

Mask Numbering and Mappings

n+ buried collector

isolation diffusion (p+)

p-base diffusion

n+ emitter

contact

metal

passivation opening

Notes:

• passivation opening for contacts not shown

• isolation diffusion intentionally not shown to scale

Mask 1

Mask 2

Mask 3

Mask 4

Mask 5

Mask 6

Mask 7

Pad and Pad Opening

Epitaxial Layer

Oxidation

Metalization

Protective Layer

Pad Opening

Pad Opening

Mask

p-substrate

The vertical npn transistor

• Emitter area only geometric parameter that appears in basic device model

• Transistor much larger than emitter

• Multiple-emitter devices often used (TTL Logic) and don’t significantly

increase area

• In contrast to the MOSFET where process parameters are independent of

geometry, the bipolar transistor model is for a specific transistor !

• Area emitter factor is used to model other devices

• Often multiple specific device models are given and these devices are used directly

• Often designer can not arbitrarily set AE but rather must use parallel

combinations of specific devices and layouts

A challenge in modeling the BJT

C B E

Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT

A challenge in modeling the BJT

C B E

C B E

B

E

C

EA

7

EA

7EA

7EA

7EA

7EA

7

EA

7BE

t

V

VEC1 S

AI J e

7

BE

t

V

VEC2 S

AI J e

7

BE

t

V

VEC3 S

AI J e

7

BE

t

V

VEC4 S

AI J e

7

BE

t

V

VEC5 S

AI J e

7

BE

t

V

VEC6 S

AI J e

7

BE

t

V

VEC7 S

AI J e

7

IC

IC1 IC2 IC3 IC4 IC5 IC6 IC7

B

E

C

AE

ICBE

t

V

V

C E SA J eI

7

1

BE BE

t t

V V

V VEC S E S

AJ e A J e

7i

I

This looks consistent but …

A challenge in modeling the BJTC B E

B

E

C

EA

7

EA

7EA

7EA

7EA

7EA

7

EA

7BE

t

V

VEC1 S

AI J e

7

BE

t

V

VEC2 S

AI J e

7

BE

t

V

VEC3 S

AI J e

7

BE

t

V

VEC4 S

AI J e

7

BE

t

V

VEC5 S

AI J e

7

BE

t

V

VEC6 S

AI J e

7

BE

t

V

VEC7 S

AI J e

7

IC

IC1 IC2 IC3 IC4 IC5 IC6 IC7

7

1

BE BE

t t

V V

V VEC S E S

AJ e A J e

7i

I

This looks consistent but …

VBRk

IBk

VBLk

VE

consider an individual sliceLateral flow of base current causes a drop in

base voltage across the base region

BRk BLkV VBEk

t

V

VECk S

AJ e

7I

What is VBEk?

A challenge in modeling the BJT

B

E

C

EA

7

EA

7EA

7EA

7EA

7EA

7

EA

7BE

t

V

VEC1 S

AI J e

7

BE

t

V

VEC2 S

AI J e

7

BE

t

V

VEC3 S

AI J e

7

BE

t

V

VEC4 S

AI J e

7

BE

t

V

VEC5 S

AI J e

7

BE

t

V

VEC6 S

AI J e

7

BE

t

V

VEC7 S

AI J e

7

IC

IC1 IC2 IC3 IC4 IC5 IC6 IC7

7

1

BE BE

t t

V V

V VEC S E S

AJ e A J e

7i

I

This looks consistent but …

VBRk

IBk

VBLk

VE

• Lateral flow of base current causes a drop in base

voltage across the base region

• And that drop differs from one slice to the next

• So VBE is not fixed across the slices

• Since current is exponentially related to VBE, affects

can be significant

• Termed base spreading resistance problem

• Strongly dependent upon layout and contact

placement

• No good models to include this effect

• Major reason designer does not have control of

transistor layout detail in some bipolar processes

• Similar issue does not exist in MOSFET because the

corresponding gate voltage does not change with

position since IG=0

End of Lecture 19