1 2force systems force, moment, couple and resultants

107
1 2 Force Systems Force, Moment, Couple and Resultants

Upload: kendal-stinchcomb

Post on 16-Dec-2015

235 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 1 2Force Systems Force, Moment, Couple and Resultants

1

2 Force Systems

Force, Moment, Couple and Resultants

Page 2: 1 2Force Systems Force, Moment, Couple and Resultants

3

Force Definition

• Force is an action that tends to cause acceleration of an object. [Dynamics]

• The SI unit of force magnitude is the newton (N). • One Newton is equivalent to one kilogram-meter per second

squared (kg·m/s2 or kg·m · s – 2)

F

F

Examples of mechanical force include the thrust of a rocket engine, the impetus that causes a car to speed up when you step on the accelerator, and the pull of gravity on your body.

• Force is a vector quantity (why?)

Force can result from the action of electric fields, magnetic fields, and various other phenomena.

• Force is the action of one body on another. [Statics]

Page 3: 1 2Force Systems Force, Moment, Couple and Resultants

4

FORCE SYSTEMSFORCE SYSTEMS

Force is a vector F

Line of action is a straight line colinear with the force

coplanar if the lines of action lie on the same plane

Force System:

concurrent if the lines of action intersect at a point

parallel if the lines of action are parallel

y

x

AF

BF

CF

DF

pararell coplaner ?

Page 4: 1 2Force Systems Force, Moment, Couple and Resultants

Hand Print

Scalar

Vector

Unit Vector

Magnitude of Vector

Writing Convention

F F F

F

ˆ i i

F

F FF

same symbol

Recommended Style

In this course, you have to write in this convention.

ˆ i i

Page 5: 1 2Force Systems Force, Moment, Couple and Resultants

7

FORCE SYSTEMSFORCE SYSTEMS

2-D Force Systems2-D Force Systems 3-D Force Systems3-D Force Systems

Moment

Couple

Resultants

Moment

Couple

Resultants

Vector (2D&3D)

Basic Concept

Page 6: 1 2Force Systems Force, Moment, Couple and Resultants

8

2V

Free Vectors: associated with “Magnitude” and “Direction”

: Direction

or V| |V

Magnitude:

V

or V

Vector :

2V

1V

1 2 V V V

1V

2V

V

1 2

1 2

= ( 1)

V V V

V V

V

W aV

W

| | | |W a V

parallelogram

( ) ( )

( )

( )

a bA ab A

a b A aA bA

a A B aA aB

Representation 1 2( )V V V

( ) ( )

A B B A

A B C A B C

1V 2V

V

triangle( 0)a M

| | | |M b V

( 0)b

2V

1V

+ˆ ˆA A e Ae

ˆ

(unit vector of )

A

Ae

A

A

Page 7: 1 2Force Systems Force, Moment, Couple and Resultants

9

Operation Addition #5

R A B B ACommutative

Vector

Page 8: 1 2Force Systems Force, Moment, Couple and Resultants

10

Operation Addition #6Vector

( ) ( )R A B C A B C A B CAssociative

Page 9: 1 2Force Systems Force, Moment, Couple and Resultants

11

Operation Scalar Multiplication #2

( ) ( )

( )

( )

a bA ab A

a b A aA bA

a A B aA aB

ˆ ˆA A e Ae

ˆ unit vector of e A

associative

distributive wrt scalar addition

distributive wrt vector addition

wrt = with respect to

Page 10: 1 2Force Systems Force, Moment, Couple and Resultants

13

Component Resolution of a Vector

A vector may be resolved into two components.

R A B

Vector

| | ? | | ?A B

Page 11: 1 2Force Systems Force, Moment, Couple and Resultants

14

Basic relations of Triangle

(C/6, law of cosine, sine)

2 2 2 2 cosc a b ab

sin sin sin

a b c

a

bc

Law of cosine

Law of sine

Page 12: 1 2Force Systems Force, Moment, Couple and Resultants

1V

2V

V

1

2

qb

15

1 ___V

2 ___V

(Law of sine)

(Law of sine)

Given V, and , find 1 2,V V

2 2 2 2 cosc a b ab

sin sin sin

a b c

a

bc

Law of cosine

Law of sine

Hint

b

Page 13: 1 2Force Systems Force, Moment, Couple and Resultants

16

special case: projection vectors are orthogonal to each other

Vector Component and Projection

a

: vector components of (along axis a and b)

1 2F F R

21, FF

R

: projections of (onto axis a and b)

aF

R

b

bF

R

aF

1F

2F

(generally)a bF F R

a

b

bF

R

aF

ba FF

, : orthogonal projections & vector components

bF

=

Page 14: 1 2Force Systems Force, Moment, Couple and Resultants

17

Rectangular Components• Most commonly used

22yx FFF

xF

yF

1tan | / |y xF F

yx FFF

ˆ ˆ x yF F i F j

x

y

q

)directions and (in

of components vector ,

yx

FFF yx

)directions and (in

of componentsscalar ,

yx

FFF yx

F

xF

yF

ˆ ˆ i j vector component = vector projection

i

jcosF sinF

Page 15: 1 2Force Systems Force, Moment, Couple and Resultants

-p b

18

x

y

F

Fx=? Fy=?

x

y

F

y

F

x

b

cosxF F

sinyF F

cosxF F

sinyF F

b x

yF

sin( )xF F

cos( )yF F

sin( )xF F

cos( )yF F

-b q

= sinF

( cos )

cos

F

F

minus

(b>90)

Page 16: 1 2Force Systems Force, Moment, Couple and Resultants

19

ˆ ˆ7.7 4.6i j

EXAMPLE 2-1EXAMPLE 2-1

Given the magnitude of the tensionin the cable, T = 9 kN, express T interms of unit vector i and j

j)sin9(i)cos9(T

j662.11

69i

662.11

109

kN ANS

T

i

j

x

y

2 210 6 11.662 mAB

Correct?3 S.F. ˆ ˆ7.72 4.63i j

Page 17: 1 2Force Systems Force, Moment, Couple and Resultants

20

We are using robot arm to put the cylindrical part into a hole.Determine the components of the force which the cylindrical part exerts on the robot along axes (a) parallel and perpendicular to arm AB

(b) parallel and perpendicular to arm BC

arm AB

sin 45 90sin 45 63.64 ( )parP P N

cos 45 90cos 45 63.64 ( )perP P N

ANS

60

45

arm BC

sin 30 9sin 30 4.5 ( )perP P N

cos30 9cos30 7.794 ( )parP P N

ANS

15

P = 90 N

15

30

30

15

15

P = 90 N

parper

par per

Defining direction

Page 18: 1 2Force Systems Force, Moment, Couple and Resultants

21

2/2 Combine the two forces P and T, which act on the fixed structure at B, into a single equivalent force R

P=800 N (8cm)

1 6sin 60tan 40.9

3 6cos60

oo

o

T=600 N (6cm)

R

525 N (5.25cm) R

Graphics

Geometric

P

T

R

2 2 2 2 cosR P T PT 524 NR

sin sin

T R

48.6o

Vector Component (Algebraic)

ˆ800P i

ˆ ˆ600(cos sin )T i j

ˆ ˆ346 393R P T i j

2 2346 ( 393) 524 NR

1 393tan 48.6

346o

49o

Point of application is B

Correct?

Page 19: 1 2Force Systems Force, Moment, Couple and Resultants

22

Example Hibbeler Ex 2-1 #1

2 21 2 1 2 2 cos

213 NRF F F FF

Determine the magnitude and direction of the resultant force.

Geometric

2 150 212.55 sin sin sin sin115

39.101 39.1

RF F

Two forces is not acting at the same point.

Page 20: 1 2Force Systems Force, Moment, Couple and Resultants

23

2 21 2 1 22 cos

213 NRF F F FF

Geometric

2 150 212.55

sin sin sin sin11539.101 39.1

RF F

1

02

ˆ ˆ100cos15 100sin15 N

ˆ ˆ150sin10 150cos10 No

F i j

F i j

Vector Component (Algebraic)

1 2

1 1

ˆ ˆ122.64 173.60 N

173.60tan tan 54.761

122.64

R

Ry

Rx

F F F F i j

F

F

Good? (get full score?)

- more explanation

- mark answer

- 5S.F. Then 3S.F. ˆ ˆdirection of , ?i j

Page 21: 1 2Force Systems Force, Moment, Couple and Resultants

24

Good Answer Sheet

2 21 2 1 2

2 2

2

Using the law of cosine:

2 cos

100 150 2(100)(150)cos115

212.55 213 N #

Applying the law of sine:

150 212.55

sin sin sin sin11539.101 39.1 #

R

R

R

F F F FF

F

F F

a

O

Geometric

Page 22: 1 2Force Systems Force, Moment, Couple and Resultants

25

Point of Application

Page 23: 1 2Force Systems Force, Moment, Couple and Resultants

26

Example Hibbeler Ex 2-6 #1

1

2

ˆ ˆ(600cos30 600sin30 ) N

ˆ ˆ( 400sin45 400cos 45 ) N

F i j

F i j

Vector

Page 24: 1 2Force Systems Force, Moment, Couple and Resultants

27

Example Hibbeler Ex 2-6 #2

1 2

2 2

1 1

ˆ ˆ ˆ ˆ(600cos30 600sin30 ) ( 400sin45 400cos45 )

ˆ ˆ236.77 582.84 N

236.77 582.84

629.10 629 N #

tan ( ) tan (582.84 236.77)

67.891 67.9 #

R

R

R

Ry Rx

R

F F F

i j i j

F i

F

F F

F

j

Vector

Page 25: 1 2Force Systems Force, Moment, Couple and Resultants

28

1F

2F

F1y

F1x

F2y

F2x

Ry

Rx

y

xo

• Reference axis (very very important)– Many problems do not come with ref. axis.– Assignment based on convenience/experience

)ˆˆ()ˆˆ( 221121 jFiFjFiFFFR yxyx

jFFiFFjRiR yyxxyxˆ)(ˆ)(ˆˆ

2121

xxxx FFFR 21

yyyy FFFR 21

The calculations do not reveal the point of application of the resultant force.

R1. Graphically

• Vector summation (addition)– Three ways to be mastered

2. Geometrically

3. Vector component (algebraically)

2 2 21 2 1 22 cosR F F F F

2

sin sin( )

R F

Originally pass through O

In case where forces do not apply at the same point of application, you have to find it too!

Page 26: 1 2Force Systems Force, Moment, Couple and Resultants

29

Recommended Problem

2/9, H2-17, 2/12, 2/26, H2-28

Page 27: 1 2Force Systems Force, Moment, Couple and Resultants

31

Three Dimensional Coordinate System

ik

y

x

z

j Real-life Coordinate System is 3D.

Introduce rule for defining the 3rd axis - “right-hand rule”: x-y-z - for consistency in math calculation (cross vector)

How does 2D differs from 3D?

y

x

z

2D

Page 28: 1 2Force Systems Force, Moment, Couple and Resultants

32

ˆFn

- If you known the magnitude and all directional cosines, you can write force in the form of

Rectangular Components (3D)

y

x

z

Fk

j

i

xy 222

zyx FFFF

)cos( xx FF )cos( yy FF

)cos( zz FF

ˆˆ ˆ i j k

ˆˆ ˆˆ cos cos cosdef

F x y zn i j k

kFjFiFF zyxˆˆˆ

ˆˆ ˆ (cos cos cos ) x y zF F i j k

- cos(x), cos(y), cos(z) : “directional cosines” of

F

iFxˆ

jFyˆ

kFzˆ

- cos2(x)+cos2(y)+cos2(z) = 1

F

Fn is a unit vector in the direction of

z

(maybe +/-)

directional cosine Method

ˆFn

projection & component

Page 29: 1 2Force Systems Force, Moment, Couple and Resultants

33

Example Hibbeler Ex 2-8

2 2 2 cos cos cos 1 x y z

ˆ ˆ ˆcos cos cosx y zF F i F j F k

Find Cartesian components of F

2 2 2cos cos 60 cos 45 1

1cos

2

1 1cos ( ) 60° or 120

2

1cos

2

ˆ ˆ ˆ(200cos60 200cos60 200cos45 ) N

ˆ ˆ ˆ(100 100 141.42 ) N

ˆ ˆ ˆ(100 100 141 ) N #

i j k

i j k

F i j k

x

y

z

2 1cos

4

Page 30: 1 2Force Systems Force, Moment, Couple and Resultants

34

Given the cable tension T = 2 kN. Write the vector expression of T

)kcosjcosi(cosTT zyx x

y

z

A

B

xA

B

1.2cos x length of AB

2 2 21.2 0.5 (0.4 0.3) 1.3length of AB cos 0.92x

x

1) directional cosine method

directionl cosine = -0.92

Real directional cosine

Page 31: 1 2Force Systems Force, Moment, Couple and Resultants

35

zA

B

08.03.1

1.0

ABoflength

1.0cos z

yA

B

38.03.1

5.0

ABoflength

5.0cos y

x

y

z

A

B

y

x

y

z

A

B

z

Thus, ˆˆ ˆ2 ( 0.92 0.38 0.08 ) kNT i j k

ANS

Page 32: 1 2Force Systems Force, Moment, Couple and Resultants

36

cos xx

A

A cos y

y

A

A cos z

z

A

A

Directional Cosines by Graphics

cos2(x)+cos2(y)+cos2(z) = 1

Page 33: 1 2Force Systems Force, Moment, Couple and Resultants

37

- Usually, the direction of force is not given using the directional cosines. Need some calculation.

- Two examples

(a) Two points on the line of action of force is given (F also given).

x

y

z

A (x1, y1, z1)

B (x2, y2, z2)F

ˆ FF F n

ABAB rrr

1 1 1ˆˆ ˆ Ar x i y j z k

kzjyixrBˆˆˆ

222

kzzjyyixxrABˆ)(ˆ)(ˆ)( 121212

212

212

212

121212

)()()(

ˆ)(ˆ)(ˆ)(

zzyyxx

kzzjyyixxFF

2 1 2 1 2 1

2 2 22 1 2 1 2 1

ˆˆ ˆ( ) ( ) ( )ˆ

( ) ( ) ( )AB

x x i y y j z z kn

x x y y z z

Two-Point Method

Positionvector

Page 34: 1 2Force Systems Force, Moment, Couple and Resultants

38Ans

x

y

z

B

A

0.50.4

0.31.2

2 1 2 1 2 1

2 2 2

2 1 2 1 2 1

ˆ ˆ ˆˆ

x x y y z zF F F

x x y y z z

AB

FAB

i j krF n

r

1 1 1, , 1.2,0,0.3A x y z

2 2 2, , 0,0.5,0.4B x y z

2 2 2

ˆ ˆ ˆ0.0 1.2 0.5 0.0 0.4 0.32

0.0 1.2 0.5 0.0 0.4 0.3

i j kF ˆ ˆ ˆ2 0.92 0.38 0.08

F i j k kN

2) 2-point construction

ABr

ˆ FF F n

Page 35: 1 2Force Systems Force, Moment, Couple and Resultants

39

Write vector expression of . Also determine angle x, y, z, of Twith respect to positive x, y and z axes

T

nTT

where n = unit vector from B to A

222 5)5.7(4

k5j5.7i4

k51.0j76.0i41.0 Thus

kN)k51.0j76.0i41.0(10T

ANS

cos 0.41x

76.0cos y

51.0cos z

66x

139y

59z

Consider: T as force of tension acting on the bar

Page 36: 1 2Force Systems Force, Moment, Couple and Resultants

40

Example Hibbeler Ex 2-9 #1

Determine the magnitude and the coordinate direction angles of the resultant force acting on the ring

1 2

2 2 2

ˆ ˆ ˆ ˆ ˆ(60 80 ) (50 100 100 )

ˆ ˆ ˆ(50 40 180 ) lb

50 ( 40) 180 lb 191.05 191 lb #

R

R

F F F F j k i j k

i j k

F

Vector

Page 37: 1 2Force Systems Force, Moment, Couple and Resultants

41

Example Hibbeler Ex 2-9 #2

50 40 180ˆ ˆ ˆ191.05 191.05 191.05

ˆ ˆ ˆ0.26171 0.20937 0.94216

RF R Ru F F

i j k

i j k

cos 0.26171 74.8

cos 0.20937 102

cos 0.94216 19.6 #

R

R

R

F x

F y

F z

u

u

u

Vector

Page 38: 1 2Force Systems Force, Moment, Couple and Resultants

42

Example Hibbeler Ex 2-11 #1

Specify the coordinate direction angles of F2 so that the resultant FR acts along the positive y axis and has a magnitude of 800 N.

1 1 1 1 1 1 1

2 2 2 2

ˆ ˆ ˆcos cos cos

ˆ ˆ ˆ(300cos 45 300cos60 300cos120 ) N

ˆ ˆ ˆ(212.13 150 150 ) N

ˆ ˆ ˆ

x y z

x y z

F F i F j F k

i j k

i j k

F F i F j F k

ˆ(800 ) NRF j

Vector

Page 39: 1 2Force Systems Force, Moment, Couple and Resultants

43

Example Hibbeler Ex 2-11 #2

1 2

2 2 2

2x 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ800 212.13 150 150

ˆ ˆ ˆ ˆ800 (212.13 ) (150 ) ( 150 )

R

x y z

y z

F F F

j i j k F i F j F k

j F i F j F k

Vector

Page 40: 1 2Force Systems Force, Moment, Couple and Resultants

44

Example Hibbeler Ex 2-11 #3

2 2

2 2

2 2

dir. 212.13 700cos 108

dir. 650 700cos 21.8

dir. 0 700cos 77.6 #

x

y

z

2

2

2

2

2

2

dir. 0 212.13

dir. 800 150

dir. 0 150

212 N

650 N

150 N #

x

y

z

x

y

z

x F

y F

z F

F

F

F

Vector

Page 41: 1 2Force Systems Force, Moment, Couple and Resultants

45

Example Hibbeler Ex 2-15 #1

The roof is supported by cables as shown. If the cables exert forces FAB = 100 N and FAC = 120 N on the wall hook at A as shown, determine the magnitude of the resultant force acting at A.

Force

Page 42: 1 2Force Systems Force, Moment, Couple and Resultants

46

Example Hibbeler Ex 2-15 #2

2 2

ˆ ˆ ˆ ˆ ˆ(4 0) (0 0) (0 4) m 4 4 m

4 ( 4) 5.6569 m

100 N ( )

4 4ˆ ˆ100( )5.6568 5.6568

ˆ ˆ(70.711 70.711 ) N

AB

AB

ABAB

AB

AB

r i j k i k

r

rF

r

i k

F i k

Force

Page 43: 1 2Force Systems Force, Moment, Couple and Resultants

47

Example Hibbeler Ex 2-15 #3

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ(4 0) (2 0) (0 4) m 4 2 4 m

4 2 ( 4) 6 m

120 N ( )

4 2 4ˆ ˆ ˆ120( )6 6 6

ˆ ˆ ˆ(80 40 80 ) N

AC

AC

ACAC

AC

AC

r i j k i j k

r

rF

r

i j k

F i j k

Force

Page 44: 1 2Force Systems Force, Moment, Couple and Resultants

48

Example Hibbeler Ex 2-15 #4

2 2 2

ˆ ˆ(70.711 70.711 ) N

ˆ ˆ ˆ(80 40 80 ) N

ˆ ˆ ˆ(150.711 40 150.711 ) N

(150.711) (40) (150.711) N

216.86 217 N #

R AB AC

R

F F F

i k

i j k

i j k

F

Force

Page 45: 1 2Force Systems Force, Moment, Couple and Resultants

49

(b) Two Angles orienting the line of action of force are given (, )

y

x

z

F

xF

yF

zFk

j

i

xyF

Resolve into two components at a time

Fx = Fxy cos() = F cos() cos()

Fy = Fxy sin() = F cos() sin()

Fz = F sin()

Fxy = F cos()

Othorgonal projection Method

Page 46: 1 2Force Systems Force, Moment, Couple and Resultants

50

yx

z

F

Fxy

FxFy

Fz

65o50o

cos50 3.21 kNoxyF F

cos65 1.36 kNox xyF F

sin50 3.83 kNozF F

sin 65 2.91 kNoy xyF F

ˆ ˆ ˆ

ˆ ˆ ˆ 1.36 2.91 3.83 kN

x y zF F F

F i j k

i j k Ans

Page 47: 1 2Force Systems Force, Moment, Couple and Resultants

yx

z

TAC

B

15o

51

NTT oAB 77315cos

NTT oABy 1155.81cos

NTT oz 20715sin

NTT oABx 7645.81sin

ˆ ˆ ˆ

ˆ ˆ ˆ764 115 207 N

x y zT T T

T i j k

i j k Ans

1 10tan 81.5

1.5o

CAB

TZ

TAB

Page 48: 1 2Force Systems Force, Moment, Couple and Resultants

52

2/110 A force F is applied to the surface of the sphere as shown.The 2 angles (zeta, phi) locate Point P, and point M is the midpoint of ON. Express F in vector form, using the given x-,y- z-coordinates.

Page 49: 1 2Force Systems Force, Moment, Couple and Resultants

53

• 3D Rectangular Component:

2/99 2/100 2/107 2/110

Recommended Problems

Page 50: 1 2Force Systems Force, Moment, Couple and Resultants

55

Operation Products

1. Dot Products

2. Cross Products

3. Mixed Triple Products

A B

A B

( )A B C

Vector

Page 51: 1 2Force Systems Force, Moment, Couple and Resultants

56

scalar product cosP Q PQ

P

Q

i

jk

ˆ ˆ ˆ ˆ ˆ ˆ ( ) ( )x y z x y zA B A i A j A k B i B j B k

x x y y z zA B A B A B A B

(unit vector) ( three orthogonal vector )

ˆ ˆ ˆ ˆ 0

ˆ ˆˆ ˆ 0

ˆ ˆˆ ˆ 0

i j j i

i k k i

j k k j

ˆ ˆˆ ˆ ˆ ˆ 1i i j j k k

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

x x x y x z

y x y y y z

z x z y z z

A i B i A i B j A i B k

A j B i A j B j A j B k

A k B i A k B j A k B k

?P Q

:

ˆ ˆ ˆ P 2 3 4

ˆ ˆ ˆ 4 2 5

Example

i j k

Q i j k

?PQ

Page 52: 1 2Force Systems Force, Moment, Couple and Resultants

57

Application of Dot Operation

• Angle between two vectors

1cos

| || |

P Q

P Q• Component’izing Vector

line

U

e/ /U U U

/ /ˆˆ ˆ ( ) U e U e

ˆˆ ˆ= ( ) U U e U e

e

ˆ ˆ( )T e e

ˆ ˆ( )T T e e

which direction?

T

/ /U U

cosP Q PQ

/ /, ?U U

:

ˆ ˆ ˆ U 2 3 4

1 ˆ ˆ ˆˆ 3

Example

i j k

e i j k

Page 53: 1 2Force Systems Force, Moment, Couple and Resultants

58

yx

z

F

Fxy

FxFy

Fz

65o50o

cos50 3.21 kNoxyF F

cos65 1.36 kNox xyF F

sin50 3.83 kNozF F

sin 65 2.91 kNoy xyF F

ˆ ˆ ˆ

ˆ ˆ ˆ 1.36 2.91 3.83 kN

x y zF F F

F i j k

i j k Ans

Page 54: 1 2Force Systems Force, Moment, Couple and Resultants

yx

z

TAC

B

15o

59

ˆ ˆ ˆ

ˆ ˆ ˆ764 115 207 N

x y zT T T

T i j k

i j k

2 2 791.55 Nxz x zT T T Ans

1 10tan 81.5

1.5o

CAB

e

ˆ ˆ( )T e e

ˆ ˆ( )T T e e

ˆˆ764 207xzT i k

which direction??

TZ

TAB

Page 55: 1 2Force Systems Force, Moment, Couple and Resultants

60

A

B

A B

e

= C A B

right-hand rule(A then B)

“Cross Product” of Vectors

line which are perpendicular with both vectors

:

sin

magnitude

AB

21 ( )A B

AB

def

= ˆ ( | | | |sin ) C

A B e

Page 56: 1 2Force Systems Force, Moment, Couple and Resultants

61

• Commutative Law is not valid

Operation Cross Product

A B B A

A B B A

( ) ( ) ( ) ( )a A B aA B A aB A B a

( ) ( ) ( )A B C A B A C

Laws of Operations

• Associative wrt scalar multiplication

• Distributive wrt vector addition

? A B B A

? A B B A C A B

A

B

C

A

B

B A

( ) ?

( ) ?

( ) ?

B A

B A

B A

Page 57: 1 2Force Systems Force, Moment, Couple and Resultants

62

ˆ ˆˆ ˆ ˆ ˆ 0i i j j k k

ik

y

x

z

ˆˆ ˆi j k i

jk+

x-y-z complies with right-hand rule

j

ˆˆ ˆj k i ˆ ˆ ˆk i j

Page 58: 1 2Force Systems Force, Moment, Couple and Resultants

63

ˆˆ ˆ U U i U j U kzx y

ˆ ˆˆ ˆ ˆ ˆ( ) ( )U V U i U j U k V i V j V kz zx y x y

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )

U V i i U V i j U V i kx x x y x z

U V j i U V j j U V j ky x y y y z

U V k i U V k j U V k kz x z y z z

ˆ ˆ( ) ( )

ˆ( )

U V U V U V i U V U V jz z z zy y x xU V U V kx y y x

This term can be written in a determinant form

How to calculate cross product

ˆˆ ˆ V V i V j V kzx y

Page 59: 1 2Force Systems Force, Moment, Couple and Resultants

64

ˆˆ ˆ ˆ ˆ

x y z x y

x y z x y

i j k i j

U U U U U

V V V V V

ˆˆ ˆ

x y z

x y z

i j k

U V U U U

V V V

Cross Product

+ +

- - -

+

ˆˆ ˆ( ) ( ) ( )U V U V U V i U V U V j U V U V kz z z zy y x x x y y x

Page 60: 1 2Force Systems Force, Moment, Couple and Resultants

65

Why cross product?

• Mathematical Representation of Moments, Torque

• Perpendicular Direction• Area Calculation

A

x

y

zA

B

B

C

O

ˆOABCnB A

B A

Area = ?A B

Page 61: 1 2Force Systems Force, Moment, Couple and Resultants

66

Mixed Triple Product

ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( )

ˆ ˆ ˆ( ) ( ) ( )

x y z x y z

x y z

x y z

y z z y x z z x x y y z

i j k

U V W U i U j U k V V V

W W W

U i U j U k

V W V W i V W V W j V W V W k

( ) ( ) ( ) ( )x y z z y y x z z x z x y y zU V W U V W V W U V W V W U V W V W

( )x y z

x y z

x y z

U U U

U V W V V V

W W W

( )V W U

x y z x y z

x y z x y z

x y z x y z

U U U W W W

W W W U U U

V V V V V V

( ) ( )U V W W U V

Page 62: 1 2Force Systems Force, Moment, Couple and Resultants

67

Why mixed triple product?

• Mathematical Representation of Moments along the axis.

• Volume Calculation

,O FM

O

r

Fn

, ,o FM

B

C

ˆOABCn

A

: ( )Volume C B A

( ) C B A

Volume must always +

Page 63: 1 2Force Systems Force, Moment, Couple and Resultants

68

Mixed Triple Product Scalar

Operation Product Summary

Cross Product Vector

Dot Product Scalar

Vector

Page 64: 1 2Force Systems Force, Moment, Couple and Resultants

69

Page 65: 1 2Force Systems Force, Moment, Couple and Resultants

72

Homepage URLs

Statics official HP http://www.lecturer.eng.chula.ac.th/fmekmn/ (User: Prince Password: Caspian)

Session 1 HPhttp://pioneer.netserv.chula.ac.th/~lsawat/course/statics/

http://blackboard.it.chula.ac.th/ (after the end of registration period)

Page 66: 1 2Force Systems Force, Moment, Couple and Resultants

73

FORCE SYSTEMSFORCE SYSTEMS

2-D Force Systems2-D Force Systems 3-D Force Systems3-D Force Systems

Moment

Couple

Resultants

Moment

Couple

Resultants

VectorBasic Concept

Page 67: 1 2Force Systems Force, Moment, Couple and Resultants

74

Force Definition

• Force is an action that tends to cause acceleration of an object. [Dynamics]

• The SI unit of force magnitude is the newton (N). One newton is equivalent to one kilogram-meter per second squared

(kg·m/s2 or kg·m · s – 2)

F

F

Examples of mechanical force include the thrust of a rocket engine, the impetus that causes a car to speed up when you step on the accelerator, and the pull of gravity on your body.

• Force is a vector quantity (why?)

Force can result from the action of electric fields, magnetic fields, and various other phenomena.

• Force is the action of one body on another. [Statics]

Page 68: 1 2Force Systems Force, Moment, Couple and Resultants

75

Force Representation

• Vector quantity– Magnitude– Direction– Point of application

10 NF

Force

Use different colours in diagrams• Body outline blue• Load red• Miscellaneous black

(dimension, angle, etc.)

Page 69: 1 2Force Systems Force, Moment, Couple and Resultants

76

Type of ForcesType of Forces

External force

Internal force

Reactive force

Applied force

Force

Force

Strain

Stress

Contact force

Body force

Force

Concentrated

Distributed

F

F

Page 70: 1 2Force Systems Force, Moment, Couple and Resultants

77

Cables & Springs

T

T

Cable in tension

F

s

F ks

spring constantk

Force

Page 71: 1 2Force Systems Force, Moment, Couple and Resultants

78

2/2 Combine the two forces P and T, which act on the fixed structure at B, into a single equivalent force R

P=800 N (8cm)

1 6sin 60tan 40.9

3 6cos60

oo

o

T=600 N (6cm)

R

525 N (5.25cm) R

Graphical

Geometric

P

T

R

2 2 2 2 cosR P T PT 524 NR

sin sin

T R

48.6o

Algebraic

ˆ800P i

ˆ ˆ600(cos sin )T i j

ˆ ˆ346 393R P T i j 2 2346 ( 393) 524 NR

1 393tan 48.6

346o

49o

Point of application is BCorrect?

Page 72: 1 2Force Systems Force, Moment, Couple and Resultants

79

Not OK. !

How to add sliding vectors (forces)?

AA

2F

1F

1F

2F

A 2F

1F

R

R

21 FFR

is applied at point AR

A 1F

R

Point of Application is wrong

Point of application

Principle ofTransmissibility

Still OK.

Page 73: 1 2Force Systems Force, Moment, Couple and Resultants

FF

F2

F1

F2

F1

FF

F2

F1

R1R2

RR

Point of application

R

This graphical method can be used to find Line of action

Special case: Addition of Parallel Sliding Force

F F

F2

F1

R1

R2

R1

R2

line of action

The better and efficient way will be discussed later, when we learn the concept of “moment”, “couple”, and “resultant force”

Page 74: 1 2Force Systems Force, Moment, Couple and Resultants

81

1 1 cos60 200 NoxT T

1 1 sin 60 346 NoyT T

2 2 693 Nx yR R R

T

VD1

Ty

Tx

x

y

60

1ˆ ˆ200 346 NT i j

2ˆ400 NT i

1 2ˆ ˆ600 346 NR T T i j

Point of application,But no physical meaning

Move all forces to that concurrent point

1 o346tan =29.97

600

Application Point Ans

Page 75: 1 2Force Systems Force, Moment, Couple and Resultants

82

How to add sliding vectors (forces)?

A

A

2F

1F

1F

2F

R

21 FFR

is applied at point AR

Point of application

There is better way to find the point of application(or line of action), but you have to learn the concept ofmoment and couples first.

Page 76: 1 2Force Systems Force, Moment, Couple and Resultants

84

moment axis

Moment is a vector

MomentIn addition to the tendency to move a body, force may also tend to rotate a body about an axis

From experience (experiment)magnitude depends only on “F” and “d”

(magnitude)summation

Direction

M Fd i i

i

M Fd

Page 77: 1 2Force Systems Force, Moment, Couple and Resultants

85

Moment Definition

xFx

y

z

yd

O

( )O zM• Moment is a vector quantity.

– Magnitude– Direction– Axis of Rotation

• The unit of moment is N·m• The moment-arm d (perpendicular distance)• The right-hand rule• determined by vector cross product• Sign convention: 2D +k or CCW is positive.• Moment of a force or torque

Page 78: 1 2Force Systems Force, Moment, Couple and Resultants

86

Moment about point A :

Mathematical Definition (3D)

r F

A

r

d

aM F

,A FM r F

-Magnitude:

-Point of application: point A

-Direction: right-hand rule

+

(Unit: newton-meters, N-m)

=M Fd

F

- 2D, need sign convention and be consistent; e.g. + for counter- clockwise and – for clockwise

2D

X

from A to point of application of the force

d

| || | sinr F

Fd

Page 79: 1 2Force Systems Force, Moment, Couple and Resultants

The moment of a force about any point is equal to the sum of the moments of the components of the force about that point

87

can be used with

more than

2 components

+

O

F

x

y d1

d2

xF

yF

Mo = -Fxd2+Fyd1

** OM r F

*1 2OM r F r F

1 2( )F F

Same?

Varignon’s Theorem (Principle of Moment)

1 2 1 2!

Yes r F r F r F F

r F

sum of moment (of each force) = moment of sum (of all force)

Useful with rectangular components

Page 80: 1 2Force Systems Force, Moment, Couple and Resultants

88

Principle of Transmissibility & Moment

A

O

O

r

d

a

F

M

X

YZ

FrM

M = Fr sin a = FdSliding force has the same moment

convenient

AX AYr F r F

- direction: same

- magnitude:

Principle of Transmissibility is based on the fact that“moving force along the line of action causes no effect in changing moment”

position vector: from A to any point on line of action of the force.

Page 81: 1 2Force Systems Force, Moment, Couple and Resultants

89

d

Sample 2/5 Calculate the magnitude of the moment about the base point O of 600N force in five different ways.

600N

400

4m

2mA

O

Solution I: 2D Scalar Approach

600N

400

4m

2m A

O

ood 40sin240cos4

35.4600 dFM O

2610 N-m Ans

m35.4

Solution II: 3D Vector Approach

ˆ 2610 N-m k

OM r F

ˆ ˆ ˆ ˆ2 4 600 cos40 sin 40o o i j i j

CW

x

y

CW or CCW? CWCorrect?

Page 82: 1 2Force Systems Force, Moment, Couple and Resultants

90

600N400

4m

2mA

O

F2

F1

Solution III: Varignon’s theorem

NF o 46040cos6001

NF o 38640sin6002

460(4) 386(2)OM

2610 N-m (CW)

600N

400

4m

2mA

O

F2

B

d1

F1

F2

F1C

d2

Solution IV: Transmissibility

od 40tan241 m68.5

1 1 2610 N-m (CW)OM F d

Solution V: Transmissibility

od 40cot422 m77.6

2 2 2610 N-m (CW)OM F d

+

Page 83: 1 2Force Systems Force, Moment, Couple and Resultants

91

EXAMPLE 2.8EXAMPLE 2.8

In raising the flagpole, the tension T in the cable must supply a Moment about O of 72 kN-m. Determine T.

15 m

30sin 60

25.981m

72 (12)sin 43.898Td T

8.65T kN

1 25.981tan 43.898

12 15

ANS

60o12 m

30 m

d

Page 84: 1 2Force Systems Force, Moment, Couple and Resultants

92

Example Hibbeler Ex 4-7 #1

Determine the moment of the force about point O.

ˆ ˆ(400sin30 400cos30 ) N

ˆ ˆ(200 346.41 ) N

F i j

i j

Moment

Correct? ˆ ˆ , ?i j

Page 85: 1 2Force Systems Force, Moment, Couple and Resultants

93

Example Hibbeler Ex 4-7 #2

ˆ ˆ ˆ

0.4 0.2 0 N-m

200 346.41 0

0.4 0.2 ˆ N-m200 346.41

ˆ ˆ98.564 98.6 N m

O

i j k

M r F

k

k k Ans

r

Moment

ˆ ˆ(400sin30 400cos30 ) N

ˆ ˆ(200 346.41 ) N

F i j

i j

400sin 30(0.2) 400cos 30(0.4)

40 138.56 98.564 N m

ˆ98.6 N m #

O

O

M

M k

Q

ˆ ˆ(0.4 0.2 ) mr i j

3D Vector Approach

Scalar Approach (Varignon’s theorem)

Page 86: 1 2Force Systems Force, Moment, Couple and Resultants

94

Couple- Couple is a summed moment produced by two force of equal magnitude but opposite in direction.

O

F

F

ad

+

M = F(a+d) – Fa = Fd

magnitude does not depend on distance a (point O),i.e. any point on the body has the same magnitude.

Couple Fd

- tendency to rotate the “whole” object.

- no effect on moving object as translation.

2D representations: (Couples)

C

couple is a free vector

C C

Effect of Pure Rotation

Page 87: 1 2Force Systems Force, Moment, Couple and Resultants

96

A

F

B

AF

Force-couple systems- Line of action of a force on a body may be changed if a couple is added to compensated for the change in the tendency to rotate of that body.

Procedure may be reversed to combine a force with a couple

Force-couple system

d

F

F

B

A

B F

C

Principle of transmissibility

No changes in net external effect

The direction and magnitude of Force can not be changed, only line of action (i.e. only change to other pararell line)

BAC r F

?C

Page 88: 1 2Force Systems Force, Moment, Couple and Resultants

97

Principle of Transmissibility is based on the fact thatmoving force along the line of action causes no effect in changing moment

FA

B

FA

B

CA

B F

CA

B FC r F

from new location (B)to old location (A)

r

F

A

BF

A

B

No Moment:Principle of Transmissibility

Page 89: 1 2Force Systems Force, Moment, Couple and Resultants

98

In the viewpoint of Mechanics,Result of force to these systemsare equal

Why using equivalent system?

AF

Force-couple system

B

A

B F

C

Principle of transmissibility

M

real (physical) system

equivalent system equivalent system

All force systems are equal.

Page 90: 1 2Force Systems Force, Moment, Couple and Resultants

99

A

B

D

M

M

M

,

,

,

A F

B F

D F

M

M

M

Understanding Force-Couple system

AF

B

A

BF

C

D D

Moment about point B of force F = tendency of force F to rotate the object at point B

couple occurs when moving Force F from A to B ( couple occurs when moving Force F parallel to its line of action to the point B)

BAr F

DAr F

0

ABr F

C

DBr F

C

C

0

Equivalent System

Page 91: 1 2Force Systems Force, Moment, Couple and Resultants

100

Vector Diagram

F

F12m

70m

P

P

7012 PF

Ans

P703600

51.42 kNP

CCWCW

Be careful of the direction of moment

Page 92: 1 2Force Systems Force, Moment, Couple and Resultants

101

2/11 Replace the force F by an equivalent force-couple system at point O.

kN50F

250 .mm

++ cos 20 (0.1cos 25 0.25cos10 )F

sin 20 (0.1sin 25 0.25sin10 )o o oF

17.3 N-m

Ans

20

M50 kN

25

10

x

y 20

50 kN

oM

0.1m

0.25 m

Couple occurred when moving F to O= Moment of F about O

CCWˆ ˆ17.1 46.9 kNF i j

Correct?

Page 93: 1 2Force Systems Force, Moment, Couple and Resultants

102

o 90 90 90 270R F kN

)21(90)12(90)21(90Mo

mkN1080 ANS

Got the meaning?

Moving all 3 forces to point O

Sum of couples

Engine number 3 fails. Determine the force-couple system on the body about point o.

couples occuring when moving forces.

(direction: left)

(CW)R

M

sum of moments?

x

y

+

yF

Page 94: 1 2Force Systems Force, Moment, Couple and Resultants

103

Example Hibbeler Ex 4-14 #1

Replace the current system by an equivalent resultant force and couple moment acting A.

100 400cos 45

382.84 N

600 400sin45

882.84 N

Rx x

Rx

Rx

Ry y

Ry

Ry

F F

F

F

F F

F

F

Resultant

Page 95: 1 2Force Systems Force, Moment, Couple and Resultants

104

Example Hibbeler Ex 4-14 #2

2 2

2 2

1 1

( 382.84) ( 882.84)

962.27 962 N #

882.84tan tan

382.84

66.556 66.6 #

R Rx Ry

R

R

Ry

Rx

F F F

F

F

F

F

100(0) 600(0.4) 400sin45 (0.8) 400cos45 (0.3)

551.13 551 N m #

A

A

A

R A

R

R

M M

M

M

Q

Resultant

Page 96: 1 2Force Systems Force, Moment, Couple and Resultants

105

Ans

6020cos300 ob

0.213 mb

b

300N

20o

60 N-m

D

exactly cancelled

b cos20

Page 97: 1 2Force Systems Force, Moment, Couple and Resultants

107

• Resultant of many forces-couple is the simplest force-couple combination which can replace the original forces/couples without changing the external effects on the body they act on

2/6 Simplest Resultant

2F1F

1R

3F

R

-Add two at a time get line of action of R

-Add many do not get line of action of R

FFFFR

...321 , xx FR yy FR

22 )()( yx FFR )/(tan 1xy RR

xF1

1F

2F

3F

R

y

x

yF1

yF2

yF3

yR

xF2 xF3

xR

q

Point of application

Page 98: 1 2Force Systems Force, Moment, Couple and Resultants

108

Easier way to get a resultant + its location

any forces + couples system

1) Pick a point (easy to find moment arms)

2F

1F

3F

d1

d2d3

1F

2F

3F

O

F1d1

2) Replace each force with a force at point O + a couple

F2d2

F3d3

R

O

4) Replace force-couple system with a single force

d=Mo/R

3) Add forces and moments

FR

O

Mo=(Fidi)

Mo=Rd

O

arbitrary

(forces + couples : same procedures)

any forces + couples system single-force + special single-couple (wrench)

2D

single-force system (no-couple)

or single-couple system

3D

where

0R

resultant

Page 99: 1 2Force Systems Force, Moment, Couple and Resultants

109

2/87 Determine the resultant and its line of action of the following three loads.

R = ( 2.4cos20 -1.5sin20 -3.6cos20 ) i +( -2.4sin20 -1.5cos20 +3.6cos20 ) j kN

M = -2.4*0.2cos20 -1.5*0.12cos20 -3.6*0.3cos20 kN-m

M

(force-couple system)

O R

Move 3 forces to point O,Sums their force and couples

Note: R is the same regardless with the location point we move the force to

Note: M depends on the location where we move the force to

+

why?

Page 100: 1 2Force Systems Force, Moment, Couple and Resultants

110

M = -1.635 kN-m

At point O (0,0)

MO

R

ˆ ˆ1.64 0.99 kNR i j

At point X (x,y)

NM

OR

R P

ˆ 1.635 k kNM

0 M N

ˆ ˆ0 ( )M xi yj R

ˆ ˆ0 ( )M xi yj R

ˆˆ ˆ ˆ ˆ( ) ( 1.64 0.99 ) 1.635xi yj i j k

0.99 1.64 1.635x y ( line of action )

couples cancelled

+

P

O (0,0)

P (x,y)

ˆ ˆ(0 ) (0 )r x i y j

Two equivalent systems Moment at any pointmust be the same on both system

Sys 1

Sys 2 ˆ ˆ( )xi yj R M

Pick Point O

Correct?

Page 101: 1 2Force Systems Force, Moment, Couple and Resultants

111

M = -1.635 kN-m

At point O (0,0)

MO

R

ˆ ˆ1.64 0.99 kNR i j

How to locate Point P

O (0,0)

ˆ 1.635 k kNM

+

d

2 2

| | | 1.635 |0.853 m

| | ( 1.64) ( 0.99)

Md

R

d

1 1 0.99tan tan 31.118

1.64y o

x

R

R

( sin , cos )d d

(0.441, 0.73)

tanP

P

y y

x x

( 0.73) 0.99

0.441 1.64

y

x

d2 2 2x y d

1( )tan

y x

Manually Canceling Couples

How to find line of action ?

or

P

PP

O

Page 102: 1 2Force Systems Force, Moment, Couple and Resultants

112

Equivalent System Definition

Two force-couple systems are equivalent

Equivalent System

system I system II

system I system II

( ) ( )

( ) ( )O O

R R

R R

F F

M M

MO

RO

R P

Sys 1 Sys 2

Page 103: 1 2Force Systems Force, Moment, Couple and Resultants

113

A car stuck in the snow. Three students attempt to free the car by exert forces on the car at point A, B and C while the driver’s actions result in a forward thrust of 200 N as shown in picture.

Determine

1) the equivalent force-couple system at the car center of mass G

2) locate the point on x-axis where the resultant passes.

++

jFiFR yx

i30sin250200200400R

j30cos250350

j567i925R

x

y

G

R

M

350(1.65) 250sin 30 (0.825)GM

mN690

Page 104: 1 2Force Systems Force, Moment, Couple and Resultants

114

For line of action of resultant

ˆˆ ˆ ˆ ˆ( ) (925 567 ) 690x i y j i j k

ˆ : 567 925 690k x y

At y = 0; x = +1.218 m. ANS

x

y

G

j567i925R

mN690

x

y

G

j567i925R

b

( ) | |y GR b M

567(b)=690

b=1.218 m

ˆ ˆ0 ( )M xi yj R

ˆ ˆ( )xi yj R M

Couple Cancellation

If you want to find only b (not line of action itself)

+ or - , you have to find out manually

Sys I

Two equivalent systems Moment at point Gmust be the same on both system

, ,G SysII G SysIM M

Sys II

Two equivalent systems(2D)

Page 105: 1 2Force Systems Force, Moment, Couple and Resultants

115

Determine the resultant (vector) and the point on x and y axes which must pass.

R

R

++x

y

G

jFiFR yx

ˆ25 20sin 30

ˆ ( 20cos30 30)

i

j

j3.47i15

25(5) 30(9)

(20cos30 )(9) (20sin 30 )(5)

oM

mkN351

Page 106: 1 2Force Systems Force, Moment, Couple and Resultants

116

x

y

O

j3.47i15R

mkN351

For line of action of resultant

oMRr

k351)j3.47i15()jyix(

351y15x3.47

If y = 0; x = 7.42 m.

ANS

x

y

O

x = 0; y = -23.4 m.

Page 107: 1 2Force Systems Force, Moment, Couple and Resultants

117