1. background2. flux variation3. polarity reversal4. electron evolution5. conclusions the role of...

43
1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions The role of coronal mass ejections in the solar cycle evolution of the heliospheric magnetic field M.J. Owens, N.U. Crooker, N.A. Schwadron, H.E. Spence and W.J. Hughes Center for space physics Boston University

Post on 22-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

The role of coronal mass ejections in the solar cycle evolution of the

heliospheric magnetic field

M.J. Owens, N.U. Crooker, N.A. Schwadron, H.E. Spence and W.J. Hughes

Center for space physicsBoston University

Page 2: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Overview

1. Background

2. Heliospheric flux variation

3. Heliospheric polarity reversal

4. Suprathermal electrons

5. Conclusions

Page 3: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Solar cycle: photosphere

1995

Mt. Wilson magnetographs

2001

Page 4: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Solar cycle: Heliosphere

Jones et al., 2003e.g. Richardson et al., 2002

Page 5: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Solar cycle: corona

Yang Liu, SHINE 2006

Riley et al., 2006

Page 6: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

How does the coronal field evolve?

• Wang & Sheeley: Emerging loops bring about field reversal by destruction of existing open flux– Series of PFSS solutions

• Fisk & Schwadron: Open flux is conserved, but reconfigured by reconnection

• B.C. Low: Magnetic helicity conservation means potential state cannot be reached by reconnection alone– CMEs required to shed the helicity

– CMEs bodily remove flux to allow field reversal

Page 7: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Influence of CMEs on corona

Luhmann et al., 1998

Page 8: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Heliospheric flux variation

• How can you add flux to the heliosphere?

Page 9: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Suprathermal electrons

ab

c

d

Page 10: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Interplanetary CMEs

Crooker et al., 2004

Marubashi., 1997

Page 11: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

ICMEs contain closed fields

Riley et al., 2004

1 AU: Shodhan et al., 2002

5 AU: Crooker et al., 2002

Page 12: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Flux added by ICMEs must be removed

No “flux catastrophe” – McComas et al, 1992– Equivalent fields must open

Two possibilities:– Disconnect open fields

– Open CME closed loops via interchange reconnection (Crooker et al., 2002)

a

b

Page 13: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Flux added by a single CME

Owens and Crooker, 2007

Page 14: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Timescale for flux opening

• Disconnection and interchange reconnection add/remove flux at same rate if rate of reconnection is the same

• Assume exponential decay to flux from a single CME added to heliosphere

t – time since launchφ – flux contained in CMED – fraction of flux which opens at launchλ – decay constant

Interchange

Disconnection2

Page 15: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Heliospheric flux budget

Assume a constant CME rate:

Equate open flux at min/max (i.e., assume variation in |B| is entirely due to ICMEs)

T1/2 ~ 40 days

Page 16: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

LASCO-driven simulation

• LASCO CMEs have been catalogued.

Use LASCO CME times to drive simulation.

• At each time-step, insert new CMEs and decay flux from existing ICMEs.

• Observed variability in |B| can be very well matched

Owens and Crooker, 2006

Page 17: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Suprathermal electrons• Method of reconnection important for

heliospheric field evolution

• Simple picture:– Interchange: no EDs, decay in CSE

– Disconnection: EDs, no decay in CSE

a

b

Page 18: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Observable test

Owens et al, 2007 Crooker and Webb, 2006

Page 19: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Crooker et al, 2008

Page 20: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Transport of flux

Interchange reconnection transports open flux across CME footpoints

Page 21: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

CME footpoints•Polarity of CME footpoints.

– Magnetic cloud observations

Bothmer and Schwenn, 1998

Page 22: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Rise phase

Time Owens et al, 2007

Page 23: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Declining phase

Time Owens et al, 2007

Page 24: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Prediction

Owens et al, 2007 Crooker and Webb, 2006

Page 25: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

• Number of CMEs required to reverse polarity:

Is there sufficient flux?

• Timescale for such a reversal

d > 5o

Page 26: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Suprathermal electrons• Method of reconnection important for

heliospheric field evolution

• Simple picture:– Interchange: no EDs, decay in CSE

– Disconnection: EDs, no decay in CSE

Page 27: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Suprathermal electron

scattering

Fra

ctio

n o

f to

tal e

lect

ron

den

sity 1.00

0.10

0.01

0.3 0.6 1 2Heliocentric distance (AU)

corehalo

strahl

Maksimovic et al., 2005

Hammond et al., 1996

Page 28: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Owens and Crooker, 2007

Page 29: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

How long do closed loops retain the CSE signature?

• Scattering process is still a topic of research

• Empirically match observed scattering rate– Can a constant scattering rate reproduce the

switch with distance of focusing to scattering?

Page 30: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Numerical simulation

• Parker Spiral magnetic field

• Halo electrons move into weaker fields

• Magnetic moment

– μ = VPERP2/B

Page 31: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Simulation with pitch-angle scattering

Page 32: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

What’s going on?

Page 33: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Next steps..

• Generalise electron model to closed loops

• Determine length of loop when CSE signature is removed– If it is large, we can we discount reconnection

because of too few CSE signatures?

– What are the implications for the heliospheric flux budget?

– Is the scattering rate in magnetic clouds the same as in the ambient solar wind?

Page 34: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Summary

• The solar cycle manifests itself in the heliosphere as:– A doubling of the heliospheric flux

– A reversal/rotation of the heliospheric current sheet

• Coronal mass ejections can explain these observations by:– Temporarily adding closed flux to the heliosphere

– Transporting open flux across CME footpoints by interchange reconnection close to the Sun

• The distance at which closed loops lose their identity is important for the heliospheric flux budget

Page 35: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Extra slides

Page 36: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Page 37: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

The solar cycle - sunspots

Page 38: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Comparison with Ulysses

Page 39: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Simulation – sine-fit

Use simple sine-wave fit to observed CME frequency

Owens and Crooker, 2006

Page 40: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Heliospheric flux

Solar cycle variation– Approximately doubles

over solar cycle

– Returns to same value each minimum

Richardson et al [2002]: Variation is carried by ambient solar wind, not associated with ICME signatures.

Richardson et al., 2002

Page 41: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Suprathermal electrons for a single CME

Page 42: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

LASCO-driven simulation

• At each time-step, insert new CMEs and decay flux from existing ICMEs.

• Both interchange and disconnection can explain CSE/EDs observed

Different scattering distance

Page 43: 1. Background2. Flux variation3. Polarity reversal4. Electron evolution5. Conclusions The role of coronal mass ejections in the solar cycle evolution of

1. Background 2. Flux variation 3. Polarity reversal 4. Electron evolution 5. Conclusions

Pich-angle scattering