1 bertrand roduit 1, franz brogli 2, francesco mascarello 3, mischa schwaninger 3, thomas glarner 4,...

19
1 Bertrand Roduit Bertrand Roduit 1 , Franz Brogli , Franz Brogli 2 , Francesco Mascarello , Francesco Mascarello 3 , Mischa Schwaninger , Mischa Schwaninger 3 , Thomas Glarner , Thomas Glarner 4 , , Jacques Wiss Jacques Wiss 5 , Markus Luginbühl , Markus Luginbühl 6 , Craig Williams , Craig Williams 6 , Pierre Reuse , Pierre Reuse 7 1 AKTS AG Advanced Kinetics and Technology Solutions, TECHNOArk 1, 3960 Siders, Switzerland AKTS AG Advanced Kinetics and Technology Solutions, TECHNOArk 1, 3960 Siders, Switzerland 2 Ciba Schweizerhalle AG, P.O. Box, CH-4002 Basel, Switzerland Ciba Schweizerhalle AG, P.O. Box, CH-4002 Basel, Switzerland 3 DSM Nutritional Products Ltd., Safety laboratory, 4334 Sisseln, Switzerland DSM Nutritional Products Ltd., Safety laboratory, 4334 Sisseln, Switzerland 4 F. Hoffmann-La Roche Ltd, Safety laboratories, 4070 Basel, Switzerland F. Hoffmann-La Roche Ltd, Safety laboratories, 4070 Basel, Switzerland 5 Novartis Pharma AG, Novartis Campus, WSJ-145.8.54, 4002 Basel, Switzerland Novartis Pharma AG, Novartis Campus, WSJ-145.8.54, 4002 Basel, Switzerland 6 Syngenta Crop Protection Münchwilen AG, WMU 3120.1.54, 4333 Münchwilen, Switzerland Syngenta Crop Protection Münchwilen AG, WMU 3120.1.54, 4333 Münchwilen, Switzerland 7 Swiss Safety Institute, Schwarzwaldallee 215, WRO-1055.5.02, 4002 Basel, Switzerland Swiss Safety Institute, Schwarzwaldallee 215, WRO-1055.5.02, 4002 Basel, Switzerland www.akts.com APSS 2009 APSS 2009 20-23 October, 2009, Osaka, Japan 20-23 October, 2009, Osaka, Japan Estimation of Time to Maximum Rate under Adiabatic Conditions (TMR ad ) Using Kinetic Parameters Derived from DSC - Investigation of Thermal Behavior of 3- methyl-4-nitrophenol

Upload: elmer-reeves

Post on 28-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

1

Bertrand RoduitBertrand Roduit11, Franz Brogli, Franz Brogli22, Francesco Mascarello, Francesco Mascarello33, Mischa Schwaninger, Mischa Schwaninger33, Thomas Glarner, Thomas Glarner44, , Jacques WissJacques Wiss55, Markus Luginbühl, Markus Luginbühl66, Craig Williams, Craig Williams66, Pierre Reuse, Pierre Reuse77

11AKTS AG Advanced Kinetics and Technology Solutions, TECHNOArk 1, 3960 Siders, SwitzerlandAKTS AG Advanced Kinetics and Technology Solutions, TECHNOArk 1, 3960 Siders, Switzerland22Ciba Schweizerhalle AG, P.O. Box, CH-4002 Basel, SwitzerlandCiba Schweizerhalle AG, P.O. Box, CH-4002 Basel, Switzerland

33DSM Nutritional Products Ltd., Safety laboratory, 4334 Sisseln, SwitzerlandDSM Nutritional Products Ltd., Safety laboratory, 4334 Sisseln, Switzerland44F. Hoffmann-La Roche Ltd, Safety laboratories, 4070 Basel, SwitzerlandF. Hoffmann-La Roche Ltd, Safety laboratories, 4070 Basel, Switzerland

55Novartis Pharma AG, Novartis Campus, WSJ-145.8.54, 4002 Basel, SwitzerlandNovartis Pharma AG, Novartis Campus, WSJ-145.8.54, 4002 Basel, Switzerland66Syngenta Crop Protection Münchwilen AG, WMU 3120.1.54, 4333 Münchwilen, SwitzerlandSyngenta Crop Protection Münchwilen AG, WMU 3120.1.54, 4333 Münchwilen, Switzerland

77Swiss Safety Institute, Schwarzwaldallee 215, WRO-1055.5.02, 4002 Basel, SwitzerlandSwiss Safety Institute, Schwarzwaldallee 215, WRO-1055.5.02, 4002 Basel, Switzerland

www.akts.com

APSS 2009APSS 200920-23 October, 2009, Osaka, Japan20-23 October, 2009, Osaka, Japan

Estimation of Time to Maximum Rate under Adiabatic Conditions (TMRad) Using Kinetic Parameters Derived

from DSC - Investigation of Thermal Behavior of 3-methyl-4-nitrophenol

2

Adiabatic Runaway Scenario

Example of adiabatic runaway scenarioExample of adiabatic runaway scenario

Before :Before :

3

Example of adiabatic runaway scenarioExample of adiabatic runaway scenario

After :After :

Adiabatic Runaway Scenario

4

Analysis samples:

3-methyl-4-nitrophenol

CAS No: 2581-34-2

Objective: Determine the initial temperature for Time To Maximum Rate under adiabatic conditions TMRad = 24h

- Different suppliers (different batches) - DSC or ARC techniques were applied - Different DSC apparatus (various manufacturers)

Analysis Samples

5

Temperature (°C)325300275250225200175150125

Hea

tFlo

w (

W/g

)

5

4

3

2

1

0

-1

-2

-3

-4

ExoHeat : -2,194.016 (J/g) T : 198.92 and 344.13 (°C) Top of Peak : 294.34 (°C) Peak Height : 4.41 (W/g) Baseline Type : Tangential Sigmoid

128.16 (°C)

.

Typical DSC trace of Typical DSC trace of 3-methyl-4-nitrophenol 3-methyl-4-nitrophenol recorded at 4 K/min and recorded at 4 K/min and

sigmoid baseline construction. sigmoid baseline construction.

3-methyl-4-nitrophenol at 4 K/min

6

Temperature (°C)340320300280260240220200

Rea

ctio

n ra

te (

-/s)

2E-3

1.5E-3

1E-3

5E-4

0

.

The reaction rates for all samples at 4K/min. The reaction rates for all samples at 4K/min. Despite of the different experimental setups and sample origins the Despite of the different experimental setups and sample origins the

reproducibility of the DSC traces is acceptable. reproducibility of the DSC traces is acceptable.

Reproducibility of the DSC traces

7

22

TR

EConst

dt

d 1ln

11

22

33

33

=

ln

Theory: isoconversional

analysis &

baseline optimization

Differential isoconversional method

8Temperature (°C)340320300280260240220200

Rea

ctio

n ra

te (

-/s)

0.003

0.002

0.001

0

Rea

ctio

n pr

ogre

ss (

-)

1

0.8

0.6

0.4

0.2

0

1

.

.

2

4

8

0.50.25

4

0.250.5

12

48

4

.

Reaction rates dReaction rates d/dt and progresses /dt and progresses corresponding to the normalized DSC-signals for the corresponding to the normalized DSC-signals for the decomposition of all decomposition of all 3-methyl-4-nitrophenol samples under 3-methyl-4-nitrophenol samples under non-isothermal non-isothermal conditions. conditions. The The

values of the heating rates are marked on the curves. The comparison of the experimental and values of the heating rates are marked on the curves. The comparison of the experimental and simulated signals at chosen experimental conditions is shown in the respective insets.simulated signals at chosen experimental conditions is shown in the respective insets.

Reactions rate and progress: Non-isothermal

9Time (h)1614121086420

Rea

ctio

n ra

te (

-/s)

6E-4

5E-4

4E-4

3E-4

2E-4

1E-4

0

Rea

ctio

n pr

ogre

ss (

-)

1

0.8

0.6

0.4

0.2

0

240

260

250

190

230

220

210

200

190200210

220230

240

250

260

.

.

220

220

.

Reaction rates dReaction rates d/dt and progresses /dt and progresses corresponding to the normalized DSC-signals for the corresponding to the normalized DSC-signals for the decomposition of all decomposition of all 3-methyl-4-nitrophenol samples under 3-methyl-4-nitrophenol samples under isothermal isothermal conditions. conditions. The values The values

of the temperatures are marked on the curves. The comparison of the experimental and of the temperatures are marked on the curves. The comparison of the experimental and simulated signals at chosen experimental conditions is shown in the respective insets.simulated signals at chosen experimental conditions is shown in the respective insets.

Reactions rate and progress: Isothermal

10

Isothermal validationIsothermal validation

ARC validationARC validation

Initial temperature for TMRad 24h = ? °CInitial temperature for TMRad 24h = ? °C

Experimental Validation

11

=0=0 Or Or ==

=1=1 ==TTadad

From DSCFrom DSC

> 1000 kg> 1000 kgTheoryTheory

Determination of time to maximum rateDetermination of time to maximum rate under adiabatic conditions (TMRunder adiabatic conditions (TMRadad))

Adiabatic Adiabatic ConditionsConditions

Link between kinetics and TMRad

12

Temperature profile of an adiabatic Temperature profile of an adiabatic runaway reaction,runaway reaction,

TT

ad

iab

ati

cad

iab

ati

c

Tem

pera

ture

/Tem

pera

ture

/°C°C

Time /hTime /h

Determination of Determination of time to maximum rate under adiabatic conditions (TMRtime to maximum rate under adiabatic conditions (TMRadad))

Key parameters obtained from adiabatic experimentsKey parameters obtained from adiabatic experiments

=1=1 ==TTadad

TheoryTheory

Key parameters in adiabatic experiments

13

Temperature profile of an adiabatic Temperature profile of an adiabatic runaway reaction,runaway reaction,

corresponding self-heating ratecorresponding self-heating rate

TT

ad

iab

ati

cad

iab

ati

c

Time to Maximum RateTime to Maximum Rateadiabaticadiabatic

Maxim

um

Maxim

um

Self

heat

Self

heat

rate

rate

Self

heat

rate

/°C

/min

Self

heat

rate

/°C

/min

Tem

pera

ture

/Tem

pera

ture

/°C°C

Time /hTime /h

=1=1 ==TTadad

TheoryTheory

Determination of Determination of time to maximum rate under adiabatic conditions (TMRtime to maximum rate under adiabatic conditions (TMRadad))

Key parameters obtained from adiabatic experimentsKey parameters obtained from adiabatic experiments

Key parameters in adiabatic experiments

14Time (h)1614121086420

Rea

ctio

n P

rogr

ess

(-)

10.8

0.6

0.4

0.20

Tem

pera

ture

(°C

)

500

450

400

350

300

250

200

150

100

50 Reaction Progress: 0.0095 (-)

t: 11.29 (h)T: 183.81 (°C)

t: 15.67 (h)T: 421.65 (°C(

Typical ARC test for Typical ARC test for 3-methyl-4-nitrophenol 3-methyl-4-nitrophenol carried out in HWS mode. Having the kinetic carried out in HWS mode. Having the kinetic description of the reaction rate from the DSC data, one can estimate that the reaction description of the reaction rate from the DSC data, one can estimate that the reaction

progress a after ca. 11.3 h of HWS testing amounts to about 0.0095 (ca. 1%). From the time progress a after ca. 11.3 h of HWS testing amounts to about 0.0095 (ca. 1%). From the time at which the temperature of the detection limit (183.81°C) was reached the value of TMR at which the temperature of the detection limit (183.81°C) was reached the value of TMR

amounts to ca. 4.4h (15.67-11.29h). Solid line depicts the simulation being in a good amounts to ca. 4.4h (15.67-11.29h). Solid line depicts the simulation being in a good agreement with the experimental HWS-ARC data presented as symbols.agreement with the experimental HWS-ARC data presented as symbols.

Experimental Validation

15

Isothermal validationIsothermal validation

ARC validationARC validation

Initial temperature for TMRad 24h = ? °C Initial temperature for TMRad 24h = ? °C (F =1)(F =1)

Experimental Validation

16

Participant of round

robin test

Heating rates applied

(non-isothermal)

Temperatures applied(isothermal)

Hr ± Initial temperature for TMRad =

24 h

Sum of all correl. coeff.

0.25, 0.5, 1, 2, 4 200, 210, 220, 240 1961.2± 151.8 156.4 9960

0.5, 1, 2, 4, 8 2070.5 ± 166.7 153.6 9894

4, 4 220, 240, 260 2143.2 ± 115.1 148.9 9932

0.5, 2, 4, 8 210, 220, 230, 240 2133.8 ± 144.7 149.4 9934

2.5, 2.5 148

190, 200, 210, 220 2112.1 ± 76.5 152.5 9978

5 220, 230, 240, 250, 260 1655.8 ± 141.9 150.1 9972

Summary of the results of determination of the initial temperatures leading to Summary of the results of determination of the initial temperatures leading to TMRTMRadad = 24 h with AKTS-Thermokinetics Software by using all DSC data = 24 h with AKTS-Thermokinetics Software by using all DSC data

collected in round robin test.collected in round robin test.

Mean value for TMRMean value for TMRadad 24h = 151.27 ±3.01°C 24h = 151.27 ±3.01°C

TMRad 24 h

17

Isothermal validationIsothermal validation

ARC validationARC validation

Initial temperature for TMRInitial temperature for TMRadad 24h = 151°C 24h = 151°C ((=1) =1)

Experimental Validation

18

The correct determination of TMRThe correct determination of TMRadad based on DSC data based on DSC data requiresrequires

two important parameters two important parameters

(i) an advanced kinetics of the investigated reaction (i) an advanced kinetics of the investigated reaction and and

(ii) an adiabatic heat balance of the system.(ii) an adiabatic heat balance of the system.

‘‘Safety through calculations not by accidents’Safety through calculations not by accidents’

Conclusion

19

Advanced Kinetics and Technology Solutions

AKTS AG, C. Borgeat, C. Luyet, L.Xia, N. Solioz, JG. Pont AKTS AG, C. Borgeat, C. Luyet, L.Xia, N. Solioz, JG. Pont

armasuisse, Dr. P. Folly, Dr. A.Sarbach and B. Bergerarmasuisse, Dr. P. Folly, Dr. A.Sarbach and B. BergerSwiss Federal office of Public Health, Dr. V. DudlerSwiss Federal office of Public Health, Dr. V. Dudler

Univ. of Western Switzerland, Prof. J.N. Aebischer, Univ. of Western Switzerland, Prof. J.N. Aebischer, S. Gomez, B. AlonsoS. Gomez, B. Alonso

Swiss Institute of Safety and Security,Swiss Institute of Safety and Security,Dr. P. Reuse, Prof. F. Stoessel, Dr. H. Fierz Dr. P. Reuse, Prof. F. Stoessel, Dr. H. Fierz

Nitrochemie Wimmis AG, Dr. M. Ramin, Dr. U. Schädeli, Nitrochemie Wimmis AG, Dr. M. Ramin, Dr. U. Schädeli, Dr. B. VogelsangerDr. B. Vogelsanger

Acknowledgements Acknowledgements Our partners and friendsOur partners and friends