1 bolland 1 gas technology center ntnu – sintef olav bolland hybrid power production systems –...

20
1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University of Science and Technology (NTNU) KIFEE-Symposium, Kyoto, November 15-17, 2004 Materials and Processes for Environment and Energy

Upload: fidel-swainston

Post on 31-Mar-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

1

Bolland1Gas Technology Center NTNU – SINTEF

Olav Bolland

Hybrid power production systems– integrated solutions

Olav Bolland

ProfessorNorwegian University of Science and Technology (NTNU)

KIFEE-Symposium, Kyoto, November 15-17, 2004

Materials and Processes for Environment and Energy

Page 2: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

2

Bolland2Gas Technology Center NTNU – SINTEF

Olav Bolland

Power production in Norway National grid: 99.5% hydropower

27000 MW - 120 TWh/a Per capita: 6 kW - 27000 kWh/a

Offshore oil/gas: mechanical power and local grids 3000 MW gas turbine power - 10 TWh/a

Future: Wind power: 2002-2010 +3 TWh/a More hydropower: potential YES acceptance NO Natural gas power: potential YES

problem is CO2

CO2 is a hot issue!! Dependence on import of coal & nuclear power?

Page 3: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

3

Bolland3Gas Technology Center NTNU – SINTEF

Olav Bolland

Power related research at NTNU

Grid and production optimisation: Scandinavian electricity market

Hydropower technology 1) pumping turbines 2) small-scale turbines

Wind power PV – material technology Fuel cells – PEM and SOFC Biomass gasification combined with gas engines and

SOFC Natural gas

optimal operation of gas turbines (oil/gas production) NOx emissions CO2 capture and storage

Page 4: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

4

Bolland4Gas Technology Center NTNU – SINTEF

Olav Bolland

Hybrid power production systems– integrated solutions

Solid Oxide Fuel Cell (SOFC) integrated with a Gas Turbine Potential for very high fuel-to-electricity efficiency

Cogeneration of Hydrogen and Power, with CO2 capture using hydrogen-permeable membrane

Power generation with CO2 capture

using oxygen-transport membrane

Examples where advanced material technology is the key to improved energy conversion technologies

Page 5: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

5

Bolland5Gas Technology Center NTNU – SINTEF

Olav Bolland

SOFC/GTSolid Oxide Fuel Cell integrated in Gas Turbine

Part-load and off-design performanceControl strategies

Dynamic performance

Anode

Afterburner

SOFC

AIR

AIR

REMAININGFUEL

AIR

EXHAUST

PreReformer

Air Compressor

RECIRCULATION

Turbine

Generator

Natural gas

Cathode

DC/AC

SOFC model

Page 6: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

6

Bolland6Gas Technology Center NTNU – SINTEF

Olav Bolland

SOFC model

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Page 7: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

7

Bolland7Gas Technology Center NTNU – SINTEF

Olav Bolland

Convective heat transfer

2Fluid Wall Fluid

p

T T hv T T

t z r c

0

solid andair between Boundary

SurfaceFluid TThr

Tk

2

Heat conduction in solid

p

T kT

t c

4 4

Radiative heat transfer

( )rad i i j i jQ AF T T

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Modelling of the Temperature Distribution

• Gas streams are modelled in 1D• Solid is modelled in 2D

Page 8: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

8

Bolland8Gas Technology Center NTNU – SINTEF

Olav Bolland

Mass balance and reaction kinetics

,i i

fuel i jj

dc dcv rx

dt dz

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

actCHRT

moleJ

CH Apesbarm

molesmoler

44

/00082

24274/

2 2

2( )

shiftG

RTshift

CO HCO CO H O

shift

K e

c cr c c

K

2 2H

Ir

F

4 2 2

2 2 2

2

4 2

Steam reforming

3

Shift

Coking

2

2

CH H O CO H

CO H O CO H

CO CO C

CH C H

Page 9: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

9

Bolland9Gas Technology Center NTNU – SINTEF

Olav Bolland

Electrochemistry and losses

2 2

2

2 2 2

0.50

83604 2

Potential balance

Electrochemistry

1

2Electromotive force

ln2 2

Activation polarisation

2.83 10

Diffusion polaris

cell ocv Ohm act diff

H OOCV

H O

K

Tact

act

U E IR

H O H O

p pG RTE

F F p

Im e

A

2 2 2

2 2 2

3

3 3

ation

ln ln2 2

b TB bH H O Oanode cathode

diff TB b TBH H O O

y y yRT RT

F y y F y

Fuel Air

AirrAnode Electrolyte Cathode Air supply tube 0

Page 10: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

10

Bolland10Gas Technology Center NTNU – SINTEF

Olav Bolland

Overall system model

Map-based turbine model

High-frequency generator

Shaft mass inertia accounted for

Thermal inertia and gas residence times included in the heat exchanger models

Prereformer is modelled as a Gibbs reactor

Heat exchange between prereformer and anode surface

Anode

Afterburner

SOFC

AIR

AIR

REMAININGFUEL

AIR

EXHAUST

PreReformer

Air Compressor

RECIRCULATION

Turbine

Generator

Natural gas

Cathode

DC/AC

Map-based compressor model

Page 11: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

11

Bolland11Gas Technology Center NTNU – SINTEF

Olav Bolland

Performance maps with optimised line of operation

according to a given criteria

65 70 75 80 85 90 95 100 10510

20

30

40

50

60

70

80

90

100

110

Relative Shaft Speed [% of Design]

Rel

ativ

e F

uel F

low

[%

of

Des

ign]

44%

36%28

%

20%

10%

25%

40%

55%

70%

85%

100%

70%

65% 60%

55% 50% 45%

Designpoint

No steady state

Low temperature regime

GT power fraction [%]Net power [% of Design]Net efficiency [% LHV]Operation Line

65 70 75 80 85 90 95 100 10510

20

30

40

50

60

70

80

90

100

110

Relative Shaft Speed [% of Design]

Rel

ativ

e F

uel F

low

[%

of

Des

ign]

800K

900K

1000K

1100K

1200K

200K/m

400K/m

600K/m

800K/m300K/m

400K/m

200K/m

100K/m

Designpoint

No steady state

Low temperature regime

Max SOFC T [K]Max radial T grad [K/m]Max axial T grad [K/m]Operation Line

Line of operation for load change

Page 12: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

12

Bolland12Gas Technology Center NTNU – SINTEF

Olav Bolland

Air inlet

Fuel inlet

Air delivery tube

Cathode, Electrolyte, Anode

Air outlet

Cathode air

Dynamic performance of SOFC/GT

Page 13: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

13

Bolland13Gas Technology Center NTNU – SINTEF

Olav Bolland

Page 14: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

14

Bolland14Gas Technology Center NTNU – SINTEF

Olav Bolland

CO2 capture and storagewhat are the possibilities?

Raw material Gas, Ammonia, Steel

Reformer+CO2 Sep

Air Separation

CO2Separation

Coal Gas

Biomass

CO2Compression& Dehydration

Power & Heat

Power & Heat

Power & Heat

Process +CO2 Sep.

N2

N2 O2

O2

H2

N2O2

CO2

CO2

CO2

CO2

Air

Post combustion

Pre combustion

Oxyfuel

Industrial Processes

Air

Air

Coal Gas

Biomass

Coal Gas

Biomass

Gasification

Gas, Oil

Coal Gas

Biomass

Air/O2Steam

Air/O2

Raw material Gas, Ammonia, Steel

Reformer+CO2 SepReformer+CO2 Sep

Air Separation

CO2Separation

CO2Separation

Coal Gas

Biomass

CO2Compression& Dehydration

Power & HeatPower & Heat

Power & HeatPower & Heat

Power & Heat

Process +CO2 Sep.

N2

N2 O2

O2

H2

N2O2

CO2

CO2

CO2

CO2

Air

Post combustion

Pre combustion

Oxyfuel

Industrial Processes

Air

Air

Coal Gas

Biomass

Coal Gas

Biomass

GasificationGasification

Gas, Oil

Coal Gas

Biomass

Air/O2Steam

Air/O2

Source: Draft IPCC report ’CO2 capture and storage’

Page 15: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

15

Bolland15Gas Technology Center NTNU – SINTEF

Olav Bolland

ReformerCH4

Shift

H2

COH2

CO2 CO2capture

H2

CO2

CH4 membranereactor

H2

CO2

to combustion

Membrane reforming reactorIdea

Page 16: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

16

Bolland16Gas Technology Center NTNU – SINTEF

Olav Bolland

Feed:

CH4, H2O

H2

Hydrogen lean gas out (H2O, CO2, CO, CH4, H2)

Q

Q

Exhaust

Sweep gas (H2O)

Sweep gas + H2 (+CO2, CO, CH4)

low pressure

high pressure

permeate

CH4+H2O CO+3H2

CO+H2O CO2+H2

Membrane

Hot exhaust

Heat transfer surface

Membrane reforming reactorprinciple

Page 17: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

17

Bolland17Gas Technology Center NTNU – SINTEF

Olav Bolland

Membrane reforming reactorin a Combined Cycle with CO2-

captureProducts: Power and Hydrogen

Source: Kvamsdal, Maurstad, Jordal, and Bolland, "Benchmarking of gas-turbine cycles with CO2 capture", GHGT-7, 2004

Gas Turbine Generator

NG

HRSG

Condenser

H2O

CO2 to compression

STAir

PRE

Exhaust

CO2/steam turbine

C1328 °C

SF

MSR-H2

800 °C

67 bar

H2 as GT fuel Condenser

H2

Q

H2 for external use

Page 18: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

18

Bolland18Gas Technology Center NTNU – SINTEF

Olav Bolland

N2

High-temperature membrane foroxygen production

CompressionAir

Heat exchange

O2CryogenicDistillation

Air Oxygentransport

membraneOxygen depleted air

O2

Air Air

N2

O2

Page 19: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

19

Bolland19Gas Technology Center NTNU – SINTEF

Olav Bolland

Membrane technology application in GTwith CO2 capture

Ion-transport membrane (O2) in reformerH2 selective membrane in water/gas-shift reactor

HR

SG

Steam for IT M -O 2,W G S -H 2 (and possib lya steam bo ttom ing cycle)

C H , H O4 2coo lingw ate r

C O , H 2

C O , H O 2 2

H O2

H , H O (G T fue l)2 2

W G S -H 2

G en.A ir co m pre sso r T u rb in e

A ir

8

Exhaus tN , O , H O , A r2 2 2

R ecycledcondensedw ate r

H , C O 2 2

C o m p res so r

IT M -O 2 w ithpartia l ox ida tionand m ethane-steam re fo rm ing

Page 20: 1 Bolland 1 Gas Technology Center NTNU – SINTEF Olav Bolland Hybrid power production systems – integrated solutions Olav Bolland Professor Norwegian University

20

Bolland20Gas Technology Center NTNU – SINTEF

Olav Bolland

Thank you!