1 carlo nipoti dipartimento di astronomia università di bologna thermal evaporation, agn feedback...

23
1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra NGC 4649 (Randall et al.) Carlo Nipoti - Vulcano, May 2008

Upload: darrell-patterson

Post on 19-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

1

Carlo Nipoti

Dipartimento di Astronomia Università di Bologna

Thermal evaporation, AGN feedback

and quenched star formation in massive galaxies

Chandra NGC 4649 (Randall et al.) Carlo Nipoti - Vulcano, May 2008

Page 2: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

2

OUTLINE

Why are L>L* galaxies red and dead?

The role of AGN feedback & thermal evaporation

What happens at L<L*?

The origin of the core/cusp dichotomy of ellipticals

Carlo Nipoti - Vulcano, May 2008

Page 3: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

3

BLUE CLOUD & RED SEQUENCE GALAXIES

Colour

<- Luminosity

<- Truncation of the blue cloud

Red sequence

Blue cloudSDSSBaldry et al 2004

Carlo Nipoti - Vulcano, May 2008

L≈L*

Page 4: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

4

Why are L>L* galaxies red and dead?

Carlo Nipoti - Vulcano, May 2008

Page 5: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

5

A critical halo mass

Shock heating

Mshock > Mshock ~ Mcrit

(Binney 1977; Dekel & Birnboim 2003, Keres+ 2005)

Trapping SN-heated gas

Mhalo > MSN ~ Mcrit

(Dekel & Silk 1986)

Halos with Mhalo>Mcrit accumulate dense hot (Tvir) gas

Mcrit = 1012 Msun

(Mcrit L* )

Carlo Nipoti - Vulcano, May 2008

Page 6: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

6

The role of (radio) AGN feedback

Hot gas remains hot and does not form stars

because:

Carlo Nipoti - Vulcano, May 2008

- it can cool only in the centre - in the centre it is re-heated by radio-AGN feedback

From observations of cooling flows (e.g. Birzan et al. 2004; Binney 2004)

Page 7: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

7

The role of thermal evaporation

In principle cosmic infall and gas-rich merging might restart star formation

BUT

Carlo Nipoti - Vulcano, May 2008

Cool gas can be eliminated via ablation and thermal evaporation by hot gas (Nipoti & Binney 2007)

in Mhalo>Mcrit halos:

Page 8: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

8

MODELING OF THERMAL EVAPORATION IN GALAXIES

(Nipoti & Binney 2007)

Carlo Nipoti - Vulcano, May 2008

- Cool (T≈104 K) clouds infalling in hot (Tvir≈106-107 K) ISM

- Minimum rate of ablation

- The fate of a cool clouds depends on its mass (Cowie & McKee 1977)

Mcloud < Mmin => evaporation

Mcloud > Mmin => star formation

Page 9: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

9

TWO MODEL GALAXIES

HIGH-MASS (HM)T=107 K Mgal=3x1011 Msun

Mhalo>Mcrit

LOW-MASS (LM)T=2.5x106 K Mgal=3x1010 Msun

Mhalo <≈ Mcrit

Model can be applied to any galaxy with known T(r) and ne(r) of ISM

Carlo Nipoti - Vulcano, May 2008

(Nipoti & Binney 2007)

Page 10: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

10

MINIMUM CLOUD MASS TO SURVIVE EVAPORATION

Mhalo>Mcrit ---->

Mhalo <≈ Mcrit ---->

Carlo Nipoti - Vulcano, May 2008

(Nipoti & Binney 2007)

Page 11: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

11

MINIMUM MASS NORMALIZED TO GALAXY MASS

Mmin/Mgal

HIGH-MASS

LOW-MASS

CLOUD ELLIPTICITY

Carlo Nipoti - Vulcano, May 2008

(Nipoti & Binney 2007)

Mhalo>Mcrit

Mhalo <≈ Mcrit

Page 12: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

12

WHY ARE L>L* GALAXIES RED AND DEAD?(summary)

Galaxies with Mhalo>1012Msun accumulate hot (Tvir) gas

Tvir gas is kept hot

Quenching of star-formation Lack of cold gas

Accreted cold gas is heated

by

radio-mode AGN feedback (+ other mechanisms?)

by

ablation & thermal evaporation (+ other mechanisms?)

Carlo Nipoti - Vulcano, May 2008

Page 13: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

13

What happens at L<L*?

Carlo Nipoti - Vulcano, May 2008

Page 14: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

14

AT L<L* ENVIRONMENT IS IMPORTANT

Galaxies with Mhalo<1012Msun have lower-n, lower-T atmosphere

Thermal evaporation by the ISM is not efficient

Cold gas available in prmary haloes (field galaxies)

Lack of cold gas in secondary haloes(cluster galaxies)

Carlo Nipoti - Vulcano, May 2008

Red sequenceBlue cloud

Page 15: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

15

The cusp/core dichotomy within the red sequence

Carlo Nipoti - Vulcano, May 2008

Page 16: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

16

A DICHOTOMY WITHIN THE RED SEQUENCE

Colour

<- Luminosity

Core galaxies Power-law galaxies (cuspy)

SDSSBaldry et al 2004

Carlo Nipoti - Vulcano, May 2008

Truncation of the blue cloud

Red sequence

Blue cloud

L≈L*

Page 17: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

17

CENTRAL SB PROFILE OF RED SEQUENCE GALAXIES

Core galaxies (<0.3)

Graham et al (2003)

Power-law galaxies (>0.5)

Carlo Nipoti - Vulcano, May 2008

- Power law <=> dissipation - Cores <=> dissipationless dynamics (binary BHs?)

Larson (1974)

Begelman+ (1980)

Page 18: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

18

Carlo Nipoti - Vulcano, May 2008

Higher LB

High LX/LB

NO stellar nuclei

NO central disks

Radio-loud AGN

Lower L/LEdd AGN

Lower LB

Stellar nuclei

Central disks

POWER-LAW GALAXIES

Radio-quiet AGN

Higher L/LEdd AGN

Low LX/LB

Faber et al. (1997)

Pellergini (2005)

Coté et al. (2006)

Lauer et al. (2005)

Capetti & Balmaverde (2006)

De Reuter et al. (2005)

CORE GALAXIES

Page 19: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

19

OPEN QUESTIONS

1) Why are CGs luminous and PLGs fainter?

(no characteristic mass in purely stellar dynamical processes!)

2) Why does the central slope correlate with diffuse LX?

3) Why does the central slope correlate with AGN properties?

Carlo Nipoti - Vulcano, May 2008

Page 20: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

20

A SCENARIO FOR THE ORIGIN OF THE DICHOTOMY

§ All Es at some stage of evolution have central cores

§ All Es accrete cold gas

§ In hot-gas poor Es cold gas can form stars in the centre (=> core refilled => PLGs)

§ In hot-gas rich Es cold gas is evaporated (=> core preserved => CGs)

Nipoti & Binney (2007)

Carlo Nipoti - Vulcano, May 2008

Page 21: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

21

CENTRAL SLOPE vs CENTRAL AGE OF STARS

data from Lauer et al. (2007), McDermid et al. (2006, SAURON)

CGs

PLGs

Support from observations: new correlation for Es

Carlo Nipoti - Vulcano, May 2008

Nipoti & Binney (2007)

Page 22: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

22

Mgal<1011Msun (Mhalo<1012Msun)

X-ray faint

no evaporation

central starbursts

cold gas available

core refilled (PLG)

stellar nucleus/disk

cold mode AGN

“higher” L/LEdd

radio quiet AGN

HIGH-MASS ELLIPTICALS

Mgal>1011Msun (Mhalo>1012Msun)

X-ray bright

evaporation

no central starbursts

no cold gas available

core preserved (GC)

no stellar nucleus/disk

hot-mode AGN

“lower” L/LEdd

radio loud AGN

LOW-MASS ELLIPTICALS

Carlo Nipoti - Vulcano, May 2008

Page 23: 1 Carlo Nipoti Dipartimento di Astronomia Università di Bologna Thermal evaporation, AGN feedback and quenched star formation in massive galaxies Chandra

23

CONCLUSIONS1) L>L*: Radio-mode feedback + thermal evaporation => “red and dead”

2) L<L*: primary halo => cold gas available => blue cloud secondary halo => lack of cold => red sequence

3) Thermal evaporation can explain the core/cusp dichotomy of Ellipticals

Carlo Nipoti - Vulcano, May 2008

Ultimately the energy for quenching star-formation comes from black holes, which act as thermostats for Tvir gas