1 hee cheon no nuclear system/hydrogen lab. kaist chapter 3: fuel thermal analysis

25
1 Hee Cheon NO Nuclear System/Hydrogen Lab. KAIST Chapter 3: Fuel Thermal Analysis

Upload: linette-dixon

Post on 13-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

1

Hee Cheon NO

Nuclear System/Hydrogen Lab.

KAIST

Chapter 3: Fuel Thermal Analysis

2

Contents

3.1 Basic heat transport modes3.1.1 conduction heat transport3.1.2 convective heat transport3.1.3 radiation heat transport

3.2 Fuel irradiation effects3.2.1 Fission gas release3.2.2 Thermal expansion, densification, swelling 3.2.3 Clad creepdown and lift-off3.2.4 Fuel-cladding interaction3.2.5 Fuel failure mechanisms 3.3 Fuel thermal analysis3.3.1 Fuel pellet thermal analysis3.3.2 Fuel cladding thermal analysis3.3.3 Fuel gas gap thermal analysis3.3.4 Heat transfer in the fluid channel

3

Conduction heat transport

3.1 Basic heat transport models

4

Convection heat transport

heat transfer coefficient

3.1 Basic heat transport models

5

Radiation heat transport

Black medium: emissivility=1; perfect emiiter and absorber

Grey medium(practical medium): emissivility<1

3.1 Basic heat transport models

4 41 2

1 2

( )

: 1) inf

eff

eff

Q A T T

for inite parallel planes

where

eff ecti ve emi ssi vi ty=1/ (1/ 1/

6

3.2 Fuel irradiation effects

7

Fission gas release: recoil & knockout

3.2 Fuel irradiation effects

8

Fission gas release: diffusion mechanism

3.2 Fuel irradiation effects open tunnel network

9

Fission gas release: grain size effect

3.2 Fuel irradiation effects

10

Thermal expansion

3.2 Fuel irradiation effects

11

Densification and swelling

3.2 Fuel irradiation effects

12

Clad creepdown and lift-off

3.2 Fuel irradiation effects

creep: long-term transient deformation given load

13

Fuel-cladding interaction

3.2 Fuel irradiation effects

14

Fuel failure mechanism

3.2 Fuel irradiation effects

15

Fuel failure mechanism

3.2 Fuel irradiation effects

16

Example of fuel temperature radial distribution in fuel pellet

3.3 Fuel thermal analysis

17

Fuel thermal analysis

3.3 Fuel thermal analysis

18

Fuel pellet thermal analysis:

Fuel cladding thermal analysis:

3.3 Fuel thermal analysis

~17 /

0.6 ~ 0.9cl

cl

k non oxided thermal conductivity W mK

cladding thickness mm

2 2"'( ) / 4p f fsT q r r k T

19

Fuel gas gap thermal analysis(open gap):

3.3 Fuel thermal analysis

20

Fuel gas gap thermal analysis(closed gap):

3.3 Fuel thermal analysis

21

coolant T with cosine power profile:

3.3 Fuel thermal analysis

,/2 /2

, /2

' ', max max

' ;

' ( ( ) );

( ) ' / ( )

/ ( )[sin( / ) sin( / 2 )]; ' cos( / )

( )[ ( ) ( )] ''( ) '( ) / (

b p b

z z

p b p b b inH H

z

b b in pH

b in p

cladding b

q dz mdh mc dT

q dz mc dT mc T z T

T z T q dz mc

T q H mc z H H H if q q z H

h z T z T z q z q z d

); ( ) ( ) ''( ) / ( )

; ( / 2) '( / 2) 0;

( ) :

cladding cladding bT z T z q z h z

where

H extrapolated length H q H

h z heat transfer coefficient

22

cladding T for subcooled non-boiling

cladding T for subcooled boiling: Jens-Lottes correlation

3.3 Fuel thermal analysis

23

CHF concept

3.3 Fuel thermal analysis

24

CHF correlation(W-3)

3.3 Fuel thermal analysis

25

HW#3: Chapter 3: Probelms 4, 5