1 nodal analysis

11
 Dr . Holbert Lecture 4 EEE 202 1 Laila Rosemaizura Binti Yaakop 1 Nodal Analysis Laila Rosemaizura Binti Yaakop 2 Steps of Nodal Analysis 1. Choose a reference (grou nd) node. 2. Assign node voltag es to the ot her nodes. 3. Apply KCL to each node other than the reference node; express currents in terms of node voltages. 4. Solve t he resulting syst em of linea r equations for the nodal voltages.

Upload: jeffery-yip

Post on 04-Nov-2015

216 views

Category:

Documents


0 download

DESCRIPTION

cc

TRANSCRIPT

  • Dr. Holbert Lecture 4

    EEE 202 1

    Laila Rosemaizura Binti Yaakop 1

    Nodal Analysis

    Laila Rosemaizura Binti Yaakop 2

    Steps of Nodal Analysis

    1. Choose a reference (ground) node.

    2. Assign node voltages to the other nodes.

    3. Apply KCL to each node other than the

    reference node; express currents in terms

    of node voltages.

    4. Solve the resulting system of linear

    equations for the nodal voltages.

  • Dr. Holbert Lecture 4

    EEE 202 2

    Laila Rosemaizura Binti Yaakop 3

    Example: A Summing Circuit

    The output voltage V of this circuit is proportional to the sum of the two input

    currents I1 and I2

    This circuit could be useful in audio applications or in instrumentation

    The output of this circuit would probably be connected to an amplifier

    Laila Rosemaizura Binti Yaakop 4

    1. Reference Node

    The reference node is called the ground node

    where V = 0

    +

    V 500

    500

    1k

    500

    500I1 I2

  • Dr. Holbert Lecture 4

    EEE 202 3

    Laila Rosemaizura Binti Yaakop 5

    Steps of Nodal Analysis

    1. Choose a reference (ground) node.

    2. Assign node voltages to the other

    nodes.

    3. Apply KCL to each node other than the

    reference node; express currents in terms

    of node voltages.

    4. Solve the resulting system of linear

    equations for the nodal voltages.

    Laila Rosemaizura Binti Yaakop 6

    2. Node Voltages

    V1, V2, and V3 are unknowns for which we

    solve using KCL

    500

    500

    1k

    500

    500I1 I2

    1 2 3

    V1 V2 V3

  • Dr. Holbert Lecture 4

    EEE 202 4

    Laila Rosemaizura Binti Yaakop 7

    Steps of Nodal Analysis

    1. Choose a reference (ground) node.

    2. Assign node voltages to the other nodes.

    3. Apply KCL to each node other than the

    reference node; express currents in

    terms of node voltages.

    4. Solve the resulting system of linear

    equations for the nodal voltages.

    Laila Rosemaizura Binti Yaakop 8

    Currents and Node Voltages

    500

    V1500V1 V2

    500

    21 VV

    500

    1V

  • Dr. Holbert Lecture 4

    EEE 202 5

    Laila Rosemaizura Binti Yaakop 9

    3. KCL at Node 1

    500

    500I1

    V1 V2

    500500

    1211

    VVVI

    Laila Rosemaizura Binti Yaakop 10

    3. KCL at Node 2

    500

    1k

    500 V2 V3V1

    0500k1500

    32212 VVVVV

  • Dr. Holbert Lecture 4

    EEE 202 6

    Laila Rosemaizura Binti Yaakop 11

    3. KCL at Node 3

    2323

    500500I

    VVV500

    500

    I2

    V2 V3

    Laila Rosemaizura Binti Yaakop 12

    Steps of Nodal Analysis

    1. Choose a reference (ground) node.

    2. Assign node voltages to the other nodes.

    3. Apply KCL to each node other than the

    reference node; express currents in terms

    of node voltages.

    4. Solve the resulting system of linear

    equations for the nodal voltages.

  • Dr. Holbert Lecture 4

    EEE 202 7

    Laila Rosemaizura Binti Yaakop 13

    +

    V 500

    500

    1k

    500

    500I1 I2

    4. Summing Circuit Solution

    Solution: V = 167I1 + 167I2

    Laila Rosemaizura Binti Yaakop 14

    A Linear Large Signal

    Equivalent to a Transistor

    5V

    100Ib

    +

    Vo

    50

    Ib

    2k1k+

    +

    0.7V

  • Dr. Holbert Lecture 4

    EEE 202 8

    Laila Rosemaizura Binti Yaakop 15

    Steps of Nodal Analysis

    1. Choose a reference (ground) node.

    2. Assign node voltages to the other nodes.

    3. Apply KCL to each node other than the

    reference node; express currents in terms

    of node voltages.

    4. Solve the resulting system of linear

    equations for the nodal voltages.

    Laila Rosemaizura Binti Yaakop 16

    Linear Large Signal Equivalent

    5V100Ib

    +

    Vo

    50

    Ib

    2k

    1k

    0.7V

    1

    2 3 4

    V1V2 V3 V4

    +

    +

  • Dr. Holbert Lecture 4

    EEE 202 9

    Laila Rosemaizura Binti Yaakop 17

    Steps of Nodal Analysis

    1. Choose a reference (ground) node.

    2. Assign node voltages to the other nodes.

    3. Apply KCL to each node other than the

    reference node; express currents in terms

    of node voltages.

    4. Solve the resulting system of linear

    equations for the nodal voltages.

    Laila Rosemaizura Binti Yaakop 18

    KCL @ Node 4

    k2100

    50

    443 VIVV

    b

    100Ib

    +

    Vo

    50

    Ib

    2k

    1k+

    0.7V

    1

    2 3 4

    V1V2 V3 V4

    5V

    +

  • Dr. Holbert Lecture 4

    EEE 202 10

    Laila Rosemaizura Binti Yaakop 19

    The Dependent Source

    We must express Ib in terms of the node voltages:

    Equation from Node 4 becomes

    k1

    21 VVIb

    0k2k1

    10050

    42143 VVVVV

    Laila Rosemaizura Binti Yaakop 20

    How to Proceed?

    The 0.7-V voltage supply makes it impossible to apply KCL to nodes 2 and 3,

    since we dont know what current is passing through the supply

    We do know that

    V2 V3 = 0.7 V

    The above is a needed constraint equation

  • Dr. Holbert Lecture 4

    EEE 202 11

    Laila Rosemaizura Binti Yaakop 21

    100Ib

    +

    Vo

    50Ib

    2k

    1k

    0.7V

    1

    4

    V1V2 V3 V4

    +

    +

    050k1

    4312 VVVV

    KCL at

    Supernode