1. report date 2. report type january 2013 journal …the structural, thermodynamic and transport...

31
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January 2013 2. REPORT TYPE Journal Article 3. DATES COVERED (From - To) January 2013- February 2013 4. TITLE AND SUBTITLE Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin B. Hooper, Grant D. Smith, and Dmitry Bedrov 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER QOPX 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NO. Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT Edwards AFB CA 93524-7048 NUMBER(S) AFRL-RQ-ED-JA-2013-031 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release; Distribution Unlimited. PA#13159 13. SUPPLEMENTARY NOTES N/A 14. ABSTRACT Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4 methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3--] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3--] does not. The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non--equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutu al diffusion coefficients for the mixtures. The latter have been employed in continuum--level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON G. Vahjiani a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified SAR 31 19b. TELEPHONE NO (include area code) 661-525-5657 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Upload: others

Post on 13-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) January 2013

2. REPORT TYPEJournal Article

3. DATES COVERED (From - To) January 2013- February 2013

4. TITLE AND SUBTITLE Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations

5a. CONTRACT NUMBER FA9300-11-C-3012

5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Justin B. Hooper, Grant D. Smith, and Dmitry Bedrov

5d. PROJECT NUMBER

5e. TASK NUMBER 5f. WORK UNIT NUMBER

QOPX 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NO.Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB CA 93524-7680

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT

Edwards AFB CA 93524-7048 NUMBER(S)

AFRL-RQ-ED-JA-2013-031

12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release; Distribution Unlimited. PA#13159

13. SUPPLEMENTARY NOTES N/A

14. ABSTRACT Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4 methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3--‐] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3--‐] does not. The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non--‐equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutu al diffusion coefficients for the mixtures. The latter have been employed in continuum--‐level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

G. Vahjiani

a. REPORT Unclassified

b. ABSTRACT Unclassified

c. THIS PAGE Unclassified

SAR 31 19b. TELEPHONE NO

(include area code)

661-525-5657 Standard Form

298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Page 2: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

1    

Thermophysical  Properties  of  Energetic  Ionic  Liquids/Nitric  Acid  Mixtures:  

Insights  from  Molecular  Dynamics  Simulations  

 

Justin  B.  Hooper,    Grant  D.  Smith,  and  Dmitry  Bedrov  

Wasatch  Molecular,  Incorporated  

825  N.  300  W.,  Salt  Lake  City,  UT    84103  

 

Abstract  

Molecular  dynamics   (MD)   simulations  of  mixtures  of   the   room   temperature   ionic   liquids   (ILs)   1-­‐

butyl-­‐4-­‐methyl  imidazolium  [BMIM]/dicyanoamide  [DCA]  and  [BMIM][NO3-­‐]  with  HNO3  have  been  

performed   utilizing   the   polarizable,   quantum   chemistry   based   APPLE&P®   potential.    

Experimentally   it  has  been  observed   that   [BMIM][DCA]  exhibits  hypergolic  behavior  when  mixed  

with  HNO3  while  [BMIM][NO3-­‐]  does  not.    The  structural,  thermodynamic  and  transport  properties  

of   the   IL/HNO3  mixtures  have  been  determined   from  equilibrium  MD  simulations  over   the  entire  

composition  range  (pure  IL  to  pure  HNO3)  based  on  bulk  simulations.    Additional  (non-­‐equilibrium)  

simulations   of   the   composition   profile   for   IL/HNO3   interfaces   as   a   function   of   time   have   been  

utilized  to  estimate  the  composition  dependent  mutual  diffusion  coefficients  for  the  mixtures.    The  

latter   have   been   employed   in   continuum-­‐level   simulations   in   order   to   examine   the   nature  

(composition  and  width)  of  the  IL/HNO3  interfaces  on  the  millisecond  time  scale.    

Vaghjiani Ghanshyam
Typewritten Text
DISTRIBUTION A: Approved for public release, distribution unlimited
Page 3: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

2    

 

I.    Introduction  

  There   is   increasing   interest   in   use   of   room   temperature   ionic   liquids   (ILs)   as   fuels   and  

propellants.     Particularly   enticing   is   the   fact   that   RTILs   have   negligible   vapor   pressure,   making  

them   intrinsically   much   safer   than   traditional   high   vapor   pressure   and   toxic   fuels   such   as  

hydrazine.    While  most  IL  fuels  are  not  hypergolic  (i.e.,  do  not  spontaneously  combust)  when  mixed  

with   a   liquid   oxidizer   (e.g.,   nitric   acid),   there   is   a   number   of   energetic   ILs   that   do   exhibit  

hypergolicity.1     Amongst   these   are   1-­‐butyl-­‐4-­‐methyl   imidazolium   [BMIM]/dicyanoamide   [DCA],  

shown  in  Figure  1.  While  [BMIM][DCA]  when  mixed  with  HNO3  is  hypergolic,  [BMIM][NO3-­‐]  is  not.2,3  

Understanding   the  behavior  of  any  hypergolic   system   is  very  challenging  and  complicated  due   to  

the   large   manifold   of   reactions   involved   and   the   complex   interplay   between   thermophysical  

properties   and   chemical   kinetics.   When   a   fuel   droplet   comes   in   contact   with   an   oxidizer,   some  

initial  mixing   is   followed  by   the   exothermic   pre-­‐ignition   reactions   that   begin   to   decompose   both  

fuel   and   oxidizer,   producing   various   gaseous   products.   The   pathways   for   these   reactions   involve  

highly  reactive  transient  species  that  are  difficult  to  detect  experimentally.  Changes  in  temperature  

and   species   concentrations   due   to   these   reactions   as   well   as   the   underlying   chemical   kinetics  

themselves  are  also  strongly  dependent  on  physical  factors  that  determine  heat  and  mass  transfer  

in   these   systems.   Thermophysical   properties   such   as   enthalpy   of   mixing,   species   inter-­‐diffusion,  

and  thermal  conductivity  can  all  play  an  important  role  in  controlling  energy  dissipation  during  the  

pre-­‐ignition  reaction  stage.2,4    

  While   thermophysical   and   transport   properties   of   [BMIM][DCA]   and   [BMIM][NO3-­‐]   have  

been  investigated  both  experimentally5-­‐10  and  from  MD  simulations,11-­‐18    there  are  no  data  available  

about   thermophysical   properties   of   these   liquids   mixed   with   HNO3.   Taking   into   account   that   it  

usually  takes  multiple  milliseconds  for  ignition  to  occur  in  a  hypergolic  system  there  is  a  significant  

Page 4: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

3    

(from   a   molecular   scale   point   of   view)   time   period   when   thermodynamic   and   thermophysical  

processes  are  dominating  the  behavior  of  the  mixture  and  influence  the  kinetics  of  initial  reactions.  

Therefore,   we   have   carried   out   atomistic   molecular   dynamics   (MD)   simulations   of  

HNO3/[BMIM][DCA]   and  HNO3/[BMIM][NO3-­‐]  mixtures   for   the  purposes  of   better  quantifying   the  

thermophysical  properties  of  these  mixtures  with  the  ultimate  aim  of  understanding  the  nature  of  

hypergolicity   in   ILs.       Furthermore,   modeling   of   HNO3/[BMIM][DCA],   whether   at   the   continuum  

level   or   at   the   level   of   detailed   liquid-­‐phase   reaction   pathways,   will   benefit   greatly   from   an  

improved  understanding  of  the  thermodynamics,  structure  and  transport  properties  of  the  mixture.    

II.    Force  Field  and  Simulation  Methodology  

  MD  simulations  was  performed  using  the  polarizable  APPLE&P®  force   field  that  has  been  

developed   and   extensively   validated   on   a   variety   of   substances   including   ILs19     and   slightly  

modified   for   application   to   the   specific   ILs   studied   here.11   Using   this   force   field   our   previous  

simulations   showed   very   good   agreement   with   experimental   thermophysical   data   for   pure  

[BMIM][DCA]   and   [BMIM][NO3-­‐]   RTILs.11     For   the   current   study   the   force   field   for   HNO3   was  

obtained   using   our   standard   procedure,   which   considered   all   non-­‐bonded   interactions   and   the  

dipole  polarizability  of  all  atoms  to  be  as  transferred  from  previously  calculated  quantities  for  the  

nitrate  anion,  while  bond,  angular,  and  dihedral  interactions  were  fit  from  ab  initio  data  obtained  at  

the  MP2//aug-­‐cc-­‐pvDz  level.    Specific  details  about  our  fitting  procedure  can  be  found  in  Ref.  [19]  

while   the   complete   set   of   force   field   parameters   is   available   free   of   charge   upon   signing   a   user  

license  agreement.    

  MD   simulations   of   bulk   [BMIM][NO3-­‐]/HNO3   and   [BMIM][DCA]/HNO3  mixtures   have   been  

conducted  at  333  K  and  atmospheric  pressure  using  cubic  simulation  cell  (see  Fig.  1).    Systems  with  

a  composition  ranging  from  0.0  to  1.0  mol  fraction  IL  in  steps  of  0.2  have  been  simulated.    The  pure  

HNO3   system  contained  512  molecules  while   the  mixed   systems  employed  600,  560,  512,  or  468  

Page 5: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

4    

total  molecules   in  order  of   increasing   IL  mol   fraction.    Pure   IL  data  was   taken   from   the  previous  

work,   which   employed   150   ionic   pairs.11   For   the   mixed   systems,   the   number   of   ionic   pairs  

employed   were   100,   160,   192,   and   208   for   the   mole   fractions   studied   in   increasing   IL  

concentration.    MD  simulations  were  conducted  using  the  molecular  simulation  package  Lucretius  

which   has   the   capability   to   handle   polarization   effects.   Covalent   bond   lengths   were   constrained  

using  the  velocity-­‐Verlet   form  of  the  SHAKE  algorithm.20  The  Ewald  summation  method  was  used  

for  treatment  of  long-­‐range  electrostatic  forces  between  partial  atomic  charges  and  between  partial  

charges   and   induced  dipoles.     A   tapering   function  was  used   to   drive   the   induced  dipole/induced  

dipole   interactions   to   zero   at   the   cutoff   of   10   Å,  with   scaling   starting   at   9.3   Å.   (The   form   of   the  

tapering   function   is   given   in   the   Supporting   Information)     Induced   dipoles  were   calculated   via   a  

direct  iteration  with  a  predictor  corrector  method.    A  cutoff  of  10  Å  was  used  for  all  van  der  Waals  

interactions  and  the  real  part  of  electrostatic  interactions  in  the  Ewald  summation.  A  multiple  time  

step   reversible   reference   system  propagator   algorithm21  was   employed.  A   time   step  of  0.5   fs  was  

used  for  bonding,  bending,  dihedral,  and  out-­‐of-­‐plane  deformation  motions,  while  a  1.5  fs  time  step  

was   used   for   non-­‐bonded   interactions   within   cutoff   radius   of   6.0   Å.   Finally,     the   non-­‐bonded  

interactions   in   the   range  between  6.0  and  10.0  Å  and   reciprocal  part  of   electrostatic   interactions  

were  updated  every  3  fs.  Each  system  was  initially  equilibrated  in  the  NPT  ensemble  for  at  least  1  

ns,  while  production  runs  ranged   from  120  to  180  ns  depending  on   the  system  and  temperature.  

The   length   of   the   production   run   was   chosen   to   be   long   enough   to   allow   molecules   to   reach   a  

diffusive   regime   (when   the   ion   mean   squared   displacement   shows   a   linear   time   dependence,  

MSD(t)  ~  t),  therefore  allowing  an  accurate  estimation  of  the  self-­‐diffusion  coefficients.    

  In  addition   to  equilibrium  bulk  simulations  of   IL/HNO3  mixtures  described  above  we  also  

conducted   MD   simulations   at   non-­‐equilibrium   conditions   in   which   we   monitor   the   process   of  

intermixing  of  IL  and  HNO3  liquids.  To  conduct  these  simulations  a  liquid-­‐liquid  interface  has  to  be  

set  up  as  also  shown  in  Figure  1  where  RTIL  and  oxidizer  are  well  separated.  Several  adjustments  

Page 6: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

5    

to  the  simulation  protocol  have  been  implemented  to  allow  these  types  of  simulations.  First,  since  

IL  and  oxidizer  are  miscible  the  preparation  of  initial  configuration  that  allows  sharp  yet  tight  (no  

vacuum)   interface   between   IL   and   oxidizer   has   to   be   prepared.       To   create   a   sharp   liquid-­‐liquid  

interface  we  modify  parameters  for  van  der  Waals  interactions  between  IL  and  oxidizer  molecules  

to  make  them  more  repulsive.  Specifically,  we  set  dispersion  parameters  Cij  (of  the  term  –Cij/r6)  to  

zero   for   all   cross-­‐terms   interactions   between   the   IL   and   oxidizer.   This   simple   modification   was  

enough   to   provide   a   sharp   interface   between   liquids  without   creating   any   additional   artifacts   to  

bulk   materials   away   from   the   interface.   Using   this   approach,   initial   configurations   can   be  

equilibrated   for  any  period  of   time  and   then  switched   to   simulations  with   realistic   force   field   for  

production  runs  sampling  the  intermixing  rate.  In  these  simulations,  the  simulation  cell  dimensions  

were   35   X   35   X   140   Å   with   the   larger   dimension   being   perpendicular   to   the   interface.   Systems  

contained   approximately   the   same   volume   of   IL   and   oxidizer.     During   these   simulations   the  

pressure     (stress   tensor)  was   controlled   separately   in   each   direction,   allowing   the   simulation   to  

account   for   changes   in   pressure   associated   with   mixing   of   the   components.   Simulations   were  

conducted  at  333  K  and  atmospheric  pressure  control  along  the  large  dimension  (perpendicular  to  

the  interface).  Two  other  dimensions  were  fixed  at  35x35.        

III.    Simulations  of  Bulk  Mixtures  

A.    Structure  

  We  began  our  analysis  of  the  HNO3/IL  mixtures  by  investigating  liquid-­‐phase  structure  as  a  

function   of   mixture   composition.     Figures   2a-­‐b   show   center-­‐of-­‐mass   BMIM-­‐BMIM   radial  

distribution   functions   g(r)   as   a   function   of   separation   r   for   HNO3/[BMIM][DCA]   and  

HNO3/[BMIM][NO3-­‐]  mixtures   for   the   various   compositions   investigated.     It   can   be   seen   that   for  

both   systems   there   is   a   tendency   for   non-­‐ideal  mixing,   i.e.,   the   structure   of   the   solution  depends  

somewhat  upon  composition.    For  both  mixtures  the  position  of  the  first  peak  in  the  BMIM-­‐BMIM  

Page 7: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

6    

g(r)  moves  to  greater  separation  with  increasing  dilution  (by  HNO3).      For  HNO3/[BMIM][DCA]  the  

magnitude   of   the   first   peak   also   decreases   with   increasing   dilution.     The   behavior   observed   in  

Figure  2  might  be  associated  with   strong  BMIM-­‐HNO3   interactions,  but  Figure  3,  which   show   the  

BMIM-­‐HNO3   radial   distribution   functions   for   the   two  mixtures   at   selected   compositions,   indicate  

that  this  is  not  the  case.    For  the  HNO3/[BMIM][DCA]  mixtures  a  slight  decrease  (as  opposed  to  an  

expected  increase)  in  the  magnitude  of  the  first  peak  in  the  BMIM-­‐HNO3  radial  distribution  function  

with  dilution  by  HNO3  can  be  seen.  Both  mixtures  show  near  ideal  mixing  behavior  with  respect  to  

BMIM-­‐HNO3   interactions,   i.e.,   very   little   composition   dependence   is   observed   in   the   radial  

distribution  functions.  

  We  have  also   investigated  the  role  of  HNO3  on  interactions  between  cations  and  anions   in  

the  mixtures  by  examining  the  cation-­‐anion  radial  distribution  functions  as  shown  Figures  4a,b  for  

HNO3/[BMIM][DCA]   and   HNO3/[BMIM][NO3-­‐],   respectively.     The   latter   shows   remarkably   little  

influence   of   the   oxidizer   on   cation-­‐anion   correlation   in   [BMIM][NO3],  while   the   former   indicates  

that   introduction   of   HNO3   promotes   stronger   nearest-­‐neighbor   (first   radial   distribution   function  

peak)   interaction   between   BMIM   and  DCA.   Examination   of   the   anion-­‐oxidizer   radial   distribution  

functions,   shown   in   Figures   5,   shows   very   little   dependence   of   the   nature   of   the   DCA/HNO3  

interaction   on   composition,   while   NO3-­‐   /HNO3   interactions   become   somewhat   stronger   with  

increasing  dilution.    These  effects  are  manifested   in  DCA-­‐DCA  pair  distribution   functions   that  are  

essentially   independent   of   composition   while   NO3-­‐/NO3-­‐   correlations   decrease   notably   with  

increasing  HNO3  content,  as  shown  in  Figures  6a-­‐b.    

  From  the  magnitude  of  the  first  peaks  in  the  radial  distribution  functions,  it  is  clear  that  the  

oxidizer   interacts   more   strongly   with   the   anions   (DCA   or   NO3-­‐)   than   with   the   BMIM   cation.    

Interestingly   the   first   peak   in   the   HNO3/NO3-­‐   radial   distribution   function   is   high   and   narrow,  

indicating  a  strong  preference  for  specific  distance  and/or  orientations,  while  that  for  HNO3/DCA  is  

Page 8: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

7    

quite   broad,   indicating   less   structure   in   this   interaction.   Atomically,   the   preferred   interaction  

between  HNO3  and  NO3-­‐  is  between  the  acidic  proton  and  the  oxygen  atoms  of  the  anion,  while  for  

HNO3  and  DCA  the  preferred  interaction  is  between  the  acidic  proton  and  the  (terminal)  nitrogen  

atoms   of   the   cyano   groups.     The   H(acidic)-­‐O(anion)   and   H(acidic)-­‐N(cyano)   atomic   radial  

distribution  functions  are  shown  in  Figure  7.     Interestingly,  remarkably  little  dependence  of  these  

interactions  on  the  composition  of  the  solution  is  observed.    All  radial  distribution  functions  show  a  

sharp,   high   peak   at   a   separation   of   around   two  Å.    We   note   that   the   force   field   employed   in   the  

simulations   does   not   allow   for   transfer   of   the   proton   between   species,   so   the   nature   of   this  

interaction   (e.g.,   minimum   energy   position/radial   distribution   function   peak   position)   is   driven  

entirely   by   physical   (van   der   Waals   and   electrostatic)   interactions.     Integration   of   the   radial  

distribution   functions   and   multiplication   by   the   appropriate   densities   yields   the   running  

coordination  number  of  acidic  protons  near  O(anion)  or  N(cyano)  as  shown  in  Figure  7c.    We  take  a  

separation   of   2.9   Å   (see   Figures   7a-­‐b)   as   corresponding   to   the   first   coordination   shell   of   acidic  

protons   hear   O(anion)   or   N(cyano).     As   expected,   the   number   of   acidic   hydrogen   atoms  

coordinating   each   O(anion)   or   N(cyano)   increases   with   increasing   dilution.     For   the   XIL   =   0.2  

solutions   (80   mol%   HNO3)   the   NO3-­‐   oxygen   atoms   and   DCA   cyano   nitrogen   atoms   are   fully  

coordinated,   i.e.,   there   is   more   than   one   on   average   of   acidic   hydrogen   atoms   in   the   first  

coordination  shell  of  these  atoms.  

B.    Density,  Volume  of  Mixing  and  Heat  of  Mixing  

  The  density  and  excess  volume  for  the  two  HNO3/IL  mixtures  from  simulations  are  shown  

in  Figures  8a-­‐b  as  a  function  of  composition.    The  density  of  the  pure  ionic  liquids  are  1.030  g/cm3  

and   1.137   g/cm3   for   [BMIM][DCA]   and   [BMIM][NO3-­‐],   respectively.   These   values   are   in   a   good  

agreement   with   experimental   values   of   1.041   g/cm3   for   [BMIM][DCA]6   and   1.131   g/cm3   for  

[BMIM][NO3-­‐]7  with  0.5%  and  1.1%  deviation,  respectively.    The  simulated  density  of  the  pure  HNO3  

Page 9: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

8    

at  298  K   is  1.45  g/cm3,  compared  with  an  experimental  density22  of  1.51  g/cm3.  Mixing  of   the  ILs  

with  increasing  concentration  of  oxidizer  results  in  a  monotonic  increase  in  density.    Examination  

of   the  excess  volume  of  mixing  shows  minimal  deviation   from   ideal  mixing  behavior,  particularly  

for   the   HNO3/[BMIM][NO3-­‐]   system.     Figure   8c   shows   the   enthalpy   of   mixing   as   a   function   of  

composition  for  both  IL  mixtures.    Both  exhibit  exothermic  behavior,  with  the  HNO3/[BMIM][NO3-­‐]  

system  showing  stronger  exothermic  character.    Combined  with   the  near-­‐ideal  entropy  of  mixing  

(configurational   entropy)   behavior   revealed   by   the   intermolecular   radial   distribution   functions  

above,  we  can  anticipate   that  both  of   these   ILs  are  consoluble  with  HNO3.   It   is  also  clear   that   the  

temperature   of   the   systems   will   increase   upon   adiabatic   mixing,   which   is   an   important   (if   not  

crucial)  aspect  for  onset  of  ignition  in  hypergolic  mixtures.    The  extent  of  adiabatic  heating  for  these  

mixtures  is  addressed  in  Section  IV.  

C.    Self-­diffusion  Coefficients  

  The   rate   at   which   a   liquid   fuel   and   oxidizer   intermix   is   important   in   determining   the  

hypergolic   character  of   the  mixture.    While   intermixing  dynamics   are   investigated   in  more  detail  

below,   it   is   instructive   to   examine   the   self-­‐diffusion   coefficients   of   the   IL   components   and   the  

oxidizer  as  a  function  of  mixture  composition  as  shown  in  Figure  9.    Figure  9  reveals  that  ion  self-­‐

diffusion  rates  are  significantly  greater   in  [BMIM][DCA]  than  in  the  [BMIM][NO3-­‐],  consistent  with  

the   relative   viscosities   of   these   ILs   with   [BMIM][NO3-­‐]   being   about   factor   4   more   viscous   than  

[BMIM][DCA]   at   333K.6,23   The   HNO3   liquid   has   a   much   lower   viscosity/greater   self-­‐diffusion  

coefficient  than  the  ILs,  hence,  dilution  of  the  ILs  with  HNO3  results  in  a  monotonic  increase  in  ion  

self-­‐diffusion  coefficients  and  monotonic  decrease   in  HNO3  diffusion  coefficient.    The  composition  

dependence  of  the  ion  and  HNO3  diffusion  coefficients  is  greater  in  the  HNO3/[BMIM][NO3-­‐]  mixture  

than   observed   in  HNO3/[BMIM][DCA]  mixture.     To   first   order   this   is   consistent  with   the   greater  

Page 10: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

9    

difference   in   self-­‐diffusion   coefficients   of   HNO3   (fast)   compared   to   the   IL   (slow)   in   the   former  

system  compared  to  the  latter.    

IV.  Simulation  of  Ionic  Liquid/Oxidizer  Mixing  

In   addition   to   analysis   of   bulk  properties  under   equilibrium  conditions  discussed  above  we  have  

investigated   properties   of  mixtures   during   the  mixing   process.   Below  we   discuss   the   analysis   of  

interdiffusion  and  adiabatic  heating  processes  upon  mixing.        

A.  Diffusion  

  Fig.   10a   shows   the   concentration   profile   for   HNO3   and   the   IL   the   HNO3/[BMIM][DCA]  

system   after   200   ps   of  mixing   and   after   3.5   ns   of  mixing,  while   Fig.   10b   shows   the   composition  

profile  after  the  same  periods.    Similarly,  Fig.  11a  shows  the  concentration  profile  for  HNO3  and  the  

IL  the  HNO3/[BMIM][NO3-­‐]  system  after  200  ps  of  mixing,    after  3.0  ns  of  mixing  and  after  5.9  ns  of  

mixing,  while   Fig.   11b   shows   the   composition   profile   after   the   same   periods.     Each   profile   is   an  

average  of  three  profiles  (e.g.,  the  200  ps  profiles  are  averages  of  profiles  at  100  ps,  200  ps  and  300  

ps).    Examination  of  Figs.  10  and  11  show  obvious  asymmetry  in  mixing  at  the  interface,  indicating  

that  the  mutual  diffusion  coefficient  DAB  (A  =  oxidizer,  B  =  IL)  is  strongly  composition  dependent  for  

both  mixtures.    A  typical  diffusion  coefficient  in  these  mixtures  might  be  on  the  order  of  1x10-­‐9  m2/s  

(see  Fig.  9),   implying  mixing  on  a  nanometer   length  scale  on  a  nanosecond   time  scale,   consistent  

with  behavior  observed  in  Figs.  10  and  11.  

  The  governing  equation  for  mutual  diffusion  (Fick’s  second  law)  in  one  spatial  dimension  is  

given  as24    

∂cA (r,t)∂t

=1rm

∂∂r

rmDAB (XA )∂cA (r,t)∂r

⎝ ⎜

⎠ ⎟   (1)  

Page 11: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

10    

∂cB (r,t)∂t

=1rm

∂∂r

rmDAB (XA )∂cB (r,t)∂r

⎝ ⎜

⎠ ⎟   (2)  

XA =cA (r,t)

cA (r,t) + cB (r,t)     (3)  

where   m   =   0   for   the   slab   geometry   and   2   for   spherical   geometry.     The   dependence   of   DAB   on  

composition  is  a  priori  unknown  and  there  is  no  robust  theory  for  predicting  DAB(XA).    However,  it  

has  been  observed  that  the  following  relationship  

logDAB = logDB + XA (logDA − logDB )                                  (4)  

where  DA  and  DB  are  the  pure  component  self-­‐diffusion  coefficients  works  well   in  some  materials.    

Note   that   the   self-­‐diffusion   coefficients   of   the   species   in   the   mixtures   tend   to   follow   (at   least  

reasonably)   this   relationship   (see   Fig.   9).         Using   the   profiles   at   200  ps   as   initial   conditions,  we  

employed   eqs.   1-­‐4   to   predict   the   concentration   and   composition   profiles   for   both   mixtures.    

Comparisons  can  be  seen  in  Figs.  10  and  11,  indicating  that  eq.  4  provides  a  reasonable  description  

of   the   composition   dependence   of   DAB.     Here  we   took   the   self-­‐diffusion   coefficient   of   pure  HNO3  

from  Figure  9  and  used  the  average  of  the  cation  and  anion  self-­‐diffusion  coefficients  for  the  pure  IL  

self-­‐diffusion  coefficients,  again  taken  from  Figure  9.  

  Once  the  composition  dependence  of  the  mutual  diffusion  coefficient  is  known,  it  is  possible  

to   utilize   eqs.   1-­‐4   with   suitable   initial   and   boundary   conditions   to   prediction   the  

concentration/composition   profiles   for   any   geometry   of   interest   after   any   time   of   interest.     For  

example,  Fig.  12  shows  the  interfacial  composition  for  a  2.5  mm  radius  droplet  of  [BMIM][DCA]  and  

[BMIM][NO3-­‐],   respectively,   in   a   sea   of  HNO3   oxidizer,   after   periods   of   10   and   100  ms.     For   both  

mixtures   the   interfacial   region   is   on   the   order   of   microns   in   thickness   as   expected   given   the  

magnitude   of   the  mutual   diffusion   coefficient   (eq.   4).     It   is   notable   that   on   these   time   scales   the  

width  of   the   interfacial   region   is  not  significantly   larger   for   the  HNO3/[BMIM][DCA]  mixture   than  

Page 12: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

11    

for   the   HNO3/[BMIM][NO3-­‐]   mixture,   despite   the   fact   that   the   self-­‐diffusion   coefficient   for  

[BMIM][DCA]   is   almost   four   times   greater   than   that   for   [BMIM][NO3-­‐].    However,   if  we  utilize   an  

imaginary   “fast”   oxidizer   with   a   self-­‐diffusion   coefficient   four   times   that   of   HNO3,   mixing   with  

[BMIM][NO3-­‐]  on  these  time  scales  occurs  much  more  rapidly,  as  shown  in  Figure  12.  

B.    Adiabatic  Heating  

  Heat  generation  upon  mixing   is   another   important  property   that   can   influence  kinetics  of  

initial   reactions   and,   hence,   the   hypergolicity   of   the   mixture.   Two   approaches   were   applied   for  

calculating  heat   generation  due   to  mixing.   First,   calculations  were  based  on  bulk  mixture  heat   of  

mixing  data  (see  Section  III.B).  If  one  knows  the  heat  of  mixing  for  the  mixture  of  two  components  

(i.e.,  IL  and  oxidizer)  then  the  heat  generated  upon  their  mixing  can  be  estimated  knowing  the  final  

composition   of   the   mixture.   For   example,   for   the   [BMIM][DCA]/HNO3   system   with   composition  

used   in   non-­‐equilibrium   simulations   (XIL   =   0.23)   we   estimate   about   17   degrees   temperature  

increase.  For  [BMIM][NO3]/HNO3  with  similar  composition  the  corresponding  heating  is  estimated  

to  be  about  45  degrees.    

  Alternatively   one   can   conduct   brute   force   simulations   of   mixing   process   in   the   NVE  

ensemble  and  directly  measure  how  much  the  system  heats  up.  While  conceptually  this  method  is  

straightforward,   special   care   must   be   taken   to   control   the   integration   uncertainty,   which   can  

otherwise  lead  to  additional  heat  generation  due  to  Hamiltonian  drift.    The  latter  can  be  measured  

by   conducting   simulations   of   a   completely   mixed   state   using   the   same   simulation   set  

up/parameters  as  in  production  run.  A  relatively  short  run  (300-­‐500ps)  provides  a  good  estimate  

of  the  rate  of  the  Hamiltonian  drift  (if  any)  that  can  be  then  taken  into  account  (subtracted)  in  the  

analysis  of  the  production  mixing  simulation.      Using  this  approach  and  applying  correction  for  the  

Hamiltonian   drift,   a   17   degree   heating   was   obtained   from   the   non-­‐equilibrium   simulation   of  

[BMIM][DCA]/HNO3  mixing,   consistent  with   the   estimate   from  bulk   simulations  discussed   above.  

Page 13: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

12    

Similarly,   the   heating   in   [BMIM][NO3]/HNO3   system   was   found   to   be   45   degrees   which   is   also  

consistent  with  the  estimate  from  bulk  simulations.      

  These   simulations/estimations   of   heat   generation   due   to   physical   mixing   show   that   the  

heating   is  modest.     In  principle,   taking   into  account  that  HNO3  vaporization  temperature   is  353  K  

then   even   20-­‐40   degrees   heating   can   be   important.   However,   it   is   important   to   realize   that   the  

relatively   narrow   intermixing   region   is   surrounded   by   the   large   amount   of   pure   IL   and   oxidizer  

phases  that  can  serve  as  heat  sinks.  In  this  case,  the  heating  of  the  mixed  layer  will  strongly  depend  

on   the   interplay   between   thermal   and   molecular   diffusivities   in   the   system.   The   latter   can   be  

characterized  by  the  Lewis  number  (Le)  and  is  the  ratio  of  the  thermal  diffusivity  of  a  fluid,  given  as  

α   =   κ/(Cp*ρ),   to   the   molecular   diffusivity.   Taking   into   account   typical   values   for   thermal  

conductivity   (κ), heat capacity (Cp),   and   density   (ρ)   reported   in   the   literature   for   IL25   and   nitric  

acid26   we   can   estimate   α   for   our   mixture   components.   The thermal   diffusivity   of   nitric   acid   is  

around  9x10-­‐8  m2/s,  while  that   for  a  number  of  various  ILs   is   in  the  range  of  6x10-­‐8  m2/s.    Hence,  

unlike  molecular  (mutual  or  self)  diffusivity,  we  anticipate  that  the  thermal  diffusivity  of  the  ionic  

liquid/nitric   acid   mixture   will   not   depend   strongly   on   composition,   and   will   be   on   the   order   of  

6x10-­‐8  m2/s.    Using   a   representative  diffusion   coefficient   of   the   IL/nitric  mixtures  of   1x10-­‐9  m2/s  

(which  is  on  the  high  side  of  the  range),  we  estimate Le ≥ 60. Hence,  for  viscous  fluids  such  as  ILs  

investigated  here,  the  time  scale  of  thermal  diffusion  is  much  less  than  that  of  mass  diffusion.    Even  

for  nitric  acid  itself  we  estimate  Le  ~  10.    

  This  analysis   indicates   that   it   is  unlikely   that  any  noticeable   local   temperature  rise  can  be  

expected   in  the   interfacial  region  due  to  heat  of  mixing.   In  our  brute   force  mixing  simulations  we  

have   analyzed   the   local   temperature   profile   after   200-­‐500ps.   On   these   time   scales,   IL   and  HNO3  

have  only  intermixed  in  a  relatively  small  region  of  2nm  wide.  If  the  thermal  dissipation  would  be  

much   slower   than  molecular  diffusion   then  we   should  observe  an   increase  of   temperature   in   the  

Page 14: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

13    

intermixed  region  due  to  heat  of  mixing.  However,  neither  of  two  mixtures  showed  any  indication  

of   increased   temperature   in   the   intermixed  region  compared   to   the  rest  of   the  system,   indicating  

that   the   thermal   energy   generated   due   to  mixing   quickly   dissipates   to   IL   and   HNO3   phases   and  

results  in  homogeneous  heating  of  the  entire  system.                  

V.  Conclusions    

  Atomistic  molecular  dynamics  simulations  of  HNO3/[BMIM][NO3-­‐]  and  HNO3/[BMIM][DCA]  

mixtures   using   polarizable   force   field   revealed   a   complete   consolubility   for   both   systems   in   the  

entire   range   of   concentrations.     Both   mixtures   exhibited   exothermic   behavior,   with   the  

HNO3/[BMIM][NO3-­‐]   system   showing   stronger   exothermic   character.     Analysis   of   various   pair  

correlations   functions   showed   very   little   dependence   on  mixture   composition   indicating   a   near-­‐

ideal  entropy  of  mixing.  Analysis  of  the  liquid  structure  revealed  that  the  most  prominent  difference  

between   two  mixtures   is   in   the   anion-­‐HNO3   correlations.   The   first   peak   in   the  HNO3/NO3-­‐   radial  

distribution  function  is  high  and  narrow,  indicating  a  strong  preference  for  specific  distance  and/or  

orientations,  while   that   for  HNO3/DCA   is  quite  broad,   indicating   less  structure   in   this   interaction.    

However,   in   both   systems   the   potential   anion   proton   acceptor   atoms   (oxygens   for   NO3-­‐   and  

nitrogens   in   DCA)   are   well   coordinated   by   acidic   hydrogen   at   all   investigated   compositions  

indicating  that  there  no  structural  hindrances  for  initial  anion  protonation  reactions  to  occur.      

     Analysis   of  molecular   diffusivity   showed   a   significant   speed   up   of  mobility   of   ions   upon  

dilution   with   nitric   acid.   We   found   that   molecular   interdiffusion   obtained   from   brute   force  

simulation   of  mixing   IL   and   oxidizer   can   be   accurately   described   by   a   simple   diffusion   equation  

utilizing  parameters  obtained  from  MD  simulations  and  simple  empirical  relation  for  calculation  of  

mutual   diffusion   coefficients.     The   developed   continuum   level   analytical   model   allowed   us   to  

estimate  concentration  profiles  on  time  and  length  scales  relevant  to  hypergolic  ignition  (multiple  

Page 15: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

14    

ms   and  µm)  but   are  well   outside   of   accessibility   range   for   brute   force   atomistic  MD   simulations.    

Our  analysis  indicates  that  despite  quite  different  diffusivity/viscosity  between  two  investigated  ILs  

their  intermixing  with  nitric  acid  is  quite  similar  on  time  scales  of  10-­‐100ms.    Finally,  the  analysis  of  

adiabatic   heating   upon   mixing   IL   and   oxidizer   revealed   that   the   released   enthalpy   of   mixing   is  

sufficient  to  allow  a  noticeable  heating  in  the  intermixed  region.    However,  due  to  intrinsically  high  

thermal  diffusivity  (compared  to  molecular  diffusivity)  of  IL  and  nitric  acid  all  heat  generated  in  the  

intermixed   layer   is   quickly   dissipating   to   non-­‐mixed   regions.   Taking   into   account   that   on   time  

scales  10-­‐100ms  only  a  small  fraction  of  a  fuel  droplet  has  intermixed  with  an  oxidizer  and  hence  

the   dominating   non-­‐mixed   regions   of   IL   and   oxidizer   can   quickly   sink   the   heat   generated   in   the  

intermixed   region.   Therefore,   no   noticeable   temperature   increase   due   to   heat   of   mixing   can   be  

expected  in  the  intermixing  region.      

 

VI.  Acknowledgment  

We  are  grateful  for  the  financial  support  of  this  work  by  the  Air  Force  Office  of  Scientific  Research  

and  through  the  SBIR  program  (contract  number  FA9300-11-C-3012)  to  Wasatch  Molecular  Inc.  

Opinions,  interpretations,  conclusions,  and  recommendations  are  those  of  the  authors  and  are  not  

necessarily  endorsed  by  the  United  States  Government.    

 

Page 16: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

15    

References.

                                                                                                                         

1 Y. Zhang, H. Gao, Y-H. Joo, and J.M. Shreeve, Angew. Chem. Int. Ed. 50, 9554-9562 (2011).

2 S.D. Chambreau, S. Schneider, M. Rosander, T. Hawkins, C.J. Gallegos, M.F. Pastewait, and G.L.

Vaghjiani, J. Phys. Chem. A 112, 7816 (2008).

3 S. Shneider, T. Hawkins, M. Rosander, G.L. Vahjiani, S. Chambreau, and G. Drake, Energy & Fuels,

22, 2871 (2008).

4 A.J. Alfano, J.D. Mills, and G.L. Vaghjiani, Rev. Scientific Instrum. 77, 045109 (2006).

5  V.N. Emel’yanenko, S.P. Verevkin, A. Heintz, and C. Schick, J. Phys. Chem. B 112, 8095 (2008).  6 C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S. Aki, and J.F. Brennecke, J. Chem. Eng. Data, 49, 954 (2004).  7  K.R. Seddon, A. Stark, and M.J. Torres, Clean Solvents 819, 34 (2002).  8  L.A. Blanchard, Z.Y. Gu, and J.F. Brennecke, J. Phys. Chem. B 105, 2437 (2001).  9  V.N. Emel’yanenko, S.P. Verevkin, and A Heintz, A. J. Am. Chem. Soc. 129, 3930 (2007).  10  S. Chambreau, G.L. Vaghjiani, A. To, C. Koh, D. Strasser, O. Kostko, and S.R. Leone, S. R. J. Phys. Chem. B 114, 1361 (2010).  11  D. Bedrov and O. Borodin, J.  Phys.  Chem.  B    114,  12802  (2010).    12  N.M. Micaelo, A.M. Baptista, and C.M. Soares, J. Phys. Chem. B 110, 14444 (2006).  13  S.V. Sambasivarao, and O. Acevedo, J. Chem. Theory Comput. 5, 1038 (2009).  14  M.H. Kowsari, S. Alavi, M. Ashrafizaadeh, and B. Najafi, J. Chem. Phys. 129, 224508 (2008).  15  M.H. Kowsari, S. Alavi, M. Ashrafizaadeh, and B. Najafi,. J. Chem. Phys. 130, 014703 (2009).  16  G. Feng, J.S. Zhang, and R. Qiao, J. Phys. Chem. C 113, 4549 (2009).  17  J. Wang, and G.A. Voth, J. Am. Chem. Soc. 127, 12192 (2005).  18  C. Cadena, and E. J. Maginn, J. Phys. Chem. B 110, 18026 (2006).  19 O. Borodin, O. J. Phys. Chem. B 113, 11463 (2009).

20 B.J. Palmer, J. Comput. Phys 104, 470 (1993).

Page 17: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

16    

                                                                                                                         

21 G.J. Martyna, M.E. Tuckerman, D.J. Tobias, and M.L. Klein, Mol. Phys. 87, 1117 (1996).

22 Sibbitt, W. L.; St. Clair, C. R.; Bump, T. R.; Pagerey, P. F.; Kern, J. P.; Fyfe, D. W. Nat. Adv. Comm.

for Aeronaut. Tech. Note. 2970, 1953. (Accessed via: Sibbit, W L. Physical properties of concentrated

nitric acid. UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.)

23 M. Engelmann, H. Schmidt, J. Safarov, J. Nocke, and E. Hassel, Acta Chimica Slovaca, 5, 86, (2012). 24 Darrel R. Tenney and Jalaiah Unnan, Nasa Technical Paper 1281, “Effect of Concentration Dependence

on the Diffusion Coefficient on the Homogenization Kinetics in Multiphase Binary Allow Systems”,

(1978).

25  C.  Frez,  G.J.;    Diebold,  C.D.  Tran,  and  S.  Yu,  J.  Chem.  Eng.  Data  51  ,  1250-­‐1255  (2006).    26  A. J.-J. Kadjo, J.-P. Maye1, J. Saillard, G. Thévenot, J.-P. Garnier, and S. Martemianov, "Measurement

of Thermal Conductivity and Diffusivity of Electrically Conducting and Highly Corrosive Liquids from

Small Samples with a New Transient Hot-Wire Instrument " Proceeding of 5th European Thermal

Sciences Conference 18-22 May 2008, Eindhoven, the Netherlands (2008).

 

Page 18: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

17    

 

Figure  Captions.  

Figure   1.     Chemical   structure   of   ions   and   nitric   acid   as  well   as   snapshots   from   equilibrium   bulk  

simulation  and  non-­‐equilibrium  mixing  simulation  of  [BMIM][DCA]/nitric  acid  system.          

Figure   2.     BMIM-­‐BMIM   radial   distribution   functions   for   HNO3/[BMIM][DCA]   (a)   and  

HNO3/[BMIM][NO3-­‐]  (b)  mixtures.  

Figure  3.    BMIM-­‐HNO3  radial  distribution  functions  for  HNO3/[BMIM][DCA]  and  HNO3/[BMIM][NO3-­‐

]  mixtures  at  selected  compositions.  

Figure   4.     Cation-­‐anion   radial   distribution   functions   for   HNO3/[BMIM][DCA]   (a)   and  

HNO3/[BMIM][NO3-­‐]  (b)  mixtures.  

Figure  5.    Anion-­‐HNO3  radial  distribution  functions  for  HNO3/[BMIM][DCA]  and  HNO3/[BMIM][NO3-­‐

]  mixtures  at  selected  compositions.  

Figure   6.     Anion-­‐anion   radial   distribution   functions   for   HNO3/[BMIM][DCA]   (a)   and  

HNO3/[BMIM][NO3-­‐]  (b)  mixtures.  

Figure  7.    The  H(acidic)-­‐O(anion)   and  H(acidic)-­‐N(cyano)   atomic   radial   distribution   functions   for  

HNO3/[BMIM][NO3-­‐]   (a)   and     HNO3/[BMIM][DCA]   (b),   along   with   the   corresponding   running  

coordination  numbers  (c).    

Figure   8.     Density   (a),   excess   volume   (b)   and   heat   of   mixing   (c)   for   HNO3/[BMIM][DCA]   and  

HNO3/[BMIM][NO3-­‐]  mixtures  as  a  function  of  composition.  

Figure   9.     Ion   and   oxidizer   self-­‐diffusion   coefficients   as   a   function   of   mixture   composition   for  

HNO3/[BMIM][DCA]  and  HNO3/[BMIM][NO3-­‐]  mixtures.  

Page 19: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

18    

Figure   10.     Time-­‐dependent   composition   (a)   and   concentration   (b)   profiles   for   the  

HNO3/[BMIM][DCA]  slab  system  after  200  ps  and  3.5  ns  of  mixing.    

Figure   11.     Time-­‐dependent   composition   (a)   and   concentration   (b)   profiles   for   the  

HNO3/[BMIM][NO3-­‐]  slab  system  after  200  ps,  3.0  ns  and  5.9  ns  of  mixing.    

Figure   12.     Interfacial   profiles   for   a   2.5   mm   radius   sphere   of   [BMIM][DCA]   or   [BMIM][NO3-­‐]  

(indicated   by   arrows)   in   a   sea   of   HNO3   predicted   by   using   eqs.   1-­‐4.     The   “fast”   oxidizer   system  

shows  mixing  of  [BMIM][NO3-­‐]  with  an  oxidizer  than  has  a  self-­‐diffusion  coefficient  four  times  that  

of  HNO3.  

 

Page 20: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

19    

 

Figure  1.  

 

 

 

 

 

Page 21: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

20    

 

Figure  2.  

 

 

Page 22: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

21    

 

Figure  3.  

 

 

Page 23: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

22    

 

Figure  4.  

 

Page 24: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

23    

 

Figure  5.  

Page 25: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

24    

Figure  6.  

 

 

Page 26: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

25    

 

Figure  7  

 

Page 27: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

26    

Figure  8  

 

Page 28: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

27    

 

Figure  9.  

Page 29: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

28    

 

Figure  10.  

Page 30: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

29    

 

Figure  11.  

Page 31: 1. REPORT DATE 2. REPORT TYPE January 2013 Journal …The structural, thermodynamic and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations

30    

 

Figure  12.