1-s2.0-s1558767314002006-main

Upload: itont

Post on 01-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 1-s2.0-S1558767314002006-main

    1/9

    Review

    Combining Immunotherapy and Radiationfor Prostate Cancer*

    Steven E. Finkelstein,

    1

    Sharon Salenius,

    2

    Constantine A. Mantz,

    2

    Neal D. Shore,

    3

    Eduardo B. Fernandez,2 Jesse Shulman,1 FranciscoA. Myslicki,1 Andre M. Agassi,1

    Yosef Rotterman,1 Todd DeVries,4 Robert Sims4

    AbstractRadiotherapy has conventionally been viewed as immunosuppressive, which has precluded its use in combination with

    immunotherapy for prostate and other cancers. However, the relationship between ionizing radiation and immune

    reactivity is now known to be more complex than was previously thought, and data on the use of radiotherapy and

    immunotherapy are accumulating.Herein, we reviewthis topic in the light of recently available data in the prostate cancer

    setting. Recent research has shown no signicant lymphopenia in patients undergoing radiotherapy for high-risk

    adenocarcinoma of the prostate. In addition, emerging evidence suggests that radiotherapy can have immunostimu-

    latoryeffects,and that tumor cell death,coupled with relatedchanges in antigen availabilityand in

    ammatory signals, canaffect lymphocyte and dendritic cell activation. Initial studies have focused on combinations of tumor irradiation and

    immunotherapy, such as the autologous cellular immunotherapy sipuleucel-T and the monoclonal antibody ipilimumab,

    in metastatic castration-resistant prostate cancer. These combinations appear to have clinical promise, and further

    investigation of the potentially synergistic combination of radiotherapy and immunotherapy is continuing in clinical trials.

    Clinical Genitourinary Cancer, Vol. 13, No. 1, 1-9 2015 The Authors. Published by Elsevier Inc.

    All rights reserved.

    Keywords: Cancer vaccine, Prostatic neoplasm, Radiation effects, Radiotherapy

    IntroductionRadiotherapy has historically been thought of as immunosup-

    pressive and therefore not appropriate for combination with treat-ments that act on the immune system. However, this view of

    radiotherapy might be overly simplistic, and a growing body of

    evidence suggests that ionizing radiation can be immunostimula-

    tory. This opens up opportunities for combining radiotherapy with

    cancer immunotherapies, which are approved or under investigation

    for various malignancies including prostate cancer. Clinical data

    on the use of radiotherapy with immunotherapy, both together and

    sequentially, are accumulating. In this review we consider recent

    advances that challenge widely held views, not only on the effects of

    radiotherapy but also the potential synergy between radio- and

    immunotherapeutic approaches.

    Effects of Radiotherapy on theImmune System

    The accepted rationale for using radiotherapy in cancer is under-

    pinned by tumor cell death and effects on tumor-associated stroma

    caused by DNA damage.1 The conventional view is that rapidly

    dividing cancer cells are more sensitive to ionizing radiation than

    normal tissue, and therapeutic radiation is therefore applied to induce

    apoptosis and other forms of cell death within a dened area while

    minimizingtoxic effects on normal tissue around thetreatmenteld.1,2

    Inevitably, irradiation of living tissue involves damage to that

    tissue, whether it is tumor tissue, normal host stroma, normalhost parenchyma, or leukocytes.1 The attenuation of lymphocyte

    numbers by radiotherapy, as previously reported in patients un-

    dergoing treatment for gynecologic3 or prostate4 malignancies,

    might therefore be viewed as an adverse effect. The ultimate

    manifestation of this is seen in patients who undergo total body

    irradiation (as widely used in conditioning regimens for hemato-

    logic malignancies), who experience prolonged pancytopenia.5

    Studies have described reductions in numbers of T, B, and

    *This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

    121st Century Oncology Translational Research Consortium, Scottsdale, AZ221st Century Oncology Translational Research Consortium, Fort Myers, FL3Carolina Urologic Research Center, 21st Century Oncology, Myrtle Beach, SC4Dendreon Corporation, Seattle, WA

    Submitted: May 30, 2014; Revised: Aug 29, 2014; Accepted: Sep 17, 2014; Epub:Sep 28, 2014

    Address for correspondence: Steven E. Finkelstein, MD, 21st Century OncologyTranslational Research Consortium (TRC), 7340 E Thomas Rd, Scottsdale,

    AZ 85251Fax: 480-945-7287; e-mail contact:[email protected]

    1558-7673/$ - see frontmatter

    2015 The Authors. Published by Elsevier Inc. All rights reserved.http://dx.doi.org/10.1016/j.clgc.2014.09.001 Clinical Genitourinary Cancer February 2015 - 1

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/mailto:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.clgc.2014.09.001http://dx.doi.org/10.1016/j.clgc.2014.09.001mailto:[email protected]://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/http://crossmark.crossref.org/dialog/?doi=10.1016/j.clgc.2014.09.001&domain=pdfhttp://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/9/2019 1-s2.0-S1558767314002006-main

    2/9

    natural killer (NK) cells, apoptosis or alteration of antigen-

    presenting cells (APCs), including dendritic cells (DCs) and mac-

    rophages, apoptosis of lymphocytes, and changes to antigen

    expression on tumor cells after radiotherapy with doses from

    approximately 50 to 70 Gy.3,4,6,7 Localized radiotherapy has

    reportedly resulted in signicant reductions in lymphocyte levels in

    stage I to II prostate cancer or locally advanced gynecologic neo-

    plasms.3,4 Similarly, studies on radiotherapy in patients with stage I

    to III breast cancer have shown lymphopenia, low functional ac-tivity of NK cells, decreased monocyte phagocytosis, and decreased

    tumor necrosis factor (TNF)-a production.7

    Observations such as these have contributed to the conven-

    tional view of radiation therapy as immunosuppressive, and it has

    therefore not been used with cancer immunotherapy. However,

    emerging data suggest that standard radiotherapy in high-risk

    prostate adenocarcinoma might not be as immunosuppressive as

    previously thought, nor the relationship between radiation and

    immune responses as straightforward.1,8 The relative contribu-

    tions and reactions of systemic and locoregional cell populations

    and the differing effects of dose and delivery methods might in-

    uence immune responses via a range of cellular mechanisms

    (Figure 1).9

    Radiotherapy can cause tumor cell apoptosis by inducing DNA

    damage, upregulating the p53 tumor suppressor gene, and

    through damage to the cellular lipid membrane. This in turn can

    lead to ceramide formation and activation of the stress-activated

    protein kinases/Jun amino-terminal kinases (SAPK/JNK) sig-

    naling pathway. The resultant damage-associated molecular

    patterns (apoptotic and necrotic cellular debris) can generate

    antigen-specic immunity through DC maturation and presen-

    tation of DC-processed antigen to T cells.9

    Activation of the SAPK/JNK signaling pathway and the pres-

    ence of damage-associated molecular patterns might also be partly

    responsible for other immunological effects seen after radio-

    therapy.9 Studies in a variety of tumors have shown that radiation

    induces chemokines Chemokine (C-X-C motif) ligand, CXCL10,

    and CXCL16, which in turn promote recruitment of effector CD8

    and T-helper 1 CD4 T cells.10 Radiation has also been shown to

    induce a number of different proinammatory cytokines,

    including interleukin (IL) 1b, TNF-a and type 1 and 2 in-

    terferons.10 Additionally, in several cancer models, tumor cells

    exposed to radiation have been shown to have enhanced expression

    of major histocompatibility complex (MHC) class 1 molecules, co-

    stimulatory molecules, adhesion molecules (such as intercellular

    Figure 1 Radiation Effects on Immune Cells and Consequent Modulation by Radiotherapy.9 Apoptosis Can Be Initiated by Radiation-Induced DNA Damage and Upregulation of the p53 Tumor Suppressor Gene, and by Damage to the Cellular Lipid Membrane,Which Can Induce Ceramide Formation and Activate the SAPK/JNK Signaling Pathway. SAPK/JNK Can Upregulate PKRExpression, Which in Turn Induces MHC and Cytokines via NF-kB. Radiation Treatment Induces Cellular Expression of MHCClass I, Adhesion Molecules, Co-Stimulatory Molecules, Heat Shock Proteins, Inammatory Mediators, ImmunomodulatoryCytokines, and Death Receptors

    Abbreviations: ATM Ataxia Telangiec tasia Mutated; CD Cluster of Differentiation; DNA-PK DNA-Dependent Protein Kinase; MHC Major Histocompatibility Complex; NF-kB Nuclear FactorKappa Light Chain Enhancer of Activated B Cells; PKR Protein Kinase R; SAPK/JNK Stress-Activated Protein Kinases/Jun Amino-Terminal Kinases.

    Immunotherapy and Radiotherapy for Prostate Cancer

    2 - Clinical Genitourinary Cancer February 2015

  • 8/9/2019 1-s2.0-S1558767314002006-main

    3/9

    adhesion molecule 1 [ICAM-1]), and stress-induced ligands

    (including NK Group 2D ligands on NK cells).10,11 Furthermore,

    radiation can upregulate expression of the Fas death receptor on

    tumor cells, which induces sensitivity of the tumor cells to T-cell

    receptor independent, Fas-mediated killing.11 Finally, a direct ef-

    fect of radiation on tumors has been reported, in which radio-

    therapy modies the phenotype of tumor cells to render them

    more susceptible to vaccine-mediated T-cell killing.12 As a com-

    bined result of these mechanisms, radiotherapy can engage both

    the innate and adaptive arms of the immune system,9-11 thereby

    converting the irradiated tumor into an in-situ vaccine that

    elicits a tumor-specic T-cell response, and the inltration of

    leukocytes.

    A more detailed summary of the effects of radiotherapy on someof the components of the immune system is described in the

    following sections.

    Effects of Radiation Therapy on White Blood Cell Countsin High-Risk Adenocarcinoma of the Prostate

    In contrast to observations discussed previously,3,4,6,7 our group

    has demonstrated no signicant lymphopenia in 26 patients aged

    62 to 86 years (median 73 years) undergoing radiotherapy for

    high-risk prostate adenocarcinoma.13 In this study, complete

    blood counts (CBCs) were retrospectively analyzed with differ-

    ential data on prospectively collected blood samples. CBC data

    were collected before radiotherapy and at up to 4 time pointsthereafter (1-90 days, 91-180 days, 181-360 days, and > 360

    days), and were compared with normal ranges from an outside

    laboratory reference (white blood cell [WBC] count, 3800-10,700

    cells/mL; absolute lymphocyte count [ALC], 910-4280 cells/mL).

    Patients received conventional external beam radiotherapy (EBRT)

    from 64.8 to 81.0 Gy in 1.8-Gy fractions, with a small number

    receiving brachytherapy. Sixteen patients also received androgen

    deprivation therapy.

    Baseline cell counts were within normal ranges (Table 1).13

    Counts decreased in the 3 months after radiotherapy, although

    median values remained within the normal range. Thereafter,

    median WBC and then ALC increased gradually to 5800 and 1250

    cells/mL, respectively, approximately 6 to 12 months after radio-

    therapy (Figure 2).13 Thus, median WBC and ALC remained

    within normal limits for the full follow-up period. These results

    challenge the view that standard radiotherapy in high-risk prostate

    adenocarcinoma is immunosuppressive. To be successful, immu-

    notherapy requires an active immune system, and the stability of cell

    Table 1 White Blood Cell Count (WBC) andAbsolute Lymphocyte Counts (ALC) at Baseline and After Radiotherapy in 26 Patients WithAdenocarcinoma of the Prostate13

    Parameter Statistic Baseline

    Days After Radiotherapy

    1-90 91-180 181-360 >360

    WBC, Cells/mL n 26 18 13 21 20

    Mean 6527 5806 6362 6038 6085

    Median 6050 5350 6000 5800 5200

    Minimum 4000 3500 3500 3400 4400

    Maximum 10,100 13,100 11,000 13,100 10,000

    ALC, Cells/mL n 21 11 9 10 8

    Mean 1680 1054 1059 1246 1275

    Median 1700 970 1100 1250 1350

    Minimum 700 700 500 590 1000

    Maximum 3100 1700 1500 2100 1400

    Normal reference ranges were 3800 to 10,700 cells/mL for WBC and 910 to 4280 cells/mL for ALC.Abbreviation: n number of observations in an interval.

    Figure 2 Median Baseline andSubsequent Cell Counts AfterRadiation Therapy.13 (A) White Blood Cell (WBC)Counts; (B) Absolute Lymphocyte Counts (ALC)

    A

    B

    Abbreviation: AUC Area Under the Curve.

    Steven E. Finkelstein et al

    Clinical Genitourinary Cancer February 2015 - 3

  • 8/9/2019 1-s2.0-S1558767314002006-main

    4/9

  • 8/9/2019 1-s2.0-S1558767314002006-main

    5/9

    and destroy tumor cells.34 In addition, tumor cells can be pheno-

    typically modulated by radiation, which increases their susceptibility

    to cell-killing.35 Taken together, these immunostimulatory effects

    of radiation might at least partly explain the abscopal effect, in

    which localized treatment with ionizing radiation can result in

    reduction of tumor masses distant from the primary site.36 This

    effect has been reported in 2 recent cases of metastatic melanoma

    treated with radiotherapy and immunotherapy,37,38 demonstrating

    that the combination of these 2 therapeutic approaches mightsupport the host immune response to tumor antigens.

    Finally, when reviewing data on this subject it is important to

    remember that there is a balance between suppressant and stim-

    ulant effects on the immune system that depends on the dose,

    fractionation, and targeting of radiotherapy.39,40 In addition to

    providing a radiation-induced proinammatory environment that

    facilitates antigen presentation and other positive immunologic

    effects, radiation can also promote the development of myeloid

    cells, which facilitate tumor growth, and regulatory T cells, which

    dampen or prevent immune responses.41,42 Thus, radiation can be

    an immunoadjuvant in the right circumstances, but the response

    reportedly varies with dose and fractionation.40 This offers possi-

    bilities for rening radiotherapy techniques so that they favor

    stimulant effects.

    Combination of Radiotherapy andImmunotherapy for ProstateCancer

    Discovery of the variety of immunostimulant effects resulting

    from radiation treatment has increased interest in combining

    immunotherapy with tumor irradiation to produce synergistic

    benet in a range of cancers.1,35,43-46 The preclinical evidence for

    synergy between radiotherapy and immunotherapy has been

    reviewed recently by Kwilas et al45 and we therefore focus herein on

    recent clinical data.

    Immunotherapy in Prostate CancerNew ndings are constantly being made in animal models of

    oncology immunotherapy, and these often have important impli-

    cations for furthering immunotherapy research in humans.47,48

    Currently, a variety of immunotherapeutic treatments are available

    or in development for use in prostate cancer. These include

    sipuleucel-T, an autologous, APC-based immunotherapy that tar-

    gets the immune response toward a dened prostate antigen

    (prostatic acid phosphatase [PAP]).49 Sipuleucel-T was the rst

    cancer immunotherapy approved by the United States Food and

    Drug Administration for the treatment of asymptomatic or mini-mally symptomatic metastatic castration-resistant prostate cancer

    (mCRPC)50 and by the European Medicines Agency for asymp-

    tomatic or minimally symptomatic metastatic (nonvisceral)

    castration-resistant prostate cancer in male adults in whom

    chemotherapy was not yet clinically indicated.51 Approval was pri-

    marily based on the phase III IMPACT (IMmunotherapy Prostate

    AdenoCarcinoma Treatment) trial, which showed a 4.1-month

    improvement in median survival over placebo (25.8 vs. 21.7

    months).52 The relative reduction in risk of death was 22% with

    sipuleucel-T (hazard ratio, 0.78; 95% condence interval, 0.61-

    0.98; P .03). T cell and humoral immune responses to the

    prostate antigen were observed in patients receiving sipuleucel-T

    and correlated with survival.53 These results and subsequent

    approval are reected in recent updates to National Comprehensive

    Cancer Network guidelines for prostate cancer treatment, which

    include the option ofrst-line immunotherapy with sipuleucel-T in

    men with mCRPC and good performance status (category 1;

    Figure 3). The guidelines also emphasize the importance of radio-

    therapy for patients with high-risk localized tumors, and clinical

    practice has shown the value of EBRT and stereotactic body radi-ation therapy, also known as stereotactic ablative radiotherapy, for

    bone metastases.54-56

    Prostate-specic antigen (PSA)-TRICOM (a recombinant viral

    vaccine mixture encoding PSA with B7.1, ICAM-1, and leukocyte

    functional antigen-3), ipilimumab (a fully human monoclonal

    antibody against cytotoxic T-lymphocyte antigen [CTLA]-4), and

    various peptides, proteins, and tumor antigens alone or linked to

    viruses or co-stimulatory molecules are currently being investigated

    in prostate cancer.57

    Recent Progress with Combination TherapyNotably, 2 recent studies have combined radiotherapy and

    immunotherapy to good effect in patients with prostate cancer.

    The rst was a pilot study of intraprostatic injection of autologous

    DCs combined with EBRT and brachytherapy in 5 men with

    localized tumors without radiologically evident metastases but with

    high risk of recurrence (Table 2).58-60 In this study, serial prostate

    biopsies consistently showed limited levels of lymphocytic inl-

    tration. No temporal inltrate pattern linked to radiation or DC

    injection was evident. The theoretically optimal time to inject

    DCs into the tumor environment would be when apoptosis is

    proceeding maximally, which was assessed in this study. However,

    among tumor cores that were examined, there were up to 19%

    of cells showing apoptosis. This small proportion reects the dif-

    culty in targeting a tumor using biopsies (the organ rather thanthe tumor is targeted), and it therefore appears that the identi-

    cation of time points at which radiation induces high rates of

    apoptosis is not straightforward.

    Functional T-cell responses before, during, and after treatment

    were assessed by stimulating peripheral blood cells with prostate

    tumor cell-derived peptides and measuring the number of inter-

    feron-g-producing cells by enzyme-linked immunosorbent spot.

    Tests showed a detectable increase from baseline in prostate-

    specic T-cell responses in 2 of the 5 men. However, there was

    no clear temporal pattern, baseline responses were detectable in

    some men, and in some cases, strong responses to control peptides

    were noted.The technique used was feasible, well tolerated, and specic

    immune responses were observed. However, the coordination of

    apoptosis-inducing radiotherapy with autologous DC treatment

    requires further study. In fact, a randomized phase II trial

    (NCT01807065) is under way to assess the efcacy of sipuleucel-

    T in combination with radiotherapy in patients with mCRPC.

    It should be noted that the treatment described herein58 differed

    from sipuleucel-T therapy in the method of APC administra-

    tion (intraprostatic injection vs. intravenous infusion), and also

    in a lack of a dened antigen (sipuleucel-T therapy directs the

    immune response toward PAP). Similar approaches combining

    Steven E. Finkelstein et al

    Clinical Genitourinary Cancer February 2015 - 5

    http://nct01807065/http://nct01807065/
  • 8/9/2019 1-s2.0-S1558767314002006-main

    6/9

    intratumoral DC injection with radiotherapy or chemotherapy for

    sarcoma have shown promising preliminary results and warrant

    further study.61,62

    The second trial was a phase I/II study in men with mCRPC

    that compared ipilimumab as monotherapy and in combination

    with radiotherapy (Table 2).59 Ipilimumab is a fully human

    monoclonal antibody that specically blocks the binding of the

    immunoregulatory molecule CTLA-4 to its ligands (CD80/CD86)

    and thereby augments T cell activation and proliferation.63 This

    combination therapy study was carried out after initial trials

    showed ipilimumab to have acceptable tolerability and antitumor

    activity in patients with mCRPC.64,65 Of the 41 patients who

    received combination therapy, 30, 8, and 3 had 1, 2, and 3 bone

    lesions irradiated, respectively. Among patients who received 10

    mg/kg with or without EBRT (n 34), 28 had evaluable tumors:

    8 had PSA reductions of at least 50% ranging in duration from

    Figure 3 Systemic Therapy for mCRPC. Abridged Summary of NCCN Guideline for Patients With Advanced Disease Who TestPositive for Metastases.56

    Sipuleucel-T Is Appropriate for Asymptomatic or Minimally Symptomatic Patients With Eastern Cooperative Oncology Group Performance Status 0 to 1, and Is Not Indicated for Patients With HepaticMetastases or Life Expectancy

  • 8/9/2019 1-s2.0-S1558767314002006-main

    7/9

    3 to 13 months, there was 1 complete response (duration

    11.3 months), and 6 had stable disease.59 PSA changes were

    seen irrespective of previous chemotherapy.59

    However, a randomized phase III study (NCT00861614) in

    patients with mCRPC whose disease had progressed after docetaxel

    chemotherapy failed to show improved overall survival when ipili-

    mumab was administered after radiotherapy compared with placebo

    (Table 2).60 Future studies might also consider the combination of

    radiotherapy and interferon, which has showed some promise in the

    treatment of melanoma.66

    ConclusionThe aim of cancer immunotherapy is to overcome the problem

    of weak immunogenicity of tumor-associated antigenic material

    and to provoke a robust immune response to cancer cells.Conventionally, radiation has been perceived as immunosuppres-

    sive, but recent experimental work shows that this is not necessarily

    the case and radiotherapy can in fact have a variety of immunos-

    timulatory effects. Emerging data thus show the potential for

    radiotherapy to work synergistically with immunotherapy to

    enhance antitumor immune responses, inhibit immunosuppres-

    sion, and/or alter tumor cell phenotype to increase their suscep-

    tibility to immune-mediated killing.45

    The coordination of focal tumor irradiation and immuno-

    therapy has the potential to maximize the benet of both treat-

    ments in patients with prostate and other tumors. Augmentation

    of antitumor immune responses appears to be a logical and

    promising approach, and the small-scale studies of radiotherapy

    in combination with immunotherapy that have been carriedout to date support this view. mCRPC is one of few tumor

    types in which immunotherapy is the current standard of care,57

    and developments in combination therapy appear to be a logical

    route toward future improvements in outlook for affected

    patients.

    Questions remain as to how best to exploit the full potential of

    combination therapy. There might be variations in tumor micro-

    environment, phenotype, and response brought about by differing

    types of radiotherapy, and certain dosages and courses of radio-

    therapy might be more benecial than others.45 There is also a

    possibility that combination therapy might result in an increase in

    the local control rate of prostate cancer; however, further studies arerequired to clarify this. Optimization of the sequence and timing of

    treatments should also assist with maximizing the efcacy of radi-

    ation combined with immunotherapy.57 The results of ongoing

    studies investigating combinations of immunotherapies, such as

    sipuleucel-T or nivolumab, after radiotherapy for the treatment of

    prostate cancer are eagerly awaited.

    AcknowledgmentsMedical writing assistance was provided by Zaavan Baildon and

    Chris Dunn (Gardiner-Caldwell Communications, Maccleseld,

    Table 2 Overview of Clinical Trials Evaluating Immunotherapy Combined With Radiation for Prostate Cancer

    Citation Design Treatment Measurements Activity

    Finkelstein et al, 201258 Nonrandomized, open-label

    pilot study in 5 men withlocalized tumors without

    radiologically evidentmetastases but with

    high risk of recurrence

    Twenty-eight months of androgensuppression, 45 Gy of EBRT,

    intraprostatic DC injection, andbrachytherapy seed placement.

    Autologous DCs were obtained usingsingle-treatment apheresis and frozen.

    Before reinfusion after radiationfractions 5, 15, and 25, cells were

    thawed and cultured in vitro for 4 dayswith GM-CSF and IL-4

    Interval biopsies and bloodtests were used to assess

    immune reaction

    Biopsies showed some apoptosis(up to 19% in 11 tumor cores)

    and limited lymphocytic inltrates,including CD8 cells. Tests oncirculating lymphocytes showed

    some instances of increased titersto the test peptides

    Slovin et al, 201359 Nonrandomized, open-label

    phase I/II trial in 71 menwith mCRPC with disease

    progression afterdiscontinuation of

    antiandrogen therapyand who had received

    no more than 1 previouscourse of chemotherapy

    Comparison of ipilimumab monotherapy(n 29; 3, 5, or 10 mg/kg givenevery 3 weeks in a cycle of up to

    4 doses) or ipilimumab (3 or 10 mg/kg)in combination with EBRT (n 41).EBRT was given as a single dose of

    8 Gy per target bone lesion for up to3 lesions per patient, 24 to 48 hours

    before the rst ipilimumab dose.Patients with disease progression afteran initial response (or stable disease)could have up to 3 further ipilimumab

    cycles, but no further EBRT

    PSA decline and tumorresponse

    Among patients who receivedipilimumab 10 mg/kg with or

    without EBRT (n 34), 28 hadevaluable tumors. Of these, 8 had

    PSA reductions of at least 50%(duration: 3 to 13 months).

    There was 1 complete response(observed in the EBRT group;duration 11.3 months) and

    6 patients had stable disease.PSA changes were seenirrespective of previous

    chemotherapy

    Kwon et al, 201460 Multicenter, randomized,double-blind, phase III

    trial in men with mCRPCwho had progressed after

    docetaxel treatment

    Patients were randomized to receivebone-directed radiotherapy (8 Gy in

    1 fraction) followed by either ipilimumab10 mg/kg or placebo every 3 weeks for

    up to 4 doses

    Overall survival Median overall survival was 11.2months with ipilimumab and 10.0months with placebo (HR, 0.85;95% CI, 0.72-1.00; P .053).Prespecied analyses suggested

    that ipilimumab might benetsome subgroups, particularly thosewith favorable prognostic features

    Abbreviations: DC dendritic cell; EBRT external beam radiation therapy; GM-CSF granulocyte-macrophage colony-stimulating factor; Gy Gray; HR hazard ratio; IL interleukin;mCRPC metastatic castration-resistant prostate cancer; PSA prostate-specic antigen.

    Steven E. Finkelstein et al

    Clinical Genitourinary Cancer February 2015 - 7

    http://nct00861614/http://nct00861614/
  • 8/9/2019 1-s2.0-S1558767314002006-main

    8/9

    United Kingdom) and was funded by Dendreon Corporation. The

    authors remain accountable for all aspects of the work and

    contributed to the conception/design of the report or the analysis/

    interpretation of data, critically revised the manuscript for important

    intellectual content, and approved the nal version for submission.

    DisclosureSteven E. Finkelstein reports speaker bureau for Dendreon,

    Bayer, Algeta, Medivation, and Spectrum, and advisory boards forBayer, Algeta, Dendreon, and Spectrum. Neal D. Shore reports

    consultancy for Bayer, Janssen, Medivation, Astellas, Dendreon,

    Millenium, and Sano. Todd DeVries is an employee and share-

    holder at Dendreon. Robert Sims was an employee (during the

    drafting of this report) and is a shareholder at Dendreon. The

    remaining authors have stated that they have no conicts of interest.

    References1. Finkelstein SE, Fishman M. Clinical opportunities in combining immunotherapy

    with radiation therapy.Front Oncol2012; 2:169.2. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in

    cancer treatment. Nat Rev Cancer2012; 12:237-51.3. Lissoni P, Meregalli S, Bonetto E, et al. Radiotherapy-induced lymphocytopenia:

    changes in total lymphocyte count and in lymphocyte subpopulations under pelvicirradiation in gynecologic neoplasms.J Biol Regul Homeost Agents2005; 19:153-8.

    4. Johnke RM, Edwards JM, Kovacs CJ, et al. Response of T lymphocyte populationsin prostate cancer patients undergoing radiotherapy: inuence of neoajuvant totalandrogen suppression.Anticancer Res2005; 25:3159-66.

    5. Harden SV, Routsis DS, Geater AR, et al. Total body irradiation using a modiedstanding technique: a single institution 7 year experience.Br J Radiol 2001; 74:1041-7.

    6. Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Philadelphia, PA: LippincottWilliams and Wilkins; 2012.

    7. Standish LJ, Torkelson C, Hamill FA, et al. Immune defects in breast cancerpatients after radiotherapy. J Soc Integr Oncol2008; 6:110-21.

    8. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol2009; 10:718-26.

    9. Finkelstein SE, Timmerman R, McBride WH, et al. The conuence of stereotacticablative radiotherapy and tumor immunology. Clin Dev Immunol 2011 2011:439752.

    10. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a

    paradigm shift.J Natl Cancer Inst2013; 105:256-65.11. Burnette B, Fu YX, Weichselbaum RR. The conuence of radiotherapy andimmunotherapy.Front Oncol2012; 2:143.

    12. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW.External beam radiation of tumors alters phenotype of tumor cells to render themsusceptible to vaccine-mediated T-cell killing.Cancer Res2004; 64:4328-37.

    13. Finkelstein SE, Salenius S, Mantz CA, et al. White blood cell counts remain stablefollowing standard radiation approaches for high-risk adenocarcinoma of theprostate.Int J Rad Oncol2012; 84:S356-7.

    14. Nesslinger NJ, Sahota RA, Stone B, et al. Standard treatments induce antigen-specic immune responses in prostate cancer.Clin Cancer Res2007; 13:1493-502.

    15. Schaue D, Comin-Anduix B, Ribas A, et al. T-cell responses to survivin in cancerpatients undergoing radiation therapy.Clin Cancer Res2008; 14:4883-90.

    16. Janeway CA Jr, Travers P, Walport M, et al.Immunobiology. The Immune Systemin Health and Disease. 4th edition. New York, NY: Garland Science; 2001.

    17. Garnett CT, Palena C, Chakraborty M, et al. Sublethal irradiation of humantumor cells modulates phenotype resulting in enhanced killing by cytotoxic Tlymphocytes.Cancer Res2004; 64:7985-94.

    18. Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide

    repertoire, enhances MHC class I expression, and induces successful antitumorimmunotherapy.J Exp Med2006; 203:1259-71.

    19. Chakraborty M, Abrams SI, Camphausen K, et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immuno-therapy.J Immunol2003; 170:6338-47.

    20. Ifeadi V, Garnett-Benson C. Sub-lethal irradiation of human colorectal tumor cellsimparts enhanced and sustained susceptibility to multiple death receptor signalingpathways.PLoS One2012; 7:e31762.

    21. Hallahan DE, Spriggs DR, Beckett MA, et al. Increased tumor necrosis factoralpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA1989; 86:10104-7.

    22. Hong JH, Chiang CS, Tsao CY, et al. Rapid induction of cytokine gene expressionin the lung after single and fractionated doses of radiation. Int J Radiat Biol1999;75:1421-7.

    23. Ishihara H, Tsuneoka K, Dimchev AB, et al. Induction of the expression of theinterleukin-1 beta gene in mouse spleen by ionizing radiation.Radiat Res1993;133:321-6.

    24. Hurwitz MD, Kaur P, Nagaraja GM, et al. Radiation therapy induces circu-lating serum Hsp72 in patients with prostate cancer. Radiother Oncol2010; 95:350-8.

    25. Quarmby S, Hunter RD, Kumar S. Irradiation induced expression of CD31,ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res2000; 20:3375-81.

    26. Vereecque R, Buffenoir G, Gonzalez R, et al. Gamma-ray irradiation induces B7.1expression in myeloid leukaemic cells. Br J Haematol2000; 108:825-31.

    27. Chen Z, Moyana T, Saxena A, et al. Efcient antitumor immunity derived frommaturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells.Int J Cancer2001; 93:539-48.

    28. Kotera Y, Shimizu K, Mul JJ. Comparative analysis of necrotic and apoptotic

    tumor cells as a source of antigen(s) in dendritic cell-based immunization. CancerRes2001; 61:8105-9.29. Liao YP, Wang CC, Schaue D, et al. Local irradiation of murine melanoma affects

    the development of tumour-specic immunity.Immunology2009; 128:e797-804.30. Liao YP, Wang CC, Buttereld LH, et al. Ionizing radiation affects human

    MART-1 melanoma antigen processing and presentation by dendritic cells.J Immunol2004; 173:2462-9.

    31. Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classication andpathophysiological implications. Cell Death Differ2007; 14:1237-43.

    32. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependentcontribution of the immune system to anticancer chemotherapy and radiotherapy.Nat Med2007; 13:1050-9.

    33. Fucikova J, Kralikova P, Fialova A, et al. Human tumor cells killed by anthracy-clines induce a tumor-specic immune response. Cancer Res2011; 71:4821-33.

    34. Ganss R, Ryschich E, Klar E, et al. Combination of T-cell therapy and trigger ofinammation induces remodeling of the vasculature and tumor eradication.CancerRes2002; 62:1462-70.

    35. Drake CG. Combination immunotherapy approaches. Ann Oncol 2012;23(suppl 8):viii41-6.

    36. Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition of distantuntreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol BiolPhys2004; 58:862-70.

    37. Hiniker SM, Chen DS, Reddy S, et al. A systemic complete response of metastaticmelanoma to local radiation and immunotherapy. Transl Oncol2012; 5:404-7.

    38. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of theabscopal effect in a patient with melanoma. N Engl J Med2012; 366:925-31.

    39. Dewan MZ, Galloway AE, Kawashima N, et al. Fractionated but not single-doseradiotherapy induces an immune-mediated abscopal effect when combined withanti-CTLA-4 antibody.Clin Cancer Res2009; 15:5379-88.

    40. Schaue D, Ratikan JA, Iwamoto KS, et al. Maximizing tumor immunity withfractionated radiation. Int J Radiat Oncol Biol Phys2012; 83:1306-10.

    41. Ahn GO, Brown JM. Inuence of bone marrow-derived hematopoietic cells on thetumor response to radiotherapy: experimental models and clinical perspectives. CellCycle2009; 8:970-6.

    42. Kachikwu EL, Iwamoto KS, Liao YP, et al. Radiation enhances regulatory T cellrepresentation.Int J Radiat Oncol Biol Phys2011; 81:1128-35.

    43. Demaria S, Bhardwaj N, McBride WH, et al. Combining radiotherapy and

    immunotherapy: a revived partnership.Int J Radiat Oncol Biol Phys2005; 63:655-66.44. Kamrava M, Bernstein MB, Camphausen K, et al. Combining radiation, immu-notherapy, and antiangiogenesis agents in the management of cancer: the ThreeMusketeers or just another quixotic combination? Mol Biosyst2009; 5:1262-70.

    45. Kwilas AR, Donahue RN, Bernstein MB, Hodge JW. In the eld: exploiting theuntapped potential of immunogenic modulation by radiation in combination withimmunotherapy for the treatment of cancer. Front Oncol2012; 2:104.

    46. Sharma A, Bode B, Studer G, et al. Radiotherapy of human sarcoma promotes anintratumoral immune effector signature. Clin Cancer Res2013; 19:4843-53.

    47. Finkelstein SE, Heimann DM, Klebanoff CA, et al. Bedside to bench and backagain: how animal models are guiding the development of new immunotherapiesfor cancer. J Leukoc Biol2004; 76:333-7.

    48. Overwijk WW, Theoret MR, Finkelstein SE, et al. Tumor regression and auto-immunity following reversal of a functionally tolerant state of self-reactive CD8

    T cells. J Exp Med2003; 198:569-80.49. Finkelstein SE, Fishman M. Current status of sipuleucel-T for the treatment of

    asymptomatic or minimally symptomatic metastatic castrate-resistant (hormone-refractory) prostate cancer. Int J Clin Rev2011; 12:10.

    50. United States Food and Drug Administration. Highlights of prescribing in-

    formation. Provenge (sipuleucel-T). Available at: http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdf. Accessed October 8, 2013.

    51. EMA. Provenge (sipuleucel-T) Summary of Product Characteristics. Available at:http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002513/WC500151099.pdf. Accessed October 22, 2013.

    52. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy forcastration-resistant prostate cancer. N Engl J Med2010; 363:411-22.

    53. Sheikh NA, Petrylak D, Kantoff PW, et al. Sipuleucel-T immune parameters correlatewith survival: an analysis of the randomized phase 3 clinical trials in men withcastration-resistant prostate cancer.Cancer Immunol Immunother2013; 62:137-47.

    54. Ahmed KA, Barney BM, Davis BJ, Park SS, Kwon ED, Olivier KR. Stereotacticbody radiation therapy in the treatment of oligometastatic prostate cancer.FrontOncol2012; 2:215.

    55. Milano MT, Katz AW, Zhang H, et al. Oligometastases treated with stereotacticbody radiotherapy: long-term follow-up of prospective study.Int J Radiat OncolBiol Phys2012; 83:878-86.

    Immunotherapy and Radiotherapy for Prostate Cancer

    8 - Clinical Genitourinary Cancer February 2015

    http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1http://refhub.elsevier.com/S1558-7673(14)00200-6/sref2http://refhub.elsevier.com/S1558-7673(14)00200-6/sref2http://refhub.elsevier.com/S1558-7673(14)00200-6/sref2http://refhub.elsevier.com/S1558-7673(14)00200-6/sref2http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref6http://refhub.elsevier.com/S1558-7673(14)00200-6/sref6http://refhub.elsevier.com/S1558-7673(14)00200-6/sref6http://refhub.elsevier.com/S1558-7673(14)00200-6/sref6http://refhub.elsevier.com/S1558-7673(14)00200-6/sref7http://refhub.elsevier.com/S1558-7673(14)00200-6/sref7http://refhub.elsevier.com/S1558-7673(14)00200-6/sref7http://refhub.elsevier.com/S1558-7673(14)00200-6/sref7http://refhub.elsevier.com/S1558-7673(14)00200-6/sref8http://refhub.elsevier.com/S1558-7673(14)00200-6/sref8http://refhub.elsevier.com/S1558-7673(14)00200-6/sref8http://refhub.elsevier.com/S1558-7673(14)00200-6/sref8http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref10http://refhub.elsevier.com/S1558-7673(14)00200-6/sref10http://refhub.elsevier.com/S1558-7673(14)00200-6/sref10http://refhub.elsevier.com/S1558-7673(14)00200-6/sref10http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref15http://refhub.elsevier.com/S1558-7673(14)00200-6/sref15http://refhub.elsevier.com/S1558-7673(14)00200-6/sref15http://refhub.elsevier.com/S1558-7673(14)00200-6/sref15http://refhub.elsevier.com/S1558-7673(14)00200-6/sref16http://refhub.elsevier.com/S1558-7673(14)00200-6/sref16http://refhub.elsevier.com/S1558-7673(14)00200-6/sref16http://refhub.elsevier.com/S1558-7673(14)00200-6/sref16http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref26http://refhub.elsevier.com/S1558-7673(14)00200-6/sref26http://refhub.elsevier.com/S1558-7673(14)00200-6/sref26http://refhub.elsevier.com/S1558-7673(14)00200-6/sref26http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref40http://refhub.elsevier.com/S1558-7673(14)00200-6/sref40http://refhub.elsevier.com/S1558-7673(14)00200-6/sref40http://refhub.elsevier.com/S1558-7673(14)00200-6/sref40http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref42http://refhub.elsevier.com/S1558-7673(14)00200-6/sref42http://refhub.elsevier.com/S1558-7673(14)00200-6/sref42http://refhub.elsevier.com/S1558-7673(14)00200-6/sref42http://refhub.elsevier.com/S1558-7673(14)00200-6/sref43http://refhub.elsevier.com/S1558-7673(14)00200-6/sref43http://refhub.elsevier.com/S1558-7673(14)00200-6/sref43http://refhub.elsevier.com/S1558-7673(14)00200-6/sref43http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref46http://refhub.elsevier.com/S1558-7673(14)00200-6/sref46http://refhub.elsevier.com/S1558-7673(14)00200-6/sref46http://refhub.elsevier.com/S1558-7673(14)00200-6/sref46http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdfhttp://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdfhttp://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdfhttp://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002513/WC500151099.pdfhttp://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002513/WC500151099.pdfhttp://refhub.elsevier.com/S1558-7673(14)00200-6/sref50http://refhub.elsevier.com/S1558-7673(14)00200-6/sref50http://refhub.elsevier.com/S1558-7673(14)00200-6/sref50http://refhub.elsevier.com/S1558-7673(14)00200-6/sref50http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref53http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref52http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref51http://refhub.elsevier.com/S1558-7673(14)00200-6/sref50http://refhub.elsevier.com/S1558-7673(14)00200-6/sref50http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002513/WC500151099.pdfhttp://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002513/WC500151099.pdfhttp://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdfhttp://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdfhttp://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdfhttp://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref49http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref48http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref47http://refhub.elsevier.com/S1558-7673(14)00200-6/sref46http://refhub.elsevier.com/S1558-7673(14)00200-6/sref46http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref45http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref44http://refhub.elsevier.com/S1558-7673(14)00200-6/sref43http://refhub.elsevier.com/S1558-7673(14)00200-6/sref43http://refhub.elsevier.com/S1558-7673(14)00200-6/sref42http://refhub.elsevier.com/S1558-7673(14)00200-6/sref42http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref41http://refhub.elsevier.com/S1558-7673(14)00200-6/sref40http://refhub.elsevier.com/S1558-7673(14)00200-6/sref40http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref39http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref38http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref37http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref36http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref35http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref34http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref33http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref32http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref31http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref30http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref29http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref28http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref27http://refhub.elsevier.com/S1558-7673(14)00200-6/sref26http://refhub.elsevier.com/S1558-7673(14)00200-6/sref26http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref25http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref24http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref23http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref22http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref21http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref20http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref19http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref18http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref17http://refhub.elsevier.com/S1558-7673(14)00200-6/sref16http://refhub.elsevier.com/S1558-7673(14)00200-6/sref16http://refhub.elsevier.com/S1558-7673(14)00200-6/sref15http://refhub.elsevier.com/S1558-7673(14)00200-6/sref15http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref14http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref13http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref12http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref11http://refhub.elsevier.com/S1558-7673(14)00200-6/sref10http://refhub.elsevier.com/S1558-7673(14)00200-6/sref10http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref9http://refhub.elsevier.com/S1558-7673(14)00200-6/sref8http://refhub.elsevier.com/S1558-7673(14)00200-6/sref8http://refhub.elsevier.com/S1558-7673(14)00200-6/sref7http://refhub.elsevier.com/S1558-7673(14)00200-6/sref7http://refhub.elsevier.com/S1558-7673(14)00200-6/sref6http://refhub.elsevier.com/S1558-7673(14)00200-6/sref6http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref5http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref4http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref3http://refhub.elsevier.com/S1558-7673(14)00200-6/sref2http://refhub.elsevier.com/S1558-7673(14)00200-6/sref2http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1http://refhub.elsevier.com/S1558-7673(14)00200-6/sref1
  • 8/9/2019 1-s2.0-S1558767314002006-main

    9/9

    56. National Comprehensive Cancer Network. NCCN clinical practice guidelines inoncology (NCCN guideline): prostate cancer. Version 2 2014. Available at: http://

    www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed August 1, 2014.57. Gerritsen WR. The evolving role of immunotherapy in prostate cancer. Ann Oncol

    2012; 23(suppl 8):viii22-7.58. Finkelstein SE, Rodriguez F, Dunn M, et al. Serial assessment of lymphocytes and

    apoptosis in the prostate during coordinated intraprostatic dendritic cell injectionand radiotherapy.Immunotherapy2012; 4:373-82.

    59. Slovin SF, Higano CS, Hamid O, et al. Ipilimumab alone or in combi-nation with radiotherapy in metastatic castration-resistant prostate cancer:results from an open-label, multicenter phase I/II study. Ann Oncol 2013;24:1813-21.

    60. Kwon ED, Drake CG, Scher HI. Ipilimumab versus placebo after radiotherapy inpatients with metastatic castration-resistant prostate cancer that had progressedafter docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial.Lancet Oncol2014; 15:700-12.

    61. Finkelstein SE, Iclozan C, Bui M, et al. Combination of external beam radiation(EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment

    of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys2012; 82:924-32.

    62. Finkelstein SE, Fishman M, Conley AO, et al. Cellular immunotherapy for softtissue sarcoma. Immunotherapy2012; 4:283-90.

    63. Maker AV, Phan GQ, Attia P, et al. Tumor regression and autoimmunity inpatients treated with cytotoxic T lymphocyte-associated antigen 4 blockade andinterleukin 2: a phase I/II study.Ann Surg Oncol2005; 12:1005-16.

    64. Fong L, Kwek SS, OBrien S, et al. Potentiating endogenous antitumor immunityto prostate cancer through combination immunotherapy with CTLA4 blockadeand GM-CSF. Cancer Res2009; 69:609-15.

    65. Small EJ, Tchekmedyian NS, Rini BI, et al. A pilot trial of CTLA-4 blockade withhuman anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin

    Cancer Res2007; 13:1810-5.66. Finkelstein SE, Trotti A, Rao N, et al. The Florida Melanoma Trial I: a prospectivemulti-center phase I/II trial of post operative hypofractionated adjuvant radio-therapy with concurrent interferon-alpha-2b immunotherapy in the treatment ofadvanced stage III melanoma with long term toxicity follow up. ISRN Immunol2012; 2012:324235.

    Steven E. Finkelstein et al

    Clinical Genitourinary Cancer February 2015 - 9

    http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdfhttp://www.nccn.org/professionals/physician_gls/pdf/prostate.pdfhttp://refhub.elsevier.com/S1558-7673(14)00200-6/sref54http://refhub.elsevier.com/S1558-7673(14)00200-6/sref54http://refhub.elsevier.com/S1558-7673(14)00200-6/sref54http://refhub.elsevier.com/S1558-7673(14)00200-6/sref54http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref59http://refhub.elsevier.com/S1558-7673(14)00200-6/sref59http://refhub.elsevier.com/S1558-7673(14)00200-6/sref59http://refhub.elsevier.com/S1558-7673(14)00200-6/sref59http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref63http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref62http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref61http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref60http://refhub.elsevier.com/S1558-7673(14)00200-6/sref59http://refhub.elsevier.com/S1558-7673(14)00200-6/sref59http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref58http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref57http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref56http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref55http://refhub.elsevier.com/S1558-7673(14)00200-6/sref54http://refhub.elsevier.com/S1558-7673(14)00200-6/sref54http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdfhttp://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf