1 self-propelled motions of solids in a fluid: mathematical analysis, simulation and control marius...

34
1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine, projet CORIDA Collaborations with : Jorge SAN MARTIN (Santiago) Jean-François SCHEID (IECN) Takeo TAKAHASHI (IECN)

Upload: eustace-warren

Post on 19-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

1

Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control

Marius TUCSNAK

Institut Elie Cartan de Nancy et

INRIA Lorraine, projet CORIDA

Collaborations with :

Jorge SAN MARTIN (Santiago)

Jean-François SCHEID (IECN)

Takeo TAKAHASHI (IECN)

Page 2: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

2

Motivation: understanding locomotion of aquatic organisms,in particular to design swimming-robots

Page 3: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

3

Motion of solids in a fluid

• Incompressible Navier-Stokes (Euler, Stokes) equations for the fluid

• ODE’s or PDE’s system for the motion of the solids

• Continuity of the velocity field at the interface

• Homogenous Dirichlet boundary conditions on the exterior boundary

Page 4: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

4

Plan of the talk

• The model and the mathematical challenge

• An existence and uniqueness theorem

• Numerical method and simulations

• Self-propelling at low Reynolds number

Page 5: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

5

The model and the mathematical challenge

Page 6: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

6

Page 7: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

7

Kinematics of the creature (I)

S*(T)

Page 8: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

8

Kinematics of the creature (II)

Page 9: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

9

The governing equations

0, ( ), 0 ,

div 0, ( ), 0 ,tu u u u p x F t t [ ,T]

u x F t t [ ,T]

( )

( )

, ( ), [0, ],

, [0, ],

d, [0, ],

d

S t

S t

w x S t t T

d t T

x

h x

h d t Tt

Mh

u

n

J n

h

0 0 1 0(0) ,( , '(0) , 0) ( (0,) ) i ih h hu u x hx

Page 10: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

10

Existence theorems

Theorem (J. San Martin, J. –F. Scheid, T. Takahashi, M.T., ARMA (2008)).If the given deformation is smooth enough than the system admits an unique strong solution. If no contact occurs in finite time then this solution is global.

The Leray type mathematical theory has been initiated around year 2000.

Early mathematical ref. for rigid-fluid interaction from a mathematical view-point : • D. Serre ( 1987) • K. H. Hoffmann and V. Starovoitov ( 2000) • B. Desjardins and M. Esteban ( 1999,2000) • C. Conca, J. San Martin and M. Tucsnak (2001)• J. San Martin, V. Starovoitov and M. Tucsnak (2002)

Control theoretic challenge:

the input of the system is the geometry of the domain.

Page 11: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

11

Numerical Method and Simulations

Page 12: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

12

References

• Carling, Williams and G.~Bowtell, (1998)• Liu and Kawachi (1999)• Leroyer and M.Visonneau, (2005)• J. San Martin, J.-F. Scheid and M. Tucsnak (SINUM 2005, ARMA 2008)

.

Page 13: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

13

Two bilinear forms

Page 14: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

14

Global weak formulation(J. San Martin, J.F –Scheid, T. Takahashi and M.T.

in SINUM (2005) )

Page 15: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

15

Semi-discretization with respect to time

Page 16: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

Choice of characteristics

16

Page 17: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

1717

Finite element spaces

• Fixed mesh

• Rigidity matrix is (partially)

re-calculated at each time step

Page 18: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

18

Convergence of solutions

18

Page 19: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

19

Straight-line swimming

Page 20: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

20

Turning

Page 21: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

21

Meeting

Page 22: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

22

Can they really touch?

The answer is no for rigid balls

(San Martin, Starovoitov and Tucsnak (2002),

Hesla (2006), Hillairet (2006) ,

but unknown in general.

Page 23: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

2323

Mickey’s Reconstruction

Page 24: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

2424

Kiss and go  effect

Page 25: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

25

Perspectives

Page 26: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

26

• Coupling of the existing model to elastodynamics type models for the fish

• Control problems

• Infirming or confirming « Gray’s paradox »

• Giving a rigorous proof of the existence of self-propelled motions

Page 27: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

27

A Control Theoretic Approach to the Swimming of Cilia Micro-Organisms

Page 28: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

28

The model :One rigid ball in the whole space

0, ( ), 0 ,

div 0, ( ), 0 ,tu u u u p x F t t [ ,T]

u x F t t [ ,T]

( )

( )

, ( ), [0, ],

, [0, ],

d, [0, ],

d( )

R

B t

B t

V x B t t T

d t T

d

h x hu

n

t T

Mh

J x ht

n

( ).R RS

3( )) (\F t B tR

Page 29: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

29

Change of coordinates : ( )y x h t

( ) 0, y , 0 ,

div 0, y , 0 ,

tu u u u h t u p F t [ ,T]

u F t [ ,T]

, y , [0, ],

d, , d [0, ], ) d(

d

R

BB

V S t T

t Tt

u

n x

h

M n

x

h J

( )R RS

3 , ( ) \0 FB B B

Page 30: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

30

0, y , 0 ,

div 0, y , 0 ,

u p F t [ ,T]

u F t [ ,T]

( ( ))

, y , [0, ],

, , [0, ], 0 , , ) 0 , , )

,

( d ( dB B

B t Th xu

n x

u

l u l u

h l

t

R

n T

( ),RS

u

0 0 1 0(0) ,( , '(0) , 0) ( (0,) ) i ih h hu u y hy

A simplified finite dimensional model

6

1( )( , ) ( )ii iu y t v t y

The control is:

with given « shape » functions.i

Page 31: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

The case of small deformations

31

Page 32: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

32

A controllability result

By « freezing » the deformation (Blake’s « layer model »),

we obtain a simplified model which can be written as a dynamical system

9+ in SO(3) .Z F BuZ R•Proposition. (J. San Martin, T. Takahashi and M.T., QAM (2008))

•Generically (with respect to the shape functions), the above system

•is controllable in any time. With “standard” choices of the shape functions

•the controllabilty fails with less than 6 controls.

Remark. For less symmetric shapes less than 6 controls suffice

(Sigalotti and Vivalda, 2007)

Page 33: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

Some perspectives

• Optimal control problems, in particular obtaining the motion of cilia by solving an optimization problems.

• Proving the existence of self-propelled motions for arbitrary Reynolds numbers

• Control at higher Reynolds numbers.

33

Page 34: 1 Self-Propelled Motions of Solids in a Fluid: Mathematical Analysis, Simulation and Control Marius TUCSNAK Institut Elie Cartan de Nancy et INRIA Lorraine,

34

The case of small deformations

34