1 simplified construction of an energetic world in 2050 sandra bouneau institut de physique...

21
1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay [email protected] « Programme Interdisciplinaire Energie » – CNRS Groupe « nucléaire du futur » Sandra Bouneau, Sylvain David – IPN Orsay Jean-Marie Loiseaux, Olivier Méplan – LPSC Grenoble Jacques Treiner – Sciences Po. & UPMC

Upload: miles-webster

Post on 18-Dec-2015

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

1Simplified construction of an energetic world in 2050Sandra BouneauInstitut de Physique Nucléaire d’[email protected]

« Programme Interdisciplinaire Energie » – CNRSGroupe « nucléaire du futur »Sandra Bouneau, Sylvain David – IPN OrsayJean-Marie Loiseaux, Olivier Méplan – LPSC GrenobleJacques Treiner – Sciences Po. & UPMC

Page 2: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

2

What this work is nota predictive scenario giving

the path to follow to reach a given world energy landscape in 2050based on a continuous evolution

Initial motivations quantitative description of what could be the world energy landscape in 2050

under specific constraintso a finite amount of available energyo a reduction of GHG emissionso a reduction of inequalities of energy consumption in the world

to determine the impacts of these constraints on o the energy consumption of different types of populationo the energy mixo the match between available sources and energy needs

The purpose of this presentation is to show how this work could be transposed as a tool for scenario analysis

Page 3: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

3

Working hypothesis

non homogeneous energy consumption at a country scale Co-existence of different populations according their level of energy consumption

Inequalities of energy consumption still exist in 20501

for emerging and poor countries 3 types of population

P1,country : high energy consumption per capita C1

P2,country : moderate energy consumption per capita C2

P3,country : low energy consumption per capita C3

total population of present developed countries

P1,country : high energy consumption per capita C1

whatever the country considered : C1, C2 and C3 are the same

at the world scale :

C1, C2 et C3 are strongly constrained by the sum rule

P1,country = P1,WorldWorld

countries

P3,country = P3,WorldWorld

countries

P2,country = P2,WorldWorld

countries

P1,World C1 + P2,World C2 + P3,World C3 = EWorld

Page 4: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

4

Inequalities of energy consumption still exist in 20501choice to parametrize the consumption inequalities between P1, P2 and P3 by a unique parameter « inequality ratio »

a = C1/C2 = C2/C3 so that C1 = a2 C3 and C2 = a C3

[a2 P1,World + a P2,World + P3,World]C3 = EWorld

Pi’s parametrization2For emerging and poor countriesstrong correlations between urbanization rate and economical developement and so energy consumption

urban population in 2050/country : Purban = turbanizaion x Pcountry

rural population in 2050/country : Prural = (1 – turbanizaion) x Pcountry

Working hypothesis

C1C2C3

a.u.

a

a

Set of parameters• EWorld

• a• P1,World, P2,World,

P3,World

Outcomes• C1, C2 and C3

• total energy consumption/Pi,World’s• total energy

consumption/country

Page 5: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

5

Pi’s parametrization2Purban and Prural are distibuted into P1, P2 and P3

0 0.5 10

0.5

1

u1

u2

richest emergent countries

P1,country= Purban

poor countriesP2,country= Purban

emerging countriesP1,country = Purban/2P2,country = Purban/2

0 0.5 10

0.5

1

r2

r3

richest emergent countries

Prural = P2,country

emerging countriesP3,country = Prural

P1,country = u1 Purban,country + r1 Prural, country

P2,country = u2 Purban,country + r2 Prural,country

P3,country = u3 Purban,country + r3 Prural,country

urban populations have mainly high and moderate energy consumption u3 = 0 ; (u1+u2) = 1rural populations have mainly low energy consumption r1 = 0 ; (r2 + r3) = 1

parameters u1, u2, r2 and r3 can be adjusted according to the economical development of the country

Page 6: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

6

Reference case

dev. count. AsiaChina

India

Asia others Africa

Sub-Saha. Afr.

Latin Am.

Middle-East012345 P3

P2P1

Gin

hab

Set of parameters• Pcountry

• turbanization, country

• parametrization o emergent countries: u1 = u2 = 0,5 ; r3 =

1o poor countries: u1 = 0 ; u2 = 1 ; r3 = 1

Results• Pi,World’s distributiono P1,World = 3,6

Ginhab.o P2,World = 3,0

Ginhab.o P3,World = 2,7

Ginhab.

Page 7: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

7

Dev. Cou. Asia China India Africa Sub-Saha. Afr.

Lat. Am. M.-E.0

1

2

3

4

52009 2050

toe/

cap/

y -25%

+25%x3 x2

Reference case

Set of parameters• EWorld = 20 Gtoe/y• a = 2 C1/C3 = 4, C2/C3 =

2• P1,World, P2,World, P3,WorldInequality reduced by a factor 2 between the richest and poorest populations compared with today

Results• energy consumption per capitao C1 = 3, 46 toe/cap/yo C2 = 1,73 toe/cap/yo C3 = 0,86 toe/cap/y

• total energy consumption/Pi’so P1 = 12,5 Gtoe/yo P2 = 5,1 Gtoe/yo P3 = 2,4 Gtoe/yEnergy consumption in 2050

Page 8: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

8

10 12 14 16 18 20 22 24 26 28 300

1

2

3

4

5

6

C1 C2

C3

Etot (Gtoe/y)

toe/

cap/

ypresent mean energy consumption of developed countries

a mean energy consumption of present rich countries stabilized to 4,4 toe/cap/y in 2050 with a reduction of inequalities leads to a total energy consumption of 25 Gtoe/y

a 15 Gtoe/y scenario does not allow to emerging and poor populations to increase their energy consumption by 2050

A total energy of 20 Gtoe/y is rather sober and maybe too low to be acceptable compared with the present world evolution

Reference case: C1, C2, C3 evolution with EWorld

Page 9: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

9

Reference case: C1, C2, C3 evolution with Pi’s at fixed a = 2 and EWorld = 20 Gtoe/y

rather small sensitivity of Ci’s with Pi’s strongest variations of Ci’s when P1 moves to P3 (and inversely)

-60 -40 -20 0 20 40 60

-40

-20

0

20

40

dP1/P1 (%) at Pworld = constant

dCi/Ci (%)

P1 P3

present mean energy consumption of developed countries

Page 10: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

10

Reference case: C1, C2, C3 evolution with a, at fixed EWorld = 20 Gtoe/y and Pi’s

1 1.5 2 2.5 3 3.5-80

-60

-40

-20

0

20

40

60

80

P1P2

a

dCi/C

i (%

)

toward higher inequalities

present inequalities between richest and poorest countries

the poorest populations are the more impacted by inequality

P1 25%

with a 20 Gtoe/y fixed, to stabilize a mean energy consumption of present rich countries to 4,4 toe/cap/yin 2050 requires both inequality ratios higher and a reduction of population P1

present mean energy consumption of developed countries

refe

renc

e

Page 11: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

11

to take into account the climate constraint limitation of fossil fuels consumption leading to CO2 emissions

amount of fossils that each group P1, P2 and P3 can use As previuosly, choice of a unique parameter « fossil inequality ratio » between

P1, P2 and P3: b = F1/F2 = F2/F3 so that

[b2 P1,World + b P2,World + P3,World]F3 = Fworld

GHG emissions3

Working hypothesis

Page 12: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

12

Reference case

Inequality reduced by a factor 6 between the richest and poorest populations compared with today

Results• fossil consumption per capitao F1 = 0,6 toe/cap/yearo F2 = 0,42 toe/cap/yearo F3 = 0,3 toe/cap/year

• fossil consumption/Pi’so P1 = 2,15 Gtoe/yo P2 = 1,25 Gtoe/yo P3 = 0,8 Gtoe/y

• CO2 emissions/Pi’s

Set of parameters• Fworld = 4,2 Gtoe/y reduction factor

of GHG = 2• = b √2 (< a = 2) F1/F3 = 2, F2/F3 = √2 • P1,World, P2,World, P1,World

Dev. Cou. Asia China India Africa Sub-Saha. Afr.

Lat. Am. M.-E.02468

1012

20092050

tCO

2/ca

p/y

/6

/4

x2

CO2 emissions in 2050

Page 13: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

13

How to satisfy energy needs in the case of a reduction of fossil uses ? quantify the different energy needs quantify the CO2-non emitting energy sources available in 2050

4 consumption sectors are considered• transport : fuel only• industry : high-temperature heat only• residential/services : low-temperature heat only• electricity

different profiles of consumption according P1, P2 and P3 based on the average consumption profiles of present developed, emerging and poor countries

match between available sources in 2050 and energy needs4

Working hypothesis

0

10

20

30

40

transportindustryres./serv.electricity

Frac

tion

of th

e to

tal e

nerg

y (%

)

0

10

20

30

40

0

10

20

30

40

profile of present rich countries P1

profile of present emerging countries P2

profile of present poor countries P3

Page 14: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

14

transp

.indus.

res./

serv

.éle

c.tra

nsp.

indus.re

s./se

rv.

élec.

transp

.indus.

res./

serv

.éle

c.

0

1

2

3

4

56

Gtoe

/yea

r

population P1

population P2

population P3

Reference case

Set of parameters• Pi’s total energy

consumption• Pi’s profile consumption

match between available sources in 2050 and energy needs4

To count available sources• fossil fuels with CO2 emissions fixed by the GHG reduction factor• main renewable energy sources• fossil fuels with CCS technology• nuclear power

energy consumption/sector

Page 15: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

15

Reference case

Set of parameters• Fworld = 4,2 Gtoe/y• fossil fuels with CCS = 3,7 Gtoe/y

12 GtCO2/y to store• potentials of renewable sources = 7,5 Gtoe/y• nuclear power : free parameter• Pi’s energy consumption/sector

HydroBiomass Solar

wind other renew.

fossil with CO2

fossil + CCS(Gtoe/year) biofuels wood water

heat PV CSP

2008 0,7 0,03 0,9 ? 0,0003 ? 0,05 0,025 9,62050 2 0,5 2 0,5 0,5 0,7 1 0,3 4,2 3,7

deployement x 3 x 20 x 2 x 2000 x 20uses

transport x xHT heat x x x x xLT heat x x x x x x

electricity x x x x x x x x

Outcomes• energy mix/Pi’s• energy mix/region• world energy mix

Page 16: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

16

Tr. Ind. R./S. elec. Tr. Ind. R./S. elec.

Tr. Ind. R./S.

elec. 0

1

2

3

4

5

6 missing energynuclear heatfoss. CCS + cogen.renew. heatfoss. with CO2Gt

oe/y

population P1

population P2

population P3

energy mix construction5 Methodology

Illustrated in the reference case

fossils with CO2 emissions used first mainly for transport = 4,2 Gtoe/y

renewable energy sources for transport (biofuel) and heat (wood, solar water heat and CSP, geothermal) = 3,7 Gtoe/y almost all the energy needs of rural population P3 are provided

production of heat with cogeneration and CCS = 2,5 Gtoe/y of fossils (8 GtCO2/y to store)

production of heat with nuclear energy for industry needs of P1 and P2 only = 0,8 Gtoe/y

energy is still missing for transport and heat total transfer to electricity = 3 Gtoe/y

1 MWhelec = 0,22 tep 1 Gtoe = 4545,45 TWhelec

Page 17: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

17

elec. elec. elec. 0

10000

20000

30000

40000 nuclearfoss. CCSrenew. elec.fos. CCS + cogen.biomassfos. with CO2

TWhe

lec/

y

population P1

population P2

population P3

fossils with CO2 emissions

renewable energy sources for electricity generation (hydropower, PV, solar CSP, wind, geothermal) = 4 Gtoe/y

fossils with CCS for electricity generation only = 1,2 Gtoe/y of fossils

ultimate electricity missing filled by nuclear energy for P1 & P2 only = 4,6 Gtoe/y

transfer to electricity minimized by cogeneration and heat pump for res./serv. sector

electric mix construction6

fossils with CCS and cogeneration

biomass for P3 from previous steps

Page 18: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

18

P1 P2 P30%

20%40%60%80%

100%nuclear

renew. Elec.

foss. CCS

renew. (heat and bio-fuels)

fos. GHG

dev. coun.Asia

ChinaIndia

Africa

Sub-Saha. Afr

Latin Am.M.-E.

01234

toe/

cap/

y

2009 205005

10152025

Gto

e/y nuclear x9 = 5,4 Gtoe/y

renewables for heat/electricity/transport = 7,5 Gtoe/y

fossils with CCS = 3,7 Gtoe/y 12 GtCO2/y

outcomeslarge differencies between the

energy mixes of P1, P2 and P3

reflect the hypothesis and the values of parameters

energy mixes of different regions

world energy mix

Page 19: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

19

focus on electricity fraction: intermittent /(intermittent +flexible )

Dev. Cou.China

IndiaAsia oth.

No. Afr.So. Afr.

Afr. Oth.

Lat. Am.M.-E.

010203040506070 inter/total

inter/(inter+flex.)

%

Dev. Cou. Asia China IndiaAfrica

Sub-Saha. AfrLat. Am.

M.-E.0

2000

4000

6000total (TWh/y) individual kWh/cap/y

storage at very large scale management of the intermittent

electricity with electrical transport make nuclear power flexible ….

distribution of nuclear power in the World

outcomes

Page 20: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

20

Conclusions (1/2)

Simple relations connecting key paramaters parameters and results can be easily switched flexible use to project different scenarios through the choosen parameters

interpretation of different scenarios in a common framework based ono inequality ratios on energy consumption and CO2 emissionsodifferent types of population at a country scale and not anymore between

countries/regions viewed as homogeneouswhich could be interesting to analyse the issues on o climate negociationso ressources sharing

Page 21: 1 Simplified construction of an energetic world in 2050 Sandra Bouneau Institut de Physique Nucléaire d’Orsay bouneau@ipno.in2p3.fr « Programme Interdisciplinaire

21

Conclusions (2/2)

match between energy sources and energy needs / mix energy construction

o reveal some critical problems which emerge from the climate constraint to meet the energy we need as we get used to consume it today

- lack of energy sources for heat and transport needs, - increase of electricity generation due to massive transfer of these needs to

electricity and not only because of an increase of « classical electrical uses »

o analyse the correlations between initial hypothesis used in scenarios and emphasize possible contradictions between them

Ex : development of poor/emerging countries + GHG reduction + no nuclear power

o analyse how the energy sources used in different scenarios (fossil fuel, nuclear power and renewables) compete with each other and impact some key points as

- electrical transport- intermittency management- CO2 storage capacity