1 turbomachinery class 12. 2 compressor turbine 3 compressorturbine

45
1 Turbomachinery Class 12

Upload: reynold-lawson

Post on 17-Jan-2016

263 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

1

Turbomachinery

Class 12

Page 2: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

2

CompressorTurbine

Page 3: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

3

/ 1

1

1

1

1

p

p

T T

Ta T

T

/ 1

1

1

1

1

p

p

c c

ca c

c

Compressor Turbine

Page 4: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

4

2 2 1 10 02 01

U UU C U Ch Cp T T

gJ

2 12 1

1tan tan

2 2u u x

W W CR

U U

2 2 2

0 02 2R

W W Ch h h

gJ gJ

/ 12 2

02 2 1

01 01

12

Ri

R p R

P U U

P gJC T

Page 5: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

5

Radial Inflow Turbines

• Radial turbines largely used in power system applications

• Primitive design, easy to fabricate• Capable of large per stage shaft work with

low mass flow rate• Low sensitivity to tip clearance• Bulky / heavy

Page 6: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

Low Cost Radial Compressor – Ex. 4, p. 83

6

01

01

1

1

02

02

2

2.3

378

0.38

0

6.1

533.7

0.50

42,000

1.4

p bar

T K

M

p bar

T K

M

N rpm

Page 7: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

Low Cost Radial Machines

7

1 21 2

1 1 01 1

2 21 1 1 1 1 1

1 1 1 1 1

11 1 1

01 1 11 1

01

2 2263.9 439.8

60 60( , ) 363.3 382.1

145.2 220.4

0 220.4

263.9 tan 263.9 / 220.4 47.90

2 cos( , ) 2.29 / s

r u r

u

Nr NrU mps U mps

T f M T K a

C M a mps W U C mps

C C C W C mps

W U

p rbm f M kg

T

1 022 2

02 2 2

ec

1cos 79.7

2 ( , )

m T

p r b f M

Page 8: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

Low Cost Radial Machines

8

2 2 02 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 22 2 2

12 2 2

1 1 1 1

( , ) 462.1 430.9

379.2 cos 62.4

sin 374.0 65.8

90.7

tan / 46.5

2

r r

u u u

r u

u r

r

T f M T K a

C M a mps C C W

C C W C U

W W W mps

W W

m C rb

Page 9: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

Low Cost Turbine – Ex. 5 p. 85

9

Page 10: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

10

Axial vs. Radial Machines

Need to determine what type of turbine is most efficient for application - function of Ns for both compressors and turbine

Page 11: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

11

2 23/ 4 3/ 4

1 /0

0201

01

/ /

1

s

ideal

p

N m N mN

h pc T

p

Need to determine what type of turbine is most efficient for application - function of Ns for both compressors and turbine

Page 12: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

12

Radial Inflow [90Radial Inflow [9000 IFR] Turbines IFR] Turbines

Kinematic view Thermodynamic view

Exit part of rotor (exducer) is curved to remove most of tangential component of velocity

Advantage of IFR turbine: efficiency equal to axial turbine, greater amount of work per stage, ease of manufacture, ruggedness

Page 13: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

13

Radial Flow Turbines

• Radial Inflow Turbine with Scroll or Distributor

Page 14: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

14

Radial Flow Turbines

• Radial Inflow Turbine Stator/Rotor

Page 15: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

15

Radial Flow Turbines

• Radial Inflow Turbine Stator/Rotor [No shroud]

Page 16: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

16

Radial Flow Turbines• Radial Inflow Turbine Scroll

Scroll or distributor - streamwise decreasing cross flow area - provide nearly uniform properties at exit

Page 17: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

17

Radial Flow Turbines

Page 18: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

18

Radial Flow Turbines

• Scroll Design Principles– Mass balance rVr=constant

– Free vortex rV=constant

1 12 1 2 1

2 2

2 12 1

2 1

cos

tan

tan tan

r

r

r r

r r

V V

V

V

r rV V V V

r r

V V

V V

Page 19: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

19

Radial Flow Turbines• Radial Inflow Turbine Scroll - Stator

Page 20: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

20

Radial Flow Turbines• Radial Inflow Turbine Impeller

Note - direction of rotation - rotor rearward curvature

Page 21: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

21

Radial Flow Turbine Design• Nominal Stator / Rotor Design:

Station 1 – Inlet to StatorStation 2 – Exit of Stator, Inlet to Rotor

[Radially inward]Station 3 – Exit of Rotor

[Absolute velocity is axial]Station 4 - Exit of Diffuser

• Rotor inlet relative velocity is radially inward

- For Zero Incidence at Rotor Inlet, W2=Cr2 and C2=U2

• Rotor exit absolute flow is axial

- For Axial Flow at Rotor Exit, C3=Cx3 and C3=0

C2

Cm2=Cr2=W2

U2

Cm3=C3=Cx3

U3

W3

Page 22: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

22

Radial Flow Turbine Design- 900 IFR

• For adiabatic irreversible [friction] processes in rotating components

• From the Alternate Euler Equation:

• and

2 2 2 2 2 22 3 2 3 2 3

0 2Rotor

U U W W C Ch

gJ

2 2 22 2 2C W U 2 2 2

3 3 3W C U

2 3

2 22

2 32 2 2orel orel orel

U UUI h h h

Page 23: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

23

Radial Flow Turbine Design

• substituting:

• Thus from Alternate Euler’s Equation :

gJ

UUWUCUWCh Rotor 2

23

22

23

22

22

23

23

22

0

22

0 01 03 02 03Rotor

Uh h h h h

gJ

Page 24: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

24

Specific Speed & Diameter Indicates Flowpath Shape

14

dim 12

s non

D gHD

Q

1/2

3/4s US

N QN

gH

Page 25: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

Specific Speed Indicates Flowpath Shape(Cordier Diagram)

From Wright and Balje

From Logan

Ns is dimensionless

Page 26: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

26

Radial Flow Turbine Design• Example: Dixon 8.1

• The rotor of an IFR turbine, designed to operate at nominal condition, – Diameter is 23.76 cm and rotates at 38,140 rev/min.

– At the design point the absolute flow angle at the rotor entry is 72 deg.

– The rotor mean exit diameter is ½ the rotor diameter

– The relative velocity at the rotor exit is twice the relative velocity at the inlet.

Page 27: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

27

Radial Flow Turbine Design• Example: Dixon 8.1

2

3 2

3 2

02

22

2 2 2

2 2 2

23.76

38,140

/ 2 12.88

2

72

38,140 0.2376 / 60 474.560cot 154.17

/ sin 498.9

mean

Given

D cm

N rpm

D D cm

W W

rotor inlet design point flow angle

NDU mps

W U mps

C U mps

Page 28: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

28

Radial Flow Turbine Design• Example: Dixon 8.1

2 22 2 2 2 23 3 3

2 2 2 2 22 3 2

2 2 2 2 23 2 2

2 2 2 22 3

2 2 2 2 2 22 3 2 3 2 3 2 2

0

2 154.17 0.5 474.5 38,786 /

1 0.25 168,863 /

3 71,305 /

210,115 /

225,142 /2

C W U m s

U U U m s

W W W m s

C C m s

Examing relative sources of specific work

U U W W C CW h m s

W

2 2 20 2

0.375( ) 0.158( ) 0.476( ) [% ]

225,142 /

U W C of total

Also

W h U m s

Page 29: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

29

Radial Flow Turbine DesignExample: Baskharone p. 434-8

•0=inlet 1=stator exit 2=rotor inlet 3=rotor exit

•Stator / nozzle exit Mach number M1=0.999

00 0

4.16 / s 71,600 1.33

8.84 1205 0.038stator

m kg N rpm

p bar T K

Page 30: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

30

Radial Flow Turbine Design• Example: Baskharone p. 434-8

• 0=inlet 1=stator exit 2=rotor inlet 3=rotor exit

• Stator / nozzle exit Mach number M1=0.999

00 0

4.16 / s 71,600 1.33

8.84 1205 0.038stator

m kg N rpm

p bar T K

1 1 1 1

01 00 00

010 1 1

01 1

1156.71

0.999 1034.4 628.35 590.6

[ ] 73.0cos

pc R

M T a C

p p p

m T RFP f M

p A

Page 31: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

31

Radial Flow Turbine Design• Example: Baskharone p. 434-8 cont’d

• In constant area interstage duct, apply free-vortex condition to flow from stator exit to rotor inlet

1 1 1

1 1 1

cos 172.6

sin 564.8r

u

C C mps

C C mps

2 1 1 2

2 1 1 2

2

22 02 2

2 2

2

( / ) 184.8

( / ) 605.1

632.69

/ 2 1032

627.62

1.008

r r

u u

p

C C r r mps

C C r r mps

C mps

T T C c K

a RT mps

M

Page 32: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

32

From Centrifugal Compressor Notes

• Slip: flow does not leave impeller at metal angle [even for inviscid flow]

• If absolute flow enters impeller with no swirl, =0.• If impeller has swirl (wheel speed) , relative to the impeller the

flow has an angular velocity - called the relative eddy [from Helmholtz theorem].

• Effect of superimposing relative eddy and through flow at exit is one basis for concept of slip.

Relative eddy Relative eddy with throughflow

Page 33: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

33

• Static pressure gradient across passage causes streamline to shift flow towards suction surface

• In reality, the incidence to the rotor varies over the pitch of the rotor as:

due to – Potential and wake interaction with the vane.– Relative eddy effect seen at exit of compressor– Effect produces a LE slip factor

This variation over the pitch leads to an - optimal incidence and - optimal number of blades

where the efficiency of the rotor is a maximum.

Radial Flow Turbine Design

2 2 , rCfU

P=pressureS=suction

Page 34: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

34

• Rotor Inlet Velocity Triangle (with incidence):

– Average relative velocity W and avg. relative incidence 2

• If we define an incidence factor, [like slip factor in compressors]:

Radial Flow Turbine Design

2

2

U

CU

U2

W2CR2=CM2

C2

CU2

Page 35: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

35

Radial Flow Turbine Design

• From the work of Stanitz regarding slip factors:

– Note: More Blades, goes to 1 and inflow becomes radial

• Then from the rotor inlet velocity triangles, the inlet flow angle to the rotor is:

0.63 21 1 where Z=Number of Rotor Blades

Z Z

2 22

2 2

2tan where = M

M

U C

Z C U

Page 36: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

36

Radial Flow Turbine Design

• Criteria for the Optimal Number of Blades:

2

2

min

min

2

1 12

2

1

2

0;

r

T T T T T T

From particle physics analogy

dWF ma f r f r W

dtp W p

W r and Wr r

WGets r implying that

W at given r is not constant across passage p s

W W r

At r r if W U r and W r U U

min

min 2

2

2 2 tan

T

T

T

Z

UZ

W

Jamieson model

Page 37: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

37

Radial Flow Turbine Design

• Criteria for the Optimal Number of Blades:

Optimum blade number balances loading & friction

• Rohlick model uses (quantities at the inlet to rotor):

• Jamieson model

min2

2 min

2

min 2

2

0.03 57 12

UC Z

U Z

Z

min 22 tanZ

Page 38: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

38

Radial Flow Turbine Design

• Other Correlations for Optimal Number of Blades (Rohlick results similar to Jamieson):

from Dixon

Page 39: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

39

This is to clarify some of the confusing notation in Dixon regarding blade count

• Stanitz correlation

– uses blade number and flow coefficient to calculate the relative radial turbine exit flow angle.

• Other correlations – uses semi-empirical expressions for calculating the optimum

[minimum] blade count Z for an optimum efficiency design, where

– For such a design the exit flow will be radial [in the absolute frame], therefore 2=0 and the correlations are in terms of the corresponding absolute frame air angles [2], e.g.

22

2

2 2tan

M

U

ZC Z

2 2 2tanrU C

Page 40: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

40

This is to clarify some of the confusing notation in Dixon regarding blade count

• Jamieson

• Rohlik

min 22 tanZ

2

min 20.03 57 12Z

Page 41: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

41

Radial Radial OutflowOutflow Turbine Turbine

Ljungstrom Steam Turbine: Dixon - steam turbine design - No stator blades counter-rotating blades - radial outflow - large amount of work per stage - rugged

Page 42: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

42

Radial Outflow Turbines

• Ljungstrom Turbine arrangement

Compatible with expanding steam, more area with same blade height as density drops

Vaneless - Counter rotating

Old Configuration recently re-invented for gas turbines

– axial counter-rotating

Page 43: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

43

Counter-Rotating Turbines

• Counter Rotation High Stage Work

Compare: – Conventional Axial Stage, 50% Reaction & 90 Gas Turning

vs. – Counter Rotating, Vaneless Stages with 90 Gas Turning

Cx1 = Cx2, U1 = U2 = Cx/U= 0.6

Repeating Stages

Counter Rotation U changes direction

Page 44: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

44

Radial Flow Turbine Analysis

• Remember from Class:

2

2tan 1

RE

2

22tan 1

RE

2

2tan 2

RE

2

22tan 2

RE

0

1

2

1

2

3

Page 45: 1 Turbomachinery Class 12. 2 Compressor Turbine 3 CompressorTurbine

45

Radial Flow Turbine Analysis

• In this problem, for the axial stage

=0.6, R=0.5, and 1212

- Iteration:

Guess 1

From Calculate E.

From Calculate 2

Iterate until turning (12 is correct

• For the counter-rotating stage…..match turning

2

2tan 1

RE

2

2tan 2

RE