(1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

Upload: nikhil-mittal

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    1/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-1 

    DATE : 11.05.2016 Part Test - 05 (PT-05)

    S llabus : Permutation and Combination & Probabilit

    TARGET : JEE (Main + Advanced) 2016

    EST 

    INFORMATIO

    Course : VIJETA(ADP) & VIJAY(ADR)  Date : 11-05-2016 

    MMAATTHHEEMMAATTIICCSS

    DPPDPPDPPDAILY PRACTICE PROBLEMS 

    NO. 11

    TTEESSTT IINNFFOORRMMAATTIIOONN

    Revision DPP of Matrices & Determinant, Trigonometry And Miscellaneous

    Total Marks : 111 Max. Time : 125 min.Single choice Objective ('–1' negative marking) Q.1 to Q.15 (3 marks 3 min.) [45, 45]Multiple choice objective ('–1' negative marking) Q.16 to Q.31 (4 marks 3 min.) [34, 48]Subjective Questions ('–1' negative marking) Q.32 to Q.34 (3 marks 3 min.) [9, 9 ]Match the Following (no negative marking) (2 × 4) 35 (8 marks 8 min.) [8, 8]Comprehension ('–1' negative marking) Q.36 to Q.40 (3 marks 3 min.) [15, 15]

    1_. Value ofcos61

    1

    cos1

    .

    cos621

    cos2

    .

    cos631

    cos3

    ………

    cos1191

    cos59

     is.

    cos611

    cos1

    .cos62

    1cos2

    .cos63

    1cos3

    ………cos119

    1cos59

      dk eku gS

    (A) –1 (B*) 1 (C) 2 (D) –2

    Sol.  cosA – cosB = –2 A B

    sin2

    . A B

    sin2

     

     cos(60 k)

    1cosk

     =

    cosk cos(60 k)

    cosk

    =

    sin(30 k)

    cosk

     

     ANSWERKEY OF DPP # 11 1. (B) 2.  (A) 3. (C) 4.  (C) 5.  (C) 6. (C)

    7. (A) 8.  (A)  9.  (D) 10.  (D) 11.  (A) 12. (C) 

    13.  (B) 14.  (D) 15.  (A) 16_.  (BC) 17. (ABD) 18.  (AB)

    19.  (ABC) 20.  (AB) 21.  (ABCD) 22.  (AC) 23.  (ABC) 24.  (BD)

    25.  (AD) 26.  (ABD) 27.  (ABC) 28.  (BCD) 29.  (BCD) 30.  (BC)

    31.  (ACD) 32.  3 33.  81 34.  6

    35.  (AP,Q); (BS); (CP,R); (D  R) 36. (C) 37. (D) 38. (B)

    39.  (C) 40.  (A)

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    2/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-2 

    cos61

    1cos1

     cos62

    1cos2

    ………….cos119

    1cos59

    =59

    k 1

    sin(30 k)

    cosk

     

     =59

    k 1

    cos(60 k)

    cosk

     

    = 1

    2_.  Value of cot40o . cot20

    o ( 4sin10

    o –1) is

    cot40o . cot20

    o ( 4sin10

    o –1) dk eku gS 

    (A*) –1 (B) 1 (C) 2 (D) 0

    Sol.o o o

    o o

    cos40 .cos20 .(4sin10 1)

    sin40 sin20

    = –

    o o o o o

    o o

    cos 40 .cos 20 4 sin10 cos 20 cos 40

    sin40 sin20

     

    = –o o o o o

    o o

    cos 40 .cos 20 2(sin30 sin10 ) cos 40

    sin40 sin20

     = –o o o o o

    o o

    cos 40 .cos 20 cos 40 2 sin10 .cos 40

    sin40 sin20

     

    = –o o o o o

    o o

    cos 40 .cos20 cos 40 sin50 sin30

    sin40 sin20

     

    = –o o o

    o o

    cos 40 .cos 20 sin 30

    sin40 sin20

     = –o o

    o o

    cos 40 .cos 20 cos 60

    sin40 sin20

     

    = –o o o o

    o o

    cos 40 .cos20 cos(40 20 )

    sin40 sin20

      = –1

    3_. Value of sin + 2sin2 + 3sin3+ 4sin4 + …….+ nsin n issin + 2sin2 + 3sin3+ 4sin4 + …….+ nsin n  dk eku gS 

    (A)2

    (n 1)cosn ncos(n 1)

    4sin2

      (B)2

    (n 1)cosn ncos(n 1)

    4cos2

     

    (C*)2

    (n 1)sinn nsin(n 1)

    4sin 2

      (D)2

    (n 1)sinn nsin(n 1)

    4cos 2

     

    Sol.  Consider the series,  ekuk fd Js .kh

    cos + cos2 cos3  +…………..+ cosn =sin(n /2)

    sin / 2

    .n 1

    cos2

     

    Differentiate both sides w.r.t. ''  nksuks rjQ '' ds lkis{k vodyu djus ij  –sin – 2sin2 – 3sin3…. –n sinn

    2

    n n n 1 n 1 n 1 n n n 1 1sin cos .cos sin .sin sin .cos . cos

    2 2 2 2 2 2 2 2 2 2 2

    sin / 2

     

    =2

    2n 1 n n2nsin / 2.cos 2sin .cos2 2 2

    4sin / 2

     

    sin + 2 sin 2 + 3 sin 3 ……….+ n sin n 2

    (n 1)sinn nsin(n 1)

    4sin / 2

     

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    3/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-3 

    4_.  If f(x) = a + bx + cx2  a, b, cR and a, b, c are distinct, then value of

    a b c

    b c a

    c a b

     is (where  & 2 are

    complex cube roots of unity)

     ;fnf(x) = a + bx + cx2  a, b, cR rFkk a, b, c fofHkUu gS rca b c

    b c a

    c a b

      dk eku gS ( tgka  vkS j 2  bdkbZ ds

     ?kuewy gS)

    (A) f(1) f() f( 2) (B) –f() f(2) (C*) –f(1) f() f(2) (D) f() f(2)

    Sol.

    a b c

    b c a

    c a b

     = – (a3 + b

    3 + c

    3 –3abc)

    = –(a + b + c)(a2 + b

    2 + c

    2 –ab – bc–ca) = –(a + b + c)(a + b + c2)(a + b2 + c) = –f(1) f() f(2)

    5_.  The general solution of sin10

    x + cos10

    x 29

    16 cos

    42x is

    sin10

    x + cos10

    x 29

    16 cos

    42x dk O;kid gy gSA

    (A)3

    2n , 2n8 8

     

    32n , 2n

    8 8

    ; nI 

    (B) 2n , 2n8

    ; nI 

    (C*)3

    n , n8 8

     3

    n , n8 8

    ; nI 

    (D)3

    n , n4 4

     

    3n , n

    4 4

    ; nI

    Sol. sin10

    x + cos10

    x 2916

     cos42x

    5

    1 cos 2x

    2

     +

    51 cos 2x

    2

     29

    16 cos

    42x

    Put cos2x = t j[kus ij

    5

    1 t

    2

     +

    51 t

    2

     29

    16 t

    4

    24t4 –10t2 –1   2t2 –1) (12t2 + 1)   (2cos22x –1)(12cos22x + 1)  

    (2cos2 2x –1) 12

      cos2x 12

     

     3

    ,4 4

     

    3,

    4 4

      ;  = 2x

    General solution is  O;kid gy

    2n 3 / 4,2n / 4   2n / 4,2n 3 / 4  

    x 3

    n , n8 8

     

    3n , n

    8 8

    ; nI 

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    4/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-4 

    6_. If tan =5

    2, tan =

    7

    9  where

    3,

    2

    , ,

    2

    , then  lies in the interval.

     ;fn tan =5

    2, tan =

    7

    9   tgka

    3,

    2

    , ,2

    , rc  vUrjky es a fLFkr gS 

    (A)3 7

    ,2 3

      (B)13 5

    ,6 2

      (C*)13 7

    ,6 3

      (D) ,6 3

     

    Sol.  tan( ) =tan tan 31

    1 tan tan 53

     

    2n , 2n6 3

     but3

    ,2

    , ,2

        3 5

    ,2 2

     

     +   13 7

    ,6 3

     

    7. If a2 + b2 + c2 + ab + bc + ca  0  a, b, c  R, then value of the determinant2 2 2

    2 2 2

    2 2 2

    (a b 2) a b 1

    1 (b c 2) b c

    c a 1 (c a 2)

      equals

     ;fn a2 + b2 + c2 + ab + bc + ca  0  a, b, c  R rc lkjf.kd2 2 2

    2 2 2

    2 2 2

    (a b 2) a b 1

    1 (b c 2) b c

    c a 1 (c a 2)

      dk eku gksxkµ

    (A*) 65 (B) a2 + b2 + c2 + 31(C) 4(a2 + b2 + c2 ) (D) 0

    Sol.  We have a2 + b2 + c2 + ab + bc + ca  0   (a + b)2 + (b + c)2 + (c + a)2  0

      a + b = 0, b + c = 0, c + a = 0   a = b= c = 0 =4 0 11 4 0

    0 1 4

     = 65

    8.  A and B be 3 × 3 matrices such that AB + A + B = 0Statement-1 : AB = BAStatement-2 : PP –1 = I = P –1 P for every matrix P which is invertible.(A*) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation forstatement-1.(C) Statement-1 is true, statement-2 is false.(D) Statement-1 is false, statement-2 is true.

     A vkS j B, 3 × 3 Øe ds nks vkO;w  g bl izdkj gS fd  AB + A + B = 0.dFku 1 : AB = BA

    dFku 2 : PP –1 = I = P –1P, izR;sd izfrykseh; P ds fy, (A*)  dFku&1 lR; gS] dFku&2 lR; gS ; dFku&2, dFku&1 dk lgh Li"Vhdj.k gSA(B)  dFku&1 lR; gS] dFku&2 lR; gS ; dFku&2, dFku&1 dk lgh Li"Vhdj.k ugha gSA(C)  dFku&1 lR; gS] dFku&2 vlR; gSA (D)  dFku&1 vlR; gS] dFku&2 lR; gSA 

    Sol.  Given fn;k x;k gS  AB + A + B = O  AB + A + B + I = I   A(B + I) + (B + I) = I   (A + I) (B + I) = I   (A + I) and (B + I) are inverse of each other  (A + I) (B + I) = (B + I) (A + I)  AB = BA

    (A + I) vkS j (B + I) ,d nqljs ds izfrykse gS  (A + I) (B + I) = (B + I) (A + I)  AB = BA

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    5/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-5 

    9.  The equation

    2 2 2(1 x) (1 x) (2 x )

    2x 1 3x 1 5x

    x 1 2x 2 3x

    +

    2

    2

    (1 x) 2x 1 x 1

    (1 x) 3x 2x

    1 2x 3x 2 2x 3

     = 0

    (A) has no real root (B) has 4 real roots(C) has two real and two non-real roots (D*) has infinite number of roots

     lehdj.k

    2 2 2(1 x) (1 x) (2 x )

    2x 1 3x 1 5x

    x 1 2x 2 3x

     +

    2

    2

    (1 x) 2x 1 x 1

    (1 x) 3x 2x

    1 2x 3x 2 2x 3

     = 0

    (A) dksbZ okLrfod ewy ugha j[krk (B) ds 4 okLrfod ewy gS(C) ds nks okLrfod rFkk nks vokLrfod ewy gS  (D*) ds vuUr ewy gS 

    Sol.  1st two columns of 1st determinant are same as 1st two rows of 2nd. Hence transpose the 2nd. Add the

    two determinants and use C1  C1 + C3     = 0

    10.  In a square matrix A of order 3 each element aii  is equal to the sum of the roots of the equation

    x2 – (a + b)x + ab = 0, each ai, i+1 is equal to the product of the roots, each ai,i–1 is unity and the rest of

    the elements are all zero. The value of the |A| is equal to

     ,d 3 × 3 Øe ds oxZ vkO;w  g  A ds lHkh ai i vo;o lehdj.k x2

     – (a + b)x + ab = 0 ds ewyksa ds ;ksx ds cjkcj gS] lHkh ai , i + 1 blh lehdj.k ds ewyks a ds xq .kuQy ds cjkcj] lHkh  ai , i – 1 vo;o bdkbZ gS a rFkk 'ks"k lHkh vo;o 'kwU; gS] rc |A| dk eku gksxkµ (A) 0 (B) (a + b)3  (C) a3 – b3 (D*) (a2 + b2)(a + b)

    Sol.  |A| =

    a b ab 0

    1 a b ab

    0 1 a b

     = (a2 + b2)(a + b)

    11.  If sin3x cos 3x + cos3x sin 3x =3

    8 , then the value of sin 4x is

     ;fn sin3x cos 3x + cos3x sin 3x =3

    8  gks] rc sin 4x dk eku gksxk 

    (A*) 1/2 (B) 1 (C) – 1/2 (D) 0Sol.  We have 4 sin3x cos 3x + 4 cos3x sin 3x = 3/2

      (3 sin x – sin 3x) cos 3x + (3 cos x + cos 3x) sin 3x =3

      3 (sin x cos 3x + cos x sin 3x) =3

    2    sin 4x =

    1

    12. The number of solutions of the equation cot (sinx + 3) = 1 in [0, 3 ] is  lehdj.k cot (sinx + 3) = 1 ds gyks a dh la [;k gS] tc [0, 3] gks (A) 0 (B) 1 (C*) 4 (D) 2 

    Sol. sinx + 3 = n + /4   sinx = n + /4) – 3 sinx = (5/4) – 3   2 solutions in [0, ]

    13.  If A and B are two non-singular square matrices obeying commutative rule of multiplication then A3B3(B2 A4) –1 A =

     ;fn  A rFkk B nks O;qRØe.kh; oxZ vkO;wg gS tks xq .kuQy esa Øe fofues ; fu;e dk ikyu djrs gS] rc  A3B3(B2 A4) –1  A dk eku gSµ (A) A (B*) B (C) A2  (D) B2 

    Sol.  A3B3 (A4) –1 (B2) –1 A = B3 A3(A4) –1(B2) –1 A = B3 A –1(B2) –1 A = B3(B2 A) –1 A = B3(AB2) –1 A = B3(B2) –1 A –1 A = B

    14.  The number of 2 × 2 matrices X satisfying the matrix equation X2 = I (I is 2 × 2 unit matrix) is

    2 × 2 Øe   ds oxZ vkO;w  gksa X dh la[;k tks lehdj.k X2  = I  dks la rq"V djrs gSµ( tgk¡ I, 2 × 2 Øe dk rRledvkO;w  g gS)(A) 1 (B) 2 (C) 3 (D*) infinite vuUr 

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    6/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-6 

    Sol.  X2 =a b

    c d

    a b

    c d

    =1 0

    0 1

      2

    2

    a bc ab bd

    ac cd bc d

     =

    1 0

    0 1

     

      a2 + bc = 1 ....(1) b(a + d) = 0 ....(2)c(a + d) = 0 ....(3) bc + d2 = 1 ....(4)

    case-I  a + d  0  b = 0 and c = 0   a = ±1 and d = ±1  (a, d) = (1, 1), (–1, –1)   X = I, –I 

    case-II  a + d = 0  a2 + bc = 1   infinite matrices vuUr vkO;w  g 

    15.  If

    x x 1 x 2r r 1 r 2

    y y 1 y 2r r 1 r 2

    z z 1 z 2r r 1 r 2

    C C C

    C C C

    C C C

     =

    x x xr r 1 r 2

    y y yr r 1 r 2

    z z zr r 1 r 2

    C C C

    C C C

    C C C

    , then '' is equal to

     ;fn

    x x 1 x 2r r 1 r 2

    y y 1 y 2r r 1 r 2

    z z 1 z 2r r 1 r 2

    C C C

    C C C

    C C C

     =

    x x xr r 1 r 2

    y y yr r 1 r 2

    z z zr r 1 r 2

    C C C

    C C C

    C C C

    , rc '' cjkcj gS& 

    (A*) 1 (B) 2 (C) 3 (D) 4

    Sol. R.H.S. =

    x x xr r 1 r 2

    y y yr r 1 r 2

    z z zr r 1 r 2

    C C C

    C C C

    C C C

     

     Apply C3  C3 + C2 x x x 1

    r r 1 r 2

    y y y 1r r 1 r 2

    z z z 1r r 1 r 2

    C C C

    C C C

    C C C

     

     Apply C2  C2 + C1 x x 1 x 1

    r r 1 r 2

    y y 1 y 1r r 1 r 2

    z z 1 z 1r r 1 r 2

    C C C

    C C C

    C C C

     

     Apply C3  C3 + C2 x x 1 x 2

    r r 1 r 2

    y y 1 y 2r r 1 r 2

    z z 1 z 2r r 1 r 2

    C C C

    C C C

    C C C

     

    16_.  If A is a non-singular square matrix of order 'n' such that 3ABA –1

     + A = 2A –1

    BA, then

    (A) A & B both are identity matrix (B*) |A + B| = 0(C*) |ABA

     –1 – A

     –1BA| = 0 (D) A + B is a non-singular matrix

     ;fn  A 'n' Øe dk O;qRØe.kh; vkO;w  g bl izdkj gS fd 3ABA –1 + A = 2A –1BA,(A) A vkS j B nksuksa loZ le vkO;w  g gSA  (B*) |A + B| = 0(C*) |ABA

     –1 – A

     –1BA| = 0 (D) A + B O;qØe.kh; vkO;w  g gSA 

    Sol. 3ABA –1

     + 3A = 2A –1

    BA + 2A   3A(BA –1 + I) = (A –1B + I)2A  3A(B + A)A –1 = A –1(B + A)2A   |3A(A + B)A –1| = |2A –1(A + B)A|  3n |A| |A + B| |A –1| = 2n |A –1| |A + B| |A|   (3n – 2n) |A + B| = 0  |A + B| = 0Now vc, Let M = ABA –1 – A –1BA  AM = A2BA –1 – BA   BA = A2BA –1 – AM

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    7/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-7 

      3ABA –1

     + A = 2A –1

    BA

      3ABA –1 + A = 2A –1(A2BA –1 – AM)  3ABA –1 + A = 2ABA –1 – 2M   –2M = ABA –1 + A   –2M = A(B + A)A –1   (–2)n |M| = |A| |A + B| |A –1| = 0

    17. The equation x3 –3

    4 x = –

    3

    8 is satisfied by

     lehdj.k x3 – 34

     x = –3

    8  ftu x ds ekuks a ls larq"V gks rh gS] og gSµ

    (A*) x = cos5

    18

      (B*) x = cos7

    18

      (C) x = cos23

    18

      (D*) x = cos17

    18

     

    Hint:  Let x = cos

      4 cos3 – 3 cos  = –3

    2   cos 3 = cos

    5

    6

      3 = 2n ±

    5

    6

     

       =2n

    3

     ±

    5

    18

     

    18.  The solution of the equation sin3x + sin x cos x + cos3x = 1 is (n  N) lehdj.k sin3x + sin x cos x + cos3x = 1 dk gy gSµ ( tgk¡ n  N)

    (A*) 2n  (B*) (4n + 1)2

     

    (C) (2n + 1)  (D) None of these buesa ls dksbZ ughSol.  The given equation is sin3 x + cos3 x + sin x cos x = 1

     (sin x + cos x) (sin2 x – sin x cos x + cos2 x ) + sin x cos x – 1 = 0 (1 – sin x cos x)(sin x + cos x – 1) = 0Either 1 – sin x cos x = 0  sin 2 x = 2 which is not possible

    Or sin x + cos x – 1 = 0  cos (x – /4) =2

    1  x – /4 = 2n  ±

    4

     

     x = 2n or x = (4n + 1)/2

    19.  If A =1

    3

    1 2 2

    2 1 2

    x 2 y

    and AAT = I then

     ;fn  A =1

    3

    1 2 2

    2 1 2

    x 2 y

     rFkk  AAT = I gS] rc

    (A*) x + 2y = 4 (B*) x – y = 1 (C*) 2x + y = 5 (D) 2x + y = –13

    Sol.  AAT = I  

    1 2 2 1 2 x 9 0 0

    2 1 2 2 1 2 0 9 0x 2 y 2 2 y 0 0 9

        x = 2, y = 1

    20*.  If there are three square matrix A, B, C of same order satisfying the equation A2 = A –1 and let B =n2 A

    & C =(n 2)

    2 A

     then which of the following statements are true? (where n  N)

     ;fn leku Øe ds rhu oxZ vkO;wg  A, B rFkk C gS]  A2 = A –1  gS rFkk ekuk B =n2 A & C =

    (n 2)2 A

      gS] rc fuEu esa ls lR; dFku gSµ( tgk¡ n  N)(A*) |B – C| = 0 (B*) (B + C)(B – C) = 0 

    (C) |B – C| = 1 (D) None of these buesa ls dksbZ ugh

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    8/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-8 

    Sol.  B =n2 A =

    n 12 · 2 A

     =n 12 2(A )

     =n 11 2(A )

     = n 1 12 A

       =

    n 2 12 · 2 A  

     = n 2 12 2(A )

       

    = n 22

    1 1(A )

     =(n 2)

    2 A

     = C   B – C = 0

    21*.  Let A =

     –3 –7 –5

    2 4 3

    1 2 2

     and B =

    a

    b

    1

    . If AB is a scalar multiple of B, then

     ekuk  A = –3 –7 –5

    2 4 3

    1 2 2

      rFkk B =a

    b

    1

    . ;fn  AB vkO;w  g B dk vfn'k xq .kt (scalar multiple) gS rc 

    (A*) 4a + 7b + 5 = 0 (B*) a+ b + 2 = 0 (C*) b – a = 4 (D*) a + 3b = 0

    Sol.  AB =

     –3 –7 –5 a

    2 4 3 b

    1 2 2 1

        AB =

     –3a – 7b – 5 a

    2a 4b 3 b

    a 2b 2 1

     

     

    3 a 7b 5 0

    2a 4 – b 3 0a 2b 2 – 0

     

     

     

    3 7 5

    2 4 – 31 2 2 –

     = 0

     = 1   a = – 3 & b = 1

    22*.  Values of '' for which system of equations x + y + z = 1, x + 2y + 4z =  and x + 4y + 10z = 2  isconsistent, are

    '' ds eku ftlds fy, lehdj.k fudk; x + y + z = 1, x + 2y + 4z =   rFkk x + 4y + 10z = 2  laxr gS] gksaxsa& (A*) 1 (B) 3 (C*) 2 (D) 0

    Sol.  =

    1 1 1

    1 2 4

    1 4 10

     = 0   1 =2

    1 1 1

    2 4

    4 10

     = 2(2 – 3 + 2) = 0

    2 =2

    1 1 1

    1 4

    1 10

     = 3(2 – 3 + 2) = 0   3 =2

    1 1 1

    1 2

    1 4

     = 2 – 3 + 2 = 0

       = 1, 2

    23*.  Consider a matrix M =

    3 4 0

    2 1 0

    3 1 K

     and the following statements:

    Statement (S1) : Inverse of M exists.Statement (S2) : K  0,Which of the following in respect of the above matrix and statements is/are incorrect?(A*) S1 implies S2, but S2 does not imply S1.(B*) S2 implies S1, but S1 does not imply S2.(C*) Neither S1 implies S2 nor S2 implies S1.(D) S1 implies S2 as well as S2 implies S1.

    vkO;w  g M =3 4 0

    2 1 0

    3 1 K

      ds fy,

     dFku (S1) : M dk iz frykse fo|eku gS  dFku (S2) : K  0,

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    9/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-9 

     fuEu esa ls dkS ulk@dkSuls vkO;w  g M rFkk fn, x, dFkuks a ds fy, vlR; gS?(A*) S1  S2, fdUrq S2  /  S1. (B*) S2  S1, fdUrq S1  /  S2.(C*) u rks S1  S2  u gh S2  S1. (D) S1  S2  rFkk S2  S1.

    Sol. |M| =

    3 4 0

    2 1 0

    3 1 K

     = –5K

    24*.  The product of all the values of t, for which the system of equations (a – t)x + by + cz = 0,

    bx + (c – t)y + az = 0, cx + ay + (b – t)z = 0 has non-trivial solution, ist ds mu lHkh ekuksa dk xq.kuQy ftuds fy, lehdj.k fudk; (a – t)x + by + cz = 0, bx + (c – t)y + az = 0,cx + ay + (b – t)z = 0 'kwU;rj gy j[krk gS] gksxkµ 

    (A)

    a –c –b

     –c b –a

     –b –a c

      (B*)

    a b c

    b c a

    c a b

      (C)

    a c b

    b a c

    c b a

      (D*)

    a a b b c

    b b c c a

    c c a a b

     

    Sol.

    a – t b c

    b c – t a

    c a b – t

     = – t3 + t2 + t +  = 0

    product of roots ewyksa dk xq .kuQy =  =a b c

    b c a

    c a b

     

    25*.  Let A and B are square matrices of same order satisfying AB = A and BA = B, then (A2015

     + B2015

    )2016

     is

    equal to

     ekuk  A rFkk B leku Øe dh oxZ vkO;w  g bl izdkj gS fd  AB = A rFkk BA = B rc (A2015 + B2015)2016  cjkcj gS& (A*) 2

    2015 (A

    3 + B

    3) (B) 2

    2016 (A

    2 + B

    2) (C) 2

    2016 (A

    3 + B

    3) (D*) 2

    2015 (A + B)

    Sol.  AB = A & vkS j BA = B  AB.A = A2  & BA.B = B2   A.BA = A2  & B.AB = B2   AB = A2  & BA = B2 

      A = A2

      & B = B2

       An = A & Bn = BNow vc, (A2015 + B2015)2 = (A + B)2 = A2 + B2 + AB + BA = 2(A + B)(A+ B)

    3 = 2(A + B)

    2 = 4(A + B)

    (A + B)4 = 4(A + B)

    2 = 8(A + B)   (A + B)n = 2n–1(A + B)

    26*.  If p, q, r are in A.P. then value of determinant

    2 n 1 2 n 2 2

    n n 1

    2 n 2 n 1 2

    a 2 2p b 2 3q c p

    2 p 2 q 2q

    a 2 p b 2 2q c – r  

     is

    (A*) 0 (B*) Independent from a, b, c(C) a

    2b

    2c

    2 – 2

    n  (D*) Independent from n

     ;fn p, q, r lekUrj Js

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    10/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-10 

    Sol.  =

    2 n 1 2 n 2 2

    n n 1

    2 n 2 n 1 2

    a 2 2p b 2 3q c p

    2 p 2 q 2q

    a 2 p b 2 2q c – r  

     

    R1  R1 – (R2 + R3)

     = n n 1

    2 n 2 n 1 2

    0 0 p r – 2q

    2 p 2 q 2q

    a 2 p b 2 2q c – r  

     = 0

    27*.  If

    2

    2

    2

    x – 5x 3 2x – 5 3

    3x x 4 6x 1 9

    7x – 6x 9 14x – 6 21

     = ax3 + bx

    2 + cx + d, then which of the following are correct ?

     ;fn

    2

    2

    2

    x – 5x 3 2x – 5 3

    3x x 4 6x 1 9

    7x – 6x 9 14x – 6 21

     = ax3 + bx

    2 + cx + d rc fuEu esa ls dkS ulk lR; gS?

    (A*) a = 0 (B*) b = 0 (C*) c = 0 (D) d = 0

    Sol. f (x) =

    2

    2

    2

    x – 5x 3 2 32x – 5 2x – 5 3

    6x 1 6x 1 9 3x x 4 6 9

    14x – 6 14x – 6 21 7x – 6x 9 14 21

     = 0

      f(x) is a constant polynomial & f(0)  0   d  0

    Hindi. f (x) =

    2

    2

    2

    x – 5x 3 2 32x – 5 2x – 5 3

    6x 1 6x 1 9 3x x 4 6 9

    14x – 6 14x – 6 21 7x – 6x 9 14 21

     = 0

      f(x) vpj gS rFkk f(0)  0   d  0

    28*.  If the equations x + ay – z = 0, 2x – y + az = 0, ax + y + 2z = 0 have non-trivial solution, then a =

     ;fn lehdj.k fudk; x + ay – z = 0, 2x – y + az = 0, ax + y + 2z = 0 'kwU;rj gy j[krk gS rc a =

    (A) 2 (B*) –2 (C*) 1 + 3 (D*) 1 – 3

    Sol.

    1 a –1

    2 –1 a

    a 1 2

     = 0   (a + 2)(a2 – 2a – 2) = 0

    29*.  If the elements of a 2 × 2 matrix A are positive and distinct such that |A + AT|T = 0, then

     ;fn ,d 2 × 2 Øe dh  A vkO;w  g ds vo;o /kukRed rFkk fHkUu&fHkUu bl iz dkj gS fd |A + AT|T = 0 rc (A) |A|  0 (B*) |A| > 0 (C*) |A – AT| > 0 (D*) |AAT| > 0

    Sol. Let ekuk A =a b

    c d

     

    |A + AT| =

    2a b c

    b c 2d

     = 4ad – (b + c)

    2 = 0

     b c

    2

     = ad

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    11/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-11 

     b c

    2

     > bc

      ad bc     ad > bc  ad – bc > 0   |A| > 0

    |A – AT| =

    0 b – c

    c – b 0 = (b – c)

    2 > 0

    30*.  If M = {A : A is a 3 × 3 matrix whose entries are –1 and 1}, then(A) |A| lies from –1 to 1 (B*) |A|  {–4, 0, 4}(C*) n(M) = 2

    9  (D) n(M) = 3

     ;fn M = {A : A ,d 3 × 3 vkO;w  g gS ftlds vo;o –1 rFkk 1 gS }, rc (A) |A| dk eku  –1 ls 1 esa gSA  (B*) |A|  {–4, 0, 4}(C*) n(M) = 2

    9  (D) n(M) = 3

    Sol. Let A =

    1 2 3

    1 2 3

    1 2 3

    a a a

    b b b

    c c c

     

    |A| = a1 b2 c3 + a2 b3 c1 + a3 b1 c2 – a1 b3 c2 – a2 b1 c3 – a3 b2 c1 

      det(A) = P1 + P2 + P3 – P4 – P5 – P6  where |Pi| = 1

      |det (A)|  |P1| + |P2| + |P3| + |P4| + |P5| + |P6|  |det(A)|  6Hence option (A) is correct.

    Now, applying C1  C1 + C2 & C2  C2 + C3, we getelements of 1

    st and 2

    nd column as even number

      |A| = multiple of 4Hence option (B) is correct.

    Hindi.  ekuk  A =1 2 3

    1 2 3

    1 2 3

    a a a

    b b b

    c c c

     

    |A| = a1 b2 c3 + a2 b3 c1 + a3 b1 c2 – a1 b3 c2 – a2 b1 c3 – a3 b2 c1 

      det(A) = P1 + P2 + P3 – P4 – P5 – P6   tgk¡ |Pi| = 1

      |det (A)|  |P1| + |P2| + |P3| + |P4| + |P5| + |P6|  |det(A)|  6vr% fodYi (A) lR; gSA vc C1  C1 + C2 & C2  C2 + C3, yxkus ij ge ikrs gS 1

    st  o 2nd  LrEHk ds vo;o le la[;k gSA 

      |A| = 4 dk xq .kt gSA vr% (B) lR; gSA 

    31*.  A solution of the system of equations x – y =1

    3 and cos

    2x – sin2y =1

    2 is given by

     lehdj.k fudk; x – y =1

    3  rFkk cos2x – sin2y =

    1

    2  dk ,d gy fuEu iz dkj fn;k tk ldrk gS& 

    (A*)7 5

    ,6 6

      (B)8 1

    ,15 6

      (C*) –5 –7

    ,6 6

      (D*)1 1

    ,–6 6

     

    Sol. cos2x – sin2(x – /3) =

    1

      cos2x –2

    1 3 1sin x. – cos x.

    2 2 2

     

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    12/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-12 

      cos2x – 2 21 3 3 1

    sin x. cos x. – sin2 x4 4 4 2

     

     1

    4(cos

    2x – sin2x) +3

    4sin2x =

    1

     1

    2 cos2x +

    3

    2sin2x = 1

      cos 2 x – 3  = 1

      2x –3

     = 2n 

      x = n +1

    6  ; N  I 

    32.  If f(x) =

    cos(x ) cos(x ) cos(x )

    sin(x ) sin(x ) sin(x )

    sin( – ) sin( – ) sin( – )

     and f(0) =1

    4, then

    15

    r 1

    f(r)

     is (where [.] is G.I.F.)

     ;fn f(x) =cos(x ) cos(x ) cos(x )

    sin(x ) sin(x ) sin(x )

    sin( – ) sin( – ) sin( – )

      rFkk f(0) = 14

      rc 15

    r 1

    f(r)

      dk eku gS ( tgk¡ [.] egÙke

     iw.kkZa d Qyu gS)Ans.  3

    Sol. f'(x) = 0   f(x) is a constant function   f(x) =1

    Hindi. f'(x) = 0   f(x) ,d vpj Qyu gS    f(x) =1

    33.  If the summation of the series

    sin sin 3 sin9

    cos 3 cos9 cos27

     + . . . . . . up to n terms is given by1

    2(tan a – tan b), where

    a

    bis a two

    digit natural number for some 'n', then the maximum value ofa

    b  is

     ;fn Js .khsin sin 3 sin9

    cos 3 cos9 cos27

    + . . . . . . n inksa rd dk ;ksxQy

    1

    2(tan a – tan b) gS tgk¡

    a

    b 'n' ds

     dqN ekuksa ds fy, ,d f} vadh; iz kd`Ùk la [;k gS rca

    b  dk vf/kdre eku Kkr dhft,A

    Ans.  81

    Hint.  Sn =

    r r n–1 n–1

    r 1 r 1 r  r 0 r 0

    sin 3 sin 2.31

    2cos 3 cos 3 cos 3

     

    34.  If sin14

    sin

    3

    14

    sin

    5

    14

    . . . . . . . upto 7 factors =

    n

    1

    2 , then find the value of ‘n’.

     ;fn sin14

    sin

    3

    14

    sin

    5

    14

    . . . . . . . 7 xq .ku[k.M rd =

    n

    1

    2 gks rc ‘n’ dk eku Kkr dhft,A

    Ans.  6

    Sol.  sin sin3 sin5 sin7 sin9 sin11 sin13, where tgk¡  =14

     

    = (sin   sin 3  sin 5)2

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    13/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-13 

    = (cos 6 cos 4 cos 2)2  =2

    2 3cos cos cos

    7 7 7

     

    Match the column Type Questions

    LrEHk feyku izdkj iz'u 

    35.  Consider a square matrix A of order 2 whose four distinct elements are 0,1,2 and 4. Let N denote thenumber of such matrices.

    Column–I  Column–II 

    (A) Possible non-negative value of |A| is (P) 2

    (B) Sum of values of determinants corresponding to N matrices is (Q) 4

    (C) If absolute value of |A| is least, then possible value of | adj(adj(adj A)) | is (R) –2

    (D) If |A| is algebraically least, then possible value of |4A –1| is (S) 0

     ekuk  A Øe 2 dk ,d oxZ vkO;w  g gS] ftlds pkj fHkUu vo;o 0,1,2 rFkk 4 gSA ekuk N ,sls gj laHko vkO;wgks a dh la [;k gSA 

    LrEHk –I  LrEHk –II 

    (A) |A| dk laHkkfor v_.kkRed eku gSµ  (P) 2

    (B)  lHkh N vkO;w  gks a ds lkjf.kdks a ds ekuksa dk ;ksxQy gSµ  (Q) 4

    (C)  ;fn |A| dk fujis{k eku U;wure gS] rc | adj(adj(adj A)) | gSµ  (R) –2

    (D)  ;fn |A| dk eku U;wure gks] rc |4A –1| dk laHkkfor eku gksxkµ  (S) 0

    Ans.  (A  P, Q); (B  S); (C  P, R); (D  R)Sol.  Here 24 matrices are possible.

    Values of determinants can be –8, – 4, – 2, 2, 4, 8(A) Possible non-negative values of |A| are 2, 4, 8

    (B) Sum of these 24 determinants is 0(C) Mod. (det(A)) is least  | A | = ± 2  | adj (adj (adj (A)) | =

    3(n 1) A

      = ± 2

    (D) Least value of det.(A) is –8 Now | 4 A –1 | = 161

    | A |=

    16

    8= –2

    Comprehension # 1 (Q. No. 36 to 38) 

    Consider the system of equations

    x – y + 2z = 10 ; 2x + y + z = 8; 3x + 2y + z =  

    vuqPnsn # 1 (iz0 la0 36 l s 38) 

     rhu lehdj.k fn;s x;s gSµ x – y + 2z = 10 ; 2x + y + z = 8; 3x + 2y + z =

    36. If system has unique solution then the range of sin –12 1

     + cos –1

    2 1

     is

     ;fn lehdj.k fudk; dk vf}rh; gy gks] rks sin –12 1

    + cos –1

    2 1

     ds ekuks a dk ifjlj gksxkµ

    (A)3

    ,2 2

      (B)2

     

    (C*)5

    ,6 6

      (D) None of these buesa ls dksbZ ugh

  • 8/17/2019 (1031)dpp_11_matrices_determinant_and_trigonometry_b.pdf.tmp.pdf

    14/14

    Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

    Website : www.resonance.ac.in | E-mail : [email protected]

    Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029 PAGE NO.-14 

    37. If system has infinite solution then the range of 2 + 2 is ;fn lehdj.k fudk; ds vuUr gy gks] rks 2 + 2  ds ekuksa dk ifjlj gSµ (A) [0, )  (B) [101, ) (C) [0, 101] (D*) {101}

    38. If system has no solution then the range of2 1

     is

     ;fn lehdj.k fudk; dk dksbZ gy laHko ugh gS] rc2

    1

      ds ekuks a dk ifjlj gS

    (A) (0, 1] –1

    101

      (B*) (0, 1]

    (C) [0, 1) (D) None of these buesa ls dksbZ ugh Sol. (36) 

    System of equation can be written as AX = B

    For unique solution | A |  0     1 and R

    2 1

     

    1 1,

    2 2

     sin –1

    2 1

    ,6 6

     

    2 1

     

    1 1,

    2 2

      cos –1

    2 1

    2

    ,3 3

      Range =5

    ,6 6

     

    (37)  = 0 and x = 0  = 1, = 10   2 + 2 = 101

    (38)  For no solution. = 1; 10 2 1

    =

    2

    1

    1   (0, 1] –

    1

    101

     

    Comprehension (Q. No. 39 to 40)

    vuqPNsn (iz'u la[;k 39 l s 40)

     A square matrix A is said to be orthogonal if AT A = I = AA

    T.

     oxZ vkO;w  g  A yEcdks .kh; vkO;wg gksxh ;fn  AT A = I = AAT.

    39.  Let A =29 –28

    30 –29

     and P is a orthogonal matrix of order 2. if Q = PT AP, then PQ

    2016P

    T =

     ekuk A =29 –28

    30 –29

      rFkk P, 2 Øe dh yEcdks .kh; vkO;w  g gS ;fn Q = PT AP rc PQ2016PT =

    (A) 2015 A (B) A2016

      (C*) I  (D) A

    40.  P is an orthogonal matrix of order 3 and , ,  are direction angles of a straight line.

    Let A =

    2

    2

    2

    sin sin sin sin sin

    sin sin sin sin sin

    sin sin sin sin sin

     and Q = PT AP.

    If PQ6P

    T = 2

    k A, then k =

    (A*) 5 (B) 7 (C) 6 (D) 0

    P, 3 Øe dh yEcdks .kh; vkO;w  g gS rFkk , ,   ,d ljy js[kk ds fnd~dks .k g]S

     ekuk  A =

    2

    2

    2

    sin sin sin sin sin

    sin sin sin sin sin

    sin sin sin sin sin

      rFkk Q = PT AP.

     ;fn PQ6PT = 2k A, rc k =(A*) 5 (B) 7 (C) 6 (D) 0

    Sol. (39) Q2 = P'AP.P'AP = P'A

    2P   Q2016 = P'A2016P

      PQ2016P' = PP'A2016PP' = A2016 = (A2)1008 = (I)1008 =  (40) PQ

    6P' = A

    Now, A2 = 2A   A3 = 2A.A = 4A   A6 = 16A2 = 32A =25 A