11678_lecture15 2-14-07 voltaic cells

Upload: omkar-kumar-jha

Post on 04-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    1/17

    A Hydrogen ElectrodeCell potentials can bemeasured

    Half-cell potential cannot be

    measured

    An arbitrary choice sets

    the half cell potential of astandard hydrogen

    electrode = 0

    Eo1/2(H+/H2) = 0 V

    Half Reaction is always

    written as a reduction

    2 H+ (aq) + 2 e- H2(g)

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    2/17

    Questions

    Anode?

    Cathode?

    Ox An

    Zn (s) Zn2+ (aq) + 2 e-

    Red Cat

    2H+ (aq) + 2e- H2 (g)

    Spontanteous Cell Reaction?

    2H+ (aq) + Zn (s) H2 (g) + Zn2+ (aq)

    Zinc metal dissolves in 1 M H+

    Zn/H2 Voltaic Cell

    Cell Potential = 0.763 Vunder standard conditions

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    3/17

    Voltage of Voltaic Cells

    All voltaic cells are based on a

    spontaneous chemical reaction

    Therefore, G for the reaction must be

    negative This means that the voltage of a voltaic

    cell is always positive.

    G = -nFe

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    4/17

    Standard Potential of Zn/H2 Cell2H+ (aq) + Zn (s) H2 (g) + Zn2+ (aq)

    Cathode: 2 H+ (aq) + 2e- H2 (g)Anode: Zn (s) Zn2+ (aq) + 2 e-

    Eo

    (cell) = E1/2o

    (H+

    /H2) E1/2o

    (Zn2+

    /Zn)=+0.763V

    E0(cell) = 0 E1/2o (Zn2+/Zn) = 0.763 V

    E1/2o (Zn2+/Zn) = -0.763 V

    Zn2+ (s) + 2e- Zn(s) E1/2o = -0.763 V

    Cathode Anode

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    5/17

    Determination of Half-Cell PotentialsAnode and cathode?

    H+/H2 is anode and Cu2+/Cu is

    cathode

    H2 (g) + Cu2+ 2 H+ (aq) + Cu (s)

    E0(cell) = E01/2(Cu2+/Cu) E01/2(H

    +/H2)

    E0(cell) = E01/2(Cu2+/Cu) 0 = 0.340 V

    E01/2(Cu2+/Cu) = +0.340 V

    Cu/H2 Voltaic CellCell Potential = 0.340 V

    under standard conditions

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    6/17

    Cell EMFCell EMF

    Standard Reduction PotentialsStandard Reduction Potentials

    The larger the difference

    between Ered values, thelargerEcell.

    In a voltaic cell (spontaneous)

    Ered(cathode) is more positivethan Ered(anode).

    RecallEcell = Ered(cathode) -

    Ered(anode)

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    7/17

    Half-reaction

    cells

    Eo(cell) = 1.10 V (measured)

    E1/2o (Cu2+/Cu) E1/2

    o (Zn2+/Zn)

    Eo (cell) = 0.340 V (-0.763 V)

    Eo (cell) = 1.10 V (Calculated from E01/2)

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    8/17

    Selected StandardElectrode Potentials at 25 oC

    EOS

    StrongerO

    xidizingAge

    nts

    StrongerReducing

    Agents

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    9/17

    Cell EMFCell EMF

    Oxidizing and Reducing AgentsOxidizing and Reducing Agents

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    10/17

    Cell Potential Determine the cell potential for a galvanic cellbased on the redox reaction.

    Cu(s) + Fe+3(aq) Cu+2(aq) + Fe+2(aq)

    Fe+3(aq) + e- Fe+2(aq) E1/20= 0.77 V

    Cu+2(aq)+2e- Cu(s) E1/20= 0.34 V

    Cu(s) Cu+2(aq)+2e- -E1/20= -0.34 V

    2Fe+3(aq) + 2e- 2Fe+2(aq) E1/20= 0.77 V

    Cu(s) + 2Fe3+ Cu2+ + 2Fe2+ Ecell0= 0.43V

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    11/17

    Shorthand Cell Notation

    eg: Cu(s) + Fe+3(aq) Cu+2(aq) + Fe+2(aq)

    solidAqueousAqueoussolid

    Anode on the leftCathode on the right

    Single line different phases.

    Double line porous disk or salt bridge. If all the substances on one side are

    aqueous, a platinum electrode is indicated.

    Cu(s)Cu+2(aq)Fe+2(aq),Fe+3(aq)Pt(s)Anode CathodeSolution Bridge Solution

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    12/17

    Shorthand Notation Voltaic Cell

    Zn Zn2+

    (anode)

    porous

    plate

    Cu2+ Zn2+

    Cu2+ Cu(cathode)

    e-

    1.10 V

    Start HereEnd Here

    Tell the story. What do you see during your trip from the anode to the cathode?

    Zn(s) Zn2+ (aq, 1M) Cu2+ (aq, 1M) Cu(s)

    1.00 M1.00 M

    Trip

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    13/17

    Practice Completely describe the galvanic cell based on

    the following half-reactions under standardconditions.

    MnO4- + 8 H+ +5e- Mn+2 + 4H2O E=1.51

    Fe+3

    +3e-

    Fe(s) E=0.036V Anode? Cathode?

    Cell Potential? Oxidizing agent and reducing agent?

    Shorthand cell notation?

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    14/17

    Fe3+ (aq)

    MnO4- + 8 H+ +5e- Mn+2 + 4H2O E=1/2 1.51

    E0cell = 1.51V 0.036V = 1.47V

    Fe+3 +3e- Fe(s)E1/2=0.036V

    Fe(s) Fe3+ + 3 e- -E1/2 o = -0.036V

    Questions

    1. Whats missing in Diagram?

    2. Anode?

    3. Cathode?

    4. Cell Reaction?

    5. Direction electron flow?

    6. Cell Potential?

    7. Shorthand Representation?Fe(s)Fe3+MnO4- (aq H+), Mn2+Pt

    Practice3 MnO

    4

    - + 24 H+ + 5 Fe(s)

    3 Mn2+ + 12 H2O + 5 Fe3+

    e-e-

    e-

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    15/17

    Spontaneity of Redox ReactionsSpontaneity of Redox Reactions

    Consider the displacement of silver by nickel:

    Ni(s) + 2Ag+(aq) Ni2+(aq) + 2Ag(s)

    E0 = E0red(Ag+/Ag) E0red(Ni2+/Ni)= (0.80 V) - (-0.28 V)

    = 1.08 VThe positive E0 indicates a

    spontaneous process.

    EMF and FreeEMF and Free--Energy ChangeEnergy Change

    G= -nFE

  • 7/30/2019 11678_Lecture15 2-14-07 Voltaic Cells

    16/17

    Spontaneity of Redox ReactionsSpontaneity of Redox Reactions

    EMF and FreeEMF and Free--Energy ChangeEnergy Change

    G is the change in free-energy, n is the

    number of moles of electrons transferred, FisFaradays constant, and Eis the emf of the

    cell.

    Since n and Fare positive, ifG > 0 then E