11_linearized longitudinal.pdf

13
Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 6 th -order -> 4 th -order -> hybrid equations Dynamic stability derivatives Phugoid mode Short-period mode Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html 6 th -Order Longitudinal Equations of Motion Symmetric aircraft Motions in the vertical plane Flat earth x 1 x 2 x 3 x 4 x 5 x 6 ! " # # # # # # # # $ % & & & & & & & & = x Lon 6 = u w x z q ! " # # # # # # # $ % & & & & & & & = Axial Velocity Vertical Velocity Range Altitude(–) Pitch Rate Pitch Angle ! " # # # # # # # # $ % & & & & & & & & ! u = X / m ! g sin" ! qw ! w = Z / m + g cos" + qu ! x I = cos" ( ) u + sin" ( ) w ! z I = ! sin" ( ) u + cos" ( ) w ! q = M / I yy ! " = q State Vector, 6 components Nonlinear Dynamic Equations Fairchild-Republic A-10 4 th -Order Longitudinal Equations of Motion ! u = f 1 = X / m ! g sin" ! qw ! w = f 2 = Z / m + g cos" + qu ! q = f 3 = M / I yy ! " = f 4 = q x 1 x 2 x 3 x 4 ! " # # # # # $ % & & & & & = x Lon 4 = u w q ! " # # # # $ % & & & & = Axial Velocity Vertical Velocity Pitch Rate Pitch Angle ! " # # # # # $ % & & & & & State Vector, 4 components Nonlinear Dynamic Equations, neglecting range and altitude Caproni-Campini N1 Fourth-Order Hybrid Equations of Motion

Upload: anonymous-ry7aem

Post on 17-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

  • Linearized LongitudinalEquations of Motion

    Robert Stengel, Aircraft Flight Dynamics

    MAE 331, 2010

    6th-order -> 4th-order -> hybrid equations

    Dynamic stability derivatives

    Phugoid mode

    Short-period mode

    Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    6th-Order LongitudinalEquations of Motion

    Symmetric aircraft

    Motions in the vertical plane

    Flat earth

    x1

    x2

    x3

    x4

    x5

    x6

    !

    "

    ########

    $

    %

    &&&&&&&&

    = xLon6=

    u

    w

    x

    z

    q

    '

    !

    "

    #######

    $

    %

    &&&&&&&

    =

    Axial Velocity

    Vertical Velocity

    Range

    Altitude()

    Pitch Rate

    Pitch Angle

    !

    "

    ########

    $

    %

    &&&&&&&&

    !u = X / m ! gsin" ! qw

    !w = Z / m + gcos" + qu

    !xI= cos"( )u + sin"( )w

    !zI= ! sin"( )u + cos"( )w

    !q = M / Iyy

    !" = q

    State Vector, 6 componentsNonlinear Dynamic Equations

    Fairchild-Republic A-10

    4th-Order LongitudinalEquations of Motion

    !u = f1= X / m ! gsin" ! qw

    !w = f2= Z / m + gcos" + qu

    !q = f3= M / Iyy

    !" = f4= q

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    = xLon4=

    u

    w

    q

    '

    !

    "

    ####

    $

    %

    &&&&

    =

    Axial Velocity

    Vertical Velocity

    Pitch Rate

    Pitch Angle

    !

    "

    #####

    $

    %

    &&&&&

    State Vector, 4 componentsNonlinear Dynamic Equations,neglecting range and altitude

    Caproni-Campini N1

    Fourth-Order HybridEquations of Motion

  • Transform LongitudinalVelocity Components

    !u = f1= X / m ! gsin" ! qw

    !w = f2= Z / m + gcos" + qu

    !q = f3= M / Iyy

    !" = f4= q

    !V = f1=1

    mT cos ! + i( ) " D " mgsin#$% &'

    !# = f2=1

    mVT sin ! + i( ) + L " mgcos#$% &'

    !q = f3= M / Iyy

    !( = f4= q

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    =

    u

    w

    q

    '

    !

    "

    ####

    $

    %

    &&&&

    =

    Axial Velocity

    Vertical Velocity

    Pitch Rate

    Pitch Angle

    !

    "

    #####

    $

    %

    &&&&&

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    =

    V

    '

    q

    (

    !

    "

    #####

    $

    %

    &&&&&

    =

    Velocity

    Flight Path Angle

    Pitch Rate

    Pitch Angle

    !

    "

    #####

    $

    %

    &&&&&

    i = Incidence angle of the thrust vector

    with respect to the centerline

    Replace Cartesian body components of velocity by polar inertial components

    Replace X and Z by T, D, and L

    Hybrid LongitudinalEquations of Motion

    !V = f1=1

    mT cos ! + i( ) " D " mgsin#$% &'

    !# = f2=1

    mVT sin ! + i( ) + L " mgcos#$% &'

    !q = f3= M / Iyy

    !( = f4= q

    !V = f1=1

    mT cos ! + i( ) " D " mgsin#$% &'

    !# = f2=1

    mVT sin ! + i( ) + L " mgcos#$% &'

    !q = f3= M / Iyy

    !! = f4= !( " !# = q "

    1

    mVT sin ! + i( ) + L " mgcos#$% &'

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    =

    V

    '

    q

    (

    !

    "

    #####

    $

    %

    &&&&&

    =

    Velocity

    Flight Path Angle

    Pitch Rate

    Pitch Angle

    !

    "

    #####

    $

    %

    &&&&&

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    =

    V

    '

    q

    (

    !

    "

    #####

    $

    %

    &&&&&

    =

    Velocity

    Flight Path Angle

    Pitch Rate

    Angle of Attack

    !

    "

    #####

    $

    %

    &&&&&

    Replace pitch angle by angle of attack ! = " # $

    Why Transform Equations and

    State Vector?

    Phugoid (long-period) mode is primarily described byvelocity and flight path angle

    Short-period mode is primarily described bypitch rate and angle of attack

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    =

    V

    '

    q

    (

    !

    "

    #####

    $

    %

    &&&&&

    =

    Velocity

    Flight Path Angle

    Pitch Rate

    Angle of Attack

    !

    "

    #####

    $

    %

    &&&&&

    Why Transform Equations and

    State Vector?

    Hybrid linearized equations allow thetwo modes to be examined separately

    FLon

    =FPh

    FSP

    Ph

    FPh

    SPFSP

    !

    "

    ##

    $

    %

    &&=

    FPh

    small

    small FSP

    !

    "

    ##

    $

    %

    &&'

    FPh

    0

    0 FSP

    !

    "

    ##

    $

    %

    &&

    Effects of phugoid perturbations on

    phugoid motion

    Effects of phugoid perturbations on

    short-period motion

    Effects of short-period perturbations on

    phugoid motion

    Effects of short-period perturbations on

    short-period motion

  • Nominal Equations of Motion inEquilibrium (Trimmed Condition)

    !xN(t) = 0 = f[x

    N(t),u

    N(t),w

    N(t),t]

    !VN = 0 = f1 =1

    mT cos !N + i( ) " D " mgsin# N$% &'

    !# N = 0 = f2 =1

    mVT sin !N + i( ) + L " mgcos# N$% &'

    !qN = 0 = f3 =M

    Iyy

    !!N = 0 = f4 = q "1

    mVT sin !N + i( ) + L " mgcos# N$% &'

    T, D, and M contain x, u, and w effects

    xN

    T= V

    N!N

    0 "N

    #$

    %&T

    = constant

    LinearizedEquations of Motion

    Sensitivity Matrices for LTI Model

    !!x

    Lon(t) = F

    Lon!x

    Lon(t) +G

    Lon!u

    Lon(t) + L

    Lon!w

    Lon(t)

    F =

    ! f1

    !V! f

    1

    !"! f

    1

    !q! f

    1

    !#

    ! f2

    !V! f

    2

    !"! f

    2

    !q! f

    2

    !#

    ! f3

    !V! f

    3

    !"! f

    3

    !q! f

    3

    !#

    ! f4

    !V! f

    4

    !"! f

    4

    !q! f

    4

    !#

    $

    %

    &&&&&&&&&&&

    '

    (

    )))))))))))

    G =

    ! f1

    !"E

    ! f1

    !"T

    ! f1

    !"F

    ! f2

    !"E

    ! f2

    !"T

    ! f2

    !"F

    ! f3

    !"E

    ! f3

    !"T

    ! f3

    !"F

    ! f4

    !"E

    ! f4

    !"T

    ! f4

    !"F

    #

    $

    %%%%%%%%%%

    &

    '

    (((((((((( L =

    ! f1

    !Vwind

    ! f1

    !"wind

    ! f2

    !Vwind

    ! f2

    !"wind

    ! f3

    !Vwind

    ! f3

    !"wind

    ! f4

    !Vwind

    ! f4

    !"wind

    #

    $

    %%%%%%%%%%%

    &

    '

    (((((((((((

    Velocity Dynamics

    !V = f1=1

    mT cos! " D " mgsin#[ ] =

    1

    mCT cos!

    $V 2

    2S " CD

    $V 2

    2S " mgsin#

    %

    &'

    (

    )*

    Nonlinear equation

    Thrust incidence angle

    neglected

    First row of linearized dynamic equation

    ! !V (t) =" f

    1

    "V!V (t) +

    " f1

    "#!# (t) +

    " f1

    "q!q(t) +

    " f1

    "$!$(t)

    %

    &'

    (

    )*

    +" f

    1

    "+E!+E(t) +

    " f1

    "+T!+T (t) +

    " f1

    "+F!+F(t)%

    &'()*

    +" f

    1

    "Vwind!Vwind +

    " f1

    "$wind!$wind

    %

    &'

    (

    )*

  • ! f1

    !V=1

    mCTV cos"N # CDV( )

    $VN2

    2S + CTN cos"N # CDN( )$VNS

    %

    &'

    (

    )*

    ! f1

    !+=#1m

    mgcos+ N[ ] = #gcos+ N

    ! f1

    !q=#1m

    CDq$VN

    2

    2S

    %

    &'

    (

    )*

    ! f1

    !"=#1m

    CTN sin"N + CD"( )$VN

    2

    2S

    %

    &'

    (

    )*

    Coefficients in first row of F

    Sensitivity of Velocity Dynamics

    to State Perturbations

    CTV !"CT

    "V

    CDV !"CD

    "V

    CD# !"CD

    "#

    CDq !"CD

    "q

    Sensitivity of Velocity Dynamics toControl and Disturbance Perturbations

    ! f1

    !"E=#1m

    CD"E$VN

    2

    2S

    %

    &'

    (

    )*

    ! f1

    !"T=1

    mCT"T cos+N

    $VN2

    2S

    %

    &'

    (

    )*

    ! f1

    !"F=#1m

    CD"F$VN

    2

    2S

    %

    &'

    (

    )*

    Coefficients in first rows of G and L

    ! f1

    !Vwind= "

    ! f1

    !V

    ! f1

    !#wind

    = "! f

    1

    !#CT!T

    "#C

    T

    #!T

    CD!E

    "#C

    D

    #!E

    CD!F

    "#C

    D

    #!F

    Flight Path Angle Dynamics

    Linearized equation

    !! = f2=1

    mVT sin" + L # mgcos![ ] =

    1

    mVCT sin"

    $V 2

    2S + CL

    $V 2

    2S # mgcos!

    %

    &'

    (

    )*

    Nonlinear equation

    ! !" (t) =# f

    2

    #V!V (t) +

    # f2

    #"!" (t) +

    # f2

    #q!q(t) +

    # f2

    #$!$(t)

    %

    &'

    (

    )*

    +# f

    2

    #+E!+E(t) +

    # f2

    #+T!+T (t) +

    # f2

    #+F!+F(t)%

    &'()*

    +# f

    2

    #Vwind!Vwind +

    # f2

    #$wind!$wind

    %

    &'

    (

    )*

    ! f2

    !V=

    1

    mVNCTV sin"N + CLV( )

    #VN2

    2S + CTN sin"N + CLN( )#VNS

    $

    %&

    '

    ()

    *1

    mVN2

    CTN sin"N + CLN( )#VN

    2

    2S * mgcos+ N

    $

    %&

    '

    ()

    ! f2

    !+=

    1

    mVNmgsin+ N[ ] = gsin+ N VN

    ! f2

    !q=

    1

    mVNCLq

    #VN2

    2S

    $

    %&

    '

    ()

    ! f2

    !"=

    1

    mVNCTN cos"N + CL"( )

    #VN2

    2S

    $

    %&

    '

    ()

    Coefficients in second row of F

    Sensitivity of Flight Path Angle

    Dynamics to State Perturbations

    Coefficients in second row of G and L in Supplemental Slide

    CTV !"CT

    "V

    CLV !"CL

    "V

    CLq !"CL

    "q

    CL# !"CL

    "#

  • Pitch Rate Dynamics

    !q = f3=M

    Iyy=Cm !V

    22( )Sc

    Iyy

    Cm may include thrust as well

    as aerodynamic effects

    Nonlinear equation

    Linearized equation

    ! !q(t) =" f

    3

    "V!V (t) +

    " f3

    "#!# (t) +

    " f3

    "q!q(t) +

    " f3

    "$!$(t)

    %

    &'

    (

    )*

    +" f

    3

    "+E!+E(t) +

    " f3

    "+T!+T (t) +

    " f3

    "+F!+F(t)%

    &'()*

    +" f

    3

    "Vwind!Vwind +

    " f3

    "$wind!$wind

    %

    &'

    (

    )*

    ! f3

    !V=1

    IyyCmV

    "VN2

    2Sc + CmN "VNSc

    #

    $%

    &

    '(

    ! f3

    !)= 0

    ! f3

    !q=1

    IyyCmq

    "VN2

    2Sc

    #

    $%

    &

    '(

    ! f3

    !*=1

    IyyCm*

    "VN2

    2Sc

    #

    $%

    &

    '(

    Coefficients in third row of F

    Sensitivity of Pitch Rate

    Dynamics to State Perturbations

    CmV !"Cm

    "V

    Cmq !"Cm

    "q

    Cm# !"Cm

    "#

    Angle of Attack Dynamics

    !! = f4= !" # !$ = q #

    1

    mVT sin! + L # mgcos$[ ]

    Nonlinear equation

    Linearized equation

    ! !"(t) =# f

    4

    #V!V (t) +

    # f4

    #$!$ (t) +

    # f4

    #q!q(t) +

    # f4

    #"!"(t)

    %

    &'

    (

    )*

    +# f

    4

    #+E!+E(t) +

    # f4

    #+T!+T (t) +

    # f4

    #+F!+F(t)%

    &'()*

    +# f

    4

    #Vwind!Vwind +

    # f4

    #"wind!"wind

    %

    &'

    (

    )*

    ! f4

    !V= "

    ! f2

    !V

    ! f4

    !#= "

    ! f2

    !#

    ! f4

    !q= 1"

    ! f2

    !q

    ! f4

    !$= "

    ! f2

    !$

    Coefficients in fourth row of F

    Sensitivity of Angle of Attack

    Dynamics to State Perturbations

  • Longitudinal Stabilityand Control Derivatives

    Dimensional Stability-DerivativeNotation

    Dimensional stability derivatives portray acceleration sensitivities tostate perturbations

    Redefine force and moment symbols as acceleration symbols

    ! f1

    !V" #DV =

    1

    mCTV cos$N # CDV( )

    %VN2

    2S + CTN cos$N # CDN( )%VNS

    &

    '(

    )

    *+

    ! f2

    !"# L"

    VN=

    1

    mVNCTN cos"N + CL"( )

    $VN2

    2S

    %

    &'

    (

    )*

    ! f3

    !"# M" =

    1

    IyyCm"

    $VN2

    2Sc

    %

    &'

    (

    )*

    Drag

    mass (m)! D;

    Lift

    mass! L;

    Moment

    moment of inertia (Iyy )! M

    Thrust and drag effects

    are combined and

    represented by one

    symbol

    Thrust and lift effects are

    combined and

    represented by one

    symbol

    Elements of the Stability Matrix

    ! f1

    !V" #DV ;

    ! f1

    !$= #gcos$ N ;

    ! f1

    !q" #Dq;

    ! f1

    !%" #D%

    ! f2

    !V"LVVN;

    ! f2

    !#=g

    VNsin# N ;

    ! f2

    !q"LqVN;

    ! f2

    !$"L$VN

    ! f3

    !V" MV ;

    ! f3

    !#= 0;

    ! f3

    !q" Mq;

    ! f3

    !$" M$

    ! f4

    !V" #

    LVVN;

    ! f4

    !$= #

    g

    VNsin$ N ;

    ! f4

    !q" 1#

    LqVN;

    ! f4

    !%" #

    L%VN

    Stability derivatives portray acceleration sensitivitiesto state perturbations

    Longitudinal Stability Matrix

    FLon =FPh FSP

    Ph

    FPhSP

    FSP

    !

    "

    ##

    $

    %

    &&=

    'DV 'gcos( N 'Dq 'D)

    LVVN

    g

    VNsin( N

    LqVN

    L)VN

    MV 0 Mq M)

    ' LVVN

    'g

    VNsin( N 1'

    LqVN

    *+,

    -./

    ' L)VN

    !

    "

    ########

    $

    %

    &&&&&&&&

    Effects of phugoid

    perturbations on phugoid

    motion

    Effects of phugoid

    perturbations on short-

    period motion

    Effects of short-period

    perturbations on phugoid

    motion

    Effects of short-period

    perturbations on short-period

    motion

  • Primary LongitudinalStability Derivatives

    DV!

    !1m

    CTV

    ! CDV

    ( )"V

    N

    2

    2S + C

    TN! C

    DN( )"VNS

    #

    $%

    &

    '(

    Assuming !

    N! "

    N! 0

    LVVN

    !1

    mVNCLV

    !VN2

    2S + CLN !VNS

    "

    #$

    %

    &' (

    1

    mVN2CLN

    !VN2

    2S ( mg

    "

    #$

    %

    &'

    Mq =1

    IyyCmq

    !VN2

    2Sc

    "

    #$

    %

    &'

    M! =1

    IyyCm!

    "VN2

    2Sc

    #

    $%

    &

    '(

    L!VN

    !1

    mVN

    CTN

    + CL!( )

    "VN

    2

    2S

    #

    $%

    &

    '(

    Origins of Stability Effects

    Velocity-DependentDerivative Definitions

    Air compressibility effects are a principal source ofvelocity dependence

    CDM

    !"C

    D

    "M=

    "CD

    " V / a( )= a

    "CD

    "V

    CDV

    !"C

    D

    "V=1

    a

    #$%

    &'(CDM

    CLV

    !"C

    L

    "V=1

    a

    #$%

    &'(CLM

    CmV

    !"C

    m

    "V=1

    a

    #$%

    &'(CmM

    CDM

    ! 0

    CDM

    > 0 CDM

    < 0

    a = Speed of Sound

    M = Mach number =V

    a

    Pitch-Moment Coefficient

    Sensitivity to Angle of Attack

    MB = Cmq Sc ! Cmo + Cmq q + Cm""( )q Sc

    For small angle of attack and no control deflection

    Cm! " #CN!net hcm # hcpnet( ) " #CL!net hcm # hcpnet( ) = #CL!netxcm # xcpnet

    c

    $%&

    '()

    = #CL!wingxcm # xcpwing

    c

    $

    %&'

    ()# CL!ht

    xcm # xcphtc

    $%&

    '()= #CL!wing

    lwing

    c

    $%&

    '()# CL!ht

    lht

    c

    $%&

    '()

    = Cm!wing+ Cm!ht

    referenced to wing area, S, and m.a.c., c

  • Pitch-Rate Derivative Definitions

    Pitch rate derivatives are often expressed in terms of anormalized pitch rate

    Cmq =!Cm!q

    =c

    2VN

    "

    #$%

    &'Cmq

    Cmq =!Cm!q

    =!Cm

    ! qc2VN( )

    =2VN

    c

    "#$

    %&'Cmq

    q =qc

    2VN

    Mq =!M!q

    = Cmq "VN22( )Sc = Cmq

    c

    2VN

    #

    $%&

    '("VN

    2

    2

    #$%

    &'(Sc = Cmq

    "VNSc2

    4

    #$%

    &'(

    often tabulated used in pitch-rate equation

    MB = Cmq Sc ! Cmo + Cmq q + Cm""( )q Sc

    ! Cmo +#Cm#q

    q + Cm""$%&

    '()q Sc

    Pitch acceleration sensitivity to pitch rate

    Angle of Attack Distribution

    Due to Pitch Rate

    Aircraft pitching at a constant rate, q rad/s, produces a normalvelocity distribution along x

    !w = "q!x

    !" =!w

    VN

    =#q!x

    VN

    Corresponding angle of attack distribution

    !"ht =qlht

    VN

    Angle of attack perturbation at tail center of pressure

    lht = horizontal tail distance from c.m.

    Horizontal Tail Lift

    Due to Pitch Rate

    Incremental tail lift due to pitch rate, referenced to tail area, Sht

    Lift coefficient sensitivity to pitch rate referenced to wing area

    !Lht= !C

    Lht( )

    ht

    1

    2"V

    N

    2Sht

    CLqht!" #CLht( )aircraft

    "q=

    "CLht"$

    %&'

    ()*aircraft

    lht

    VN

    %

    &'(

    )*

    !CLht( )aircraft = !CLht( )htSht

    S

    "#$

    %&'=

    (CLht()

    "#$

    %&'aircraft

    !)*

    +,,

    -

    .//=

    (CLht()

    "#$

    %&'aircraft

    qlht

    VN

    "

    #$%

    &'

    Incremental tail lift coefficient due to pitch rate, referenced towing area, S

    Moment CoefficientSensitivity to Pitch Rate of

    the Horizontal Tail

    Differential pitch moment due to pitch rate

    !"Mht!q

    = Cmqht

    1

    2#VN

    2Sc = $CLqht

    lht

    VN

    %

    &'(

    )*1

    2#VN

    2Sc

    = $!CLht!+

    %&'

    ()*aircraft

    lht

    VN

    %

    &'(

    )*,

    -..

    /

    011

    lht

    c

    %&'

    ()*1

    2#VN

    2Sc

    Cmqht= !

    "CLht"#

    lht

    VN

    $

    %&'

    ()lht

    c

    $%&

    '()= !

    "CLht"#

    lht

    c

    $%&

    '()2

    c

    VN

    $

    %&'

    ()

    Coefficient derivative with respect to pitch rate

    Coefficient derivative with respect to normalized pitch rate is insensitive tovelocity

    Cmqht=!Cmht!q

    =!Cmht

    ! qc2VN( )

    = "2!CLht!#

    lht

    c

    $%&

    '()2

  • Comparison of Fourth-and Second-OrderDynamic Models

    0 - 100 sec

    Reveals Phugoid Mode

    Initial-Condition Responsesof Business Jet at Two TimeScales

    0 - 6 sec

    Reveals Short-Period Mode

    LTI 4th-order responses viewed over different periods of time

    4 initial conditions

    Second-Order Models of

    Longitudinal Motion

    Approximate Phugoid Equation

    !!xPh =! !V! !"

    #

    $%%

    &

    '(()

    *DV *gcos" NLVVN

    g

    VNsin" N

    #

    $

    %%%

    &

    '

    (((

    !V!"

    #

    $%%

    &

    '((+

    T+T

    L+TVN

    #

    $

    %%%

    &

    '

    (((!+T +

    *DVLVVN

    #

    $

    %%%

    &

    '

    (((!Vwind

    !!xSP =! !q! !"

    #

    $%%

    &

    '(()

    Mq M"

    1*LqVN

    +,-

    ./0

    * L"VN

    #

    $

    %%%

    &

    '

    (((

    !q!"

    #

    $%%

    &

    '((+

    M1E

    *L1EVN

    #

    $

    %%%

    &

    '

    (((!1E +

    M"

    *L"VN

    #

    $

    %%%

    &

    '

    (((!"wind

    Approximate Short-Period Equation

    Assume off-diagonal blocks of (4 x 4)stability matrix are negligible FLon =

    FPh

    ~ 0

    ~ 0 FSP

    !

    "

    ##

    $

    %

    &&

    Phugoid Time Scale Short-Period Time Scale

    Full and approximate linear models

    Comparison of Bizjet Fourth- andSecond-Order Model Responses

    FourthOrder

    SecondOrder

  • Approximate Phugoid Roots

    Approximate Phugoid Equation (!N = 0)

    !!xPh =! !V! !"

    #

    $%%

    &

    '(()

    *DV *g

    LVVN

    0

    #

    $

    %%%

    &

    '

    (((

    !V!"

    #

    $%%

    &

    '((+

    T+T

    L+TVN

    #

    $

    %%%

    &

    '

    (((!+T

    Characteristic polynomial

    sI ! FPh = det sI ! FPh( ) " #(s) = s2+ DVs + gLV /VN

    = s2+ 2$%ns +%n

    2

    !n= gL

    V/V

    N

    " =DV

    2 gLV/V

    N

    Natural frequency anddamping ratio

    !n" 2 g

    VN

    ; T = 2# /!n

    $ "1

    2 L / D( )N

    Neglectingcompressibility effects

    Effect of Airspeed and L/D on Approximate

    Phugoid Natural Frequency, Period, andDamping Ratio

    !n " 2gVN

    " 13.87 /VN (m / s); Period, T = 2# /!n " 0.45VN sec

    $ "1

    2 L / D( )N

    Velocity

    Natural

    Frequency Period L/D

    Damping

    Ratiom/s rad/s sec50 0.28 23 5 0.14100 0.14 45 10 0.07200 0.07 90 20 0.035400 0.035 180 40 0.018

    Neglecting

    compressibility effects

    Approximate Phugoid Response to

    a 10% Thrust Increase

    What is the steady-state response?

    Approximate Short-Period Roots

    Approximate Short-Period Equation (Lq = 0)

    Characteristic polynomial

    Natural frequency and damping ratio

    !!xSP =! !q

    ! !"

    #

    $%%

    &

    '(()

    Mq M"

    1 *L"VN

    #

    $

    %%%

    &

    '

    (((

    !q

    !"

    #

    $%%

    &

    '((+

    M+E

    *L+EVN

    #

    $

    %%%

    &

    '

    (((

    !+E

    !(s) = s2 +L"

    VN

    # Mq

    $

    %&'

    ()s # M" + Mq

    L"

    VN

    $

    %&'

    ()

    = s2+ 2*+

    ns ++

    n

    2

    !n= " M# + Mq

    L#

    VN

    $

    %&'

    (); * =

    L#

    VN

    " Mq

    $%&

    '()

    2 " M# + MqL#

    VN

    $%&

    '()

  • Approximate Short-PeriodResponse to a 0.1-Rad Pitch

    Control Step InputPitch Rate, rad/s Angle of Attack, rad

    Normal Load Factor Response to a

    0.1-Rad Pitch Control Step Input

    Normal Load Factor, g!s at c.m.

    Aft Pitch Control

    Normal Load Factor, g!s at c.m.

    Forward Pitch Control

    nz=VN

    g! !" # !q( ) =

    VN

    g

    L"

    VN

    !" +L$E

    VN

    !$E%

    &'(

    )*

    Normal load factor at the center of mass

    Pilot focuses on normal load factor during rapid maneuvering

    Grumman X-29

    Next Time:Lateral-Directional Dynamics

    SupplementalMaterial

  • ! f2

    !"E=

    1

    mVNCL"E

    #VN2

    2S

    $

    %&

    '

    ()

    ! f2

    !"T=

    1

    mVNCT"T sin*N

    #VN2

    2S

    $

    %&

    '

    ()

    ! f2

    !"F=

    1

    mVNCL"F

    #VN2

    2S

    $

    %&

    '

    ()

    ! f2

    !Vwind= "

    ! f2

    !V

    ! f2

    !#wind

    = "! f

    2

    !#

    Control and Disturbance Sensitivities inFlight Path Angle, Pitch Rate, and Angle-of-

    Attack Dynamics

    ! f3

    !"E=1

    IyyCm"E

    #VN2

    2Sc

    $

    %&

    '

    ()

    ! f3

    !"T=1

    IyyCm"T

    #VN2

    2Sc

    $

    %&

    '

    ()

    ! f3

    !"F=1

    IyyCm"F

    #VN2

    2Sc

    $

    %&

    '

    ()

    ! f3

    !Vwind= "

    ! f3

    !V

    ! f3

    !#wind

    = "! f

    3

    !#

    ! f4

    !"E= #

    ! f2

    !"E

    ! f4

    !"T= #

    ! f2

    !"T

    ! f4

    !"F= #

    ! f2

    !"F

    ! f4

    !Vwind=! f

    2

    !V

    ! f3

    !"wind

    =! f

    2

    !"

    Control- and Disturbance-Effect Matrices

    Control-effect derivatives portray accelerationsensitivities to control input perturbations

    Disturbance-effect derivatives portray acceleration sensitivitiesto disturbance input perturbations

    GLon

    =

    !D"E T"T !D"F

    L"E /VN L"T /VN L"F /VN

    M"E M"T M"F

    !L"E /VN !L"T /VN !L"F /VN

    #

    $

    %%%%%

    &

    '

    (((((

    LLon

    =

    !DVwind

    !D"wind

    LVwind

    /VN

    L"wind/V

    N

    MVwind

    M"wind

    !LVwind

    /VN

    !L"wind /VN

    #

    $

    %%%%%%

    &

    '

    ((((((

    Primary LongitudinalControl Derivatives

    D!T !"1m

    CT!T#VN

    2

    2S

    $

    %&

    '

    ()

    L!FVN

    !1

    mVNCL!F

    #VN2

    2S

    $

    %&

    '

    ()

    M!E =1

    IyyCm!E

    #VN2

    2Sc

    $

    %&

    '

    ()

    Horizontal Tail Lift Sensitivity

    to Angle of Attack

    CL!ht( )aircraft =Vtail

    VN

    "

    #$%

    &'

    2

    1()*)!

    "#$

    %&'+elas

    Sht

    S

    "#$

    %&'CL!ht( )

    " = Wing downwash angle at the tailVTail = Airspeed at vertical tail;

    scrubbing lowers VTail, propeller

    slipstream increases VTail#elas = Aeroelastic correction factor

  • Wing Lift and Moment CoefficientSensitivity to Pitch Rate

    Straight-wing incompressible flow estimate (Etkin)

    CLqwing= !2CL"wing

    hcm ! 0.75( )

    Cmqwing= !2CL"wing

    hcm ! 0.5( )2

    Straight-wing supersonic flow estimate (Etkin)

    CLqwing= !2CL"wing

    hcm ! 0.5( )

    Cmqwing= !

    2

    3 M2!1

    ! 2CL"winghcm ! 0.5( )

    2

    Triangular-wing estimate (Bryson, Nielsen)

    CLqwing= !

    2"

    3CL#wing

    Cmqwing= !

    "

    3AR Approximations are very close to 4th-order values because natural

    frequencies are widely separated

    Comparison of Bizjet Fourth- andSecond-Order Models and Eigenvalues

    Fourth-Order ModelF = G = Eigenvalue Damping Freq. (rad/s)

    -0.0185 -9.8067 0 0 0 4.6645 -8.43e-03 + 1.24e-01j 6.78E-02 1.24E-010.0019 0 0 1.2709 0 0 -8.43e-03 - 1.24e-01j 6.78E-02 1.24E-01

    0 0 -1.2794 -7.9856 -9.069 0 -1.28e+00 + 2.83e+00j 4.11E-01 3.10E+00-0.0019 0 1 -1.2709 0 0 -1.28e+00 - 2.83e+00j 4.11E-01 3.10E+00

    Phugoid ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -0.0185 -9.8067 4.6645 -9.25e-03 + 1.36e-01j 6.78E-02 1.37E-010.0019 0 0 -9.25e-03 - 1.36e-01j 6.78E-02 1.37E-01

    Short-Period ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -1.2794 -7.9856 -9.069 -1.28e+00 + 2.83e+00j 4.11E-01 3.10E+00

    1 -1.2709 0 -1.28e+00 - 2.83e+00j 4.11E-01 3.10E+00

    Effects of Airspeed, Altitude, Mass, and Moment of

    Inertia on Fighter Aircraft Short Period

    Airspeed Altitude

    Natural

    Frequency Period

    Damping

    Ratiom/s m rad/s sec -122 2235 2.36 2.67 0.39152 6095 2.3 2.74 0.31213 11915 2.24 2.8 0.23274 16260 2.18 2.88 0.18

    Mass

    Variation

    Natural

    Frequency Period

    Damping

    Ratio% rad/s sec --50 2.4 2.62 0.440 2.3 2.74 0.3150 2.26 2.78 0.26

    Moment of

    Inertia

    Variation

    Natural

    Frequency Period

    Damping

    Ratio% rad/s sec --50 3.25 1.94 0.330 2.3 2.74 0.3150 1.87 3.35 0.31

    Airspeed

    Dynamic

    Pressure

    Angle of

    Attack

    Natural

    Frequency Period

    Damping

    Ratiom/s P deg rad/s sec -91 2540 14.6 1.34 4.7 0.3152 7040 5.8 2.3 2.74 0.31213 13790 3.2 3.21 1.96 0.3274 22790 2.2 3.84 1.64 0.3

    Airspeed variation at constant altitude

    Altitude variation with constant dynamic pressure

    Mass variation at constant altitude

    Moment of inertia variation at constant altitude