(12) (10) patent n0.: us 7,314,736 b2 united states patentunited states patent us007314736b2 (12)...

47
United States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008 (54) NUCLEIC ACIDS ENCODING 6,172,188 B1 1/2001 Thastrup et al. OXIDATION-REDUCTION SENSITIVE 6,306,600 B1 10/2001 Kain et al. GREEN FLUORESCENT PROTEIN 6,316,181 B1 11/2001 Fillmore et a1. VARIANTS 6,319,669 B1 11/2001 Tsien et a1. _ 6,342,379 B1 l/2002 Tsien et a1. (75) Inventors: S. James Remington, Eugene, 'OR 6,414,119 B1 7/2002 Fisher (US); George T. Hanson, Madison, WI 6,509,174 B2 V2003 Jordan et al‘ (US) 6,803,188 B1 l0/2004 Tsien et a1. (73) Assignee: The State of Oregon acting by and glen 6:131‘ 1 through the State Board of Higher lyaw 1 et 3' Education on behalf of the University of Oregon, Eugene, OR (US) FOREIGN PATENT DOCUMENTS ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 W0 WO 96/23810 8/1996 U_S_C_ 154(1)) by 110 days_ W0 WO 98/02571 1/1998 W0 WO 99/64592 12/1999 (21) Appl. N0.: 11/255,677 (22) Filed: Oct. 20, 2005 OTHER PUBLICATIONS (65) Prior Publication Data Akerley et al., “Systematic identi?cation of essential genes by in Us 2006/0040359 A1 Feb' 23’ 2006 niafinleggrgiutagenesis,” Proc. Natl. Acad. Sci. USA, 95:8927 , u. . Related U_s_ Application Data Arai et al., “Mitochondrial I Phospholipid Hydroperoxide _ _ _ _ _ _ Glutathlone Peroxldase Plays a Major Role 1n Preventmg OX1dat1ve (62) Division ofapplication No. 10/471,857, ?led as apph- Injury to Cells,” .1'. Biological Chemistry, 274(8):4924-4933, 1999. 0811011 NO. PCT/US02/07374 011 Mar- 11, 2002, HOW Chattoraj et al., “Ultra-fast excited dynamics in green ?uorescent Pat. NO. 7,015,310. protein: Multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA, 93:8362-8367, A . 1996. (60) Provisional application No. 60/302,894, ?led on Jul. C ug. . ,, . . . . OXOIl and Bestor, Protems that glow 1n green and blue, Chem 3, 2001, provisional application No. 60/293,427, ?led is”), & Biology 2119421 1995‘ On May 23’ 2001’ provlslonal apphcanon NO‘ 60/275’ Gustafsson et al., “Identi?cation of new RNA modifying enzymes 200’ ?led on Mar‘ 12’ 2001' by iterative genome search using known modifying enzymes as probes,” Nucleic Acids Research, 24(19):3756-3762, 1996. (51) Int‘ Cl‘ Inouye and Tsuji, “Evidence for redoX forms of the Aequorea green C121) 21/06 (200601) ?uorescent protein,” FEBS Letters 351:211-214, 1994. (52) US. Cl. ........................ .. 435/69.1; 435/6; 435/7.l; ' 435/320.l; 435/252; 435/325; 536/23.l; 530/350 (COntlnued) (58) Field of ‘Classi?cation Search .............. None Primary ExamineriHOpe Robinson See application ?le for complete search history. (74) Attorney) Agent] or FirmiKlarquist Sparkman LLP (56) References Cited U.S. PATENT DOCUMENTS 5,565,323 A 10/1996 Parker et a1. 5,625,048 A 4/1997 Tsien et a1. 5,777,079 A 7/1998 Tsien et a1. 5,804,387 A 9/1998 Cormack et al. 5,874,304 A 2/1999 Zolotukhin et a1. 5,888,498 A 3/1999 Davis et a1. 5,908,747 A 6/1999 Shibata et a1. 5,912,137 A 6/1999 Tsien et a1. 5,968,738 A 10/1999 Anderson et a1. 5,968,750 A 10/1999 Zolotukhin et a1. 5,994,077 A 11/1999 Valdivia et a1. 6,020,192 A 2/2000 Muzyczka et al. 6,054,321 A 4/2000 Tsien et a1. 6,066,476 A 5/2000 Tsien et a1. 6,077,707 A 6/2000 Tsien et a1. 6,090,919 A 7/2000 Cormack et al. 6,096,865 A 8/2000 Michaels 6,124,128 A 9/2000 Tsien et a1. 6,140,132 A 10/2000 Tsien et a1. 6,146,826 A 11/2000 Chal?e et a1. (57) ABSTRACT The disclosure provides proteins that can be used to deter mine the redox status of an environment (such as the environment within a cell or subcellular compartment). These proteins are green ?uorescent protein (GFP) variants (also referred to as redox sensitive GFP (rosGFP) mutants), which have been engineered to have two cysteine amino acids near the chromophore and within disul?de bonding distance of each other. Also provided are nucleic acid molecules that encode rosGFPs, vectors containing such encoding molecules, and cells transformed therewith. The disclosure further provides methods of using the rosGFPs (and encoding molecules) to analyze the redox status of an environment, such as a cell, or a subcellular compartment within a cell. In certain embodiments, both redox status and pH are analyzed concurrently. 17 Claims, 17 Drawing Sheets (1 of 17 Drawing Sheet(s) Filed in Color)

Upload: others

Post on 29-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

United States Patent

US007314736B2

(12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

(54) NUCLEIC ACIDS ENCODING 6,172,188 B1 1/2001 Thastrup et al. OXIDATION-REDUCTION SENSITIVE 6,306,600 B1 10/2001 Kain et al. GREEN FLUORESCENT PROTEIN 6,316,181 B1 11/2001 Fillmore et a1.

VARIANTS 6,319,669 B1 11/2001 Tsien et a1.

_ 6,342,379 B1 l/2002 Tsien et a1. (75) Inventors: S. James Remington, Eugene, 'OR 6,414,119 B1 7/2002 Fisher

(US); George T. Hanson, Madison, WI 6,509,174 B2 V2003 Jordan et al‘ (US) 6,803,188 B1 l0/2004 Tsien et a1.

(73) Assignee: The State of Oregon acting by and glen 6:131‘ 1 through the State Board of Higher lyaw 1 et 3' Education on behalf of the University of Oregon, Eugene, OR (US)

FOREIGN PATENT DOCUMENTS ( * ) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 W0 WO 96/23810 8/1996 U_S_C_ 154(1)) by 110 days_ W0 WO 98/02571 1/1998

W0 WO 99/64592 12/1999

(21) Appl. N0.: 11/255,677

(22) Filed: Oct. 20, 2005 OTHER PUBLICATIONS

(65) Prior Publication Data Akerley et al., “Systematic identi?cation of essential genes by in

Us 2006/0040359 A1 Feb' 23’ 2006 niafinleggrgiutagenesis,” Proc. Natl. Acad. Sci. USA, 95:8927 , u. .

Related U_s_ Application Data Arai et al., “Mitochondrial I Phospholipid Hydroperoxide _ _ _ _ _ _ Glutathlone Peroxldase Plays a Major Role 1n Preventmg OX1dat1ve

(62) Division ofapplication No. 10/471,857, ?led as apph- Injury to Cells,” .1'. Biological Chemistry, 274(8):4924-4933, 1999. 0811011 NO. PCT/US02/07374 011 Mar- 11, 2002, HOW Chattoraj et al., “Ultra-fast excited dynamics in green ?uorescent Pat. NO. 7,015,310. protein: Multiple states and proton transfer,” Proc. Natl. Acad. Sci.

USA, 93:8362-8367, A . 1996. (60) Provisional application No. 60/302,894, ?led on Jul. C “ ug. . ,,

. . . . OXOIl and Bestor, Protems that glow 1n green and blue, Chem 3, 2001, provisional application No. 60/293,427, ?led is”), & Biology 2119421 1995‘ On May 23’ 2001’ provlslonal apphcanon NO‘ 60/275’ Gustafsson et al., “Identi?cation of new RNA modifying enzymes 200’ ?led on Mar‘ 12’ 2001' by iterative genome search using known modifying enzymes as

probes,” Nucleic Acids Research, 24(19):3756-3762, 1996. (51) Int‘ Cl‘ Inouye and Tsuji, “Evidence for redoX forms of the Aequorea green

C121) 21/06 (200601) ?uorescent protein,” FEBS Letters 351:211-214, 1994. (52) US. Cl. ........................ .. 435/69.1; 435/6; 435/7.l; '

435/320.l; 435/252; 435/325; 536/23.l; 530/350 (COntlnued) (58) Field of ‘Classi?cation Search .............. None Primary ExamineriHOpe Robinson

See application ?le for complete search history. (74) Attorney) Agent] or FirmiKlarquist Sparkman LLP

(56) References Cited

U.S. PATENT DOCUMENTS

5,565,323 A 10/1996 Parker et a1. 5,625,048 A 4/1997 Tsien et a1. 5,777,079 A 7/1998 Tsien et a1. 5,804,387 A 9/1998 Cormack et al. 5,874,304 A 2/1999 Zolotukhin et a1. 5,888,498 A 3/1999 Davis et a1. 5,908,747 A 6/1999 Shibata et a1. 5,912,137 A 6/1999 Tsien et a1. 5,968,738 A 10/1999 Anderson et a1. 5,968,750 A 10/1999 Zolotukhin et a1. 5,994,077 A 11/1999 Valdivia et a1. 6,020,192 A 2/2000 Muzyczka et al. 6,054,321 A 4/2000 Tsien et a1. 6,066,476 A 5/2000 Tsien et a1. 6,077,707 A 6/2000 Tsien et a1. 6,090,919 A 7/2000 Cormack et al. 6,096,865 A 8/2000 Michaels 6,124,128 A 9/2000 Tsien et a1. 6,140,132 A 10/2000 Tsien et a1. 6,146,826 A 11/2000 Chal?e et a1.

(57) ABSTRACT

The disclosure provides proteins that can be used to deter mine the redox status of an environment (such as the environment within a cell or subcellular compartment). These proteins are green ?uorescent protein (GFP) variants (also referred to as redox sensitive GFP (rosGFP) mutants), which have been engineered to have two cysteine amino acids near the chromophore and within disul?de bonding distance of each other. Also provided are nucleic acid molecules that encode rosGFPs, vectors containing such encoding molecules, and cells transformed therewith. The disclosure further provides methods of using the rosGFPs (and encoding molecules) to analyze the redox status of an environment, such as a cell, or a subcellular compartment within a cell. In certain embodiments, both redox status and pH are analyzed concurrently.

17 Claims, 17 Drawing Sheets (1 of 17 Drawing Sheet(s) Filed in Color)

Page 2: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

US 7,314,736 B2 Page 2

OTHER PUBLICATIONS

Naray-Fejes-Toth et al., “Subcellular Localization of the Type 2 llB-Hydroxysteriod Dehydrogenase,” J. Biological Chemistry, 27l(26):l5436-l5442, 1996. NiWa et al., “Chemical nature of the light emitter of the Aequorea green ?uorescent protein,” Proc. Natl. Acad. Sci. USA, 93113617 13622, Nov. 1996. Li et al., “Generation of DestabiliZed Green Fluorescent Protein as a Transcription Reporter,” .1. Biological Chemistry, 273(52):34970 34975, 1998. “Living Colors® User Manual,” Clontech, 51 pp., Apr. 2, 1999. Okamato et al., “RedoX-dependent Regulation of Nuclear Import of the Glucocorticoid Receptor,” .1. Biological Chemistry, 274(l5):l0363-l037l, 1999. Reichel et al., Enhanced green ?uorescence by the expression of an Aequorea victoria green ?uorescent protein mutant in mono- and dicotyledonous plant cells, Pro. Natl. Acad. Sci. USA, 93:5888-5893, Jun. 1996. Siemering et al., “Mutations that suppress the thermosensitivity of green ?uorescent protein,” Current Biology, 6(l2):l653-l663, 1996. Simpson et al., “Systematic subcellular localization of novel pro teins identi?ed by large-scale cDNA sequencing,” EMBO Reports, l(3):287-292, 2000. Stearns, “The green revolution,” Current Biology, 5:262-264, 1995.

Wachter and Remington, “Sensitivity of the yellow variant of green ?uorescent protein to halides and nitrate,” Current Biology 9(l7):628-629, 1999. “Aequorea victoria green-?uorescent protein mRNA complete cds” GenBank Accession M62653, Apr. 26, 1993. “Aequorea victoria green-?uorescent protein mRNA complete cds,” GenBank Accession M62654, Apr. 26, 2003. “Clontech GFP License Statements,” Clontech, .clontech.com/gfp/ license/indexhtml, 2 pp., accessed Nov. 26, 2000. “The Fluorophore of Green Fluorescent Protein,” pps99.cryst.bbk. ac.uldprojects/gmocZ/gfp.htm, 6 pp., accessed Nov. 18, 2000. “Illuminating the Structure of Green Fluorescent Protein,” NPACI Online, WWW.npaci.edu/online/v4.l4/gfp.html, IV:l4, 4 pp., accessed Jul. 12, 2000.

“Living ColorsTM Fluorescent Proteins,” Clontech, www.clontech. com/gfp/, accessed Nov. 18, 2000.

“Living ColorsTM Fluorescent Timer,” Clontech, presort mail adver tisement.

“Patent mutations for improved performance,” Amersham Biosciences, WWW5 .amershambiosciences.com/aptriX/upp009 l9. nsf/content/D9B3F40CB359B9B, 5 pp., accessed Mar. 12, 2003. “Product Catalog: N-Terminal Enhanced Fluorescent Protein Vec tors,” Clontech, www.clontech.com/products/catalog0l/Sec5/ pl78nterminalefpv.html, 3 pp., accessed Jan. 13, 2001.

Page 3: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent

Fluorescence Intensity (a.u.)

Fraction of reduced GFP

Jan. 1, 2008

FIG. 1

Sheet 1 0f 17

100

80

60

Excitation Wavelength (nm)

FIG. 2

1.0 .

0.8 \ 0.6

0.4 \ 0.2 '

Z \ 0.0 L I:_IJ l l j i LAI L l l I l Ll I.) j_l_l L

US 7,314,736 B2

-O. 353 - - — ' - -0.293

— - - -0.277

—O. 262 - - - - - -O. 232

0.45 0.40 0.35 0.30 0.25 0.120 0.15

Page 4: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 2 0f 17 US 7,314,736 B2

U El 5 ‘ID 15 2D 25 3D 35 4D

'Fme (min)

123455 T" 8 9113111213

Page 5: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 3 0f 17 US 7,314,736 B2

FIG. 5A

100

g 80 (U E E 60 < ‘G

g 40

E *6 20 2

Q5 400 450 500 550

Wavelength (nm)

FIG. 5B

100

b '5 80

E E‘(V) C o

E 60 0.310 8 - - - - - -0.2B5

8 40 — - 41.275

5 ------- -- 41.265

5 20 — - — — - -0.240

U- _

05- e- e-Me. UH . .. 350 400 450 500 550

Excitation Wavelength (nm)

Page 6: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 4 0f 17 US 7,314,736 B2

FIG. 6A

Eo (V) -o.320

- - - - - -o.295

— — - -o.2s5

------- -~ -o.275

- - - - - -o.230

Fluorescence Intensity 950 400 450 500 550

Excitation Wavelength (nm)

FIG. 68

E0‘ (V) _o.320

- - - - - -0295

- - - _0.285

------- -- -0.275

- - - - ' ~0.230

Fluorescence Intensity 360 380 400 42? 4?)

Excitation Wavelength (nm)

Page 7: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 5 0f 17 US 7,314,736 B2

FIG. 7

100T a .

‘a sow- I

5 » E0 (v) c .

E 60': 0.310 g - - ~ - - - 0.290

‘1’ ' — - - 0280 0 - .

a’; 40W; ------- ~- 0270 “g - _ - - - - 41.230

E 20': h":

850 .460 450 560 550 Excitation Wavelength (nm)

Page 8: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 6 0f 17 US 7,314,736 B2

:lG. 8A

u 000 0. O. 8:362? 250 300 350 400 450 500 50

Wavelength (nm)

FIG. 88

pH 0 o 4 0 6 2

36:25 353202» 550 500 450 400 350

Excitation Wavelength (nm)

Page 9: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 7 0f 17 US 7,314,736 B2

FIG. 9A

0.15-1

0.12-2 0.09'E- pKa : 61 0.06‘: Absorbance 0. 03%:

0.005 . . . . .

4.0 5.0 6.0 7.0 8.0 9.0

pH

-II.-.4JLLI. ' I

FIG. 98

0.30. 025%‘ 020-1

015-5 pKa = 5.6 Absorbance 0.10‘

0. 051: 0.00 L 4 4 l + L M L, L L. .4 . . . .

4.0 5.0 6.0 7.0 8.0 9.0

Page 10: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 8 0f 17 US 7,314,736 B2

FIG. 10A

m U C (U E O (D .Q <

Wavelengthmm)

FIG. 10B

100*_ b . '7; 80‘ C

2 i E 60. w

8 l 8 40 U’)

9 -

5 20J u. I

O<_.. .(H I . l‘ .“I . .IJ.UJI..UI

350 400 450 500 550

Excitation Wauelength (nm)

Page 11: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 9 0f 17 US 7,314,736 B2

FIG. 11

36:25 oEwowQgE 500 sis 460" 425 450 ‘4% 9564

Excitation Wavelength (nm)

Page 12: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 13: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 14: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 12 0f 17 US 7,314,736 B2

FIG. 14A

Ratio (nm) —o—- 490/400

+ 490/4 25

-—I—- 400/425

l4LLlllnl

26m 36:25 oocmuwm62¢

pH

FIG. 14B

Ratio (nm) ——.— 490/400

—-A—— 490/425

+ 425/400

PL b- : : LIP. - .

6T5 710 7:5 8.0 8.5 6.0

.1... . I. . 2 9 6 3

1

85 11 osmm 25:25 wocmuwgosi

0

pH

Page 15: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 13 0f 17 US 7,314,736 B2

FIG. 15

in. f

lljl llll r ‘I

_ - - _ - - - _ p > - _ 0 0 0 0 8 6 4 2

0 0 1.

26:25 mocwowmzoam 425 450 4.75 500 525 550 575 600

Emission Wavelength (nm)

Page 16: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 14 0f 17 US 7,314,736 B2

FIG. 16A

100 _

on O - i

O) O

A O

425 450 47's 500 525 550 sis

Fluorescence lntens ity

600

Em'ssion Wavelength (nm)

FIG. 16B

25L

20-

Ratio

— - — - - maximum

10__ + 511/460 nm L ——-- - minimum

LIAL l

0.26 -0.24 -0f28

Eo (v)

Fluorescence Intensity Ratlo 1

{- 3

O l l A 2 n u l

-O.32 -O.3O

Page 17: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 15 0f 17 US 7,314,736 B2

Page 18: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 19: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

U.S. Patent Jan. 1, 2008 Sheet 17 0f 17 US 7,314,736 B2

FIG. 20

100

Q 2 8O :1 [WWI/[WW1 C

'6 6° -———O.3696 8 —-—--0.0486 °’ — — -o.o254

23> 40 ------- -- 0.0113 a —-—--0.0017 2 20 LL.

OFZ- JIr.LLJYIL...Ir.LL 350 400 450 500 550

Excitation Wavelength (nm)

FIG. 21

K =2.05><10'2 eq

Fraction of reduced rsGF P1 (R)

l ‘Aw-l LILIILIIAA “ml 1

10'5 10 16-3 16216" 16° 161 102

Page 20: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008

US 7,314,736 B2 1

NUCLEIC ACIDS ENCODING OXIDATION-REDUCTION SENSITIVE GREEN FLUORESCENT PROTEIN

VARIANTS

CROSS REFERENCE TO RELATED APPLICATIONS

This is a divisional of US. patent application Ser. No. 10/471,857, ?led Mar. 8, 2004, now US. Pat. No. 7,015,310 Which is the § 371 US. National Stage of International Application No. PCT/US02/07374, ?led Mar. 11, 2002 (published in English under PCT Article 21(2)), Which in turn claims the bene?t of US. Provisional Patent Applica tion No. 60/275,200, ?led Mar. 12, 2001, 60/293,427, ?led May 23, 2001, and Ser. No. 60/302,894, ?led Jul. 3, 2001. These applications are incorporated herein in their entirety.

STATEMENT REGARDING GOVERNMENT FUNDING

This invention Was made With government support under grant number GM07759-22 and grant number GM42618-10 both aWarded by the National Institutes of Health (NIH). The government may have certain rights in the invention.

FIELD

The present disclosure relates to the ?eld of genetic engineering, and in particular to green ?uorescent protein (GFP) mutants that can be used to detect oxidation-reduction state, or a change in oxidation-reduction state.

BACKGROUND

The green ?uorescent protein (GFP) from the Paci?c Northwest jelly?sh, Aequorea Victoria, has been used exten sively in molecular and cell biology as a ?uorescent marker. It is a 238 amino acid protein that generates its oWn ?uorescent chromophore. The spontaneous generation of the chromophore is achieved by cycliZation of the internal Ser65-Tyr66-Gly67 sequence folloWed by oxidation of Tyr 66 in the presence of molecular oxygen (Heim et al., Proc. Natl. Acad. Sci. USA 91:12501-12504, 1994). The overall fold of the protein consists of an 11-stranded [3-barrel capped by ot-helices at both ends and contains a coaxial ot-helix from Which the chromophore is generated (Brejc et al., Proc. Natl. Acad. Sci. USA 94:2306-2311, 1997; Ormo et al., Science 273:1392-1395, 1996; Yang et al., Nat. Biotech. 14:1246-1251, 1996). GFP is unique among light emitting proteins, because it does not require the presence of any cofactors or substrates for the production of green light.

Wild-type GFP has absorption maxima at 398 and 475 nm (Morise et al., Biochemistry 13:2656-2662, 1974). Excita tion at either of these Wavelengths leads to emission of green light at 508 nm (Morise et al., 1974). The usefulness of GFP has been greatly enhanced by the availability of mutants With a broad range of absorption and emission maxima (Heim et al., Proc. Natl. Acad. Sci. USA 91:12501-12504, 1994; Ormo et al., Science 273:1392-1395, 1996). These mutants have made possible multicolor reporting of cellular processes by alloWing for the simultaneous observation of tWo or more gene products labeled With di?ferent colored GFP variants (RiZZuto et al., Curr Biol. 6: 183-188, 1996). In addition, ?uorescence resonance energy transfer (FRET) experiments using di?ferent colored GFP’s have been used to

20

25

35

40

45

50

55

60

65

2 study protein-protein interactions in vivo (Heim et al., Curr. Biol. 6:178-182, 1996; Mitra et al., Gene 173:13-17, 1996). More recently, GFP variants have been shoWn to be

sensitive to pH (Wachter et al., Biochemistry 36:9759-9765, 1997; Elsliger et al., Biochemistry 38:5296-5301, 1999). As a consequence, they have been used as noninvasive intrac ellular pH indicators. For instance, Kneen et al. employed the GFP mutant S65T/F64L to determine the pH of the cytoplasm of CHO and LLC-PKl cell lines (Kneen et al., Biophys. J. 74:1591-1599, 1998). Since GFP is genetically encoded, it can be speci?cally targeted to various subcellular compartments, Which is a task not possible With small molecule ?uorescent dyes (Llopis et al., Proc. Natl. Acad. Sci. USA 95:6803-6808, 1998). Therefore, Llopis and co Workers used the GFP variant S65G/S72A/T302Y/H231L, Which has an increased pKa, to measure the alkaline pH of mitochondria, golgi, and the cytosol of HeLa cells and rat neonatal cardiomyocytes (Llopis et al., 1998). These reports Were the ?rst to shoW that GFP variants could be used as biosensors and not just simple ?uorescent markers. HoW ever, more recently GFP has been shoWn to be sensitive to halide ions and through a fusion With calmodulin, GFP’s ?uorescence can also vary in response to calcium ion concentration (Wachter et al., Curr Biol. 9zR628-R629, 1999; MiyaWaki et al., Proc. Natl. Acad. Sci. USA 96:2135 2140, 1999).

Oxidation-reduction (redox) processes are very important in living organisms. The formation of disul?de bonds during protein folding relies upon a Well maintained redox bu?er ing system of glutathione and oxidiZed glutathione (Carothers et al., Arch. Biochem. Biophys. 268:409425, 1989). There also exists a thioredoxin-like family of enZymes that catalyZe the formation and isomeriZation of disul?de bonds in proteins (Debarbieux and BeckWith, Cell 99:117-119, 1999). In addition, redox signaling during apo ptosis has been implicated in activating mitochondrial per meability transition, leading to cytochrome c release (Hall, Eur J. Clin. Invest. 29:238-245, 1999). Redox changes in the form of cellular oxidation have also been suggested to be a ?nal step in the apoptotic process leading to degradation of apoptotic bodies (Cai and Jones, J. Bioenerg. Biomemb. 31:327-334, 1999). Given the importance of in vivo pro cesses such as protein folding and apoptosis that are depen dant upon redox status, a non-invasive, convenient method for studying redox changes Within living cells is needed.

Current methods of determining in vivo redox status have many limitations. Many present techniques require cells to be harvested before their contents can be analyZed. This type of procedure is not only very invasive but is also not a very accurate measure of the in vivo state of the cells. Moreover, it Would be impossible With this technique to monitor redox changes Within the same cell over a period of time. Recently, Keese et al. (Keese et al., FEBS Lett. 447:135-138, 1999) have developed an indicator of redox state in Which glu tathione reductase crystals Were microinj ected into the cyto sol of human ?broblasts, and by detecting a color change of the crystals, they Were able to determine the redox potential of the cytosol to be more reducing than —0.270 V. While this method may alloW redox determination Within single living cells, the cumbersome nature of the technique is still a major draWback. The most reasonable protocol for determining redox status is probably still that of HWang et al. (HWang et al., Science 257:1496-1502, 1992). They employed the tetrapeptide N-Acetyl-Asn-Tyr-Thr-Cys-NH2 to measure the ratio of thiol to disul?de in the cytosol and secretory pathWay of cultured cells. They concluded that the cytosol is more reducing than the secretory pathWay With an approxi

Page 21: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 22: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 23: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 24: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 25: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 26: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 27: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 28: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 29: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 30: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 31: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 32: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 33: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 34: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 35: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 36: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 37: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 38: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 39: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 40: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 41: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 42: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 43: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 44: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 45: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 46: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008
Page 47: (12) (10) Patent N0.: US 7,314,736 B2 United States PatentUnited States Patent US007314736B2 (12) (10) Patent N0.: US 7,314,736 B2 Remington et al. (45) Date of Patent: Jan. 1, 2008