13 ch0 preview problems 2013 s

Upload: william-wong

Post on 14-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    1/37

    PreviewPreview:: Preliminary and Engineering Problems

    Binomial theoremBinomial theorem

    EulerEulers formulas formula

    DifferentiationDifferentiation

    IntegrationIntegration

    Complex variablesComplex variables

    Tensor and vector calculusTensor and vector calculus

    Hyperbolic functionsHyperbolic functions

    Simplest Differential EquationsSimplest Differential Equations

    Professor K.T. Chau

    P-1

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    2/37

    2 3

    2 3

    2 3

    ( 1) ( 1)( 2)lim (1 ) lim[1 ( ) ( ) ( ) ...]1! 2! 3!

    (1 1/ ) (1 1/ )(1 2 / )lim[1 ...]

    1! 2! 3!

    1 ...1! 2! 3!

    x n

    n n

    n

    x n x n n x n n n xe n n n n

    x n x n n x

    x x x

    = + = + + + +

    = + + + +

    = + + + +

    1 2 2 1( 1)( )2

    n n n n n nn nx h x nx h x h nxh h + = + + + + +

    Binomial theorem

    Proof of power series ofex

    Review on fundamentals (something you MUST know)

    0

    1

    2 2 2

    3 3 2 2 3

    4 4 3 2 2 3 4

    ( ) 1

    ( )

    ( ) 2

    ( ) 3 3

    ( ) 4 6 4

    ...

    a b

    a b a b

    a b a ab b

    a b a a b ab b

    a b a a b a b ab b

    + =

    + = +

    + = + +

    + = + + +

    + = + + + +

    Pascals triangle (1654)

    Apianus (1527)

    (1261)

    Jia XianPascal

    Yang Hui

    P-2

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    3/37

    1 2 2 1

    1 1 2 2 2 1 1

    ( 1)( )

    2

    ...

    n n n n n n

    n n n r n r r n n nn n n n

    n nx h x nx h x h nxh h

    x C x h C x h C x h C xh h

    + = + + + + +

    = + + + + + + +

    ( 1)...( 1) !

    ! !( )!r

    n

    n n n r nC

    r r n r

    += =

    Example P-1

    1

    1 1

    ( 1)! ( 1)!

    ( 1)!( )! !( 1 )!

    ( 1)![ ( )]

    ( 1)!( )!

    !!( )!

    r r

    n n

    rn

    n n

    C C r n r r n r

    nr n r

    r n r

    n Cr n r

    + = +

    = +

    = =

    Basic identity

    Related to probability

    Problem P-1 Find S?

    1 2 11 ... 1r nn n n nS C C C C = + + + + + + +

    P-3

    Hua Luogeng

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    4/37

    Review on compound interest and the birth ofe

    Problem P-2 FindS1?1 2 1 1

    1 1 ... ( 1) ( 1)n n n

    n n nS C C C = + + + +

    Growth of money in bank

    (1 )S P r= + r = annual interest ratePr= interest at the end of 1 year

    After year, take out money and redeposit (a bigger P)

    2[ (1 )](1 ) (1 )2 2 2r r rS P P= + + = +

    After 1/n year, take out money and redeposit (a bigger P)

    [ (1 )...](1 ) (1 )nr r r

    S P Pn n n= + + = +

    The best you can earn in compound interest (in 1 year)

    Compound interest

    lim (1 )n rn

    rS P Pe

    n= + =

    1lim (1 ) 2.71828...nn

    en= + =

    P-4

    Euler

    Eulers number

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    5/37

    Gerolamo Cardano

    (1501-1576)

    Italian mathematician Gerolamo Cardano is the firstknown to have introduced complex numbers in 1545.He called them "fictitious", during his attempts to find

    solutions to cubic equations in the 16th century

    History of Complex Numbers

    3 2 0ax bx cx d + + + =

    1i =

    General formula of roots for cubic equation

    P-5

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    6/37

    Review on Eulers formula

    (cos sin )ix iy re r i + = = +

    Demoivres Formula

    Example P-2 Special case ofr=1 and =

    1ie = 1 0ie + = Eulers formula

    Problem P-3 Find ?ii =(Answer: Infinite answers and the smallest one is 0.207879576)

    Problem P-4 Find ?i i =(Answer: Infinite answers and the smallest one is 4.810477381)

    1i =

    (cos sin ) cos sinni n i n + = +

    P-6

    LHopitals Rule (actually by Johann Bernoulli)

    ( ), ( )f x g x

    ( ), ( ) 0f x g x

    ( ) ( )

    lim lim( ) ( )x a x a

    f x f x

    g x g x

    =

    x a( ), ( )f x g x

    are differentiable

    0,

    0

    { }( ) ( 1) ( 2) (1) ( 3) (2) ( 1) ( 1) ( )

    ... ( 1) ( 1)k k k k k k k k d

    VU U V U V U V UV UV dx

    = + + +

    LHopitalBernoulli

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    7/37

    Swiss mathematician and scientist

    Euler (1707-1783)

    Saturday afternoon lessons from

    Johann Bernoulli

    Johann Bernoulli

    (1667 1748)

    Basel University(1459)

    the oldest universityin Switzerland

    Euler cannot get a job

    at Basel University

    Daniel Bernoulli

    Father-son

    friends

    Teacher & inspirer

    Nicolaus II Bernoulli

    Catherine I

    Russia

    1727

    Frederick II

    Prussia

    1741

    P-7

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    8/37

    Swiss franc

    P-8

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    9/37

    Letters of Euler on different Subjects in Natural Philosophy

    Addressed to a German Princess

    http://www.math.dartmouth.edu/~euler/tour/tour_00.html

    886 publications of Euler available here

    German Princess

    P-9

    Seven Bridges of

    KnigsbergGraph theory

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    10/37

    Review on differentiation

    ( ) lnu ud dua a adx dx=1log lnad duudx u a dx=1lnd duudx u dx=u ud du

    e edx dx=

    Derivatives of Exponential and Logarithmic Functions

    ( ) 1n nd

    nx

    dx

    =( ) 0d

    cdx

    =( )( ) ( )

    0

    limh

    f x h f xdff x

    dy h

    + = =

    ( )d dv du

    uv u vdx dx dx

    = +

    DefinitionPower rule

    ( )d du

    cu cdx dx

    =

    2

    du dvv u

    d u dx dx

    dx v v

    =

    Quotient ruleProduct rule

    ( )sin cosd du

    u udx dx

    = ( )cos sind du

    u udx dx

    =

    Circular functions (Trigonometric Functions )

    ( ) 2tan secd du

    u udx dx

    =

    Chain Rule: dy dy dudx du dx

    =

    (sinh ) coshd du

    u udx dx

    = (cosh ) sinhd du

    u udx dx

    = 2(tanh ) sechd du

    u udx dx

    =

    Hyperbolic functions

    ( ), ( )y y u u u x= =

    1

    2

    1sin

    1

    d duu

    dx dxu

    =

    1

    2

    1tan

    1

    d duu

    dx u dx

    =+

    1

    2

    1cos

    1

    d duu

    dx dxu

    =

    1

    2

    1(sinh )

    1

    d duu

    dx dxu

    =+

    1

    2

    1(cosh )

    1

    d duu

    dx dxu

    =

    1

    2

    1(tanh )

    1

    d duu

    dx dxu

    =

    ( ) 1n nd du

    u nu

    dx dx

    =

    ( )d du dv

    u vdx dx dx

    + = +

    Sum rule Constant multiple

    P-10

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    11/37

    Leibniz's rule of differentiation under integral sign

    ( ) ( )

    ( ) ( )

    ( , ) ( ) ( )( , ) [ , ( )] [ , ( )]

    h x h x

    g x g x

    d df x dh x dg xf x d d f x h x f x g x

    dx dx dx dx

    = +

    General Leibniz rule

    0

    ( )n k n k n

    k

    nn k n k k

    d d f d g fg C

    dx dx dx

    =

    =

    Example P-3 9 9 8 2 79 9 8 2 7

    sin sin 9 8 sin( sin ) 9 ( ) ( ) ...2!

    cos 9sin

    d d x d d x d d xx x x x xdx dx dx dx dx dx

    x x x

    = + + += +

    0

    Partial differentiation0

    0

    ( , ) ( , )lim ( )

    ( , ) ( , )lim ( )

    y xx

    x yy

    f f x x y f x y ff

    x x x

    f f x y y f x y f

    y y y

    + = = =

    + = = =

    ( , ) ( , )

    ( , ) ( , ) ( , ) ( , )

    ( , ) ( , ) ( , ) ( , )[ ] [ ]

    0 0

    and

    as and , the total differential i

    x x x y y y f f f

    f f x x y y f x y

    f x x y y f x y y f x y y f x y

    f x x y y f x y y f x y y f x yx y

    x y

    x y df

    + + +

    = + +

    = + + + + + + + + +

    = +

    s

    f fdf dx dyx y

    = +

    Total differential

    f f

    df dx dyy

    = +

    Proof

    1 2

    1 2

    ... nn

    f f fdf dx dx dx

    x x x

    = + + +

    P-11

    Leibniz

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    12/37

    ( , ) ( ) ( )and ,f f x y x x u y y u

    f df f dx f dydf dx dy

    x y du x du y du

    = = =

    = + = +

    Chain rule

    Problem P-5 Show that

    Polar coordinates and, Cartesian coordinates x and y, x=cos ,y=sin, transform into one in and

    2 2 2

    1 2 1 2 1 2 2 1 1 2

    ( ) 2 2v u v u v u

    uv u vx x x x x x x x x x

    = + + +

    2 2 2

    2 2 1/2

    21

    2 2 2 2

    2

    2

    cos sin( )

    / sin sin costan

    1 ( / )sin cos

    cos sin

    ( )

    , ,

    ), ,

    ,

    and

    xx y

    x x y y

    y x y (y / x

    x y x x y y

    x x x y

    f f

    x x x

    = + = = =

    +

    = = = = = =

    + +

    = + = = +

    =

    2 2 2 22

    2 2 2 2 2 2

    1 1( ) ( , )

    2 f f f f f ff x y

    y y y x y

    = = + = + +

    2 2

    2 2

    f

    x y

    +

    ( , ) ( , )f x y f

    Example P-4

    P-12

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    13/37

    ( ) ,!

    )()(

    10

    0)(

    =

    =n

    nn

    xxn

    xfxfTaylor series expansion

    "++=!6!4!2

    1)cos(642 xxx

    x "++=!7!5!3

    )sin(753 xxx

    xx"++++=!3!2

    132 xx

    xex

    MaClaurin series ( )( )

    1

    (0)( )!

    nn

    n

    ff x xn

    =

    =

    (4) (4)

    ( ) sin (0) 0

    '( ) cos '(0) 1

    ''( ) sin ''(0) 0

    '''( ) cos '''(0) 1

    ( ) sin (0) 0

    f x x f

    f x x f

    f x x f

    f x x f

    f x x f

    = =

    = =

    = =

    = = = =

    2 3

    3 5 7

    2 1 3 5 7

    0

    '(0) ''(0) '''(0)(0)

    1! 2! 3!

    3! 5! 7!

    sin ( 1)(2 1)! 3! 5! 7!

    n

    n

    n

    f f ff x x x

    x x xx

    x x x xx xn

    +

    =

    + + + +

    = + +

    = = + + +

    Example P-5 ( ) sinf x x=

    Examples

    Expand

    Example P-6

    2 2 3 3 4 4 5 5

    2 4 3 5

    12! 3! 4! 5!

    1 ( )2! 4! 3! 5!

    ix i x i x i x i xe ix

    x x x xi x

    = + + + + + +

    = + + + + +

    "

    " "

    Second approach

    Euler formula

    "++=!6!4!2

    1)cos(642 xxx

    x

    "++=!7!5!3

    )sin(753 xxx

    xx

    ( ) xf x e=

    ( ) ( ) ( ) ( ) ... xf x f x f x f x e = = = = =

    2 3

    2 3

    '(0) ''(0) '''(0)(0)

    1! 2! 3!

    12! 3!

    x f f fe f x x x

    x xx

    = + + + +

    = + + + +"(0) (0) (0) (0) ... 1f f f f = = = = =

    cos sinixe x i x= +

    All 3 formulas are derived

    P-13

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    14/37

    Review on integration

    Multiple integral

    2b

    aV y dx= = 2

    d

    cV x dy

    u dv uv v du= Integration by parts

    Definition Summing area under a function

    Finding volume

    P-14

    ( ) ( 1) ( 2) ( 3) ( )...( 1)n n n n n ng dx f g f g f g fg dx = +

    Generalized integration by parts

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    15/37

    General rule of integration

    1( ) ( )ax dx f u du

    a

    =

    ( ){ ( )} ( )

    ( )

    dx F uF f x dx F u du du

    du f x= =

    ( )u f x=

    1

    1

    n

    n uu dxn

    +

    =+ 1n

    1lndu u

    u=

    u ue du e=

    lnln

    ln ln

    u a uu u a e a

    a du e du a a= = = 0, 1a a>

    Transformation rule

    1( ) ( )F ax b dx F u du

    a+ = u ax b= +

    2( ) ( )F ax b dx uF u dua

    + = u ax b= +1( ) ( )nn

    nF ax b dx u F u du

    a

    + = nu ax b= +

    2 2( ) ( cos )cosF a x dx a F a u udu = sinx a u=2 2 2( ) ( sec )secF a x dx a F a u udu+ = tanx a u=2 2( ) ( tan )sec tanF x a dx a F a u u udu =

    secx a u=

    P-15

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    16/37

    1 ( )( )ax

    F ue dx du

    a u=

    axx e=

    (ln ) ( ) uF x dx F u e du= lnu x=1(sin ) ( )cosx

    F dx a F u udua

    = 1sin

    xu

    a

    =

    2

    2 2 2

    2 1(sin ,cos ) 2 ( , )

    1 1 1

    u u duF x x dx F

    u u u

    =+ + + tan 2

    xu =

    Definite integrals

    ( ) ( ) ( ),

    b

    a f x dx b a f c= a c b<

    ( )1

    ! ( )( )

    2 ( )

    n

    nC

    n f zf z dz

    i z a +=

    >Remarkable results: Value of

    f(z) and its higher derivatives

    only depends on boundary

    values on C

    Singular points

    ( )f a is not analytic then a = isolated singular point

    Poles

    ( )( )( )n

    zf zz a

    = z = a is a pole of ordernz = a is a simple pole ifn =1

    ( ) 0a

    Example P- 82

    ( )( 3) ( 1)

    zf z

    z z=

    +has two singularities, a pole of order 2 at z=2

    and a simple pole atz= 1.

    (orf(z) has singularity at a)

    P-18

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    19/37

    21 10 1 21

    ( ) ... ( ) ( ) ... ( )

    ( )( ) ( )

    kn nkn n

    k

    a a af z a a z a a z a a z a

    z az a z a

    +

    =

    = + + + + + + + =

    Principal part Analytic part

    This the principal part has infinite terms, it is an essential singularity

    Example P-91/

    2

    1 11 ...

    2!

    zez z

    = + + +

    For simple pole

    1

    1 1

    1lim {( ) ( )}

    ( 1)!

    nn

    nz a

    da z a f z

    n dz

    =

    a1 = residue

    1 lim( ) ( )z a

    a z a f z =

    has is an essential singularity at z = 0

    Residue Theorem

    1 1 1( ) 2 ( ...)

    Cf z dz i a b c

    = + + +

    >

    C

    ab

    c

    Laurents series

    Residue

    P-19

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    20/37

    Branch point & Branch cut nw z=

    z planew plane

    2

    n

    Branch cut

    0-x is a branch cut (restrict to ensure single-valuedness)

    1/ /n i nw e =

    1/n

    2

    / n

    iz e =

    n different points in w-plane corresponds

    to the same point inz-plane

    0 1 1{ } ,{ } ,...,{ }n n n

    nz z z

    nbranches of single-valued functions

    Removable singularity

    3 5 2 4

    2 4

    sin sin( ) sin 1( ...) 1 ...

    3! 5! 3! 5!

    ( ) ( )1 ...3! 5!

    z u u u u u uu

    z u u u

    z z

    += = = + = + +

    = + + +

    z u =Example P-10

    (no singularity)

    P-20

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    21/37

    Example P-11 Show that1

    0, 0 1

    1 sin

    px

    dx px p

    = <

    Rr

    y

    xBE

    GHJ

    1

    C

    D

    1 1 2 1 12 0( 1)

    20 2

    (R ) ( ) ( )2

    1 1 R 1 1

    p i p i i p i p iR rp i

    i i ir R

    x e iR d xe dx re ir ddx ie

    x e xe re

    + + + =+ + + +

    idz iR d

    =

    idz ir d

    =

    , 1 ... 0

    BDEFG

    R p < 0, 0 ... 0HJA

    r p >

    1 2 ( 1) 10( 1)

    02

    1 1

    p i p pp ix e x dx

    dx iex x

    + =

    + + 1

    2 ( 1) ( 1)

    0[1 ] 2

    1

    pi p p ixe dx ie

    x

    =+

    1 ( 1)

    2 ( 1)0

    2 2

    1 1

    sin

    p p i

    i p p i p i

    x ie idx

    x e e e

    p

    = =

    +

    =

    QED

    P-21

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    22/37

    First rank or order(e.g. displacement, velocity)

    zeroth rank or order(e.g. temperature, pressure)

    Second rank or order(e.g. stress, strain)

    Third rank or order(e.g. permutation tensor )

    1850 1919

    Woldemar Voigt

    Elementary Tensor Analysis

    Fourth rank or order(e.g. elastic tensor )

    Scalar (independent of direction)

    3

    1 1 2 2 3 3

    1

    u e e e e ei i i ii

    u u u u u

    == + + = =

    1st order (vector) (e.g. displacement)

    Einstein notation

    (drop summation)

    3 3

    1 1

    e e e eij i j ij i ji j

    = =

    = =

    2nd order (e.g. stress, strain)

    2nd order tensor (e.g. stress)

    There are two direction senses

    1x

    2x

    3x

    3e1e

    2e

    ij

    Plane i Directionj

    Plane 1

    Plane 3

    3eNormal vector on plane 3 is

    Plane 2

    3 3 3 3

    1 1 1 1

    e e e e e e e eijkl i j k l ijkl i j k l

    i j k l

    C C

    = = = =

    = =

    C

    4th order tensor (stiffness tensor)

    We need 9 components to fullydescribe stress at a point!!

    1,2,3; 1,2,3i j= =

    3 3 9 =

    3 components to fully describe a vector

    3 3 3 3 81 =

    P-22

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    23/37

    Heaviside O.

    (1850-1925)Riemann, G.F.B.

    Vector analysis

    Gibbs, J.W.

    (1839-1903)

    Riemann Hypothesis

    The Clay Mathematics Institute (Cambridge, Massachusetts)

    $1 million award

    This formula says that the zeros of the Riemann zeta function controlthe oscillations of primes around their "expected" positions.

    u(u1,u2,u3)

    e2

    e3

    e1

    3

    1 1 2 2 3 31

    u e e e e ei i i ii

    u u u u u== + + = =

    (1826 1866)Age =39

    odd

    even

    13

    2

    1( )( )( )2ijke i j j k k i=

    This is not a tensor equation!

    123 231 312 1e e e= = =

    132 213 321 1e e e= = =

    Permutation tensor

    Even permutation

    Odd permutation

    133 221 131 0e e e= = =

    Story

    1st PhD in USA in

    engineering in 1863

    P-23

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    24/37

    A Brief Review of Vector Analysis

    0|cos ( ) | u v | = | u | | vdot product

    i j ij =e eKronecker delta

    Leopold Kronecker

    (1823 1891)

    German

    3

    1 1 2 2 3 3

    1

    k k k k k

    u v u v u v u v u v

    =

    = + + = =u v

    1 1 2 2 3 3 1 1 2 2 3 3= e + e + e , = e + e + eu u u v v vu v

    | || | sin (0 / 2) = = w u v u v

    cross product

    i i ijk j k iw = e u v=w e e

    Repeated indices in component

    form means summation

    vue=w kjijki

    Polyadic form

    component form

    kis a dummy index (repeated)

    jis a dummy index (repeated)

    iis a free index (not repeated)

    Rule in tensor notationRule in tensor notation

    i imn m nw e u v=

    same

    Balance in free index on both size of =. 0,

    1,

    ij i j

    i j

    =

    = =

    P-24

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    25/37

    ikjijkii vue=w ee

    u v = (v u)

    = + + u (v w) u v u w

    u u = 0

    =

    =

    =

    1 2 3

    2 3 1

    3 1 2

    e e e

    e e e

    e e e

    1e

    2e

    3e

    ( )k k k = u v = u v u v

    2 3 2 3 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )e e e= u v u v u v u v u v u v = + + w u vProblem P-6 Show that these are the same

    1 2 3

    1 2 3

    1 2 3

    2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )

    e e e

    u v

    e e e

    u u uv v v

    u v u v u v u v u v u v

    =

    = + +

    1 2 3det( )ij i j k ijke A A A=

    ijk irs jr ks js kr e e = e-

    identity

    determinant

    P-25

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    26/37

    Derivatives of tensors

    =ix

    i

    e = (x,t)

    ij ijii, j ij, k ij, j

    j k j

    v = , = , =vx x x

    comma-subscript convention

    Vector differential operator

    ,grad i iix

    = = =

    ie e

    ,div i iv= =v v

    ,curl ijk k jv e v= = iv e

    2,ii = =

    ( )fg f g g f= + 2 2 2( ) 2( ) ( )fg f g f g g f = + +

    ( ) ( )f f f = +v v v 2( )f g f g f g = +

    Identities exist for the differential operator

    ( ) 0f =( ) 0 =v

    ( ) ( = a b a) b a b ( )f f f = + v v v

    2( ) ( = v v) v 2 2 )( = a a

    2 2( ) ( ) = 2 2( ) 2 = a r a + r a 2 2( ) 2 = + r r

    Gradient

    Curl

    Divergence

    Laplacian

    Vector calculus P-26

    Useful formulas

    1 2 31 2 3

    =x x x

    + +

    e e e

    P 27

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    27/37

    ( ) ( )k i j jk

    = =e e e eij ij,i x

    , ,( ) ( ) ( )i j k i j k k = =e e e e e e e ejk jk i llij jk ii

    ex

    =

    n T T

    VS

    dS dV =

    The Divergence Theorem

    ( )C S

    d = dS T s T nStokes Theorem.C

    S

    n

    dSds

    V

    S

    n

    dS

    Some Formulae in Cylindrical Coordinate

    1 2 3 cos sin1 2 3 1 2 3r + + + +e e e e e ex x x r r z= = 1

    r=e

    h x

    x

    =h

    r

    er

    er

    ez

    r

    11 1

    cos sin sin cos

    13

    re

    r

    z

    = = + , = = +

    rh h

    = =zh

    r 2 1 2

    z

    r re e e e e e

    e

    rr

    ee= , =e e

    P-27

    S f l i li d i l di t P 28

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    28/37

    ( )( )

    1 1(

    1( )

    r z r z z

    r r z z z z z r

    r z r r

    = + + + e +e e e e er z

    = + + + + +e e e e e e e e e e e e

    + +e e e e e e

    r

    r z z r r

    z r

    u u ur

    u uu u u u+ )u

    r r z r z z

    uu uu

    r r r

    +

    u

    1( )

    2 = +u u z r r

    zz rr

    1u u u u= , = , = +

    z r r r

    1 1 1 1 1( ) ( ) ( )2 2 2

    r z r z r z rz

    u u uu u u u= + , = + , = +

    r r r r z z r

    1 1r zr

    uu uu

    r r r z

    = + + +

    u

    1 1( ) ( ) ( )r zu = +e e e

    z r z ru u uu u u u+r z z r r r r

    +

    2 2 2

    2

    2 2 2 2

    1 1f f f ff = f = + + +

    r rr r z

    Some formulas in cylindrical coordinate P-28

    P 29

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    29/37

    011

    2=++ u

    r

    u

    r

    u rrr

    1

    x y r r

    = + = + x y re e e e

    2 1 1( ) ( )u uu ur r r r

    = = + + r re e e e

    2 22

    2 2( ) ( ) ( )

    u uu u u

    x y x y x y

    = = + + = +

    x y x ye e e e

    =

    re er

    =

    ee

    d

    2

    2

    2 2

    2 2

    2 2

    2 2 2

    2

    2 2

    1( )

    1 1 1 1 1 1 1( ) [ ( ) ( ) ]

    1 1 1 1[ ]

    1 1

    u u u

    r r r r

    u u u u u ur r r r r r r r r r

    u u u u

    r r r r r r

    u u

    r r r

    + =

    + = + + +

    = + +

    = +

    r r

    rr r

    r r

    e e e

    eee e e e e e

    e e e e e

    re

    e

    Laplace equation in 2-D polar form

    1 =r re e 0 =re e 1 =e e

    Example P-12

    Will be useful later!

    P-29

    R i H b li f ti P 30

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    30/37

    Review on Hyperbolic functions

    2sinh

    xx eex

    =

    1csch

    sinhx

    x=

    cosh2

    x xe ex

    +=

    1sech

    coshx

    x=

    x

    xx

    cosh

    sinhtanh =

    x

    xx

    sinh

    coshcoth =

    xx sinh)sinh( =

    cosh( ) coshx x =

    1sinhcosh 22 = xx2 2sinh cosh 1x x=

    2 2cos sin 1x x+ =

    tanh x

    sinh

    cosh x

    P-30

    i h h i P 31

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    31/37

    sinhx, coshx versus sinx, cosx P-31

    Lambert (17281777)

    V Riccati (17071775)

    P-32

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    32/37

    sinhx, coshx versus sinx, cosx

    hyperbola circle

    Hyperbolicfunctions

    Circular

    functionsResemblance

    2 21 tanh sechx x =

    yxyxyx sinhcoshcoshsinh)sinh( +=+

    yxyxyx sinhsinhcoshcosh)cosh( +=+

    xxdxd cosh)(sinh =

    xxdx

    dsinh)(cosh =

    2(tanh ) sechd x xdx

    =

    (sech ) sech tanhd x x xdx =

    2(coth ) cschd x xdx

    =

    (csch ) csch cothd

    x xdx

    =

    1

    2

    1(sinh )1

    dx

    dx x

    =+

    1

    2

    1(cosh )

    1

    dx

    dx x

    =

    1

    2

    1(tanh )

    1

    dx

    dx x

    =

    1

    2

    1(sech )

    1

    dx

    dx x x

    =

    1

    2

    1

    (coth ) 1

    d

    xdx x

    =

    1

    2

    1(csch )

    1

    dx

    dx x x

    = +

    P-32

    2sinh

    xx eex

    = cosh

    2

    x xe ex

    +=

    P-33

  • 7/30/2019 13 Ch0 Preview Problems 2013 s

    33/37

    2

    sinh cosh

    cosh sinh

    sech tanh

    udu u C

    udu u C

    udu u C

    = +

    = +

    = +

    2

    csch cot csch

    sech tanh sech

    csch coth

    u udu u C

    u udu u C

    udu u C

    = +

    = +

    = +

    1

    2 2

    12 2

    1 2

    2 21 2

    sinh

    cosh

    1tanh

    1coth

    2

    2

    if u

    if u

    du uC

    aa u

    du u Cau a

    uC a

    du a a

    ua uC aa a

    = ++

    = +

    +

    1

    2 2

    1

    2 2

    1sec 0

    1

    csc 0

    du u

    h C u aa au a u

    du u

    h C ua au u a

    = +