1336 force user frequency ac manual drive...service factor #94 non–f unctional. feedback device...

324
User Manual 1336 FORCE Adjustable Frequency AC Drive 0.75 – 485 kW (1 – 650 HP) Standard Adapter 5.01 PLC Communications Adapter 5.01 Allen-Bradley

Upload: others

Post on 07-Mar-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx

UserManual

1336 FORCE Adjustable Frequency ACDrive

075 ndash 485 kW (1 ndash 650 HP)

Standard Adapter 501

PLC CommunicationsAdapter 501

Allen-Bradley

Important User Information Because of the variety of uses for the product described in this publicationthose responsible for the application and use of this control equipmentmust satisfy themselves that all necessary steps have been taken to assurethat each application and use meets all performance and safetyrequirements including any applicable laws regulations codes andstandards

The illustrations charts sample programs and layout examples shown inthis guide are intended solely for purposes of example Since there aremany variables and requirements associated with any particularinstallation Allen-Bradley Company does not assume responsibility orliability (to include intellectual property liability) for actual use based uponthe examples shown in this publication

Allen-Bradley publication SGI-11 Safety Guidelines for the ApplicationInstallation and Maintenance of Solid-State Control (available from yourlocal Allen-Bradley office) describes some important differences betweensolid-state equipment and eletromechanical devices that should be takeninto consideration when applying products such as those described in thispublication

Reproduction of the contents of this copyrighted publication in whole or inpart without written permission of the Allen-Bradley Company Inc isprohibited

Throughout this manual we use notes to make you aware of safetyconsiderations

ATTENTION Identifies information about practices orcircumstances that can lead to personal injury or death propertydamage or economic loss

Attentions help you

bull identify a hazard

bull avoid the hazard

bull recognize the consequences

Important Identifies information that is especially important forsuccessful application and understanding of the product

Document Update

1336 FORCE AC Drive User Manual

This document provides new and updated material for the 1336 FORCE Adjustable Frequency AC Drive User Manual publication 1336 FORCE-512 dated September 1998 Please place this document with your manual for future reference

HIM UploadDownload Errors

The following information describes the possible errors that can be encountered during a HIM UploadDownload procedure

HIM UploadDownload Errors

Motor Control Board (v6xx)

The following changes should be noted if a v6xx Motor Control Board is being used

Fault Name Error Displayed Probable Cause ActionHIM -gt Drive ERROR 1 The HIM calculated a checksum for the file to be

downloaded then checked the EEPROM checksum of the download The checksums did not match indicating the file stored in the HIM is invalid and the download was not successful

Upload a valid uncorrupted file from the source drive and then repeat the download

ERROR 2 The number of parameters in the HIM file is different than the number of parameters in the drive file The smaller of the two numbers is the number of parameters downloaded The last downloaded parameter number is displayed

Verify that the correct file is being downloaded to the correct drive then press the Enter key

Manually reprogram parameters with numbers higher than the last number downloaded or whose values were incorrect

ERROR 3 The file in the HIM is for a different type of drive than the drive to which it is connected (ie 1336 FORCE file to 1336 IMPACT drive) Downloads can only occur between like drive types

None - Download not allowed

ERROR 4 The value just transferred to the drive is an illegal value (out of range too high or too low) for the parameter

Record the parameter number displayed and then press Enter to continue the download Manually reprogram all recorded parameters after the download is complete

ERROR 5 The download was attempted while the drive was running Stop the drive and repeat the download attemptERROR 6 The file in the HIM is for a different HP or voltage drive than

the drive to which it is connected (ie 1336 FORCE 10 HP file to 1336 FORCE 15 HP drive)

If the download is desired press the Enter key If not desired press the ESCape key to end the download

Drive -gt HIM ERROR 1 The HIM calculated a checksum as the file was uploaded and compared it to the HIM file checksum stored after the upload The checksums did not match indicating the upload was not successful and the HIM file is now corrupted

Repeat the Upload

2 1336 FORCE AC Drive User Manual

Page 1ndash6

The table has been updated to include v6xx of the Motor Control Board

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxv6xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

1336 FORCE AC Drive User Manual 3

Page 1ndash7

The table has been updated to include v6xx of the Motor Control Board A note was added to v5xx of the Standard Adapter Board

MOTOR CONTROL BOARD

STANDARDADAPTERBOARD

v1xxv1xx

v2xx v3xx v5xx6xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

v5xx - Compatiblev6xx - Drive to drive communicationsonly compatible at 125k baudNot Compatible at 250k or 500k

4 1336 FORCE AC Drive User Manual

Pages 3ndash20 through 3ndash24

GPT information does not apply

Page 5ndash31

Important note added to ldquoDrive Link Baud Raterdquo description

Important If a v6xx drive is added to the drive link that has v5xx or less it will only operate at 125k baud If all drives on the drive link are v6xx it can operate at 250k and 500k baud

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

wwwrockwellautomationcom

Americas Rockwell Automation 1201 South Second Street Milwaukee WI 53204-2496 USA Tel (1) 4143822000 Fax (1) 4143824444EuropeMiddle EastAfrica Rockwell Automation VorstlaanBoulevard du Souverain 36 1170 Brussels Belgium Tel (32) 2 663 0600 Fax (32) 2 663 0640Asia Pacific Rockwell Automation Level 14 Core F Cyberport 3 100 Cyberport Road Hong Kong Tel (852) 2887 4788 Fax (852) 2508 1846

Power Control and Information Solutions Headquarters

Publication 1336 FORCE-512DU2 ndash February 2007 PN 74002-113-01 (03)Supersedes 1336 FORCE-512DU2 dated February 2006 Copyright copy 2007 Rockwell Automation Inc All rights reserved Printed in USA

US Allen-Bradley Drives Technical Support - Tel (1) 2625128176 Fax (1) 2625122222 Email supportdrivesrarockwellcom Online wwwabcomsupportabdrives

Summary of Changes

Summary of Changes

Summary of Manual Changes The 501 release of the 1336 FORCE 512 User Manual contains some newand updated information The new and updated information is summarizedin the table below For further information refer to the page numbersprovided

Description of New or Updated Information Page Type

H frame dimensions added 2-7 NewLine fuse ratings updated 2-7 ClarificationMotor Cable requirements added 2-16 NewH frame terminal block added 2-22 NewFigure 2ndash17 upgraded 2-29 ClarificationH Frame Terminal Block Location added 2-34 NewFrame D ControlNet connection info added 2-43 NewControlNet Parameter Table added 5-24 NewParameter 71 updated 5-35 ClarificationParameter 92 updated 5-39 ClarificationParameter 185 added 5-51 NewParameter 186 added 5-52 NewParameter 223 updated 5-53 ClarificationParameter 224 updated 5-53 ClarificationParameter 229 updated 5-54 ClarificationParameter 233 updated 5-54 ClarificationParameter 257 updated 5-57 ClarificationParameter 258 updated 5-57 ClarificationParameter 259 updated 5-57 ClarificationParameter 294 updated 5-62 ClarificationParameter 385 updated 5-76 ClarificationUnderstanding Precharge and Ridethru Faults 6ndash9 NewUnderstanding the Bus Voltage Tracker 6ndash15 NewPower structure and transistor Diag tests 6ndash20 NewSequential Torque Block Tuning 6ndash24 NewH Frame Motor cable restrictions added A-4 NewBC 700 amp BC 800 Derating Guidelines added Andash15 New700 ndash 800 HP Schematic added Andash25 NewSoftware Block Diagram updated Andash32 ClarificationTorque Block Firmware Diagram updated Andash45 ClarificationLithium Battery Disposal information added Andash54 NewCE mechanical configuration diagram added Bndash5 Bndash6 Bndash7 NewSpare Part Appendix added D-1 New

This Page Intentionally Blank

Table of Contents

i

Introduction Chapter 1Manual Objectives 1-1

Who Should Use This Manual 1-1

Terminology 1-1

Standard Drive Features 1-2

Performance Specifications 1-2

Control Specifications 1-2

Options 1-3

Protective Features 1-3

Environmental Specifications 1-4

Electrical Specifications 1-4

Feedback Devices 1-5

Software Compatibility 1-6

InstallationWiring Chapter 2Chapter Objectives 2-1

Mounting 2-1

Dimensions 2-2

InputOutput Ratings 2-7

AC Supply Source 2ndash7

Input Devices 2ndash9

Drive Output Disconnection 2ndash10

Input Power Conditioning 2ndash10

Input Fusing 2ndash10

Electrical Interference ndash EMIRFI 2ndash12

RFI Filtering 2ndash13

Grounding 2ndash14

Power Cabling 2ndash16

Wire Size and Type 2ndash16

Lug Kits 2ndash17

Power Wiring 2ndash20

Control Wiring 2ndash23

Encoder Connections 2ndash24

Drive to Drive Communication 2ndash24

Standard Adapter Board 2ndash26

Control amp Signal Wiring (Standard Adapter Board) 2ndash26

Interface Board Installation amp Removal 2ndash27

Standard Adapter Analog Inputs 2ndash28

Standard Adapter Analog Outputs 2ndash29

Standard Adapter Discrete Outputs 2ndash29

Pulse Input (Standard Adapter Equipped Drives) 2ndash29

Starting amp Stopping the Motor (Standard Adapter Equipped Drives) 2ndash32

Control Interface Option ndash TB3 2ndash33

Table of Contents

ii

Control amp Signal Wiring (PLC Comm Adapter Board) 2ndash40

Switch Settings (PLC Comm Board) 2ndash41

Discrete Outputs (PLC Comm Adapter) 2ndash42

Discrete Inputs (PLC Comm Adapter) 2ndash42

Control Scheme 2ndash45

Computer Connections (Frame D Drives) 2ndash45

ControlNet Connections (Frame D Drives) 2ndash45

Configuration (PLC Comm Adapter) 2ndash46

Programming Terminals Chapter 3Chapter Objectives 3-1

HIM Description 3-1

HIM Module Removal 3-4

HIM Operation 3-4

HIM Programming Steps 3-19

GPT Description 3-20

Keypad Description 3-21

GPT Operation 3-22

GPT Programming Options 3-24

StartndashUp Chapter 4Introduction 4-1

Safety Precautions 4-1

Required Tools and Equipment 4-2

Drive Information 4-3

General 4-4

PrendashPower Checks 4-4

Power On 4-5

Startup Configuration Procedures 4-6

Quick Startup Procedure 4-7

Manual Startup Mode 4-10

Communication Configuration 4-17

Drive to Drive Communication 4-17

IO Communication Configuration 4-20

External Control Link Configuration 4-21

Analog IO Parameter Configuration 4-23

SCANport Analog IO Parameter Configuration 4-27

Output Relay Configuration 4-27

Pulse Input Configuration 4-28

MOP Configuration 4-28

SCANport Image Configuration 4-28

SCANport Control Configuration 4-29

Table of Contents

iii

Control Interface Option 4-29

Using the SCANport Image 4-30

IO Image Table 4-31

SLC to SCANport Module 4-32

Serial Communications Module 4-33

Remote IO Communications Module 4-34

Programming Parameters Chapter 5Introduction 5-1

Terminology 5-1

Parameter Table Structure 5-2

Parameter Table (Numerical) 5-3

Parameter Table (Alphabetical) 5-11

Standard Adapter Parameters 5-16

PLC Comm Adapter Parameters 5-20

Parameter Descriptions 5-24

ControlNet Parameters 5-80

Troubleshooting Chapter 6General 6-1

Required Equipment 6-1

Fault Descriptions 6-2

Fault Code Definition 6-2

Main Control Board Fault Descriptions 6-3

Standard Adapter Board Fault Descriptions 6-4

FaultWarning Handling 6-5

Current Processor Faults amp Warnings 6-7

Understanding Precharge and Ridethrough Faults 6-9

Understanding the Bus Voltage Tracker 6-15

Auto-Tuning Test Procedure 6-20

Power Structure and Transistor Diagnostics Tests 6-20

Phase Rotation Tests 6-24

Sequential Torque Block Tuning 6-24

Running the Resistance Test 6-26

Running the Flux Test 6-29

Torque Block Update 6-31

Velocity Loop Autotune 6-32

Hardware Testpoints 6-34

Table of Contents

iv

Appendix Appendix AMotor Cables A-1

Cable Termination A-5

Enclosures A-5

Derating Guidelines A-7

Drive Hardware Overview A-16

Schematic Diagrams A-17

Gate Driver Board Connections A-27

Sensorless Application Notes A-30

Software Block Diagram ndash Standard Adapter A-32

Firmware Function Overview Diagrams A-34

Battery Disposal A-54

CE Conformity Appendix BEMC Directive B-1

Requirements for Conforming Installation B-1

Filter B-2

Electrical Configuration B-3

Grounding B-3

Mechanical Configuration B-4

Required Knockout Assignments B-7

User Parameter Values Appendix CValue Table C-1

Spare Parts Information Appendix DInformation Location D-1

Chapter 1

1ndash1

Introduction

Manual Objectives The purpose of this manual is to provide the user with the necessaryinformation to install program start up and maintain the 1336 FORCEDigital AC Drive This manual should be read in its entirety beforeoperating servicing or initializing the 1336 FORCE Drive

Who Should Use This Manual This manual is intended for qualified service personnel responsible forsetting up and servicing the 1336 FORCE AC Drive You must haveprevious experience with and a basic understanding of electricalterminology programming procedures required equipment and safetyprecautions before attempting any service on the 1336 FORCE Drive

ATTENTION Only personnel familiar with the 1336FORCE Drive and the associated machinery should plan orimplement the installation startndashup and subsequentmaintenance of the Drive Failure to comply may result inpersonal injury andor equipment damage

ATTENTION An incorrectly applied or installed Drivecan result in component damage or a reduction in productlife Wiring or application errors such as undersizing themotor incorrect or inadequate AC supply or excessiveambient temperatures may result in damage to the Drive ormotor

ATTENTION This Drive contains ESD (ElectrostaticDischarge sensitive parts and assemblies Static controlprecautions are required when installing testing servicingor repairing this assembly Component damage may resultif ESD control procedures are not followed If you are notfamiliar with static control procedures referenceAllenndashBradley Publication 8000ndash452 Guarding againstElectrostatic Damage or any other applicable ESDprotection handbook

Terminology Detailed definitions of industrial automation and technical terms usedthroughout this manual may be found in the INDUSTRIALAUTOMATION GLOSSARY ndash a guide to AllenndashBradley technicalterms Publication AGndash71

Chapter 1Introduction

1ndash2

Standard Drive Features The Bulletin1336 FORCE Field Oriented AC Drive is a microprocessorcontrolled Digital AC Drive with the following features

bull 1 to 650 HP at 0 ndash 250 HZ constant torquebull Four Quadrant operation availablebull High Performance Digital Velocity Loopbull Microprocessor controlled field oriented current loopbull Simplified programming through the use of a Parameter Table that

features data entries in engineering units with English descriptionsbull Nonvolatile Parameter Storagebull Extensive diagnostics including both logic board and power

structure testsbull Time stamped nonvolatile FaultWarning Queuebull Real Time Clockbull Reference Time Stampbull Run Time Accumulatorbull Enclosed Constructionbull Multiple Communication Interfacesbull Complete Encoder Interfacebull Drive to Drive Linkbull SCANportTM Peripheral Interface

Performance Specificationsbull Speed Regulation to 0001 of top speedbull Torque Regulation to plusmn 5 of rated motor torquebull Power Loss RidendashThru capability of two secondsbull Flying Start Capability of starting into a spinning motorbull Torque Linearity 1bull Overload Capability 150 for 1 minute 200 of motor rating for

10 seconds up to inverter limitbull Programmable AccelDecel rates from 0 to 6553 secondsbull Current limit programmable from 200 of rated output current

Control Specificationsbull Indirect SelfndashOrganized FieldndashOriented Control

Currentndashregulated sine coded PWM with programmable carrier frequencyHP Drive Rating Carrier Frequency1ndash3 HP 4 kHz 1ndash12 kHz75ndash30 HP 4 kHz 1ndash12 kHz40ndash60 HP 4 kHz 1ndash12 kHz75ndash125 HP 2 kHz 1ndash6 kHz150ndash250 2 kHz 1ndash6 kHz300ndash500 2 kHz 1ndash4 kHz600ndash650 15 kHz 1ndash4 kHz700ndash800 1 kHz 1ndash4 kHzRefer to Derating Guidelines in the Appendix of this manual

bull Output Voltage Range ndash 0 to rated voltagebull Output Frequency Range ndash 0 to 250 Hzbull Speed Regulation with Encoder Feedback ndash 0001 of Top Speed

over a 1001 Speed Range

Chapter 1Introduction

1ndash3

bull Encoderless Speed Regulation ndash 1 of Top Speed over a 401 Speed Range

bull AccelDecel ndash Independently programmable accel and decel times Program from 0 to 6553 seconds in 01 second increments

bull Current Limit ndash Independent Motoring and Regenerative Limitbull Inverse Time Overload Capability ndash Class 20 protection with

speedndashsensitive response Adjustable from 0ndash200 of rated output current in 3 speed ranges ndash 21 41 amp 101 UL Certified ndash Meets NEC Article 430

Optionsbull Standard Adapter Board which provides

ndash 2 Analog Inputs +ndash10Vndash 2 Analog Outputs +ndash 10Vndash One 4ndash20mA inputndash One 4ndash20mA outputndash 5 or 12 vdc pulse inputndash +ndash 10V reference voltagesndash At Speed Run Fault and Alarm contacts

bull PLC Communication Adapter Board which providesndash 4 Analog Inputs +ndash10Vndash 4 Analog Outputs +ndash 10Vndash +ndash 10V Reference voltagesndash RIODHTM+ Communications (2 channels selectable)ndash Function Blocks

bull DriveToolsTM PC Windows TM based programming software compatible with the 1336 FORCE Drive and also other AllenndashBradley 1336 and 1395 products

bull Dynamic Braking

bull AC Motor Contactor

Protective Features The 1336 FORCE Drive incorporates the following protective measures

bull Programmable Motor Overload Protection (I2T) investigated by UL to comply with NEC Article 430

bull Programmable Inverter Overload Protection (IT)bull Overspeed Detection even when operating as a torque followerbull Programmable Stall Detectionbull Peak output current monitoring to protect against excessive current

at the output due to a phase to ground or phase to phase shortbull Ground fault monitoringbull DC Bus Voltage monitoring to protect against underover voltage

conditionsbull Power Structure Heatsink Temperature Monitoring

Chapter 1Introduction

1ndash4

Environmental Specifications The following environmental guidelines apply to both the 1336 FORCEDrive and all devices and accessories connected to the Drivebull Ambient Operating Temperature

IP00 Open 0 to 50 degrees C (32 to 122 degrees F) IP20 NEMA Type 1 Enclosed 0 to 40 degrees C (32 to 104 degrees F) IP65 NEMA Type 4 Enclosed 0 to 40 degrees C (32 to 104 degrees F)

bull Storage Temperature (all constructions) ndash40 to 70 degrees C (ndash40 to 158 degrees F)

bull Relative Humidity 5 ndash 95 nonndashcondensingbull Altitude 1000m (3300 ft) without derating bull Shock 15g peak for 11ms duration (+ 10 ms)bull Vibration 0006 inches (0152 mm) displacement 1G peak

Electrical Specificationsbull Input Voltage Rating

200 ndash 240VAC Standalone 3 Phase +10 ndash15 nominal 380 ndash 480VAC Standalone 3 Phase +10 ndash15 nominal 500 ndash 600VAC Standalone 3 Phase +10 ndash15 nominal 513 ndash 621 VDC Common Bus +10 ndash15 nominal 776 VDC Common Bus +10 ndash15 nominal

bull Input Power Rating 2 ndash 134 KVA (230V) 2 ndash 437 KVA (380V)

2 ndash 555 KVA (460V) 23 ndash 578694 KVA (500600V)

bull Input Frequency 5060HZ (plusmn3HZ)

bull Standard Output Voltage Four frame sizes are available Each frame size is line dependent and can power a motor between the following voltages200 ndash 240 Vac (line dependent)380 ndash 480 Vac (line dependent)500 ndash 600 Vac (line dependent)If voltage required for your application is not shown contact AllenndashBradley for specific application

bull Output Current 25 ndash 673A

bull Output Power 2 ndash 116 KVA (230V)2 ndash 190 KVA (380V)2 ndash 208 KVA (415V)2 ndash 537 KVA (460V)2 ndash 671 KVA (575V)

Note For information on factors that could effect the power output of the drive please refer to the Enclosure and Derating Guidelines in the Appendix of this manual

bull Output Horsepower (Continuous) 75 ndash 650HP

bull Overload CapabilityContinuous ndash 100 Fundamental current1 minute ndash 150

Chapter 1Introduction

1ndash5

bull Output Frequency Range 0 ndash 250 HZ

bull Output Waveform Sinusoidal (PWM)

bull Max Short Circuit Current Rating 200000A rms symmetrical 600 volts (when used with specified AC input line fuses as detailed in Table 2A)

bull Ride Through 2 seconds minimum

bull Efficiency 975 at rated amps nominal line volts

Feedback Devices

bull Encoder Incremental dual channel 12 volts 500mA Supply 512 Volt 10ma Min Inputs isolated with differential transmitter 1025 KHz max Quadrature 90deg plusmn27deg 25degC Duty Cycle 50 + 10

bull Speed Regulation with Encoder Feedback 0001 of Top Speed over a 1001 Speed RangeEncoderless Speed Regulation 05 of Top Speed over a 401 SpeedRange

Chapter 1Introduction

1ndash6

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

Chapter 1Introduction

1ndash7

MOTOR CONTROL BOARD

STADARDADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible

Chapter 1Introduction

1ndash8

This Page Intentionally Blank

Chapter 2

2ndash1

InstallationWiring

Chapter Objectives Chapter 2 provides the information needed to properly mount and wire the1336 FORCE Drive Since most startndashup difficulties are the result ofincorrect wiring every precaution must be taken to assure that the wiring iscompleted as instructed All items must be read and understood before theactual installation begins

IMPORTANT The end user is responsible for completing theinstallation wiring and grounding of the 1336 FORCE drive and forcomplying with all National and Local Electrical Codes

ATTENTION The following information is merely a guide forproper installation The National Electrical Code and any othergoverning regional or local code will overrule this informationThe Allen-Bradley Company cannot assume responsibility forthe compliance or the noncompliance to any code national localor otherwise for the proper installation of this drive or associatedequipment A hazard of personal injury andor equipmentdamage exists if codes are ignored during installation

Mounting When the 1336 FORCE drive is delivered in a NEMA Type 1 enclosure itmust be mounted so that there is sufficient space at the top sides and frontof the cabinet to allow for heat dissipation as shown in Figure 21

Figure 21Mounting Requirements

Attention Care must be taken toprevent debris (metal shavingsconduit knockouts etc) fromfalling into the drive whileperforming any installation workon or around the drive A hazardof personal injury andorequipment damage exists if foreignmaterial lodges inside the drive

JOG

ESC SEL

1016 mm (40 in)

JOG

ESC SEL

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

UP

Chapter 2InstallationWiring

2ndash2

Figure 22 IP20 (NEMA Type 1) Dimensions ndash Frames B and C

C MaxD

A

Y

CC

E B

Z

BB

AA

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 1ndashFixed

286349 222(11251375 0875)

286349 222(11251375 0875)

ShippingWeight

227 kg(50 lbs) 386 kg(85 lbs)

CC

719(283)

719(283)

Frame 1

Reference

B1 B2

C

A

2764(1088)

3018(1188)

B

4763(1875)

7010(2760)

C Max

2250(886)

2250(886)

D

2126(837)

2380(937)

E

4610(1815)

6858(2700)

Y

3200(126)

3200(126)

Z

76(030)

76(030)

AA

1311(516)

1311(516)

BB

1808(712)

3747(1475)

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts(Location Will Vary with HP)

Chapter 2InstallationWiring

2ndash3

Figure 23IP 20 (NEMA Type 1) Dimensions ndash Frame D

DA

Y

CC

E B

Z

BB

AA

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 3ndashFixed627762 349500 349(247300 138197 138)

ShippingWeight1089 kg(240 lbs)

CC719(283)

Frame 1ReferenceD

A3815(1502)

B12400(4882)

C Max2708(1066)

D3259(1283)

E12162(4788)

Y2794(110)

Z1194(047)

AA1311(516)

BB6886(2711)

C Max

Chapter 2InstallationWiring

2ndash4

Figure 24IP 20 (NEMA Type 1) Dimensions ndash Frame E

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

D

AY

E B

Z

BB

CC

C Max

KNOCKOUTS3ndashDUAL SIZE 6ndashFIXED

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 6ndashFixed

8891016 127(350400 050)

ShippingWeight

186 kg(410 lbs)

163 kg(360 lbs)

CC

1519(598)

1263(497)

Frame 1

ReferenceEndashEnclosed

EndashOpen

A

5110(2012)

5110(2012)

B

14986(5900)

14986(5900)

C Max

4244(1671)

3726(1467)

D

4775(1880)

4775(1880)

E

14478(5700)

14478(5700)

Y

168(066)

168(066)

Z

401(161)

401(161)

AA

1950(768)

1384(545)

BB

9014(3549)

6800(2677)

Chapter 2InstallationWiring

2ndash5

Figure 25IP 20 (NEMA Type 1) Dimensions ndash Frame F

22860(9000)

7620(3000)

2527(995)

6350(2500)

379(149)

2748(1082)

1930(760)

12192(4800)

All Dimensions in Millimeters and (Inches)

ConduitAccess Area

Bottom View

315(124)

6985(2750)

2985(1175)

508(200)

Shipping Weight4150 kg(915 lbs)

Chapter 2InstallationWiring

2ndash6

Figure 26IP 20 (NEMA Type 1) Dimensions ndash Frame G

23241(9150)

Removable Lifting Angle

7620(3000)

635 (250)

6350(2500)

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

290(114)

159 (063) Diandash 2 Mtg Holes ndash

4318(1700)

3810(1500)

2985(1175)

429(169)

2540(1000)

5476(2156)

Conduit Access Area

6604(2600)

508(200)

4318(1700)

(Top)

ConduitAccess Area

(Bottom)

Shipping Weight4536 kg(1000 lb)

Chapter 2InstallationWiring

2ndash7

Figure 27IP 20 (NEMA Type 1) Dimensions ndash Frame H

Removable Lifting Angle

23241(9150)

All Dimensions in Millimeters and (Inches)

6350(25)

5080(20)

7620(30)

Conduit AccessArea

Conduit AccessArea

Top ViewBottom View

Top Mounted Fan

6350(2500)

12700(50)

12700(50)

6350(25)

Manufacturer-dependentmay be shorter

Chapter 2InstallationWiring

2ndash8

InputOutput Ratings The input and output current ratings grouped by drive voltage rating areprovided in the following table

200ndash240V

Cat No

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

InputkVA

InputAmps

24ndash510ndash1212ndash1417ndash2023ndash2825ndash3027ndash3043ndash5153ndash6460ndash7282ndash99100ndash120111ndash134

512283549677379123154174238289322

OutputkVA2511141926313248607296116130

OutputAmps45122723374826457828012031492180424029143274

380ndash480V

Cat NoB001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200BX250B250B300B350B400B450B500B600BP250BP300BP350BP400BP450B700CB800C12B700C12B800C

InputkVA

InputAmps

24ndash59ndash1214ndash1818ndash2323ndash2923ndash2632ndash4140ndash5041ndash5248ndash606261ndash7778ndash9998ndash124117ndash148148157ndash198191ndash241231ndash291212ndash268265ndash335300ndash379330ndash416372ndash470391ndash494439ndash555230ndash291265ndash334300ndash378313ndash396346ndash437517ndash625647ndash817517ndash625647ndash817

361422283543496263757593119149178178238290350322403455501565594668350402455476526835965835965

OutputkVA25111722273338475261617696120143143191233282259324366402454477537282324366383424677783677783

OutputAmps25601392092723374184825876457827829691203149218041804240029143536327440644592505157025992673435364064459248105317850983850983

575V

Cat NoC001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C300C350C400C450C500C600C650C700C80012C700C12C800C

InputkVA

InputAmps

2ndash35ndash69ndash1111ndash1317ndash2021ndash2627ndash3231ndash3740ndash4848ndash5752ndash6273ndash8894ndash112118ndash142136ndash163217ndash261244ndash293256ndash307304ndash364349ndash419394ndash473434ndash520514ndash617578ndash694616ndash739639ndash767616ndash739639ndash767

3610121925313646556084108137157251282296351403455501594668756786756786

OutputkVA2610121924303545576285109137157251283297352405457503597671767797767797

OutputAmps25699121892363034645157261685810911386159725252836298353640644592505159926734770800770800

AC Supply Source 11ndash485 kW (75ndash650HP) drives are suitable for use on a circuit capable ofdelivering up to a maximum of 200000 rms symmetrical amperes 600volts maximum when used with the AC input line fuses specified in Table2A The 1336 FORCE does not contain input power short circuit fusingSpecifications for the recommended size and type to provide drive inputpower protection against short circuits are on the following pages

ATTENTION To guard against personal injury andor equipmentdamage caused by improper fusing use only the recommendedline fuses specified in Table 2A Branch circuit breakers ordisconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash9

Unbalanced Distribution Systems

The drive is designed for use with conventional threendashphase supplies whichare symmetrical with respect to ground Surge suppression devices areincluded to protect the drive from lightningndashinduced overvoltages betweenline and ground For this reason the drive must not be used directly withsupplies where one phase is grounded (Grounded Delta) In such cases anisolation transformer must be used to provide a supply balanced withrespect to ground

Ungrounded Distribution Systems

All 1336 FORCE drives are equipped with an MOV (Metal Oxide Varistor)that provides voltage surge protection and phasendashtondashphase plusphasendashtondashground protection which is designed to meet IEEE 587 TheMOV circuit is designed for surge suppression only (transient lineprotection) not continuous operation

With ungrounded distribution systems the phasendashtondashphase MOVconnection could become a continuous current path to ground MOVlinendashtondashline and linendashtondashground voltages should not exceed the valueslisted below Exceeding these values may cause physical damage to theMOV

1 2 3 4

Joules = (B)Ground

Three-PhaseAC Input T

SR

Joules = (A)Joules = (A)

Joules = (A)

Line-to-Line MOV RatingEnergy Rating = 2 x Line-Line Rating (A)

Line-to-Ground MOV RatingEnergy Rating = Line-Line (A) + Line-Ground (B)

Frame ReferenceDevice Rating (V)Line-Line (A)Line-Ground (B)

B - C 240 480 600160 160 160220 220 220

A 240 480 600160 140 NA220 220 NA

D - G 240 480 600140 140 150220 220 220

LinendashtondashLine MOV RatingEnergy Rating = 320 JoulesTurn On Voltage = 1020V (nominal)

LinendashtondashGround MOV RatingEnergy Rating = 380 JoulesTurn On Voltage = 1330V (nominal)Input Devices Starting and Stopping the Motor

Chapter 2InstallationWiring

2ndash10

Input Devices Starting and Stopping the Motor

ATTENTION The drive startstop control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC power is removed therewill be a loss of inherent regenerative braking effect amp the motorwill coast to a stop An auxiliary braking method may berequired

Repeated ApplicationRemoval of Input Power

ATTENTION The drive is intended to be controlled by controlinput signals that will start and stop the motor A device thatroutinely disconnects then reapplies line power to the drive forthe purpose of starting and stopping the motor is not recom-mended If this type of circuit is used a maximum of 3 stopstartcycles in any 5 minute period (with a minimum 1 minute restbetween each cycle) is required These 5 minute periods must beseparated by 10 minute rest cycles to allow the drive prechargeresistors to cool Refer to codes and standards applicable to yourparticular system for specific requirements and additionalinformation

Bypass Contactors

ATTENTION An incorrectly applied or installed system canresult in component damage or reduction in product life Themost common causes are

bull Wiring AC line to drive output or control terminals

bull Improper bypass or output circuits not approved by AllenndashBradley

bull Output circuits which do not connect directly to the motor

bull Incorrect or inadequate AC supply

bull Excessive ambient temperature

Contact AllenndashBradley for assistance with application or wiring

Chapter 2InstallationWiring

2ndash11

Drive Output Disconnection Any disconnecting means wired to Drive output terminals M1 M2 and M3must be capable of disabling the Drive if opened during Drive operationIf opened during Drive operation the Drive will fault It is recommendedthat the Drive Enable be removed before the contactor is opened Whenthe Drive Enable is removed the Drive will stop modulating

Input Power Conditioning Typically the 1336 FORCE is suitable for direct connection to athreendashphase AC power line There are however certain power lineconditions which may introduce the possibility of drive input powercomponent malfunction To reduce the possibility of these malfunctions aline reactor or isolation type transformer may be required

The basic rules for determining if a line reactor or isolation typetransformer is required are as follows

1 If the AC line supplying the drive has power factor correction capacitorsconnected an AC line reactor or isolation type transformer must beconnected between the capacitor bank and the input to the drive

2 If the AC line frequently experiences transient power interruptions orsignificant voltage spikes an AC line reactor or isolation typetransformer may be required

Refer to ldquoUnbalanced Distribution Systemsrdquo

Input Fusing

ATTENTION The 1336 FORCE does not provide input powershort circuit fusing Specifications for the recommended fusesize and type to provide drive input power protection againstshort circuits are provided in Table 2A Branch circuit breakersor disconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash12

Table 2AMaximum Recommended AC Input Line Fuse Ratings (fuses are user supplied)

Drive CatalogNumber

kW (HP) Rating 200ndash240VRating

380ndash480VRating

500ndash600VRating

UL Class CC T J1 ndash BS88 (non-UL installations)

1336Tndash _ _ F10 075 (1) 10A 6A ndash

1336Tndash _ _ F30 22 (3) 25A 15A ndash

1336Tndash _ _ F50 37 (5) 40A 20A ndash

1336Tndash _ _ 001 075 (1) 10A 6A 6A

1336Tndash _ _ 003 22 (3) 15A 10A 10A

1336Tndash _ _ 007 55 (75) 40A 20A 15A

1336Tndash _ _ 010 75 (10) 50A 30A 20A

1336Tndash _ _ 015 11 (15) 70A 35A 25A

1336Tndash _ _ 020 15 (20) 100A 45A 35A

1336Tndash _ _ 025 185 (25) 100A 60A 40A

1336Tndash _ _ 030 22 (30) 125A 70A 50A

1336Tndash _ _ 040 30 (40) 150A 80A 60A

1336Tndash _ _ 050 37 (50) 200A 100A 80A

1336Tndash _ _ X060 45 (60) ndash 100A ndash

1336Tndash _ _ 060 45 (60) 250A 125A 90A

1336Tndash _ _ 075 56 (75) ndash 150A 110A

1336Tndash _ _ 100 75 (100) ndash 200A 150A

1336Tndash _ _ 125 93 (125) ndash 250A 175A

1336Tndash _ _ X150 112 (150) ndash 250A ndash

1336Tndash _ _ 150 112 (150) ndash 300A 225A

1336Tndash _ _ 200 149 (200) ndash 400A 350A

1336Tndash _ _ 250 187 (250) ndash 450A 400A

1336Tndash _ _ X300 224 (300) ndash ndash 400A

Bussmann FWPGould Shawmut Andash70C Semindashconductor Type

1336Tndash _ _ X250 187 (250) ndash 450A ndash

1336Endash _ _ P2502 187 (250) ndash 450A2 ndash

1336Tndash _ _ 300T 224 (300) ndash 450A 400A

1336Endash _ _ 3002 224 (300) ndash 500A2 450A

1336Tndash _ _ 350 261 (350) ndash 500A 450A

1336Endash _ _ 3502 261 (350) ndash 600A2

1336Tndash _ _ 400 298 (400) ndash 600A 500A

1336Endash _ _ 4002 298 (400) ndash 600A2

1336Tndash _ _ 450 336 (450) ndash 800A 600A

1336Endash _ _ 4502 336 (450) ndash 700A2 600A

1336Tndash _ _ 500 373 (500) ndash 800A 800A

1336Tndash _ _ 600 448 (600) ndash 900A 800A

1336Tndash _ _ 650 485 (650) ndash ndash 800A

1336Tndash _ _ 700C2 522 (700) ndash 600A3 700A3

1336Tndash _ _ 800C2 597 (800) ndash 700A3 700A3

1 Both fast acting and slow blow are acceptable

2 Fuses are supplied with F and H Frame drives

3 Two fuses in parallel are required

Chapter 2InstallationWiring

2ndash13

Electrical Interference ndash EMIRFI Immunity

The immunity of 1336 FORCE drives to externally generated interferenceis good Usually no special precautions are required beyond the installationpractices provided in this publication

It is recommended that the coils of DC energized contactors associatedwith drives be suppressed with a diode or similar device since they cangenerate severe electrical transients

In areas subject to frequent lightning strikes additional surge suppressionis advisable Suitable MOVs connected between each line and groundshould be used (see Figure 2ndash8)

Emission

Careful attention must be given to the arrangement of power and groundconnections to the drive to avoid interference with nearby sensitiveequipment Refer to ldquoMotor Cablesrdquo Appendix A The cable to the motorcarries switched voltages and should be routed well away from sensitiveequipment

The ground conductor of the motor cable should be connected to the driveground (PE) terminal directly Connecting this ground conductor to acabinet ground point or ground bus bar may cause high frequency currentto circulate in the ground system of the enclosure The motor end of thisground conductor must be solidly connected to the motor case ground

Shielded or armored cable may be used to guard against radiated emissionsfrom the motor cable The shield or armor should be connected to the driveground terminal (PE) and the motor ground as outlined above

Common mode chokes are recommended at the drive output to reduce thecommon mode noise

An RFI filter can be used and in most situations provides an effectivereduction of RFI emissions that may be conducted into the main supplylines

If the installation combines a drive with sensitive devices or circuits it isrecommended that the lowest possible drive PWM frequency beprogrammed

Chapter 2InstallationWiring

2ndash14

RFI Filtering 1336 FORCE drives can be installed with an RFI filter which controlsradiondashfrequency conducted emissions into the main supply lines andground wiring

If the cabling and installation recommendation precautions described inthis manual are adhered to it is unlikely that interference problems willoccur when the drive is used with conventional industrial electronic circuitsand systems Also refer to ldquoMotor Cablesrdquo in the Appendix of this manual

However a filter is recommended if there is a likelihood of sensitivedevices or circuits being installed on the same AC supply or if the motorcable exceeds 50 meters (164 feet) Beyond this length capacitance toground will increase the supply emissions

Where it is essential that very low emission levels must be achieved or ifconformity with standards is required (EN 55011 VDE0875 BSA FCC)the optional RFI filter should be used

Important The conformity of the drive and filter to any standard does notassure that the entire installation will conform Many other factors caninfluence the total installation and only direct measurements can verifytotal conformity

RFI Filter Installation

The RFI filter must be connected between the incoming AC supply lineand the drive power input terminals

In general it is best to install the filter on the same mounting platephysically close (and with short connections) to the drive

Important To assure that the RFI filter is effective the motor cable mustbe shielded or armored and the guidelines given in this manual must befollowed Refer to ldquoMotor Cablesrdquo in the Appendix

RFI Filter Leakage Current

The optional RFI filter may cause ground leakage currents Therefore anappropriate ground connection must be provided (refer to groundinginstructions on the following page)

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some countries threendashphasesupplies are occasionally connected in a 3ndashwire configurationwith one phase grounded (Grounded Delta) The filter must notbe used in Ground Delta supplies

Chapter 2InstallationWiring

2ndash15

Grounding Refer to the grounding diagram on the following page The drive must beconnected to the system ground at the power ground (PE) terminalprovided on the power terminal block (TB1) Ground impedance mustconform to the requirements of national and local industrial safetyregulations (NEC VDE 0160 BSI etc) and should be inspected and testedat appropriate and regular intervals

In any cabinet a single lowndashimpedance ground point or ground bus barshould be used All circuits should be grounded independently and directlyThe AC supply ground conductor should also be connected directly to thisground point or bus bar

Sensitive Circuits

It is essential to define the paths through which the high frequency groundcurrents flow This will assure that sensitive circuits do not share a pathwith such current and to minimize the area enclosed by these pathsCurrent carrying ground conductors must be separated Control and signalground conductors should not run near or parallel to a power groundconductor

Motor Cable

The ground conductor of the motor cable (drive end) must be connecteddirectly to the drive ground terminal (PE) not to the enclosure bus barGrounding directly to the drive (and filter if installed) provides a directroute for high frequency current returning from the motor frame andground conductor At the motor end the ground conductor should also beconnected to the motor case ground

If shielded or armored cables are used the same grounding methods shouldbe used for the shieldarmor as well

Encoder Connections

If encoder connections are required they must be routed in grounded steelconduit The conduit must be grounded at both ends Ground the cableshield at the drive only

Discrete Control and Signal Wiring

The control and signal wiring must be grounded at a single point in thesystem remote from the drive This means the 0V or ground terminalshould be grounded at the equipment end not the drive end If shieldedcontrol and signal wires are used the shield must also be grounded at thispoint

Chapter 2InstallationWiring

2ndash16

Signal Ground ndash TE

The TE terminal block is used for all control signal shields internal to thedrive It must be connected to an earth ground by a separate continuouslead

Any PLC IO communication link must be run in grounded steel conduitThe conduit should be bonded to ground at both ends Ground the cableshield at the drive end only

The maximum and minimum wire size accepted by this block is 21 and030 mm2 (14 and 22 AWG) Maximum torque is 136 Nndashm (12 lbndashin)Use Copper wire Only

Safety Ground ndash PE

This is the safety ground required by code The ground bus can beconnected to adjacent building steel (girder joist) or a floor ground loopprovided grounding points comply with NEC regulations

RFI Filter

Important Using an optional RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated in thefilter to clamp line surges to a limited voltage above ground potentialTherefore the filter must be permanently installed and solidly groundedGrounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnection Theintegrity of this connection should be periodically checked

Figure 28Recommended 1336 FORCE Grounding

JOG

ESC SEL

R (L1)

S (L2)

PE

Ground Rod

T (L3)

PE

U (T1)

Shield

RIODH+

Shield

CommonModeCore

CommonMode Core

Conduit4ndashWire Cable

To ComputerTE Ground

+ CommonMode

ChokesThese are options that can

be installed as needed

Ground perLocal Codes

Motor Frame

MotorTerminator

PE

V (T2)

W (T3)

PEGnd

+DC

DC

Chapter 2InstallationWiring

2ndash17

Power Cabling Input and output power connections are performed through terminal blockTB1 on the Gate Driver Board for Frame Size B (1ndash15 HP 240V 1ndash30 HP380V 1ndash20 HP 600V) drives For larger horsepower drives (frame sizesCDEG and H) TB1 terminal blocks are located on the bottom of thedrive where both the input and output power connections are to be made

Important For maintenance and setup procedures the drive may beoperated without a motor connected

Table 2BTB1 Signals

Terminal Description

PE Power Earth Ground

R (L1) S (L2) T (L3) AC Line Input Terminals

+DC ndashDC DC Bus Terminals

U (T1) V (T2) W (T3) Motor Connection

ATTENTION The National Codes and standards (NEC VDEBSA etc) and local codes outline provisions for safely installingelectrical equipment Installation must comply with specifica-tions regarding wire types conductor sizes branch circuitprotection and disconnect devices Failure to do so may result inpersonal injury andor equipment damage

Motor CablesA variety of cable types are acceptable for use with the 1336 FORCEThe choice of cable type is important to a successful application Motorcables must have an insulation thickness in excess of 15 mils The THHNtype wire or any wire with a nylon coating is not recommended forinstallations where there is a reasonable risk of wire damage (includingsmall nicks in coating or insulation) due to pulling through conduit orwhere moisture is present If wire integrity can be assured and no moistureis present THHN wire must have a minimum insulation thickness greaterthan 15 mils if conduit is used Refer to page 2ndash18 under Conduit forrecommendations on the number of cables per conduit

Refer to the Cable recommendations section in the Appendix of thismanual for additional information on specific cables

Wire Size and Type Wire sizes must be selected individually observing all applicable safetyand NEC and local regulations Due to the drive overload capacity theconductors for the transformer primary and secondary must be sized (at aminimum) for 125 of the maximum motor current The motorconductors must also be rated for 125 of the full load motor current Thedistance between the drive and motor may affect the size of the conductorsused

Chapter 2InstallationWiring

2ndash18

Shielded type wire is recommended in control circuits for protectionagainst interference A shielded wire is required for all signal wires Therecommended conductor size must be a minimum of 16 AWG The bestinterference suppression is obtained with a wire having an individual shieldfor every twisted pair Figure 29 shows recommended cable shielding

Figure 29Cable Shielding Recommendations

12411242

3682368382718281

82918301

83118321

2 ConductorShielded Cable

2 Conductor Shielded Cable

Multi-Conductor ShieldedCable with IndividualShielded twisted Pairs

Shield

Shield

Shield

TE

TE

TE

Shield Connection

Lug Kits DEF and G frame drives have stud type terminals andor bus barsboltsthat require standard crimpndashtype connectors for cable terminationConnectors such as TampB COLORndashKEYED Connectors or equivalent arerecommended Table 2C shows the lug selection for one possible cablechoice Choose connectors for each installation based on the desired cablesizes the application requirements and all applicable national state andlocal codes

Chapter 2InstallationWiring

2ndash19

Table 2C Lug Selection

r e atalo

AC Input R S TOutput U V W and PE

DC+DCndash 2 TE

Drive CatalogNumber

Cable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty Number1336EndashA040 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA050 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA060 (1) 1072 (40) (8) 54168 1 (1) 133 (6) (2) 54135 1 (1) 212 (4) (1) 54139 1

1336EndashA075 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54109 (1) 212 (4) (1) 54139 1

1336EndashA100 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 336 (2) (1) 54142 1

1336EndashA125 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashB060 (1) 424 (1) (8) 54147 1 (1) 84 (8) (2) 54131 1 (1) 133 (6) (1) 54135 1

1336EndashB075 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB100 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB125 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashBX150 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashB150 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54110 (1) 212 (4) (1) 54139 1

1336EndashB200 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashB250 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashBX250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashBP250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashB300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashBP300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashB350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashBP350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashB400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashBP400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashB450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashBP450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashB500 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashB600 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashC075 (1) 336 (2) (8) 54142 1 (1) 133 (6) (2) 54135 1 (1) 84 (8) (1) 54131 1

1336EndashC100 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashC125 (1) 674 (20) (8) 54158 1 (1) 267 (3) (2) 54147 1 (1) 133 (6) (1) 54135 1

1336EndashC150 (1) 1072 (40) (8) 54111 (1) 424 (1) (2) 54148 (1) 133 (6) (1) 54135 1

1336EndashC200 (2) 674 (20) (8) 54110T(8) 54110B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashC250 (2) 850 (30) (8) 54111T(8) 54111B

(1) 674 (20) (2) 54110 (1) 267 (3) (1) 54142 1

1336EndashCX300 (3) 850 (30) (16) 54111 NA NA1336EndashC300 (3) 850 (30) (16) 54111 NA NA1336EndashC350 (3) 535 (10) (24) 54109 NA NA1336EndashC400 (3) 674 (20) (24) 54110 Consult Factory NA NA1336EndashC450 (3) 850 (30) (24) 54111

Consult FactoryNA NA

1336EndashC500 (3) 1072 (40) (24) 54112 NA NA1336EndashC600 (3) 1270 (250 MCM) (24) 54174 NA NA1336EndashC700C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 541101336EndashC800C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 54110

1 516rdquo Stud All other studs are 38rdquo2 Lugs shown for DC+ndash are based on dynamic brake sizing of 50 of (motor rating X 125) Select proper lugs based on required braking torque3 T amp B COLOR-KEYED Connectors require T amp B WT117 or TBMndash6 Crimper tool or equivalent Lugs should be crimped according to manufacturerrsquos tool instructions

Chapter 2InstallationWiring

2ndash20

Table 2DCable and Wiring Recommendations

Category

Power

Control

Signal

(Process)

Signal(Comm)

WiringClass

1

2

3

5

Signal Definition

AC Power (600V or greater)

AC Power (less than 600V)

AC Power

115V ACDC Logic

115V AC Power

24V ACDC Logic

Analog Signals DC Supplies

Digital (low speed)

Digital (high speed)

SerialCommunication

Serial Communication (greaterthan 20k baud)

Signal Examples

23kV 3Ph AC Lines

460V 3Ph AC Lines

AC Motor

Relay LogicPLC IOMotor Thermostat

Power SuppliesInstruments

PLC IO

ReferenceFeedbackSignal 5 to 24V DC

TTL

IO Encoder CounterPulse Tach

RS-232 422 to TerminalsPrinters

PLC Remote IO PLC Data Highway

Cable Type

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

Shielded Cable ndash Belden 87358737 8404

Shielded Cable ndash Belden 97289730

Shielded Cable ndash BeldenRS-232 ndash 8735 8737RS-422 ndash 9729 9730

Twinaxial Cable ndash A-B1770-CD

1

0

39

39

318

234

39

0

36

312

56

39

36

0

39

78

318

312

39

0

91011

Note 6

Note 6

Note 6

13

SpacingNotes

125

125

125

Minimum Spacing in Inches between Classes ndashSteel ConduitTray

Example Spacing relationship between 480V AC incoming power leads and 24V DC logic leads

ndash 480V AC leads are Class 2 24V DC leads are Class 6ndash For separate steel conduits the conduits must be 3 inches (76 mm) apartndash In a cable tray the two groups of leads are to be 6 inches (152 mm) apart

Spacing Notes

1 Both outgoing and return current carrying conductors are to be pulled in sameconduit or laid adjacent in tray

2 Cables of the following classes can be grouped togetherA Class 1 Equal to or above 601 voltsB Classes 23 and 4 may have their respective circuits pulled in the

same conduit or layered in the same trayC Classes 5 and 6 may have their respective circuits pulled in the

same conduit or layered in the same trayNote Bundle may not exceed conditions of NEC 310

D Classes7 and 8 may have their respective circuits pulled in the same conduit or layered in the same trayNote Encoder cables run in a bundle may experience some amount of EMI coupling The circuit application may dictate separate spacing

E Classes 9 10 and 11may have their respective circuits pulled in the same conduit or layered in the same trayCommunication cables run in a bundle may experience some amount of EMI coupling and corresponding communication faults The application may dictate separate spacing

3 All wires of class 7 thru 11 MUST be shielded per the recommendations

4 In cable trays steel separators are advisable between the classgroupings

5 If conduit is used it must be continuous and composed of magneticsteel

6 Spacing of communication cables classes 2 thru 6 isCONDUIT SPACING THRU AIR115 Volts ndash 1 inch 115 Volts ndash 2 inches230 Volts ndash 15 inches 230 Volts ndash 4 inches460575 Volts ndash 3 inches 460575 Volts ndash 8 inches575 volts ndash proportional to 6rdquo 575 volts proportional to 12rdquoper 1000 volts per 1000 volts

General Notes

1 Steel conduit is recommended for all wiring classes (Classes 7-11)

2 Spacing shown between classes is the minimum required for parallel runsless than 400 feet Greater spacing should be used where possible

3 Shields for shielded cables must be connected at one end only The otherend should be cut back and insulated Shields for cables from a cabinet to anexternal device must be connected at cabinet end Shields for cables fromone cabinet to another must be connected at the source end cabinetSplicing of shielded cables if absolutely necessary should be done so thatshields remain continuous and insulated from ground

4 Power wire is selected by load 16AWG is the minimum recommended sizefor control wiring

6

7

8

9

11

2345

Note 6 13 0

Chapter 2InstallationWiring

2ndash21

Power Wiring On 1 to 30 HP drives input and output power connections are performedthrough a 10 position terminal block TB1 located on the Gate DriverBoard On drives larger than 30 HP input and output power connectionsare made at seperate terminal strips located at the bottom of the drive Thedrive connections are illustrated in Figure 210 The C thru Gconfigurations of TB1 are stud terminations and require the use of lug typeconnectors to terminate the field installed conductors Cat No1336ndashLUGndashXXXX Lug Kits are available for use with theseconfigurations of TB1 The wire size used is determined by selecting theproper lug kit based on the Cat No of the drive Refer to Table 2C todetermine the correct lug kit for your application

Figure 210Terminal Block TB1

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

Required 1Input Fusing

AC Input Line

To Motor

200ndash240V 75ndash11 kW (10ndash15 HP) Terminal Designations380ndash480V 15ndash22 kW (20ndash30 HP) Terminal Designations

500ndash600V 15 kW (20 HP) Terminal Designations

Dynamic Brake

To Motor1 Required Branch

Circuit Disconnect

B1 Frame

B2 Frame

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

AC Input Line

To Motor

To Motor

200ndash240V 075ndash55 kW (1ndash75 HP) Terminal Designations380ndash480500ndash600V 075ndash11 kW (1ndash15 HP) Terminal Designations

Dynamic Brake

Required 1Input Fusing

1 Required Branch

Circuit Disconnect

Chapter 2InstallationWiring

2ndash22

Figure 210Terminal Block TB1 cont

PEGRD

PEGRD

DC+

Dynamic Brake

Required 1Input Fusing

DCndash

R(L1)

S(L2)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 15ndash22 kW (20ndash30 HP) Terminal Designations380ndash480V 30ndash45 kW (40ndash60 HP) Terminal Designations

500ndash600V 185ndash45 kW (25ndash60 HP) Terminal Designations

1 Required Branch

Circuit Disconnect

C Frame

To Motor

PE PEDC +Brake

1 RequiredInput Fusing

DC ndashBrake

R(L1)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 30ndash45 kW (40ndash60 HP) Terminal Designations380ndash480V 45ndash112 kW (60ndash150 HP) Terminal Designations500ndash600V 56ndash112 kW (75ndash150 HP) Terminal Designations

1 Required BranchCircuit Disconnect

TE

S(L2)

To Motor

DC +Brake

380ndash480V 224ndash448 kW (300ndash600 HP) Terminal Designations500ndash600V 187ndash485 kW (250ndash650 HP) Terminal Designations

To Motor

DC ndashBrakeRequired 1

Input Fusing

AC Input Line

W(M3)

U(M1)

V(M2)

Brake terminals are locatedbehind the ldquoUrdquo terminal

Access terminalsfrom side of chassis

(located at bottom of drive) W

UV

1 Required BranchCircuit Disconnect

R(L1)

S(L2)

T(L3)

typical terminal layout(located at top of drive)

RS

T

D Frame G Frame

Chapter 2InstallationWiring

2ndash23

Figure 210 contTerminal Block TB1

200ndash240V 56ndash75 kW (75ndash100 HP) Terminal Designations380ndash480V 112ndash187 kW (150ndash250 HP) Terminal Designations500ndash600V 112ndash149 kW (150ndash200 HP) Terminal Designations

TEBUS INPUT OUTPUT

ndash DC

+DC

PE PE RndashL1 SndashL2 TndashL3 UndashM1 VndashM2 WndashM3

Required 1Input Fusing

To Motor

AC Input Line

1 Required BranchCircuit Disconnect

To Motor

E Frame

typical terminal

380-480V 187-336 kW (250-450 HP) Terminal Designations

To Motor

T-L3R-L1 S-L2 W-M3U-M1PE V-M2F Frame

Input Fusing(Supplied)

AC Input Line

1 Required BranchCircuit Disconnect

DC ndashBrake

DC +Brake

Chapter 2InstallationWiring

2ndash24

Figure 210 contTerminal Block TB1

DC +Brake

R(L1)

S(L2)

T(L3)

380-480V 522-597 kW (700-800 HP) Terminal Designations500-600V 522-597 kW (700-800 HP) Terminal Designations

To Motor

DC ndashBrakeRequired

Input Fusing1

AC Input Line

(located at bottom of drive)

W(M3)

U(M1)

V(M2)

W

UV

H Frame

1 Required BranchCircuit Disconnect

1 User supplied

Chapter 2InstallationWiring

2ndash25

Control Wiring

ATTENTION When user installed control and signal wiringwith an insulation rating of less than 600V is used this wiringmust be routed inside the drive enclosure so that it is separatedfrom any other wiring and uninsulated live parts Failure to do socould result in equipment damage or unsatisfactory Drive performance

Encoder Brake and Drive to Drive interface connections are performed onthe Main Control Board (Fig 211) The maximum and minimum wiresize accepted by TB10 and TB11 on the Main Control Board is 33 and006 mm2 (12 and 30 AWG) Maximum torque for both terminal blocks is079 Nndashm (7 lbndashin) Use copper wire only

Figure 211Terminal Block Locations Main Control Board

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

AdapterBoard Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

D1D2D3D4D5D43D47

GreenGreenRedGreenRedAmberGreen

Drive EnableVP IndicatorVP IndicatorCP IndicatorCP Indicator Drive to Drive StatusDrive to Drive Power

ON ndash Drive Running OFF ndash Drive Not RunningON ndash No Faults OFF ndash See D3Refer to Fault Codes in Table 4AON ndash No Faults OFF ndash See D5Refer to Fault Codes in Table 4ASolid ndash OK Blinking ndash FaultON ndash Power OFF ndash No Power

Flt Trp

1 2 3

1 2 3

Jumper +5VDC

J3

J4

1ndash2

1ndash2

+12VDC Purpose

2ndash3

2ndash3

Encoder Voltage SelectionEncoder Voltage Selection

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Chapter 2InstallationWiring

2ndash26

Encoder Connections The Encoder connections are made at terminal block TB10 on the MainControl Board as detailed in Figure 212

Figure 212Encoder Connections

Encoder

Shield

Common

+12 Volts

Encoder B

Encoder B

Encoder A

Encoder A

6

7

5

4

3

1

2

TB10

Drive to Drive Communication The TB11 connector on the Main Control Board (Figure 213) is used toconnect the Drive to Drive Communication Interface

Figure 213Drive to Drive Connections

4

3

5

(SHD)

(C_L)

(V+)

2

RTN (Vndash)

TB11

1

(C_H)

Drive to Drive Setup ndash The hardware setup for Drive to Drive (D2D)consists of a shielded cable going from CN+ and CNndash between the drivesThe shields are to be tied together and grounded at one point (TE)TB11ndash3 SHD is an open connection and is used to tie ground wire togetherA wire must go from TB11ndash3 to TE Bus Place a 120Ω terminatingresistor on both ends of the cable You must supply the 8 ndash18 VDC thatpowers the D2D Figure 214 shows a typical D2D connection using therequired AllenndashBradley Isolation Board Recommended cable is Drive toDrive cable (AndashB 1485ndashCndashPIndashC) which is available in 50 150 300 and600 meter lengths

Chapter 2InstallationWiring

2ndash27

Figure 214 Drive to Drive Hardware Connection

DRIVE 1

RTN +15V

(Customer Supplied)

120Ω

Isolator Board

OutputV+CHShdCLVndash

J2

InputV+CHShdCLVndash

J1

24V 1A Max(PN 1336T ndash D2DIS)

1 2 3 4V +

5

CndashH

C1 C2

Shd

8ndash18 VDCPower Supply

PE

CndashL V ndash

DRIVE 2

1 2 3 4V +

5CndashH Shd CndashL V ndash

DRIVE 3

120Ω

1 2 3 4V +

5CndashH Shd CndashL V ndash

ToTEBus

Chapter 2InstallationWiring

2ndash28

Standard Adapter Board When installing and wiring the Standard Adapter board you need to dealwith the following issuesbull Control and Signal Wiringbull Interface Board Installation and Removal

Control amp Signal Wiring ndash If your 1336 FORCE Drive is equipped witha Standard Adapter Board terminal blocks TB5 TB6 and TB7 located atthe bottom center of the board (Figure 215) are used for control and signalwiring (Drive Permissives) The Standard Adapter Board is connected tothe Main Control Board through J1 the Main Control Interface

The maximum and minimum wire size accepted by TB5 TB6 and TB7 is33 and 006 mm2 (12 and 30 AWG) Maximum torque for these terminalblocks is 079 Nndashm (7 lb ndash in) Recommended control signal wire isbull Belden 8760 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shieldedbull Belden 8770 or equiv ndash 0750 mm2 (18 AWG) 3 ndash Conductor Shieldedbull Belden 9460 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shielded

Figure 215Standard Adapter Board Connections

LANGUAGE MODULE

1

J11

TP1

Port 1

TB5

J9

D1

TE

Port 2

TP3

J1Main Control InterfaceJ5

BRAM

AgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgrave

TP2

TP6

TP5

+5V

DGND

+15V

AGND

ndash15VEN DIS

D2

1

L OPTION BOARD

TB6 TB7

TP7 TP8

12V ISO ISO COM

Jumper

J13

J1331

+5V DC

1 to 2

+12V DC

2 to 3

Purpose Jumper

J5

Position

1 to 22 to 3

Purpose

BRAM Write EnableBRAM Write Disabled

14 121 8

Stat

us

LED STATE DESCRIPTION

D1 (Green) OFF

Flashing

Solid ON

D2 On or No Power

Adapter Warning Fault

Adapter OK

D2 (RED) OFF

Flashing

Solid ON

D1 On or No Power

Adapter Soft Fault

Adapter Hard Fault

TE

1

20

J10 J12

20

1

Refer to Fault Codes in Table 6B

Pulse Input Voltage Selection

Chapter 2InstallationWiring

2ndash29

Interface Board Installation and Removal ndashIMPORTANT If the L Option Board is being installed Standard AdapterBoard jumpers at pins 3 amp 4 and 17 amp 18 of J10 must be removed and theproper Input Mode selected (Figure 216) If the L Option board isremoved these jumpers must be reinstalled and the Input Mode parametermust be programmed to ldquo1rdquo

Figure 216Interface Board Jumper Locations

JOG

ESC

SEL

Figure 217Reference Signal Connections (Standard Adapter Board)

TB51 2 3 4 5 6 7 8 9 10 11 12

TB613 14

TB7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12

+10V ndash10VCom

+ ndash SH + ndash + ndash

4 to 20ma0 to plusmn10V

SH SH + ndash

PulseSource

0 to plusmn10V

+ ndash SH + ndash

0 to plusmn10V 4 ndash 20 ma

SH + ndash

AnalogOutputs

Run FaultRelay

AlarmRelay

TE TE

Programmable Run Fault Alarm

Terminal

TB5

Signal

SH Shield Ground

123 DC Power Supply

4567 Input Impedance = 20K Ohms

1011

Pulse Input forFrequency Ref

+5V DC ndash Jumper xx Set to xx+12V DC ndash Jumper xx Set to xx

Scale Factor (Pulse PPR) must be set

TB6 SH

1245

Shield Ground

0 to +ndash 10 VDC Output

Output Impedance = 100 Ohms

78 4 ndash 20 ma DC Output

Input Impedance = 130 Ohms

1314

4 ndash 20ma Input

Output Impedance = 100 Ohms

TB7 TE

456

Logic Earth Ground Shield Ground

Fault Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

789 Alarm Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

ProgrammableSupply

Note This output is programmable through P384

If using a potentiometer reference 25K Ω minimum

External to Drive

DC Power Supply

+ndash 10VDC 50 mA per voltage

Output Impedance = 20 Ohms

User Supplied Analog Device

0 to +ndash 10V DC Input

Terminal Block

Chapter 2InstallationWiring

2ndash30

Analog Inputs ndash There are (2) analog inputs to the Standard AdapterBoard (Figure 218) that have a range of plusmn10V (1) 4ndash20 mA analog inputand (1) pulse source input with a digital resolution of 12 bits These inputsare differential inputs with noise rejection filtering

Each input has a gain and offset adjustment The AD converter is a 12 bitdevice where an input value of +10V will result in a digital value of 2048Likewise an input value of ndash10V will result in a digital output value ofndash2048

NOTE Analog input parameters must be linked to a velocity referenceparameter as well as a scaling and offset parameter for an analog input tofunction

NOTE Refer to Chapter 4 Startup for Analog IO configurationinformation

Figure 218Analog Input Connections

Typical Connections for Unidirectional Operation

Typical Connections for Bidirectional Operation

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

REFERENCE POT25 kΩ MINIMUM

TB5

1

ndash 10V DC (POWER SUPPLY) 3

ADC

REVERSE

FORWARD

R

Reverse

ReverseRelay

Forward

6

0 to+ndash10V

7

8

2

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

2

6

REFERENCE POT25 kΩ MINIMUM

TB5

Connect toEither 1 or 3(ONLY ONE)

1

ndash 10V DC (POWER SUPPLY) 3

ADC7

8

0 to+ndash10V

Chapter 2InstallationWiring

2ndash31

Analog Outputs ndash There are (2) analog outputs from the StandardAdapter Board that have a range of + 10V and (1) 4ndash20 mA output with adigital resolution of 12 bits

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB7 onthe Standard Adapter Board Fault outputs provide warning or fault signalsbased on Drive ProgrammingFault NC Fault ComFault NO ndash A form C NONC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 219Typical Digital Output (Standard Adapter)

Fault Com (Digital Out)

Fault NC (Digital Out)

6

5

4

TB7

Fault NO (Digital Out)

Pulse InputThe pulse input lets an external source provide the drive with a digitalreference or trim signal Pulse input is a differential input with a maximumfrequency of 100 kHz

Figure 220Pulse Input Connection

5 ndash 12V Pulse Input 100 kHz max

12

13

14

TB5

TE

Unidirectional

The pulse input can be useful if you have a system with multiple drives andyou want encoder magnetic pickup or other drives that provide a pulse tosupply the reference for additional drives You could use this reference toensure that all drives run at the same speed or to ensure that the speed ofthe other drives is related to the speed of the reference

Chapter 2InstallationWiring

2ndash32

ConfigurationThe 1336 FORCE Drive is shipped prendashconfigured meaning that some ofthe inputs and outputs are linked to a predefined signal Figure 221 showsthe 1336 FORCE standard configuration when equipped with a StandardAdapter Board The user has the flexibility to configure the Drive for aparticular application

Chapter 2InstallationWiring

2ndash33

Figure 221Standard Adapter Links

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select 1 (Par 364)

365

SP Analog In 1 (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)

1 2 3 4 5

366

Scale

369

Scale

Chapter 2InstallationWiring

2ndash34

Starting amp Stopping the Motor

ATTENTION The 1336 FORCE Drive control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC input power is removedthere will be a loss of inherent regenerative braking effect and themotor will coast to a stop An auxiliary braking method may berequired

Figure 222 illustrates the location of the terminal blocks that are used forinterfacing control signals to a 1336 FORCE equipped with a StandardAdapter Board

Figure 222Terminal Block Locations

TB1TB11TB3

TB4TB6

Power Terminal BlockControl amp Signal WiringControl Interface Option24V DC Auxiliary InputHigh Voltage DC Auxiliary Input480V Output (F Frame Only)Shield Terminals

TB1TB10 11TB3TB4TB6TB9TE

Frames B C Frames D E

TB1

TB11

TB3Control Interface

Option

Control InterfaceOption

TB1

TB1Location

TB1 LocationTB4

TB6TE

TB1

Frame G

Frame F

U V Wamp BrakeTerminals

TB10 11

TB3

BrakeTerminals

R S T

TE

TE

PEGround

TB10 11

TB3

TB9

TB1Location

TB10

TB10

Frame H

U V Wamp BrakeTerminals

TB10 11

TB3

+ -

TE

PE Ground

TB1Location

TB1 Power Terminal BlockTB10 11 Control amp Signal WiringTB3 Control Interface OptionTB4 (For Factory Use Only)TB6 (For Factory Use Only)TB9 480V Output (F Frame Only)TE Shield Terminals

Chapter 2InstallationWiring

2ndash35

Control Interface Option ndash TB3The Control Interface Option provides a means of interfacing varioussignals and commands to the 1336 FORCE by using contact closures

Six different versions of the option are available

L4 Contact Closure Interface L4E Contact Closure Interface with Encoder Feedback Inputs1

L5 +24V ACDC InterfaceL5E +24V ACDC Interface with Encoder Feedback Inputs1

L6 115V AC InterfaceL6E 115V AC Interface with Encoder Feedback Inputs1

1 Encoder feedback inputs are connected to TB10 on the FORCE Drive Do Not connect Encoder Feedback inputs to the Control Interface Option card

The user inputs are connected to the option board through TB3 The L4 L5and L6 options each have nine control inputs The function of each inputmust be selected through programming as explained later in this sectionThe L4E L5E and L6E options are similar to L4 L5 and L6 with theaddition of encoder feedback inputs which are not used with the 1336FORCE

Available InputsA variety of combinations made up of the following inputs are available

Start EnableStopClear Fault Ext FltReverse 2 Stop Mode SelectsDigital Potentiometer (MOP) Run Forward2 AccelDecel Rates Run Reverse3 Speed Selects Local Control

The available combinations are shown in Figure 224 Programming the[Input Mode] parameter to one of the Input Mode numbers listed willselect that combination of input functions

Important The [Input Mode] parameter can be changed at any time butthe change will not affect drive operation until power to the drive has beenremoved and bus voltage has decayed completely When changing the[Input Mode] parameter the functions of the TB3 inputs will change whenpower is reapplied to the drive

Important If a Control Interface Option is not installed the [Input Mode]parameter must be set to 1 (default) and jumpers must be installed If thedrive was shipped from the factory without the option these jumpers willhave been installed

The programming options of the Control Interface Option allow the user toselect an input combination to meet the needs of a specific installationAppropriate selection of a combination may be done by using Figure 224First determine the type of startstopdirection control desired Then selectthe remaining control functions available Record the selected modenumber below

Selected Mode Number _____________________

Chapter 2InstallationWiring

2ndash36

Figure 223 provides the terminal designations for TB3 The maximum andminimum wire size accepted by TB3 is 21 and 030 mm2 (14 and 22AWG) Maximum torque for all terminals is 136 Nndashm (12 lbndashin) UseCopper wire only

Figure 223TB3 Terminal Designations

NOTE Terminals 31 thru 36 are not used with 1336 FORCE applications

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Included on L4E L5E amp L6E OnlyNOT USED

Inpu

t 1

Inpu

t 2 (S

top)

Com

mon

Inpu

t 3

Inpu

t 4

Inpu

t 5

Com

mon

Inpu

t 6

Inpu

t 7

Inpu

t 8

Com

mon

Enab

le

Enco

der B

Enco

der N

OT

A

Enco

der N

OT

B

Enco

der A

+12V

(200

mA

max

)

Enco

der C

omm

on

The following table defines the input state of the Speed Select inputs for adesired frequency source

Table 2ESpeed Select Input State vs Frequency Source

Speed Select 3 Speed Select 2 Speed Select 1 Velocity Reference Source

TB3 Terminal 26 Terminal 27 Terminal 28 Interface Option (MOD L4L5L6)

O O O Ext Ref 1 Para 101

O O X Preset Speed Ref 1 (P 119)

O X O Preset Speed Ref 2 (P 120)

O X X Preset Speed Ref 3 (P 121)

X O O Preset Speed Ref 4 (P 122)

X O X Preset Speed Ref 5 (P 123)

X X O External Reference 2 (P 104)

X X X Last State

Equivalent truth table implemented in Parameter 52 Logic Command Word

Para 52 Bit 14 Bit 13 Bit 12 Velocity Reference Source Bits

O O X Ext Ref 1 (P 101)

O X O Preset Speed Ref 1 (P 119)

O X X Preset Speed Ref 2 (P 120)

X O O Preset Speed Ref 3 (P 121)

X O X Preset Speed Ref 4 (P 122)

X X O Preset Speed Ref 5 (P 123)

X X X External Reference 2 (P 104)

O O O No Reference or Last State

0 = Open ndash input removed X = Closed ndash input present

Unless otherwise configured this will default to the HIM speed reference input

Chapter 2InstallationWiring

2ndash37

Figure 224Input Mode Selection amp Typical TB3 Connections

19

20

21

22

23

24

25

26

27

28

29

30

Status

Not StopClear Fault 3

Common

Status

Status

Status

Common

Status

Status

Status

Common

Enable 3

[Input Mode] 1Factory Default

19

20

21

22

23

24

25

26

27

28

29

30

Start

Not StopClear Fault 378

Common

RevFwd5

Auxiliary 3

Common

Speed Select 2 1

Speed Select 1 1

Common

Enable 3

Jog StopType

2nd1stAccel

DigitalPot Up

SpeedSelect 31

SpeedSelect 31

2nd1stDecel

DigitalPot Dn

2 3 4 5279 6Mode

[Input Mode] 2ndash6 17 18ThreendashWire Control with SinglendashSource Reversing

1 See Speed Select Table on previous page2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 5 For Common Bus ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for Reverse Direction Control7 Soft Fault Reset Only Must Cycle Power to Drive to Clear Hard Fault Hard Fault = See Troubleshooting Section

8 Soft Fault Refer to Para 59 to Configure Start amp Stop Type9 Digital Pot Value Zeroed When Stop Asserted

ProcTrim

LocalControl2

Jog Flux EnJog

Ramp Reset

17 18

Chapter 2InstallationWiring

2ndash38

Figure 225Input Mode Selection amp Typical TB3 Connections

Run Forward 4 6

Not StopClear Fault 378

Common

Run Reverse 4 6

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

LocalControl 2

StopType

2nd1stAccel

DigitalPot Up

LocalControl 2

SpeedSelect 3 1

SpeedSelect 3 1

2nd1stDecel

DigitalPot Dn

StopType

12 13 14 15 309 16

Mode

[Input Mode] 12ndash16TwondashWire Control SinglendashSource Control

19

20

21

22

23

24

25

26

27

28

29

30

Start 6

Not StopClear Fault 378

Common

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

Forward 6

Forward 6

DigitalPot Dn

Forward 6

2ndAccel

Jog SpeedSelect 3 1

SpeedSelect 3 1

DigitalPot Up

1stDecel

[Input Mode] 7ndash11ThreendashWire Control with MultindashSource Reversing

Reverse 4 6

Reverse 46

DigitalPot Up

Reverse 4 6

1st

Accel

7 8 9 289 10 299 11

Mode

SpeedSelect 2 1

SpeedSelect 2 1

SpeedSelect 2 1

DigitalPot Dn

2ndDecel

19

20

21

22

23

24

25

26

27

28

29

30

1 See Table 2E2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 to allow operation5 For Common ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for reverse direction control7 Soft Fault Reset Only Must recycle power to drive to clear Hard fault ndash see Troubleshooting8 Refer to Para 59 to configure Start amp Stop type9 Digital Pot Value Zeroed When Stop Asserted

Speed Select 2 1

SpdTq2

SpdTq3

Proc Trim

19

SpdTq1

SpdTq2

SpdTq3

Flux En

20

SpdTq1

Fwd

Rev

Reset

21

Ramp Dis

SpdTq2

SpdTq3

Spd Sel 2

SpdTq1

22

23 24 25 26

ProcTrim

Reset

Flux En Proc Trim

Reset Ramp Dis

Jog

Spd Sel 3

Parameter 53 (SpdTrq Mode Sel) becomes read only

Chapter 2InstallationWiring

2ndash39

Figure 226Option L4L4E Wiring

19 20 21 22 23 24 25 26 27 28 29 30 31 32A A

ENCRET

ENC12V

33 34 35 36

Typical of Each Input

Typical

L4 L4E Options

Isolated+5V

IsolatedGround

01microf 01microf

01microf

107k

470 470 12V

681

100

909

5VJP4

IGND

107k

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

TB3

NOTUSED

Option L4L4E ndash Contact Closure Interface Board Requirements

Circuits used with Option L4L4E must be capable of operating with low =true logic Reed type input devices are recommended

In the low state external circuits must be capable of a sinking current ofapproximately 10mA to pull the terminal voltage low to 30V DC or less

In the high state external circuits must allow the terminal voltage to rise toa voltage of 40ndash50V DC

The L4L4E option is compatible with the following AllenndashBradley PLCmodulesbull 1771ndashOYLbull 1771ndashOZL

Chapter 2InstallationWiring

2ndash40

Figure 227Option L5L5E Wiring

Typical

TB3

L5 L5E Options

A AENCRET

ENC12V

Common

+24V

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

022microf

1k

20k

510

510 510

User Supplied24V ACDC

Contacts shown are general refer to Figures 224 amp 225 forInput Mode selection and recommended contact types

NOTUSED

Option L5L5E ndash 24V ACDC Interface Board Requirements

Circuits used with Option L5L5E must be capable of operating with high= true logic

DC external circuits in the low state must generate a voltage of no morethan 8V DC Leakage current must be less than 15 mA into a 25k ohmload

AC external circuits in the low state must generate a voltage of no morethan 10V AC Leakage current must be less than 25 mA into a 25k ohmload

Both AC and DC external circuits in the high state must generate a voltageof +20 to +26 volts and source a current of approximately 10 mA for eachinput

The L5L5E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOB bull 1771ndashOQ16bull 1771ndashOB16bull 1771ndashOBD bull 1771ndashOYLbull 1771ndashOBN bull 1771ndashOZLbull 1771ndashOQ bull 1771ndashOBB

Chapter 2InstallationWiring

2ndash41

Figure 228Option L6L6E Wiring

Typical of Each Input

L6 L6E Options

A AENCRET

ENC12V

115V AC Fuse

Common

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

015microf033f

022microf

49

499k

20k

100 100

User Supplied115V AC

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

Fuse

TB3

NOTUSED

Option L6L6E ndash 115V AC Interface Board Requirements

Circuits used with Option L6L6E must be capable of operating with high= true logic In the low state circuits must generate a voltage of no morethan 30V AC Leakage current must be less than 10 mA into a 65k ohmload In the high state circuits must generate a voltage of 90ndash115V AC+ndash10 and source a current of approximately 20 mA for each inputThe L6L6E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOW bull 1771ndashOAbull 1771ndashOWN bull 1771ndashOAD (contact factory for recommended series rev level)

Chapter 2InstallationWiring

2ndash42

PLC Communication Adapter Board Control and Signal Wiring ndash When installing and wiring the PLCCommunication Adapter Board you need to deal with the following issuesbull Control and Signal Wiringbull Jumper Settings for IO CircuitsIf your 1336 FORCE Drive is equipped with a PLC Comm Adapter Boardterminal blocks TB20 amp TB21 located at the bottom center of the PLCComm Board (Figure 229) are used for control and signal wiring (DrivePermissives) Connector TB21 provides the interface for Analog Input andOutput reference signals as detailed in Figure 230

Figure 229PLC Comm Board Connections

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

NOTE For more information on the PLC Communication Board including LEDs and Jumpers refer to the PLC Communication UserManual 1336 FORCE 513

CHANNEL A

SHIELD

CHANNEL B

2

1

SHIELD2

1

The maximum and minimum wire size accepted by TB20 TB21 ChannelA and Channel B is 33 and 006 mm2 (12 and 30 AWG) Maximumtorque for these terminal blocks is 079 Nndashm (7 lb ndash in) Only copperwire may be used

Chapter 2InstallationWiring

2ndash43

Figure 230Reference Signal Connections (PLC Comm Adapter)

TB20

1 2 3 4 5 6 7 8 9 10

TB21

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Common

Terminal Block

TerminalNumber(s)

TB20

Signal

1 Drive Enable (NO)

2 Motor Thermoguard (NC)

3 Normal Stop (NC)

Analog Out 1

Analog Out 2

Analog Out 3

Analog Out 4

4

5

6

External Fault (NC)

Input Common

7

8

9

Fault Output (NC)

Fault Output (COM)

10 Fault Output (NO)

TB21 1 OUT 1

2 COM 1

3

COM 24

5

6

7

8

9

10

OUT 2

OUT 3

COM 3

OUT 4

COM 4

IN 1+

IN 1ndash

11

12

13

14

15

16

IN 2+

IN 2ndash

IN 3 +

IN 3ndash

IN 4+

IN 4 ndash

17

18

19

+10V

COM

ndash10V

DriveEnable

MotorThermo

Norm Stop

ExtFault

Fault Relay

Analog In 1

Analog In 2

Analog In 3

Analog In 4

+10 ndash10Comm

Note If using a pot as an input 25KΩ min

Refer to Parameter 58 description for explanation of modes

Pin jumper J3 on the PLC Communication Adapter Board Enables orDisables the BRAM (Battery Backup RAM) Write function as follows

Jumpered 1 ndash 2 = EnabledJumpered 2 ndash 3 = Disabled

The PLC Communication Adapter Board 120V24V jumper settings for I0circuits (J8 ndash J11) are detailed in the 1336 FORCE PLC CommunicationsAdapter User Manual Publication 1336 FORCEndash 513

Switch Settings ndash There are DIP switches and jumpers located on the PLCCommunications Adapter Board that have been preset at the factoryCommunication is received through Channels A and B Thiscommunication protocol is defined through SW U2 ndash U5 If you need toreconfigure the switches or jumpers consult the 1336 FORCE PLCCommunications Adapter User Manual

Chapter 2InstallationWiring

2ndash44

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB20on the PLC Communication Adapter Board Fault outputs provide warningor fault signals based on drive programmingFault NCFault ComFault NO ndash A form C NO NC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 231Typical Digital Output

Fault Com (Digital Out)

Fault NC (Digital Out)

10

9

8

TB20

Fault NO (Digital Out)

Discrete InputsDiscrete Inputs to the 1336 FORCE are only supplied when a PLCCommunication Adapter Board is used These inputs are supplied atterminal block TB20Discrete inputs serve to enable and stop the Drive as well as providechecks on drive and motor operation

Figure 232Typical Digital Output

EXT FAULT (Digital Out)

INPUT COM (Digital Common)

NORM STOP (Digital In)

6

4

3

TB20

2

1

(Common)

MOTOR THERMO (Digital In)

DRIVE ENABLE (Digital In)

115V AC+24V DC (HIGH)

EXTERNAL FAULT

STOP

MOTOR THERMO

ENABLE

Chapter 2InstallationWiring

2ndash45

Figure 2ndash33 illustrates a typical stop control scheme that might be usedwhen the 1336 FORCE is equipped with a PLC Communication AdapterBoard For further information on PLC Communication Adapter boardoperation and configuration refer to the PLC Communication AdapterBoard User Manual 1336 FORCE 513

Figure 233Control Scheme

TB20

Drive Enable 12024V

Motor Thermo 12024V

Stop 12024V

Ext Fault 12024V

Input Common

Fault NC

Fault Com

Fault NO

120V24V

Input Common

Note Terminal Blocks TB20 amp TB21 are pull apart terminal blocks to aid in making cable connections Bothterminal blocks will accept wire sizes from 30ndash12 AWG (006 ndash 33 mm2)

This is a configurable stop see parameter 59 under the Drive Logic group for Start and Stop options Input must be jumpered if not used

Computer Connections to Frame D drivesIn some cases it will be necessary to use a DH+ port connection kit whenconnecting some computers to a 1336 FORCE drive in FRAME D ONLY

Refer to the Installation instructions included with Frame D drives formore information on the use and installation of this kit

ControlNet Fiber Optic Cable Connections to Frame D drivesIf you are installing the fiber optic cable for ControlNet on a Frame Ddrive special note should be taken of the following

ndash The strain relieflatching cover assembly must be removed from the cable connectors due to space constraints The cable connectors must then be separately plugged into the ControlNet board connectors on Frame D drives ONLY

ndash Correct orientation of the loose cables is determined by the color of the connectors The blue connector must be plugged into the dark grey connection on the board The black connector plugs into the light grey connection on the board The cable with the black connector is the transmit cable (TX) and the cable with the blue connector is the receive (RX) cable Reset the drive after connecting the cables and the ControlNet system should be ready to operate

Chapter 2InstallationWiring

2ndash46

ConfigurationThe 1336 FORCE Drive is shipped pre-configured which means that someof the inputs and outputs are linked to a predefined signal Figure 234shows the 1336 FORCE standard configuration when equipped with a PLCCommunication Adapter Board The user has the flexibility to configurethe Drive for a particular application

Figure 234PLC Comm Adapter Links

PLC Comm Adapter Channel B

1

Logic CMD In Port 6

OUTPUT IMAGE TABLEGROUP NUMBER

1336 FORCERemote IO Interface

331

OFFSET

400

SCALEAnalog Outputs Drive ParametersTB21

1

Reserved For-Block Transfer

PLC CONTROLLER

FULL021324354657

024135246357

34 12 1402461357

332333334335336337

01234567

INPUT IMAGE TABLEGROUP NUMBER

FULL021324354657

34 12 1402461357

01234567

360361362363

36710153

2 3 4

27

DriveParameters

Ext Vel Ref 1 HiTorque Mode SelectProcess Trim Ref

56269264265

364365366

182266

1 ndash Full Rack2 ndash 34 Rack3 ndash 12 Rack4 ndash 14 Rack

Logic Status LowFiltered Vel FdbkMotor Current Fdbk

Computed PowerMotor Voltage Fdbk

Stator Frequency

2 3 4 5 6 7 8

+ndash+ndash+ndash+ndash

91011 1213 1514

16 1817 19

ndash+ndash+ndash+ndash+

COMM

401 387

OFFSET

402

SCALE

403 388

OFFSET

404

SCALE

405 389

OFFSET

406

SCALE

407 390

ndash

+10VCommon

ndash10V

Analog InputsOFFSET

392

SCALE

393 339

OFFSET

394

SCALE

395 340

OFFSET

316

SCALE

317 341

OFFSET

318

SCALE

319 342

PowerSupply

269 Filtered Vel Fdbk

182 Computed Power

264 Motor Current Fdbk

265 Motor Voltage Fdbk

104 Ext Vel Ref 2 Hi

28 Process Trim Fdbk

+ndashProc Trim Fdbk

Ext Vel Ref 2 Hi

+ndash

Filtered Vel Fdbk

Comm

Computed Power

Comm

Motor Current Fdbk

Comm

Motor Voltage Fdbk

Comm

330

359024135246357

Chapter 3

3ndash1

Programming Terminals

Chapter Objectives Chapter 3 provides an overview of the optional Programming Terminalsavailable for use with the 1336 FORCE Drive The various controls andindicators found on the Human Interface Module (HIM) and the GraphicProgramming Terminal (GPT) are both explained in this chapterAdditional in depth information on the Graphic Programming Terminalcan be found in the GPT programming Manual

HIM Description When the drive mounted HIM is supplied it will be accessible from thefront of the drive as shown in Figure 31 The HIM has two mainfunctionsbull To provide a means of programming the drive and viewing operating parametersbull To allow different drive functions to be controlled

ATTENTION When a drive mounted HIM is notsupplied on enclosed NEMA Type 1 (IP 20) drives theblank cover plate (option HAB) must be installed to closethe opening in the front cover of the enclosure Failure toinstall the blank cover plate allows access to electricallylive parts which may result in personal injury andorequipment damage

When a drive mounted HIM is supplied with enclosedNEMA Type 1 (IP 20) drives but has been removed fromits mounting cradle for remote operation the blank coverplate must be installed in place of the HIM

The HIM is divided into two sections Display Panel and Control PanelThe Display Panel provides a means of programming the Drive andviewing the various operating parameters The Control Panel allows youto control different drive functions

Figure 31Human Interface Module Location

Display Panel

Control Panel

Human Interface Module(HIM)

JOG

ESC SEL

Chapter 3Programming Terminals

3ndash2

Figure 32HIM Front Panel

LCD Display

AB0273A

Key Descriptions

Descriptions of the keys used with the 1336 FORCE Drive are presented inthe following paragraphs Remaining keys that are not described (shaded infigure above) are not used and reserved for future use

EscapeWhen pressed the ESCape key will cause the programmingsystem to go back one level in the menu tree

SelectPressing the SELect key alternately causes the top or bottomline of the display to become active The flashing first characterindicates which line is active

IncrementDecrementThese keys are used to increment and decrement avalue or scroll through different groups or parameters

EnterWhen pressed a group or parameter will be selected or aparameter value will be entered into memory After a parameterhas been entered into memory the top line of the display willautomatically become active allowing another parameter (orgroup) to be chosen

AB0269A

AB0270A

AB0282A

AB0295A AB0267A

Chapter 3Programming Terminals

3ndash3

Key Descriptions (continued)

AB0283A

StartBy default this key will initiate drive operation if hardware isenabled and no other control devices are sending a Stop commandTo change this function the [Command Mask] and [Typ 1 LogicAxis] parameters must be reconfigured Refer to Chapter 5

StopWhen pressed a stop sequence will be initiated at the SystemModule causing a controlled stop to be initiated in each axis asdetermined by [Stop Mode] [Stop Time Lim] and [Stopping Cur]

JogBy default when this key is pressed the motor will jog at aspeed determined by the [Jog Vel] parameter for any axis that isenabled (default will be 20 of motor rated speed) Releasingthe key will stop the function

Change Direction (JogDigital Velocity Reference Modes Only)Pressing this key will cause the motor to change direction Theappropriate Direction Indicator will light to indicate direction

Direction LEDs (Indicators)These LEDs will illuminate to indicate the direction of motorrotation for Axis 0 (by default)

UpDown Arrows (only available with digital speed control)Pressing these keys will increase or decrease the HIMfrequency command An indication of this command willbe shown on the visual Speed Indicator The drive willrun at this command if the HIM is the selected frequencyreference See [Freq Select 12]

Pressing both keys simultaneously stores the currentHIM frequency command in HIM memory Cyclingpower or removing the HIM from the drive will set thefrequency command to the value stored in HIM memory

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

Speed Indicator (only available with digital speed control)Illuminates in steps to give an approximate visualindication of the commanded speed

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

AB0267A

AB0275A

AB0281A

AB0285A

AB0287A

AB0295A

AB0265A

NotePot Range0 ndash 32767

Chapter 3Programming Terminals

3ndash4

Module Removal For handheld operation the module can be removed and located up to 10 meters(33 feet) from the Drive

ATTENTION Some voltages present behind the Drive frontcover are at incoming line potential To avoid an electric shockhazard use extreme caution when removingreplacing the HIM

Important Removing a HIM (or other SCANport device) from a drivewhile power is applied will cause a ldquoSerial Faultrdquo unless the [Logic Mask]parameter has been set to disable this fault or Control Logic (Control Statusmenu) has been disabled (Series A version 30 or Series B HIM) SettingBit 1 of the [Logic Mask] parameter to ldquo0rdquo will disable ldquoSerial Faultrdquo froma HIM on port 1 Note that this also disables all HIM control functionsexcept StopTo remove the module

1 Assure that power has been removed [Logic Mask] has been set orControl Logic has been disabled

2 Take the drive front cover off and simply slide the module down andout of its cradle Remove cable from module

3 Remove HIM as described in the following sequence If Jog controlis required after the HIM is reconnected repeat steps 1 but selectldquoEnablerdquo

4 Connect the appropriate cable between the HIM and theCommunications Port (Adapter 23 4 or 5)

5 Reverse the above steps to replace the module Apply power resetBit 1 of the [Logic Mask] or enable Control Logic

HIM Operation When power is first applied to the drive the HIM will cycle through aseries of displays These displays will show drive name HIM ID numberand communication status Upon completion the Status Display (seeFigure 33) will be shown

Figure 33Status Display

AB0286A

This display shows the current status of the drive (ie ldquoStoppedrdquoldquoRunningrdquo etc) or any faults that may be present (refer to Chapter 6 forfault information) On a Series A (version 30) or Series B HIM (see back ofHIM) the Status Display can be replaced by the Process Display orPassword Login menu See appropriate sections on the following pages formore information

From this display pressing any key will cause ldquoChoose Moderdquo to bedisplayed Pressing the Increment or Decrement keys will allow differentmodes to be selected as described on the pages that follow

Chapter 3Programming Terminals

3ndash5

DisplayWhen selected the Display mode allows any of the parameters to beviewed However parameter modifications are not allowed

Program Program mode provides access to the complete listing of parametersavailable for programming

ProcessThe Process mode displays two user-selected parameters with text andscaling programmed by the user

EEPROM This mode allows all parameters to be reset to the factory default settingsIn addition a Series B HIM will allow parameter uploaddownloadbetween the HIM and drive BRAM (Battery Backup RAM) jumper mustbe in ldquoEnablerdquo position in order to change parameters

Search (Series A version 30 or Series B HIM Only)This mode will search for parameters that are not at their default values

Control Status (Series A version 30 or Series B HIM Only)Permits the drive logic mask to be disabledenabled allowing HIM removalwhile drive power is applied Disabling the logic mask with a Series A HIMbelow version 30 can be accomplished with [Logic Mask] as explained onpage 3ndash4 This menu also provides access to a fault queue which will list thelast four faults that have occurred ldquoTriprdquo displayed with a fault indicates theactual fault that tripped the drive A clear function clears the queue ndash it willnot clear an active fault

LinkLink mode provides a method of transferring data from a source parameterto a linkable sink parameter When a PLC Comm Adapter Board is usedup to (50) links are allowed Links can be programmed only when theDrive is not running Links are stored in BRAM and established at powerup BRAM recall andor system reset

PasswordThe Password mode protects the drive parameters against programmingchanges by unauthorized personnel When a password has been assignedaccess to the ProgramEEProm modes and the Control LogicClear FaultQueue menus can only be gained when the correct password has beenentered The password can be any five digit number between 00000 and65535

Refer to the Password section of the example that follows

Chapter 3Programming Terminals

3ndash6

or

or

or

Program Mode

or

The Program mode allows access to changeparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoProgramrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnos-ticsrsquo lsquoVelocity Torquersquo lsquoCommunica-tion IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Torque Ref) Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Parameter 53 Torque Mode Sel)

If the parameter you have selected hasbit definition information use the Selectkey to access the 2nd or 3rd lineContinue to press the Select key toaccess the desired bit Use the Inc orDec key to change the valueNOTE If the cursor is a blinkingunderline instead of a flashing characteryou are either in Display mode or aretrying to change a readndashonly parameterFor detailed information on changing bitcoded parameters refer to the Bit Enumssection in this chapter

Press the Enter key to save yourchanges

Choose ModeDisplay

Choose ModeProgram

Choose FileVelocity Torque

Torque Mode Sel

Choose GroupLogic

Choose GroupTorque Ref

or

Chapter 3Programming Terminals

3ndash7

or

or

or

Display Mode

or

The Display mode allows access to viewparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoDisplayrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnosticsrsquo lsquoVelocity TorquersquolsquoCommunication IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Info) Choices includeTransistor Diag Motor Overload FaultSelSts Testpoints Monitor Linear Listand Info Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Adapter ID Param 300)

Choose ModeProcess

Choose ModeDisplay

Choose FileVelocity Torque

Adapter ID

Choose GroupMonitor

Choose GroupInfo

Chapter 3Programming Terminals

3ndash8

or

Bit ENUMsMasksLogic Mask

TB3X1111111

With drive software versions above 200 anda Series A (software version 30) or Series BHIM bit ENUMS (16 character text strings)will be displayed to aid interpretation of bitparameters

Select a bit parameter with the Increment(or Decrement) keys

Press the SELect key to view the ENUMof the first bit Pressing this key again will move the cursor to the left one bit

A blinking underline cursor will indicate that you are in the Display mode or that aRead Only parameter as been accessed Aflashing character will indicate that the value can be changed

Individual bits of a ReadWrite parametercan be changed in the same manner Pressing the SELect key will move the cursor (flashing character) one bit to the left That bit can then be be changed by pressing the IncrementDecrement keys

Link The Link Option allows you to view all current links in the drive and change orclear these links

From the Status display press Enter ldquoChoose Moderdquo will be shown

Press the Increment or Decrement key toreach the Link Option

Press Enter and either the Clear Links or Set Links option screen will appearToggle between the screens using the Incor Dec key

From the Clear Links screen use the Enter key to clear all links

To change links use the Inc or Dec key to reach the link you wish to changeUse the Sel key to access the 2nd line in the display and then change the link using the Inc or Dec key

Choose ModeProcess

Choose ModeLink

or

LinkClear All Links

Drive SW Versionlt 1 gt lt ndash ndash 0 gt

or

or

Chapter 3Programming Terminals

3ndash9

Process Mode When selected the Process mode will allowyou to monitor 6 different prendashprogrammedprocesses 2 of these processes can bedisplayed at one time

Use the Enter key to select the ProcessMode

Press the Enter key again to access theProcess Variable display

Press the Enter key again if you wish tomonitor the processes under ProcessVariable 1

Use the IncDec keys to view the sixprocesses that are currently programmedon line 1

To move to the second Process VariableLine Press the Select key This willallow you to access the six processesunder Process Variable 2

To return to a previous level press theEscape key

Note HIM Series B Version 106 willallow changing of the 6 process dis-plays

Choose ModeProcess

+ 000 Freq Cmd+ 000 Vel FB

Process Var 1=1Process Var 2=2

or

Chapter 3Programming Terminals

3ndash10

AB0282A

or

or

AB0287A

AB0270A

or

or

EEProm Mode

Reset Defaults

Drive ndashgt HIM

The EEProm mode is used to restore all settingsto factory default values or uploaddownloadparameters between the HIM and drive (SeriesB HIM Only)

To restore factory defaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will bedisplayed

Press the Increment (or Decrement) keyuntil ldquoEEPromrdquo is displayed If EEPromis not in the menu programming ispassword protected Refer to PasswordMode later in this section

Press Enter

Press the Increment (or Decrement) keyuntil ldquoReset Defaultsrdquo is displayed

Press Enter to restore all parameters totheir original factory settings

Press ESC Display returns to ChooseMode Screen

Press the Stop key to reset the fault

Note Reset Defaults only modifiesparameters in RAM To save in EE doa ldquoSaverdquo or to recall what is in EE toRAM do a ldquoRecallrdquo

Important If [Input Mode] was previous-ly set to a value other than ldquo1rdquo cycledrive power to reset

To upload a parameter profile from the driveto the HIM you must have a Series B HIM

From the EEProm menu (see steps A-Cabove) press the IncrementDecrementkeys until ldquoDrive ndashgt HIMrdquo is displayed

Press Enter A profile name (up to 14characters) will be displayed on line 2 ofthe HIM This name can be changed or anew name entered Use the SEL key tomove the cursor left The IncrementDecrement keys will change the charac-ter

Stopped+000 Hz

Choose ModeDisplay

Choose ModeEEProm

EEPromReset Defaults

Choose ModeEEPROM

EEPromDrive ndashgt HIM

Drive ndashgt HIM1 A

Chapter 3Programming Terminals

3ndash11

or

Drive ndashgt HIM (continued) Press Enter An informational displaywill be shown indicating the drive typeand firmware version

Press Enter to start the upload Theparameter number currently beinguploaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the upload

ldquoCOMPLETErdquo displayed on line 2 willindicate a successful upload PressEnter If ldquoERRORrdquo is displayed seeChapter 6

1336T VectorVersion 302

Drive ndashgt HIM 60|||||

Drive ndashgt HIM 210COMPLETE

HIM ndashgt DriveTo download a parameter profile from theHIM to a drive you must have a Series BHIM

Important The download function will only beavailable when there is a valid profile storedin the HIM

From the EEProm menu press theIncrementDecrement keys until ldquoHIM ndashgtDriverdquo is displayed

Press the Enter key A profile name willbe displayed on line 2 of the HIMPressing the IncrementDecrement keyswill scroll the display to a second profile(if available)

Once the desired profile name is dis-played press the Enter key An informa-tional display will be shown indicatingthe version numbers of the profile anddrive

Press Enter to start the download Theparameter number currently beingdownloaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the download

A successful download will be indicatedby ldquoCOMPLETErdquo displayed on line 2 ofthe HIM Press Enter If ldquoERRORrdquo isdisplayed see Chapter 6

1336T Vector302 ndash gt 302

EEpromHIM ndashgt Drive

HIM ndashgt Drive1 A

HIM ndashgt Drive 60|||||

Drive ndashgt HIM 210COMPLETE

or

Chapter 3Programming Terminals

3ndash12

or

or

or

Search Mode The Search Mode is only available with aSeries A (version 30) or Series B HIM

This mode allows you to search through theparameter list and display all parameters thatare not at the factory default values Thismode also offers an option to searchparameter links for links that are not factorydefaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoSearchrdquo is displayed

Press Enter The HIM will display theSearch Parameters or Search Linksscreen Use the Increment or Decre-ment key to toggle between screens

From the Search Parameters displaypress Enter The HIM will searchthrough all parameters and display anyparameters that are not at their factorydefault values

Press the Increment (or Decrement) keyto scroll through the list

To search parameter links toggle to theSearch Links display from the SearchParameters display using the Incrementor Decrement key

From the Search Links display pressEnter The HIM will search through alllinks and display any links that are notat their factory default values

Choose ModeSearch

Choose ModeDisplay

Proc Trim Fdbkndash003 28

SearchParameters

Proc Trim Fdbklt28x ndash ndash ndash 355

Search Links

Chapter 3Programming Terminals

3ndash13

AB0282A

or

or

Control Status Mode

Choose ModeControl Status

Choose ModeDisplay

Control LogicDisabled

Control StatusControl Logic

The Control Status mode is only availablewith a Series A (version 30) or Series BHIM

This mode allows the drive logic mask to bedisabled thus preventing a Serial Faultwhen the HIM is removed with drive powerapplied The logic mask can be disabledwith Series A HIM versions below 30 byusing [Logic Mask] as explained on page34

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoControl Statusrdquo is displayed PressEnter

Select ldquoControl Logicrdquo using theIncrementDecrement keys Press Enter

Press the SELect key then use theIncrement (or Decrement) key to selectldquoDisabledrdquo (or ldquoEnablerdquo)

Press Enter The logic mask is nowdisabled (or enabled)

or

Chapter 3Programming Terminals

3ndash14

AB0270A

or

or

or

(continued)Control Status Mode

Fault QueueClear Faults

This menu provides a means to view thefault queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoFault Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The fault queue will bedisplayed ldquoTriprdquo displayed with a faultwill indicate the fault that tripped thedrive

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe fault occurrence press the Enter key

To clear the fault queue press ESCapeThen use the IncrementDecrement keysto select ldquoClear Queuerdquo Press EnterPlease note that ldquoClear Queuerdquo will notclear active faults

Control StatusFault Queue

Fault QueueView Queue

Serial FaultF 10 Trip 1

Reprogram FaultF 48 2

12022 11

or Fault QueueClear Queue

Chapter 3Programming Terminals

3ndash15

AB0270A

or

or

or

(continued)Control Status Mode

Warning QueueClear Warnings

This menu provides a means to view thewarning queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoWarning Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The warning queue will bedisplayed

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe warning occurrence press the Enterkey

To clear the warning queue pressESCape Then use the IncrementDecre-ment keys to select ldquoClear QueuerdquoPress Enter Please note that ldquoClearQueuerdquo will not clear active warnings

Control StatusWarning Queue

Warning QueueView Queue

Vel Fdbk LvlF 5048 5

12022 11

Warning QueueClear Queue

or

Reset Sequence

or

A reset sequence is available on Series BHIMs with 106 or later software

From the Startup Completed displaypress the Enter key

Press the Increment (or Decrement) keyuntil ldquoStartup Reset Sequencerdquo isdisplayed Press Enter

Press the Enter key again to relaunch theStartup sequence

Start UpCompleted

Start UpReset Sequence

Entering Start UpPress lsquoENTERrsquo

Chapter 3Programming Terminals

3ndash16

or

or

or

or

or

Password Mode The factory default password is 0 (whichdisables password protection) To change thepassword and enable password protectionperform the following steps

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoModifyrdquo is displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyto scroll to your desired new passwordWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter to save your new password

Press Enter again to return to thePassword Mode

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

With a Series A (version 30) or SeriesB HIM the Password mode can beprogrammed to appear when drivepower is applied Simultaneously pressthe Increment and Decrement keyswhile the Password display is shown

Sets Password Displayas Power-Up Display

Choose ModePassword

Choose ModeDisplay

PasswordModify

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

Chapter 3Programming Terminals

3ndash17

or

or

Password Mode (continued)Login to the Drive

or

The ProgramEEProm modes and theControl LogicClear Queue menus are nowpassword protected and will not appear inthe menu To access these modes performthe following steps

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter ldquoLoginrdquo will be displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyuntil your correct password is displayedWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter

The Program and EEProm modes willnow be accessible To prevent futureaccess to program changes logout asdescribed in step 1

Logout from the Drive To prevent unauthorized changes toparameters Logout must be performed asdescribed below

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

Choose ModePassword

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

or

Chapter 3Programming Terminals

3ndash18

or

or

Startup Mode

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear If you DO NOT need toenter motor nameplate data toggle to theNo (N) selection and press EnterA display asking you to run the MotorConnect Diagnostics will appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor informationBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesBase Motor SpeedFeedback Device Type

NOTE For more information on thecomplete Quick Startup sequence referto Chapter 4 All tests and entries arecovered in greater detail in the Startupchapter

or

Motor ConnectDiagnostics Y

Chapter 3Programming Terminals

3ndash19

Figure 34 HIM Programming Steps

PowerndashUp andStatus Display

Choose Mode

or or or or

DisplayProcess Program EEProm Search Control

StatusPassword Link

Operator Level

Mode Level

Process DisplayReset DefaultsDrive to HIMHIM to DriveRecall ValuesSave Values

Control LogicFault Queue

LoginLogoutModify

Clear Links

File LevelParameter Files

Group LevelParameter Groups

Element LevelParameters

(Read Only) (ReadWrite)

(See Chapter 5)

(See Chapter 5)

(See Chapter 5)

(Linear List Available)

1 1

2

2

1 Him Versions 202 amp Up2 Series B HIM Only

Set Links

Startup

Change Process Disp3ParamLinks Reset Drive

Warning Queue

3

ContinueReset Seq

3 Series B V 106 amp up

Chapter 3Programming Terminals

3ndash20

GPT Description When an optional GPT (Figure 35) is supplied it will be either mounted tothe front of the Drive as a panel mount terminal or supplied as a remotedevice with a 18 meter (6 foot) long cable The GPT offers a 40 by 8character display that can also be used as a graphics display to showtrending graphs etc

Figure 351201 Graphic Programming Terminal

B5

PRESET 1 PRESET 3

D7

E8

F9

A4

C6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Chapter 3Programming Terminals

3ndash21

Keypad Description The GPT keyboard (Figure 35) is provided as either a 26 key version(nonndashruntime) or 30 key (runtime version) The runtime version asshown in Figure 36 provides additional Start Stop Jog and Directionkeys

Figure 36GPT Keypad

B

5

PRESET 1 PRESET 3

D

7E

8F

9

A

4C

6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Start Key Stop Key

Chapter 3Programming Terminals

3ndash22

When power is first applied to the drive or device a series of hardwarediagnostic tests will run before the Power Up Logo Screen shown inFigure 37 appears Once the initialization has been completed and allinformation from the drive is uploaded the terminal will display eitherthe Main Menu screen or the Process Display screen depending on theterminal setup information

Figure 37GPT Power Up Logo Screen

AumlAumlAumlAuml

0 25 50 75 100

1201 GPT InterfaceAllen Bradley CoCopyright 94 v1 01

Initializing

If it has not been deactivated through the terminal during setup theProcess Display Screen (Figure 38) showing you the programmedprocess variables will appear next If the Process Display Screen isdeactivated the Main Menu Screen (39) will appear first

Figure 38Process Display Screen

MainMenu DSP_Mode

000 Freq CMD000 Vel FB000 COMP PWR000 MTR V FB000 MTR I FB000 Torq FB

Sts Not EnabledDir ForwardOut

Info

When the Process Display Screen is active it is necessary to press theMain Menu Option (F2 soft designator) on the Process Display to reachthe Main Menu The Main Menu contains the password option thatprovides a highlighted dialog box for password entry

GPT Operation

Chapter 3Programming Terminals

3ndash23

The Configuration option (F1 soft designator) allows you to directlyaccess Process parameters from the Process Display screen The DisplayMode option (F3 soft designator) allows you to enter the Logo Status orMeter modes for the Process Display parameters

IMPORTANT Main Menu screens are dynamic and will change basedon functionality provided by adapter and drive status

Figure 39Main Menu Screen

Password ProcDspy

Main Menu

Help TextDescriptionFor Each Menu ItemSelected

1 ndash Parameter2 ndash Link Summary3 ndash Fault Queue4 ndash Warning Queue5 ndash EEPROMBRAM6 ndash Clock Data7 ndash Function Block8 ndash Special

Help

IMPORTANT Only 5 of the 8 Main Menu options are displayed at onetime on the screen Scroll with the IncDec keys to access all eightselections

Figure 310 details the complete menu tree for the GPT ProgrammingTerminal This menu is dynamic and all options may not be supportedby your Drive or SCANport device If you need more detailedinformation on Key functions Menu Screens or general Terminaloperation refer to the appropriate chapter in the GPT user manual

Chapter 3Programming Terminals

3ndash24

Figure 310GPT Programming Options

Power UpLogo Screen

MainMenu

Screen

ProcessDisplayScreen

ProcessConfigScreen

ProcessProgramScreen

1Parameter

2Link

Summary

3Fault

Queue

4WarningQueue

5EEBRAMFunction

6ClockData

7Function

Block

8Special

File

DECINC+

Group

Element

Sink

Source

Fault List

1 Save Par to EE2 Recall EE Par

Warning Entry List

NumericalParameter Screens

FGE Mode

Linear Mode

2 Set Ref3 Load Ref Stamp

Upload

Command

File ID

IO Node

Download

Interval

Event File

Edit List

DataTransfer

VersionInfo

AutotuneTests

ChangePasswordStartup

TrendFunction

DriveIdentity

1 Clear Warning

1 Clear Flt

2 Clear Warn Q

1 Set Clock

4 Zero Acc

2 Clear Flt Q3 Drive Reset

3 Init Par to RAM

➊ This list is dynamic and will change for various Drive States and DriveProduct functions

4 Evnt File Store5 Evnt File Recall6 Evnt File Init7 Proc FB Links8 Clear FB Links

SaveRecallDefault

HIM gt GPT

GPT gt HIM

Chapter 3Programming Terminals

3ndash25

This Page Intentionally Blank

Chapter 4

4ndash1

StartndashUp

Introduction This chapter describes the procedure for the proper start up and tuning ofthe 1336 FORCE AC drive Among the procedures you must perform inthis chapter are the following

bull Prendashpower checksbull Powerndashon checksbull Communication Configurationbull Parameter Programmingbull Motor and Feedback Polarity Checksbull Drive Tuning and Calibration

Safety Precautions

ATTENTION Hazard of Electric Shock exists in this drive Power circuits are optically isolated from control driver circuitsPower circuit components are ldquofloatingrdquo with respect to ldquogroundrdquoUse only approved methods of isolating test equipment when mak-ing measurements in power circuits

ATTENTION Only qualified personnel familiar with the 1336FORCE AC Drive and its associated machinery should plan andimplement the installation startup and subsequent maintenance ofthe Drive Failure to comply may result in personal injury andorequipment damage

ATTENTION Working with energized industrial control equip-ment can be hazardous Severe injury or death can result fromelectrical shock burn or unintended actuation of controlled equip-ment Hazardous voltages may exist in the cabinet even with thecircuit breaker in the off position Multiple sources of power maybe connected to this drive Recommended practice is to disconnectand lock out control equipment from power sources and dischargestored energy in capacitors if present before coming in contactwith any equipment in this cabinet During startup it will be nec-essary to work in the vicinity of energized equipment The SafetyRelated Practices of NFPA 70E ldquoELECTRICAL SAFETY FOREMPLOYEE WORKPLACESrdquo must be followed at all timesDO NOT work alone on energized equipment

Chapter 4Startup

4ndash2

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

ATTENTION This Drive contains ESD (ElectrondashStatic Dis-charge) sensitive devices Static control precautions are requiredwhen installing testing servicing or repairing this assemblyThese precautions should be applied when working with logicboards AND any components in the power section A properlygrounded wrist strap should be worn when contacting any compo-nent in the drive If you are not familiar with static control proce-dures before servicing reference AllenndashBradley Publication8000ndash452 Guarding against Electrostatic Damage or any otherapplicable ESD protection handbook

Required Tools and Equipment The following equipment is required for startndashup and tuning

bull Digital Multimeter (DMM) capable of 1000V DC750V AC with input resistance of at least 1 megohm

bull Hand Tachometer used to monitor motor velocitiesbull User Manuals for optional equipmentbull DriveTools Software (optional)

This startndashup sequence specifies using hand instruments such asmultimeters tachometers ammeters and an oscilliscope to carry out thisstartndashup test procedure If you have the optional DriveTools software forthe 1336 FORCE Drive it can be used to simplify the startup procedureThis option can be used to set input commands manipulate parameters andverify frequencies and voltage levels

IMPORTANT This startup sequence for a Series B Drive assumes thatyou have a HIM Programming Terminal If a different programmingdevice is used you must alter the startup accordingly

Chapter 4Startup

4ndash3

Drive Information During Startup the following information must be recorded for referenceIt is important that an accurate list of drive components be maintained andreferred to when contacting service personnel

Table 4A Data Checks ndash

DRIVE NAMEPLATE DATACatalog NumberSerial NumberSeries

AC Input Volts Amps

AC Output Volts Amps

MOTOR NAMEPLATE DATACatalog NumberSerial NumberSeries

Horsepower Rating

RPM

AC Input Volts Amps

Poles

Hz

ENCODER NAMEPLATE DATA

Input Power Supply

Output Type

Pulses Per Rev

Maximum Speed

Maximum Frequency

PPR

Board Revision Level

Horsepower Rating

Catalog NumberSerial NumberSeries

VoltsInput Signal Level Volts

MAIN CONTROL BOARD

PLC COMM BOARDBoard Revision Level

GATE DRIVER BOARD

STANDARD ADAPTER BOARDBoard Revision Level

Board Revision Level

kw

kw

PLC Comm Adapter Board Switch SettingsU2

U3

U4

U5

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

5 6 7 8

5 6 7 8

Standard Adapter Board Jumper Settings

J5 1 2 2 3PositionPosition

J13 1 2 2 3J10 3 4 17 18

Chapter 4Startup

4ndash4

General Only qualified electrical technicians andor electrical engineers familiarwith solid state controls and circuitry should attempt a 1336 FORCEstartndashup Figure 41 outlines the sequence that is required to startndashup the1336 FORCE DriveFigure 41Bulletin 1336 FORCE StartndashUp Sequence

ExternalWiring Checks

PREndashPOWER CHECKS

InternalDrive Checks

CommunicationConfiguration

LIVEndashPOWER CHECKS

VoltageMeasurements

StandardIO Checks

PARAMETER PROGRAMMING

POLARITY CHECKS

DRIVE TUNING

EncoderCheck

MotorCheck

PrendashPower Checks PrendashPower checks are meant to identify any problems prior to applyingvoltage to the system The drive should be checked for any damage thatmay have occurred during shipment and installation You should alsoverify that all jumpers and configuration controls are properly applied forthe application at hand Finally you must check all wiring external to thedrive for accuracy and reliability

External Wiring Checks1 Verify that all external IO wires are properly terminated in the

terminal blocks A full point ndash to ndash point continuity check should be performed on all IO wiring connected to the drive

Chapter 4Startup

4ndash5

2 Verify that the incoming power connections are properly connected and tight Also verify that the power source is properly sized and protected for your particular drive

3 Verify that the motor power connections are properly connected and tight Motor Phasing should be checked Motor Phase A should be connected to Drive output phase A likewise Phase B and C should be properly terminated to their respective terminals This phasing will be double checked later in this procedure

4 Verify that the encoder feedback device is properly connected The encoder should be a quadrature device with a 12V input power requirement and either 12V or 5V differential outputs Jumpers J3 andJ4 on the Main Control Board (Figure 27) must be set for the desired output Phasing of the encoder should be checked in that A and A B and B are properly terminated This phasing will be double checked later in this procedure

5 If your Drive is equipped with a Standard Adapter Board verify that the Pulse Input Voltage Selection jumper is set correctly for your application Jumper J13 should be set across pins 1 and 2 for +5V DC input and across pins 2 and 3 for +12V DC input voltage

6 If your Drive is equipped with a PLC Comm Adapter Board verify that the standard IO inputs on the PLC Comm Board are configured for the proper input voltage level The Standard IO can be configuredfor operation at 24V DC or 120V AC To select the proper voltage set the jumpers on J5 J6 J7 and J8 across pin 1 and 2 if the input voltage level is 120V AC and across pins 2 and 3 if the input voltage level is 24V DC

Power On After all prendashpower checks have been completed the incoming power maybe applied The application of power for each system can be differentMake sure you know the safety controls associated with the system Powershould only be applied if you have a thorough understanding of the 1336FORCE Drive and the associated system design

bull Measure the incoming line voltage between L1 and L2 L2 and L3 andL1 and L3 Use the DMM on AC Volts highest range (1000 VAC) The input voltage should equal the drive rated input voltage present on the driversquos nameplate within +ndash10 If the voltage is out of toleranceverify the drive rating is correct for the application if it is adjust the incoming line voltage to within +ndash10

Chapter 4Startup

4ndash6

Startup Configuration Procedures After you have completed all wiring and power up the drive the parameterconfiguration procedure must be completed using one of the StartupConfiguration Procedures (Quick or Manual) The configurationprocedures used here assumes you have a HIM programming terminal anda Standard Adapter Board in your Drive If you are using a differentprogramming method or a PLC Comm Adapter Board the configurationprocedure will have to be altered to match your particular setup

ATTENTION Failure to complete the parameter configurationcould result in injury to personnel or damage to the drive andthe motor when attempting to perform the remaining steps inthe Configuration Procedure

Apply power to the Drive The HIM display will appear as shown in Figure 42

ATTENTION During some startup procedures the motor willrotate Hazard of personal injury exists due to unexpected startsrotation in the wrong direction or contact with the motor shaft If possible uncouple the motor from the load and place a guardaround the motor shaft

Figure 42HIM PowerndashUp Display

LCD Display

AB0273A

Chapter 4Startup

4ndash7

or

or

Quick Start Procedure

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

1 An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor information1 Base Motor Current2 Base Motor Volts3 Base Motor Frequency4 Motor Poles5 Base Motor Speed6 Feedback Device Type

When all motor and feedback data havebeen entered a display asking you ifyou wish to run the Motor ConnectDiagnostics will appear Press the Enterkey to initiate the test sequence Insubsequent displays you will be asked ifyou wish to run the following tests1 Inverter Diagnostics2 Motor Rotation TestPress the green Start key to run thediagnostic testPress the red Stop key when the MotorRotation Test has completed

or

Motor ConnectDiagnostics Y

Transistor DiagPress START

Check MotorRotation Y

Chapter 4Startup

4ndash8

or

Quick Start Procedure cont

Measure Paramrsquos Press START

Autotune Torqueamp Vel Loops Y

Change Vel BW amprecalc Gains Y

Autotune TheVelocity Loop Y

1 After Inverter Diagnostics has concluded orif you answer NO to the Motor ConnectDiagnostics question a display will appearasking if you wish to run the AutotuneTorque amp Velocity sequence

Press the Enter key to initiate the test

If you answer YES to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Measure Parameters2 Autotune The Velocity Loop3 Change Velocity Bandwidth amp

recalculate Gains4 Configure Analog Inputs5 Continue CH3 amp 4

configuration6 Configure Analog Outputs7 Configure SCANport

ATTENTION Hazard of PersonalInjury exists when running the AutotuneTorque amp Velocity sequence as motorrotation occurs with several of thesetests

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

ConfigureAnalog Inputs Y

Continue CH 3 amp4 config Y

Configure AnalogOutputs Y

ConfigureSCANport Y

Startup Completed

Chapter 4Startup

4ndash9

or

Quick Start Procedure cont

Configure IO Y

ConfigureInput Mode Y

ConfigureScanport Y

If you answer NO to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Configure IO2 Configure Scanport3 Configure Input Mode4 Configure Pulse Input5 Configure MOP6 Configure Analog Input7 Configure Analog Output

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

If you wish to return to the Startupsequence to make additional changesthis can be accomplished from theStartup Completed display Afterpressing the Enter key use the INC orDEC key to toggle to Reset SequencePress the Enter key again and you cannow rendashenter the Startup routine

Startup CompletePress lsquoENTERrsquo

ConfigurePulse Input Y

ConfigureMOP Y

ConfigureAnalog Input Y

ConfigureAnalog Output Y

Startup Completed

Startup Reset SequenceStartup Completed

ResetSequence

or

Chapter 4Startup

4ndash10

AB0282A

or

or

or

Choose MODE Program

Choose FileStartup

Press the ESC key to access the Drive Mode MenuThe Choose Mode display should appear as shownbelowUse the INCDEC keys to scroll thru the DriveMode menu selections until the PROGRAMselection is reachedPress the ENTER key to enter the Program ModeThe HIM display should appear as shown below

Drive Mode Menu

Drive Mode Menu Selections

Press Enter The Choose Group Display will appear Press the INC or DEC key to reach LINEAR LIST

Press the ENTER key to access the Linear ListmenuThe display should appear as shown below

EEPROMPASSWORDDISPLAYPROCESSPROGRAM

LINKSEARCH

CONTROL STATUSSTARTUP

Choose GroupLINEAR LIST

Drive SW Version301 1 LINEAR LIST

Parameter Number 1

Use the INCDEC keys to scroll to Parameter 150Parameter 150 is feedback device type1 = Encoder feedback5 = Sensorless feedback (Similar to armaturevoltage feedback for a DC Drive)Note If choosing sensorless feedback the bandwidth of thevelocity loop will be significantly reduced

Press the SEL key to access the feedback devicetype selection and use the INCDEC keys to togglebetween the selections

Note If sensorless feedback is selected the drivewill fault on feedback loss You must set bit 0 inparms 88 and 89 from 1 to 0 before clearing thisfault and proceeding with the autotune

The feedback device type can be accepted bypressing the ENTER key The display should nowappear as shown below

Fdbk Device TypeVel Est woDB 150 LINEAR LIST

Parameter Number 150Sensorlessfeedback

or

Manual Startup Mode

Use the INCDEC keys to select the Startup File

Chapter 4Startup

4ndash11

AB0270A

or

Drive Data Startup

Linear ListStartup

After the feedback device type has been selectedand accepted press the ESC key to return to theStartup Menu The display should appear asshown below

STARTUP MENU

Use the INCDEC keys to scroll thru the StartupMode menu selections until DRIVE DATAis reached

Press the ENTER key to access the Drive Datamenu

NOTE These parametersare primarily motorencoder specific param-eters that are used forscaling Drive output tomotor input require-ments

DRIVE DATADRIVE TUNE

LIMITSFAULT SETUP

MONITORLINEAR LIST

DRIVE DATA MENU

Not Used inSensorless Mode

The HIM will allow you to toggle between the IODrive Data menu parameters using the INCDECkeys The definitions of the IO Drive Data menuparameters is detailed below

bull Language Select ndash This parameter indicates whether English or an alternate language will be used for parameter and fault display text

bull Input Mode ndash Defines the function of the inputs on the ldquoLrdquo option board

bull Encoder PPR ndash Number of pulses per revolution for encoder

bull Base Motor Speed ndash Motor Nameplate Speed

bull Base Motor HP ndash Motor Nameplate Horsepower

bull Base Motor Current ndash Motor Nameplate Current

bull Base Motor Volts ndash Motor Nameplate Voltage

bull Base Motor Frequency ndash Motor NameplateFrequency

Language Select 304Input Mode 385

Encoder PPR 235Base Motor Speed 229

Base Motor HP 228Base Motor Current 280

Base Motor Volts 231Base Motor Freq 232Torq Mode Select 53

Undervoltage Setpoint224

Motor Poles 235

NOTE It is important that you retain a record of thefeedback device that was selected because thebandwidth of the velocity regulator will be significantly reduced when the drive is used withoutan encoder

If using a 230V driveparameter 224 should beset to a value of 200V

Chapter 4Startup

4ndash12

or

and

AB0270A

or

AB0282A

Base Motor Speed 1750 RPM

To change a value in any of 10 Drive Data menuparameters the following sequence which showsyou how to change motor base speed should befollowed

Press the SEL key to move from the Drive DataMenu parameter to the Drive Data Value Whenthis is successful a blinking box will appear nextto the Ram value as shown in the following figure

Blinking

Use the INCDEC keys to scroll to the desiredvalue then press the ENTER key to accept the newvalue

When you have entered all Drive Data menu parameters press the ESC key to return to theStartup Menu The display should now appear asshown in the following example

bull Motor Poles ndash Number of Motor Poles (Nameplate)bull Undervoltage Setpoint ndash Sets minimum threshold

voltage for a Bus undervoltage condition Should beset to a value of 200V for 230V AC drives and 400V for a 460VAC drive

bull Torque Mode Select ndash This parameter is used to select the source for the drive torque reference (Must be set to Speed Mode for auto commissioning)

Base Motor Speed 1750 RPMAumlAuml

BlinkingBox

and

DRIVE DATA STARTUP

Use the INCDEC keys to scroll thru the Startupmenu until the Limits option is displayed TheHIM display should now appear as shown belowPress the ENTER key to move into the Limitsmenu

LIMITS STARTUP

ATTENTION The MotorPole Entry is critical to allAutotune tests Make certainyou are entering the correctnumber of poles for yourmotor before proceedingwith the Autotune sequence

Chapter 4Startup

4ndash13

or

AB0270A

or

AB0282A

or

Fwd Speed Limit 1750 RPM

Use the INCDEC keys to scroll through the Limitsmenu selections

When you reach the Limit selection that you wishto change press the SEL key to move the blinkingcursor down to the value field

Limits Menu Selections

Once the cursor is in the value field the INCDECkeys can be used to scroll to the selected valueAfter the desired value is reached the ENTER keymust be pressed to accept the value Thisprocess should be repeated for all of the theparameters in the Limit Menu selection

After all of the parameters in the Limit Menu havebeen setndashup press the ESC key to take you back tothe Startup Menu The HIM Display should nowappear as shown below

You must now access the Drive Tuning option in theStartup menu Use the INCDec keys to scrollthrough the Startup Menu until the Drive Tuningselection is reached The HIM display should nowappear as shown below

When Drive Tune appears press the ENTER key toaccess the Drive Tune Menu

The Parameters you will need to set up in the DriveTune sequence are detailed in the list located in theright column For detailed descriptions of theseparameters and their operation refer to Chapter 5 inthis Manual under Group 1 ldquoSTARTUP FILErdquo

The Drive Tune Parameters can be accessed byusing the INCDEC keys to scroll through the DriveTune Menu Using the default values for theseparameters will work in most cases If the defaultvalue does not work refer to the parameter valueranges in Chap 5 for possible alternate values

Accel Rate 1 389Decel Rate 1 391Accel Rate 2 390Decel Rate 2 391Logic Options 59

Fwd Speed Limit 128Rev Speed Limit 127Pos Mtr Cur Lmt 179Neg Mtr Cur Lmt 180Pos Mtr Tor Lmt 175Neg Mtr Tor Lmt 176Motor Power Lmt 177Regen Power Lmt 178

DiDt Limit 181 Fwd Speed Limit +1750 RPM

Blinking Firstthen

Blinking

Drive Tune Menu Selections

Autotune Diag Sel 256Vel Feedback 146

Vel Desired BW 43Auto Tune Status 44

Motor Inertia 234Total Inertia 46

Ki Velocity Loop 139Kp Velocity Loop 140Kf Velocity Loop 141

Vel Damp Factor 45Auto Tune Speed 41Ph Rot Cur Ref 262

Ph Rot Freq Ref 263

Drive Tune Startup

Limits Startup

Chapter 4Startup

4ndash14

or

AB0282A

or

AB0282A

Scroll to the Autotune Diag Sel parameter Set Bit0 to a value of 1 and then press the ENTER keyand the START button This will execute the In-verter Transistor Diagnostics test which will take300 mSec to run Bit 0 will automatically be setback to 0 upon successful completion of the Invert-er Transistor Diagnostics test If the test fails(nonndashzero value with flashing CP or VP light) re-fer to the Startup troubleshooting section of thismanual (Chap 6) While you are performing theInverter Transistor Diagnostics Test the HIM dis-play should appear as shown below

The purpose of the Inverter Transistor DiagnosticTest is to help you find any problems that mightexist in the installation as well as taking care ofsetting offset in both the Id amp Iq regulators(Parameters 260 amp 261 in the linear list)

The next test you must run is the Phase RotationTest This is accomplished by setting bit 1 to a value of 1 in the Autotune Diag Sel parameter(Parm 256) and pressing the START key toexecute the test The HIM display should appear asshown below

Autotune Diag Sel 00000000 00000001 Bit 0

Autotune Diag Sel 00000000 00000010

Bit 1

When the START key is pressed the motor shouldrotate at a rate specified by both Phase Rotation Frequency Ref and a current output as specified bythe Phase Rotation Currency Ref Typically defaultvalues for both Ph Rot Freq Ref and Ph Rot Cur Refwill work correctly

Interpreting Phase Rotation Results1 In phase rotation the motor should turn in the

direction you define as positive velocity If the motor turns in the wrong direction shut the drivedown remove power and reverse any two motor leads

2 If no motor rotation occurs refer to the Startup troubleshooting section of this manual

3 In phase rotation with the motor now turning in the positve direction the sign of the velocity feedback (P146) should be positive If it isnegative reverse the A and A (NOT A) encoderleads or the B and B (Not B) leads

Note Step 3 is skipped with asensorless drive

ATTENTION During thisportion of the Autotune Sequence reverse motor rotation is a possiblity Ifyour process equipmentcould be damaged by rotation in the wrong direction you must uncouplethe motor from the load before running the Phase Rotation test

Chapter 4Startup

4ndash15

or

or

AB0282A

or

AB0282A

or

AB0282A

After the Phase Rotation test has been performed and themotor rotates in the positive direction with positive en-coder feedback you are ready to tune both the Torq Loopand Velocity Loop of the Drive Tuning both the Torq ampVelocity loops requires setting bits 2 thru 8 to a value of1 and then pressing ENTER followed by pressing theSTART key on the HIM The HIM display should nowappear as shown below

Performing both the Torq and Velocity Loop tests willtake approximately 1 min 30 sec to complete Shaft rota-tion will occur in the latter part of these tests While thetest is being executed the green enable light on the Mo-tor Control board will be on Once these tests are com-plete bits 2 through 8 in the Auto Tune Diag Sel parame-ter will be set back to a value of 0 and the green enablelight will go out If the Drive trips a flashing or solid redVP or CP LED will be present on the Motor ControlBoard When complete save the parameters to EEPROM using the EEPROMndashSAVE option underMENUThe fault that caused the drive to trip will appear on theHIM display Refer to the Startup Troubleshooting section of this manual for possible solutions to the displayed fault Perform both the Torque and Velocityloop autotune tests again after the problem has been re-solvedWhen you have successfully completed the Torque andVelocity Tune tests scroll to the Vel Desired Band Width(Parm 43) in the Drive Tune Menu using the INCDECkeys

Autotune Diag Sel 00000001 11111100

Bits 2 thru 8

Vel Desired BW 1000 RS Enter desired BW here

Blinking Firstthen

BlinkingAumlAumlAumlAuml

Enter the desired bandwidth by pressing the SEL key tocursor down to the value field Use the INC and DECkeys to scroll to the desired BW When the appropriatevalue is selected the ENTER should be pressed to acceptthe entered valueBased on the value entered in the Vel Desired BW theKp amp Ki Velocity Loop Values will change when Bit 8 isset in the Autotune Diag Sel (Parm 256) and the STARTKey is pressed The HIM display should now appear asshown below

Autotune Diag Sel 00000001 00000000

Bit 8 set to 1 toexecute update of

velocity regulatorgains

Note When using asensorless versionthe values listed inTable 4B must beused

Chapter 4Startup

4ndash16

or

AB0287A

Vel Feedback 10000 RPM

After the New Values for Kp amp Ki have been cal-culated you are now ready to start the Drive inVelocity mode Before starting the Drive use theINCDEC keys to scroll to Vel Feedback in theDrive Tune Menu Start the Drive by pressing theSTART key on the HIM Press the SPEED IN-CREMENT key to slowly increment the velocityreference Observe velocity feedback and motorshaft rotation making sure both are stable If theyare not (shaft produces a jittery oscillating or jud-ering rotation) press the STOP key immediatelyand readjust the desired bandwidth This will enternew values for both Kp amp Ki After these new val-ues have been entered you are now ready to restartthe Drive in velocity mode and observe motorshaft rotation and velocity feedback for stability Ifproblems still occur refer to the Velocity LoopAutotune troubleshooting section of this manual(Chap 6) The HIM display should now appear asshown below

This Figure should be stable (no wander-

ing of RPM value)

Additional Sensorless Drive InstructionsIf the sensorless mode is being used (Param 150 = 5ndash7) set Param 43 Param 141 and Param 142 based on the measuredinertia expressed in Parameter 46 (Autotune) in Table 4BSelect Bit 8 of Param 156 and then attempt a Start

Table 4BSensorless Setup Values

Param 46 Param 43

lt 2 Sec

2ndash5 Sec

5ndash20 Sec

gt20 Sec

Param 141 Param 142

10 rad

5 rad

1 rad

5 rad

7

7

7

7

50 rad

25 rad

25 rad

25 rad

bull If the motor wonrsquot start increase the bandwidth (Param 43) select bit 8 of Param 256 and attempt a restart

bull If the motor chatters or velocity ripple is too high decrease the bandwidth (Param 43) select bit 8 of Param 256 and restart

bull If the motor continues to chatter set Param 142 to zero

NOTE For additional information on sensorless operation refer to Appendix A of this manual

Chapter 4Startup

4ndash17

Communication ConfigurationDrive to Drive Communication ndash Drive to Drive Communication (D2D)provides high speed communications between drives D2D is capable ofconnecting up to 64 Drives together using three different transfer rates125K (64 nodes) 250K (64 nodes) and 500K (32 nodes) baud

Hardware Setup ndash Refer to Chapter 2 Installation for Drive to Drivewiring L Option wiring and Pulse Input Configuration

Data Transfer ndash The D2D which allows multiple transmitters tobroadcast information based on priority to multiple receivers which choosethe information they wish to receive The D2D will operate at threedifferent baud rates as shown in the following chart

Baud Rate

125k

Max Distance (End to End)

250k

500k

Data Rate

330m

140m

50m

600us

300us

150us

Max Transmitters (2ms task)

3

6

13

The baud rate choices allow for different end to end distances and numberof transmitters The distance is based on the propagation delay of thesignal through the wire and the maximum transmitters come from notexceeding the 2ms task The propagation delay is based on CAN variablesThe number of transmitters is based on the data rate

2 ms

600us (1) 600us(3)

600us(1)600us(4)

600us (2)

2 ms

600us (1) 600us(3)600us (2) 600us (1) 600us(3)600us (2)

600us(2) 600us(3) 600us(1) 600us(2) 600us(3)

2 ms

Shown above is the D2D set at 125k baud with 3 and 4 transmitters With3 transmitters the data rate never exceeds 2ms and all the data is receivedwithin the 2ms task In the case of 4 transmitters the fourth transmitterdoes not always get transmitted due to the priority of the transmitters Thelower the node address the higher the priority All the data is not seenevery 2ms task Data transfer errors also effect how much data istransferred Errors in the transfer will cause retransmission of the data andmay cause the data rate to exceed 2ms Within the drive itself the VelocityProcessor (VP) will be running the D2D in its 2ms task With the use ofD2D indirects data can be transferred within 2ndash3ms from one drive toanother and 4ndash5ms from one drive to another and back

VelocityFunctions

D2D Xfer

150us 300us600us

Data Transmitted

D2DRx

150us300us600us

VelocityFunctions

2 ms Task

D2DTx

D2DTx

D2D Xfer

D2DTx

2 ms Task

D2DTx

The D2D receive and transmit are on both sides of the velocity functionsThis is to improve the data rate

Chapter 4Startup

4ndash18

Message Transfer ndash The D2D allows each drive to transfer two wordsand receive two words from two different drives for a total words receivedof four (Figure 43)

Figure 43 D2D Communication

Transmit

P11 Node Address

P14 Data 1 Indirect

P15 Data 2 Indirect

P20 Data 1

P21 Data 2

Receive 1

P12 Node Address

P16 Data 1 Indirect

P17 Data 2 Indirect

P22 Data 1

P23 Data 2

Receive 2

P13 Node Address

P18 Data 1 Indirect

P19 Data 2 Indirect

P24 Data 1

P25 Data 2

Node Address ndash The node address for the transmit is the address at whichthe drive will transmit its two words of data The node address for each ofthe receives is the address of the drive which you wish to receive twowords of data from If the node address is set to zero then the transmit orreceive is disabled It is up to you to make sure there are no duplicatetransmit node addresses If duplicate addresses exist you must change oneaddress Refer to the example in Figure 44Figure 44 Node Address Transmittal

Drive 1

P11 Xmit Node Address 32

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 27

Drive 2

P11 Xmit Node Address 0

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 32

Drive 3

P11 Xmit Node Address 5

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 27

Drive 4

P11 Xmit Node Address 27

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 0

Note that a drive cannot receive its own address and both receives cannotbe set to the same address unless it is zero

Data Indirect ndash The indirect function for the transmit indicates to theD2D transmit (TX) where it should obtain data The receive it indicates tothe D2D receive (RX) where it should put its data Indirect parameters canhave either VP or CP parameters entered into them or they can haveindirect data parameters entered into them as shown in the followingexamples

Transmitter ExampleP14 Drive Transmit indirect 1 ndash Any VPCP Parameter

or ndash P20 (Drive Xmit Data 1)P20 would then have a value or be linked to a non VPCP parm

Chapter 4Startup

4ndash19

Receiver ExampleP16 Drive Receive Indirect 1 ndash Any VPCP Parameter

or ndash P22 (Receive 1 Data 1)P22 would then have a value or a non VPCP parm linked to it

Data ndash The D2D TX and RX data exists as non VP parameters in theparameter table This allows data outside the Motor Control Board to getaccess to the D2D Data parameter examples were shown in the previoustransmitter and receiver examples

Master Slave Drive to Drive Communication ndash Figure 45 illustratesan example of D2D applied to a masterslave drive set up The masterdrive receives its speed reference from a speed pot wired to analog input 1on a PLC Comm board P339 (Analog In1) is linked to P101 (Ext Vel Ref)on the master drive P392 (Analog In 1 Offset) and P393 (analog In1Scale) are set accordingly Analog Input 1 must be passed from the masterdrive to the slave drive and connected to the P101 (Ext Vel Ref) using theD2D protocol

Setting up the Master drive requires that a transmit address be chosen Anaddress 1 is chosen in this example P14 (Drive Xmit Indirect 1) will havea value of 20 entered into it (which means look to P20 (Drive Xmit Data1)) P20 (Drive Xmit Data 1) must be linked to P339 (Analog In1) Thisis where the data comes from that will be transmitted

Figure 45MasterSlave Communication Example

Master

P11 Drive Xmit Address ndash Transmitter Station Address ndash 1P14 Drive Xmit Indirect 1 ndash VPCP Parm or P20 ndash20P20 Drive Xmit Data 1 ndash Non VPCP Parm Linked ndash 339 (Analog In 1)

P339 (Analog In 1) linked P101) (Ext Vel Ref)P392 (Analog In1 Offset)P393 (Analog In 1 Scale)

Drive to DriveAnalog Inputs

0 ndash 10V

Slave

P12 Drive Receive 1 Address ndash Transmitter you are getting data from ndash 1P16 Drive Receive Indirect 1 ndash VPCP Parm or P22 ndash101 (Ext Vel Ref)

P102 (Vel Scale Factor)Used to Control Gear Ratio

Drive to Drive

Chapter 4Startup

4ndash20

The slave drive is set up by first setting P12 (Drive Receive 1 Address)P12 contains the address of the tranmitter that you wish to receive datafrom In this example a value of 1 is entered indicating that data shouldbe read from transmitter 1 P16 (Drive Receive Indirect 1) should be set toP101 (Ext Vel Ref) It should be noted that the typical transmission timefrom the master to the slave is between 4ms to 6ms using links otherwiseusing indirects it is only 2ms to 4ms

IO Communication ConfigurationThe Standard IO of the 1336 FORCE Drive must be checked to verifyproper operation The Standard IO is used to interface control circuits intothe drive It is very important that this interface is functioning properly

Standard Adapter Board Equipped Drives If a Control Interface option is installed verify that the Stop Enable andExt Fault interlock inputs are present Voltage level is dependent upon theControl Interface option installed (Refer to Page 227 for Input Mode(Param 385) setting

IMPORTANT The Stop Enable and Ext Fault inputs must be presentbefore the drive will start Refer to LEDs D1 and D2 shown in Figure 213to determine Drive Status

If this option is not installed verify that two jumpers are installed one atpins 3amp 4 and the other at pins 17 amp 18 of J10 If an Ext Fault occurscheck the Fault Mask Programming In parameters 88 and 89 Bit 6 needsto be defined to mask the soft fault and warning indication

PLC Comm Adapter Board Equipped Drives

1 The DRIVE ENABLE (TB20 terminal 1) on the PLC Comm Board input allows the drive to honor a START command D11 on the PLC Comm board a green LED reflects the present state of the DRIVE ENABLE If D11 is illuminated then the drive is enabled and the transistors will be allowed to turn on Parameter 54 bit 1 also reflects the status of the DRIVE ENABLE input

2 The EXTERNAL FAULT (TB20 terminal 4) PLC Comm input allows you to tie a signal into the 1336 FORCE that will be monitored by the Velocity Processor (VP) If the input voltage is removed the VP will issue a fault or warning based on the configuration of that fault and the red LED D5 on the PLC Comm board will be illuminated When Input voltage is applied D5 will not be illuminated

3 The MOTOR THERMOGUARD (TB20 terminal 2) input allows you to tie a signal from the thermondashswitch in the motor into the 1336 FORCE that will be monitored by the Velocity Processor (VP) The red LED D9 will illuminate if an overtemp condition occurs

Chapter 4Startup

4ndash21

4 The NORMAL STOP (TB20 terminal 3) input is stop command that will stop the drive according to the specified Stop Mode The drive responds the same way it would if the STOP bit were set in any Logic Command The red LED D7 reflects the present state of the STOP input When a Stop is in effect the LED is illuminated and the Drive is not allowed to run

5 The FAULT OUT (TB20 terminals 8910) input is a Form C relay contact Red LED D4 reflects the status of relay contact If the LED is illuminated the contact is not energized

External Control Link ConfigurationThe 1336 FORCE AC Drive has been designed to accept control inputthrough the use of Adapter Boards A portion of the Drive Control hasbeen designed to act as an interface from the point of view of externaldevices In order to perform the control functions required by the specificapplication it is necessary to configure various control and referenceinformation such as logic commands speed reference and torquereference Additionally for the external control equipment to monitoroperation conditions in the drive (such as logic status actual speed actualtorque) configuration provides a way for this information to be transferredto the external device

Configuration links must be made between sink and source parameters toallow this information to transfer The source parameter provides the datato be sent to the receiving sink parameter For Example To send the information from Analog Input 1 (Parameter355) to External Velocity Reference 1 (Parameter 101) of the drivethen P101 must be linked to P355 All sink and source parameters in the1336 FORCE AC Drive are available to provide information and sinkparameters can receive information from source parameters The drive isshipped with prendashconfigured links between the Standard Adapter board orPLC Comm board and the Main Control board The user has the flexibilityto reconfigure the drive for a particular application For more informationon how to use a particular programming device to configure the 1336FORCE AC Drive refer to the instruction manual for that particulardevice

Figure 46 shows the as shipped prendashconfiguration links for a 1336FORCE AC Drive equipped with a Standard Adapter board Refer to thePLC Communications Adapter User Manual (1336 FORCE 513) forinformation on prendashconfigured links for PLC Comm equipped drives

PLC COMM Adapter Board Equipped Drives

For PLC Comm Adapter Board Equipped Drives refer to the 1336 FORCEPLC Communication Adapter User Manual (1336 FORCE 513) forconfiguration information

Chapter 4Startup

4ndash22

Figure 47Standard Adapter Links

369

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

1 2 3 4 5

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)Scale

Scale

366

Chapter 4Startup

4ndash23

Analog IO Parameter ConfigurationWhen you have accomplished the hard wiring of the Analog IO to theStandard Adapter Board terminals as was detailed in Chapter 2 it is stillnecessary to set up the parameters in the Drive to allow for data flowbetween the Adapter Board and the Drive Each InputOutput hasparameters associated with it as shown in Figure 47 Set-Up parametersare used to program the Standard Adapter Board functions such as Scaleand Offset Configuration parameters allow the Standard Adapter Board tocommunicate with the Drive and must be linked to analog inputs andoutputs

Each analog input and output is associated with a scaling and offset set-upparameter These parameters must be adjusted for each analog device

The Drive works with internal drive units Each parameter is a 16 bit wordwhich allows a range of plusmn 32767 internal units The Drive is scaled so that4096 is equal to one unit of the quantity being regulated A plusmn 10V DCsignal applied to an analog input is converted to a digital value of plusmn 2048providing a total range of 4096 When calibrating analog inputs a scalefactor is applied to this value to provide an effective range of plusmn 32767 16 times 2048 The offset parameter determines the offset in volts applied tothe raw analog value before the scale factor is applied This allows you toshift the range of the analog input by plusmn 4096 drive units (plusmn20 volts)

Figure 47Analog IO Links

5ndash12V Pulse Input

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

355356 Offset357 Scale

358

361

ndash10V RefCommon

+ndash

In1

TE

TB6

1 2 3 4 5 6 7 8

370

373

376

+ndashPot In put

TEMain+Main ndash

4ndash20mA Input

TE+ndash

Analog + Out 1

+ndash

TE

TE+ndash

+ndash

395 PPR396 Edge397 Scale398 Offset

399

Standard Adapter

PowerSupply

In1

359 Offset360 Scale

10V Input 10V Input

In1 In1

362 Offset363 Scale

Pot Input

mA Input

Pulse Value In1 In1

371 Offset372 Scale

Analog Output 1

Analog Output 2 Analog + Out 2

mA Output

374 Offset375 Scale

mA Out +

377 Offset378 Scale

Chapter 4Startup

4ndash24

A 10V Input and a Pot Input will be used in detailing the scaling and offsetparameters At Pot Input between TB5 terminals 7 and 8 a potentiometerwith a range of plusmn10V DC has been connected Parameter 358 has been linkedto Parameter 104 (Velocity Reference 2 HI) in the Drive which gives thepotentiometer control of the external velocity reference To calibrate the potto control 100 base speed in both directions the scaling parameter must beadjusted The default value of the scale parameters allows a total range of4096 ndash2048 to +2048 This allows only 50 base speed in each directionBy setting a scale factor of 2 in Parameter 360 (An In 1 Scale) the digitalinput is multiplied by 2 providing a range of ndash 4096 to + 4096 or 100 basespeed in both directions If the user wanted a range of plusmn 2 times base speedthe scale factor would have to be 4 (Base Speed = 4096 2 times Base Speed= 8192 2048 times 4 = 8192) Parameter 359 (Offset) will remain at thedefault value of zero allowing the input range to be ndash10V to +10V Therange of the offset parameter is plusmn 20V DC as shown in Figure 48

Figure 48Potentiometer with a +10V Range to Control 0 to +100 Base Speed

10V POT

0ndash10V

A

D

SCALE

+20480

ndash2048

+20480

ndash2048

+40960

ndash4096

OFFSETPAR 359 = 0

RANGE OF 20V

0

000

ndash10Vndash2048X 2

ndash4096

+10V+2048X 2

+4096

PAR 360X 2

plusmn

+10V

POTENTIOMETER DIGITAL VALUESCALEFINAL VALUE PAR 401

PAR 104plusmn 2048(= plusmn10V)

Par 358

Pot Input

VELOCITYREFERENCE 2

HIMULTIPLEXER

For 10V Input a 0 to 10 volt potentiometer will be used to adjust the TorqueReference from ndash100 to +100 To accomplish this both the scale andoffset parameters will need to be adjusted By linking Parameter 355 toParameter 162 Torque Reference the potentiometer connected to AnalogInput becomes the Torque Reference Signal This signal must be scaled andoffset in order to get the entire plusmn 100 in the 0-10 volt range A digitalrange of 8192 (plusmn 4096) must now be scaled for an analog range of 10 voltsand must be offset so 5 volts on the potentiometer will indicate 0 Torque

Chapter 4Startup

4ndash25

As shown in Figure 49 the offset voltage adds the corresponding digitalvalue to the range In this case an offset of ndash5 volts adds a digital value ofndash1024 to the range This causes 0 volts on the potentiometer to register asndash1024 digital internal to the drive and 10 volts on the potentiometer will be+1024 to the drive This can then be scaled by a factor of 4 (8192 drive units) so that 0 volts sends a digital value of ndash4096 for ndash100torque and 10 volts sends a digital value of +4096 for +100 torque

Figure 49Potentiometer 0ndash10V Range to Control +ndash 100 Torque Reference

0ndash10V POT

010v

A

D

SCALE

0to

2048

ndash1024+1024

+4096+4096

RANGE OF 20V

0

00

ndash10Vndash2048

+10V+2048

PAR 357X 4

+0v

POTENTIOMETER DIGITAL VALUEOFFSET BY ndash5V

10Vndash10V

5V1024

00

ndash1024ndash4096

+1024+4096ADDING ndash1024

SCALE BY 4

PAR 162plusmn 2048(= plusmn10V)

OFFSETPar 356 = ndash5V

Par 355MULTIPLEXER

10V Input

Analog outputs are set up similar to analog inputs Each output has a scaleand offset parameter along with a specific variable parameter used forlinking Differences occur because of the direction of information flow Thedrive sends a digital value in drive units which must be matched to thevoltage of the monitoring device Similar to analog inputs the analog outputconverts a plusmn2048 to plusmn10VDC Thus when the drive sends plusmn100 BaseSpeed (equal to plusmn4096) it must be scaled by 05 to be in the proper range(plusmn4096 times 05 = plusmn2048) Offset can be plusmn 20VDC even though the physicallimit is plusmn10VDC This allows you to offset the signal anywhere within theentire range

Chapter 4Startup

4ndash26

In Figure 410 Analog Output 1 is used as an example to detail the scalingand offset parameters At Analog Output 1 a meter with a range of 0-10 VDC has been connected Parameter 370 has been linked to Parameter 146(Velocity Feedback) In order for the meter to indicate speed in bothdirections the scale and offset parameters must be adjusted as shown inFigure 410 Working in the opposite direction as the analog inputs apply thescale factor first The drive sends a plusmn4096 digital value to indicate plusmn100velocity feedback for a total digital range of 8192 The meter having ananalog range of 0-10V DC requires a digital range of 2048 This isaccomplished by applying a scale factor of 025 (8192 times 025 = 2048)In order to have the 0-10V DC meter indicate plusmn100 feedback an offsetmust be applied Offset parameters for analog outputs will again add thecorresponding digital value to the range In this case an offset of 5 volts addsa digital value of 1024 to the range This will allow full range deflection onthe 0 to 10 volt meter with 5 volts indicating zero speed

Figure 410Analog Output 1 +ndash 100 Speed Indication

ndash100B SPD 0 SPD

+100B SPD

5V

0V 10V

+4096 (+100 SPEED)0

ndash4096 (ndash100 SPEED)

+10240

ndash1024

+2048+1024

0

+10V = + 100 BASE SPEED+5V = 0 SPEED

SCALEPAR 372X 025

OFFSETPAR 371

5V = 1024

D

A

SCALED BY 025

0V = ndash100

OFFSET BY 5V ADDING 1024DIGITAL VALUE

METER VOLTAGE BASE SPEED

ndash 4096

ndash 1024+ 1024

00 VOLTS

ndash 100

0

0+ 1024

05 VOLTS

0

4096

+ 1024+ 1024

204810 VOLTS

+ 100

(plusmn 2048 = plusmn10V)

PAR 146 PAR 370

VELOCITYFEEDBACK ANALOG OUT 1

DIGITAL RANGEFROM DRIVE

Chapter 4Startup

4ndash27

SCANport Analog IO Parameter Configuration

SCANport analog IO is what is received from and sent to the SCANportdevices

Figure 411SCANport IO Parameter Configuration

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

1 2 3 4 5

379

SP Analog Out (Par 379)

HIMDefault setting of Drive Parameter 364 = 1

1 2 3 4 5

SP Analog In Select (Par 367)

368

SP Analog In (Par 368)

Default setting of Drive Parameter 367 = 1

Scale

366

Scale

369

To receive analog input from a device the SCANport Analog Input Selectparameter 364 must be set to the SCANport device port number and theSCANport Analog Input parameter 365 must be linked to a sink Set thescale as needed For example if the HIM is plugged into Port 1 and it is tocontrol external velocity you would then enter 1 for SCANport Analog InputSelect (364) and link External Velocity (101) to SCANport Analog Input(365) You may scale the velocity through External Velocity Scale (102) orthrough SP Analog Scale (366)

The Drive sends SCANport Analog Output parameter 379 to all devicesconnected to SCANport To send data out to the SCANport devices youmust link SCANport Analog Output (379) to a source For example If theHIM is to receive Velocity Feedback you would link SCANport AnalogOutput (379) to Velocity Feedback (269)

Output Relay ConfigurationThe outputs consist of three (3) permanently configured and one (1)programmable output

The three permanently configured relays are Run Warning and Fault Runis a normally open contact that closes when current is applied to the motor It follows the enable LED on the Motor Control Board Warning has anormally open and close contact that energizes when there is no warningsand dendashenergizes when there is a warning Fault has a normally open andclose contact that energizes when there are no faults and dendashenergizes whenthere is a fault

Chapter 4Startup

4ndash28

The programmable relay is a normally open contact and is configuredthrough the Output Select parameter 384 It allows the relay to follow asingle bit within the Logic Status parameters 56 and 57 The relay can beconfigured to follow the bit function or the not of the bit function ForExample When the motor is at set speed and you wish the contact to closeyou must enter AT SET SPEED (8) When the motor is at set speed and youwish to have the contact open you must enter NOT AT SET SPEED (40)into Output Select (384)

Pulse Input Configuration

The pulse input allows an external source to provide the drive with a digitalreference or trim signal (Fig 412) It is a differential input with a maximumfrequency of 100khz The pulse input parameters consist of PPR (395)Scale (397) Edges (396) and Offset (398) The PPR is the number of pulsesper one revolution The scale determines the RPM at 1 per unit (4096) Theedges are either one edge ndash rising edge of the pulse or two edges ndash the risingand falling edge of the pulse Two edges provide better resolution Theoffset sets the minimum speed For example You have a lead drive with a1024 PPR encoder with a base speed of 1750 The follower uses the leaddriversquos encoder but runs at half the speed The followerrsquos ppr should be1024 scale should be set to 3500 offset should be 0 and a link should bemade from external reference (101) to Pulse Value (399)

Figure 412Pulse Input Configuration

399

MOTOR CONTROL BOARD

LeadDrive

396

EDGE

395

PPR

397

SCALE

398

OFFSET

AumlAuml AumlAuml

AumlAuml

101PulseValue

Ext Speed Ref

To calculate ScaleFollower Base Speed xLead RPM

Follower RPM

MOP Configuration

The MOP function is controlled by the L Option IO modes 5 9 and 15The MOP up and MOP down increment and decrement the MOP valueparameter 394 based on the MOP increment parameter 393 which is in RPMper second

SCANport Image Configuration

The SCANport image is a mechanism for transferring data to and fromSCANport devices It operates the same way as a PLC image with its 1412 34 and full racks The SCANport image is setup by a SCANportdevice such as a GD1 module or a RIO to SCANport gateway

Chapter 4Startup

4ndash29

SCANport Control Configuration

The SCANport controls are the functions that control the motor like startstop jog etc The control can come from up to 6 SCANport devices and LOption Inputs at the same time The control is based on a ownershipmechanism which allows certain functions to have only one owner and otherfunctions to have multiple owners Speed reference direction and localfunctions are the only one owner functions The other functions like startstop jog etc are considered multiple owner functions Ownership is when aSCANport device or L option Input commands a function As long as thatfunction is commanded that device will be the owner of that function ForExample Device 1 is commanding a forward direction this is a one ownerfunction No other device can change the direction until Device 1 stopscommanding the forward direction If Device 1 is commanding a start whichis a multiple owner function other devices can also command a start Ifdevice 1 stops commanding a start the drive will continue to run if anotherdevice is still commanding a startNOTE A rising edge is required for start and jog functions If jog iscommanded and the drive has been stopped Start and Jog functions will notoperate from any device until the Jog command is stopped The same holdstrue if a Start is commanded while the drive is stopped

The parameters in the range from 340 to 350 indicate the owner of eachfunction The owner is identified by the bit in the parameter as follows

Bit 0 ndash L Option InputsBit 1 ndash SCANport device 1 SCANport device number isBit 2 ndash SCANport device 2 determined by the SCANportBit 3 ndash SCANport device 3 connectionBit 4 ndash SCANport device 4Bit 5 ndash SCANport device 5Bit 6 ndash Internal GatewayBit 7 ndash Not Used

This is very useful for determining who may own a function

Masking of the control functions allows control functions to be enabled ordisabled for all or some of the devices The parameter bit configuration isthe same as the example detailed above with 0 indicating disable and 1indicating enable The masking control starts with the port enable maskwhich enables or disables all of the devices control functions then the localcontrol mask which allows a device to take full control of the drive to theindividual masks like start jog direction speed reference clear faults andreset

Control Interface OptionThe Control Interface Option Modes configure the Control Interface OptionThe different modes are explained in Chapter 2 The modes allow the user tosetup the inputs to meet the requirements of their application The InputMode parameter 385 sets the mode and takes effect on a power cycle or resetThe Input Status parameter 386 indicates the status of the input except for theenable input which can be seen in parameter 54 bit 1 The Stop Selectparameters 387 amp 388 select the way the stop input will function on the L

Chapter 4Startup

4ndash30

option only based on the stop type in modes 3 13 and 16 Stop fromSCANport devices follow parameter 59 bits 4 amp 5 The Accel Rates (389 amp390) and Decel Rates (391 amp 392) are selected by modes 4 11 and 14

NOTE Mode 2 3 4 5 and 6 take permanent ownership of the directionfunction

NOTE If the Control Interface Option is other than 1 the Control InterfaceOption speed reference will take ownership of the speed reference To allowother devices to control speed reference disable the Control Interface Optionspeed reference with the speed reference mask (334)

Using the SCANport ImageYou can view the values in the SCANport image table by using parameters310 through 317 for input and 320 through 327 for output

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data In A1 (Par 310)

Data In A2 (Par 311)

Data In B1 (Par 312)

Data In B2 (Par 313)

Data In C1 (Par 314)

Data In C2 (Par 315)

Data In D1 (Par 316)

Data In D2 (Par 317)

SCANport Image In

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data Out A1 (Par 320)

Data Out A2 (Par 321)

Data Out B1 (Par 322)

Data Out B2 (Par 323)

Data Out C1 (Par 324)

Data Out C2 (Par 325)

Data Out D1 (Par 326)

Data Out D2 (Par 327)

SCANport Image Out

SCANport Device 6 SCANport Device 6

1336 FORCE

Logic Command

Reference

Logic Status

Feedback

SCANport gateways or adapters to RIO DF1DH485 DeviceNet SLCand Flex IO are some of the devices that can transfer data between theSCANport IO image and another device

Refer to the appropriate manual for your specific adapter

Chapter 4Startup

4ndash31

Within the 1336 FORCE drive the IO image table resembles thefollowing

Logic Command Word Logic Status LOW(parameter 52) (parameter 56)Bit 0 Normal Stop Bit 0 Run ReadyBit 1 Start➀ Bit 1 RunningBit 2 Jog 1➀ Bit 2 Command DirBit 3 Clear Fault Bit 3 Rotating DirBit 4 Forward Bit 4 AcceleratingBit 5 Reverse Bit 5 DeceleratingBit 6 Jog 2➀ Bit 6 WarningBit 7 Cur Lim Stop Bit 7 FaultedBit 8 Coast Stop Bit 8 At Set SpeedBit 9 Spd Ramp Dis Bit 9 Local ABit 10 Flux Enable Bit 10 Local BBit 11 Process Trim Bit 11 Local CBit 12 Speed Ref A Bit 12 At Zero SpdBit 13 Speed Ref B Bit 13 Speed Ref ABit 14 Speed Ref C Bit 14 Speed Ref BBit 15 Reset Drive Bit 15 Speed Ref C

Logic Status HI(parameter 57)Bit 0 Flux ReadyBit 1 Flux UpBit 2 Not UsedBit 3 Not UsedBit 4 Bus RidethruBit 5 JoggingBit 6 Not UsedBit 7 Not UsedBit 8 At LimitBit 9 Not UsedBit 10 At Setpoint 1Bit 11 At Setpoint 2

➀ These functions require an edge in order to take effect

1336 FORCE DriveController

Logic Evaluation Block Logic Command Wrd (p 52)SP An 2 Sel (p 367) SP An 2 Scale (p 369) SP An In2 Value (p 368)Data In A1 (p 310) Preset Speed 1 (p 119)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314) Speed Ref 1 (p 101)Data In C2 (p 315) Vel Scale Factor (p 102)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOWHI (param 5657) SP An Output (p 379) Velocity Feedback (p 146)Data Out A1 (p 320) Motor Current Magnitude Feedback (p 264)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

Link Link

Link

Link

The following examples are provided to show how the 1336 FORCE driveinterfaces with some of the available adapters These are only examplesYou should also refer to the appropriate manual for your gateway foradditional information

Chapter 4Startup

4ndash32

SLC to SCANport ModuleThe following figure shows how the IO image table for the SLCprogrammable controller relates to the 1336 FORCE drive In thisexample the drive is connected to channel 1 of the SLC module inenhanced mode If this were an example of basic mode only the O12O13 I12 and I13 entries would be used

1336 FORCE DriveController

SLCIO Image

Output Image

O12O13

O18➀

O19➀

O110➀

O111➀

O112➀

O113➀

O114➀

O115➀

I12I13

I18➀

I19➀

I110➀

I111➀

I112➀

I113➀

I114➀

I115➀

Input Image

Logic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOW (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

SLC toSCANport

Module

Logic CommandReference

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Logic StatusFeedback

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Backplane SCANport

➀ Available only in enhanced mode

➁ Optionally enabled viaG file in SLC processor

M Files Message HandlerMessageBuffers

Chapter 4Startup

4ndash33

Serial Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Serial CommunicationsModule is used

1203ndashGx2DF1DH485 to SCANport

N400ndash63 BTW EmulationN410➀ Logic CommandN411➀ ReferenceN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

1336 FORCE DrivePLC SLCor PC

DF1DH485Serial Messages

(Write)

DF1DH485Serial Messages

(Read)

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status Low (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

N400ndash63 BTR EmulationN410➀ Logic StatusN411➀ FeedbackN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

SCANport

➀ Optionally enabled usingDIP switches on the adapter

Chapter 4Startup

4ndash34

Remote IO Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Remote IOCommunications Module is used

Remote IOCommunications

Module

Block TransferLogic Command

ReferenceDatalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

Block TransferLogic StatusFeedback

Datalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

1336 FORCE DriveController

PLC IO Image

Output Image

O010O011O012O013O014O015O016O017

I010I011I012I013I014I015I016I017

Input Image

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status LO (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

RIO SCANport

➀ Optionally enabled usingDIP switches on the module

8 words maximum

8 words maximum

Flex IO ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Flex IO Module isused

1203ndashFM1and 1203ndashFB1

Modules

Logic CommandReference➀

Logic StatusFeedback

1336 FORCE DriveFlex Adapter

Logic Evaluation BlockSP An 2 Sel (p 367)

Logic Status Low (p 56)SP An Output (p 379)

SCANport

RIODeviceNetControlNetOthers

Chapter 4Startup

4ndash35

This Page Intentionally Blank

Chapter 5

5ndash1

Programming Parameters

Introduction This chapter contains the information required to assist you inprogramming the 1336 FORCE AC Drive for a specific application afterinitial startndashup Drives are shipped programmed with default values andare preconfigured for the options installed

Parameters 0 thru 288 are the parameters for the 1336 FORCE MotorControl Board Parameters 300 and above cover the Adapter Board ofthe 1336 FORCE DRIVE The 1336 FORCE parameter table has beenbroken down into three different table types as follows

Table 5A lists parameters in numeric order with page referencesTable 5B lists parameters alphabetically with page referencesFigures 52 amp 53 list Standard Adapter and PLC Comm Adapter parameters by file and group

Parameters are divided into 4 Files to help ease programming andoperator access as follows

1 Startup File2 Communications IO File3 Velocity Torque File4 Diagnostics File

These four Files are then divided into Groups with each parametermaking up an Element in a specific group Parameters may be used asElements in more than one group Refer to Table 5A for a numericalbreakdown of the FileGroupElement designations

NOTE Parameters that appear in more than one group in Table 5A arelisted after the initial entry in italics

Terminology The definition of terms related to the parameter table include

Configuration ndash The process of linking Sink to Source parameters

Configuration Parameters ndash Parameters used to transfer data betweenthe drive control and external devices The Configuration Parameters arecategorized into two types

1 Source Parameters ndash Parameter used as a source of data2 Sink Parameters ndash Parameter used to receive data input

All parameters in the 1336 FORCE AC Drive can be used for evaluation(sink or source) and some can be modified dynamically (sink only) tomeet application requirements

Drive Units ndash The actual value of the parameter as it is stored within theDrive parameter table The drive units may be converted to engineeringunits or to hexidecimal for display using the Programming Terminal ormay be displayed directly in drive units All internal values in the driveare in terms of Per Unit numbering

Chapter 5Programming Parameters

5ndash2

Engineering Units ndash A label given to parameter data which specifieswhat units are to be used to display the parameter value on theProgramming Terminal Examples of engineering units include RPM etc

NonndashVolatile Memory ndash Data memory in the drive which retains thevalues of all data even when power is disconnected from the drivecontrol BRAM (Battery Backed Random Access Memory) chips areused for the nonndashvolatile memory to store some of the drive parameters

Parameter Table ndash Table of parameter entries for all configuration andsetup parameters used in the drive

Parameter Entry ndash Information stored in the drive which contains theparameter number parameter data and all other information related to thespecific parameter

Parameter ndash Memory location used to store drive data Each parameteris given a number called the parameter number The parameter valuemay be specified in decimal or in hexadecimal When specified inhexadecimal the word ldquoHexrdquo will appear after the parameter value

Per Unit Numbering ndash Per Unit numbering is a numbering systemwhich defines a specific numeric value as representing 100 of aparticular quantity being measured The number 4096 is used in manyplaces in the drive to represent 1 Per Unit (100) [pu]

Parameter Table Structure All data used to perform the Drive functions is stored in the ParameterTable Each parameter entry in the parameter table contains thefollowing information

No ndash The parameter number in decimal

Name ndash Parameter text as it appears on the Programming Terminal

Display Units ndash Specifies what engineering units will be used to displaythe parameter value on the Programming Terminal (RPM etc) Thisis specified first in the Units column of the Parameter Table

Drive Units ndash Specifies the Conversion Units as seen in the Drive

Figure 51 Drive Units Example

4096DriveUnits

Drive Units

Conversion Formula

1750RPM

Engineering Units

Factory Default ndash Parameter value as it will appear after the DriveInitialize (Init) command has been sent from the Programming TerminalThe Init values are the same as the default values listed in the ParameterDescriptions section of this chapter

Min ndash Minimum allowable value for the parameter If no min value isgiven the parameter has not been assigned a minimum limit

Max ndash Maximum allowable value for the parameter If no max value isgiven the parameter has not been assigned a maximum limit

Enum ndash Allows numbers or bits to be represented by text

Chapter 5Programming Parameters

5ndash3

Parameter Table (Standard Adapter Equipped Drives)Note For PLC Comm equipped drives refer to your PLC Comm User Manual for parameter descriptions For ControlNet Adapter equippeddrives refer to your ControlNet Adapter Manual for parameter descriptions

Table 5A ndash 1336 FORCE Numerical Parameter Table

Param No Parameter Name (Element) Group01050809101112131415161718192021222324252627282930313233343536373840

41

43

44

45

46

47

48

52

Drive Software VersionDrive Power Structure TypeMotor Control CounterDrive Comm Task IntervalDrive Comm Baud RateDrive Comm Transmit AddrDrive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Comm Receive 1 Indirect 1Drive Comm Receive 1 Indirect 2Drive Comm Receive 2 Indirect 1Drive Comm Receive 2 Indirect 2Drive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Process Trim OutputProcess Trim ReferenceProcess Trim FeedbackProcess Trim SelectProcess Trim Filter BandwidthProcess Trim DataProcess Trim KI GainProcess Trim KP GainProcess Trim Low LimitProcess Trim High LimitProcess Trim Output GainProcess Trim TestpointProcess Trim Setpoint Select

InfoInfoMonitorDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimVelocity AutotuneTorque AutotuneVelocity AutotuneTorque AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneTestpointsVelocity AutotuneTestpointsLogicLogic

Auto Tune Torque Limit

Auto Tune Speed

VP Desired Bandwidth

Autotune Status

VP Damping Factor

Total Inertia

Auto Tune Testpoint Data

Auto Tune Testpoint Select

Logic Command Word

File (File No)

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Communications IO (2)

Param DescrptSee Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash37See Page 5ndash37See Page 5ndash37See Page 5ndash37

Chapter 5Programming Parameters

5ndash4

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

77787980

81

82

83

84

Torque RefDrive DataLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTransistor DiagLimitsLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTestpointsLogicLogicTestpointsLogicLogicFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Torque Mode Select

Local Input Status

Local Output Status

Logic Status LOW

Logic Status HI

Torque Stop Configuration

Logic Options

At Setpoint 1

At Setpoint 2

Over Setpoint 1

Over Setpoint 2

Over Setpoint 3

Over Setpoint 4

Setpoint Select

Speed Setpoint Tolerance

Current Setpoint Tolerance

Zero Speed Tolerance

Logic Testpoint Data

Logic Testpoint Select

Stop Dwell

Maximum Dynamic Brake PowerMaximum Dynamic Brake TempDynamic Brake Time ConstantPowerupDiagnostic Fault Status

NonndashConfigurable Fault Status

CP Configurable Fault Status

VP Configurable Fault Status

CP Configurable Warning Status

File (File No)

Velocity Torque (3)Startup File (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Communications IO (2)Diagnostics (4)Startup (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Comm IO (2)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Diagnostics (4)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)

Param DescrptSee Page 5ndash37See Page 5ndash37See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39 See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40 See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash43See Page 5ndash43

Chapter 5Programming Parameters

5ndash5

Table 5A ndash 1336T Numerical Parameter Table (Cont)

86

87

88

89

909192

94

95

96

97

9899100101102103104105106107108

109

110

117118119120121122123125126127

128129

CP Fault Configuration

CP Warning Configuration Select

VP Fault Configuration Select

VP Warning Configuration Select

Absolute Overspeed ThresholdStall DelayMotor Overload Limit

Service Factor

Motor Overload Speed 1

Motor Overload Speed 2

Minimum Overload Limit

Fault Testpoint DataFault Testpoint SelectVelocity Reference 1 LOW (FRACTION)Velocity Reference 1 HI (WHOLE 32 bit)Velocity Scale Factor 1Velocity Reference 2 LOW (FRACTION)Velocity Reference 2 HI (WHOLE 32 bit)Velocity Scale Factor 2Velocity Trim LOWVelocity Trim HI (32 bit)Velocity Reference Testpoint Data LOW

Velocity Reference Testpoint Data HI

Velocity Reference Testpoint Select

Jog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeReverse Motor Speed Limit

Forward Motor Speed LimitMaximum Reverse Speed Trim

Param No Parameter Name (Element) Group File (File No)

Fault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SetupFault SetupFault SetupMotor OverloadMotor OverloadLimitsFault SetupMotor OverloadFault SetupMotor OverloadFault SetupMotor OverloadTestpointsTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefTestpointsVelocity RefTestpointsVelocity RefTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefLimitsVelocity RefVelocity Ref

Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Startup (1)Startup (1)Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)

85 VP Configurable Warning Status Fault SelectStatusFault SelectStatus

Communications IO (2)Diagnostics (4)

Param Descrpt

See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44 See Page 5ndash44See Page 5ndash44See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49

Can be viewed only with PLC Comm Board installed

Chapter 5Programming Parameters

5ndash6

Table 5A ndash 1336T Numerical Parameter Table (Cont)

130131132133

Maximum Forward Speed TrimDroop PercentVelocity Reference Output LOWVelocity Reference Output HI (32 bit)

Param No Parameter Name (Element) Group File (File No)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Param DescrptSee Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50

Velocity RefVelocity RefVelocity RefVelocity Ref

136

137

138139

140

141

142143

144

145

146

147

148

149

150151152153154155156157161162163164165166167

168

134135

Velocity Regulator Testpoint Data HI

Velocity Regulator Testpoint Select

Velocity ErrorKI ndash Velocity Loop

KP ndash Velocity Loop

KF ndash Velocity Loop

KF Error Filter BandwidthVelocity Feedback Testpoint Data LOW

Velocity Feedback Testpoint Data HI

Velocity Feedback Testpoint Select

Velocity Feedback

Scaled Velocity Feedback

Encoder Position Feedback LOW

Encoder Position Feedback HI

Fdbk Device TypeFdbk Tracker GainFdbk Filter SelectKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityNotch Filter FreqNotch Filter QExternal Iq ReferenceExternal Torque Reference 1Slave Torque Percent 1External Torque Reference 2Slave Torque Percent 2External Torque StepInternal Torque Reference

Internal Iq Reference

Velocity Regulator OutputVelocity Regulator Testpoint Data LOW

Velocity RegTestpointsVelocity RegTestpointsVelocity RegVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity FdbkVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkDrive TuneVelocity FdbkMonitorVelocity FdbkMonitorMonitorVelocity FdbkMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefMonitorTorque RefMonitor

Velocity RegVelocity RegTestpoints

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity TorqueStartup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)

Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51 See Page 5ndash46 See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55

Chapter 5Programming Parameters

5ndash7

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No)

Torque RefTestpointsTorque RefTestpointsTorque RefLimit

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)

172

173

174

Param Descrpt

See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash56See Page 5ndash56

Torque Reference Testpoint Data

Torque Reference Testpoint Select

Minimum Flux Level

176

177

178

179

180

181

182

183184185

186

220221222223224225226227228229230231232233234

235236237238240241242243244245246

175

Neg Torque Reference Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current Reference Limit

Negative Motor Current Reference Limit

DIDT Limit

Computed Power

Torque Limit StatusTorque Mode StatusPerunit Motor Current

Perunit Motor Voltage

Rated Inverter Output AmpsRated Inverter Input VoltageInverter Carrier FrequencyPrechargeRidethru SelectionUndervoltage SetpointBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsBase Motor HorsepowerBase Motor SpeedBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesMotor Inertia

Encoder PPRRs Tune (Stator Resistance)Leakage InductanceId Tune (Base Flux Current)Iq Tune (Base Torque Current)Vde Tune (Base Torque Voltage)Vqe Tune (Base Flux Voltage)Vde Maximum (Peak HP)Vqe Maximum (Constant HP)Vde MinimumK Slip (Base Slip Frequency)

Pos Torque Reference Limit

Torque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefMonitorMonitorTorque RefTorque RefMonitorMonitorMonitorMonitorInfoInfoTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockDrive DataDrive DataDrive DataDrive DataDrive DataDrive DataDrive TuneVelocity AutotuneDrive DataTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Torque RefLimits

Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Velocity Torque (3)Startup (1)

See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57 See Page 5ndash57 See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash62See Page 5ndash62See Page 5ndash62

Chapter 5Programming Parameters

5ndash8

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

246247248249250251252256

Base Slip FrequencyBase Slip Freq MaxBase Slip Freq MinKp ndash Slip RegulatorKi ndash Slip RegulatorKp ndash Flux RegulatorKi ndash Flux RegulatorAutotuneDiagnostics Selection

Torque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneDrive TuneTorque AutotuneVelocity AutotuneTransistor Diag

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash63See Page 5ndash63See Page 5ndash63See Page 5ndash63

259260261262

263

264

265

266

267268

269

270

271

273

274

275276277278279280281282283284285286287288289290

257258

Inverter Diagnostics Result 2Iq OffsetId OffsetPhase Rotation Current Reference

Phase Rotation Frequency Reference

Motor Current Magnitude Feedback

Motor Voltage Magnitude

Stator Frequency

Calculated TorqueDC Bus Voltage

Filtered Motor Velocity Feedback

Inverter Temperature Feedback

Limited Motor Flux

Testpoint Selection

Testpoint Data

Testpoint Selection 2Testpoint Data 2Testpoint Selection 3Testpoint Data 3Testpoint Selection 4Testpoint Data 4Testpoint Selection 5Testpoint Data 5Testpoint Selection 6Testpoint Data 6Selection for Test DAC 1Selection for Test DAC 2Ki Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency Regulator

Transistor Diagnostics ConfigurationInverter Diagnostics Result 1

Transistor DiagTransistor DiagTransistor DiagTorque AutotuneDrive TuneTorque AutotuneDrivetuneMonitorMonitorMonitorMonitorMonitorMonitor

MonitorMonitorMonitorMonitorVelocity FdbkMonitorMonitorMonitorMonitorTestpointsTorque AutotuneTestpointsTorque AutotuneFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyTorque BlockTorque BlockTorque BlockTorque Block

Transistor DiagTransistor Diag

Diagnostics (4)Diagnostics (4)Diagnostics (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)

Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Velocity Torque (4)Diagnostics (4)Velocity Torque (4)DO NOT USE DO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEVelocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Diagnostics (4)Diagnostics (4)

See Page 5ndash63See Page 5ndash63See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65 See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash68See Page 5ndash68See Page 5ndash68

Chapter 5Programming Parameters

5ndash9

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash69See Page 5ndash69See Page 5ndash69See Page 5ndash69

291292293294295296297298

Frequency Tracking FilterTracking Filter TypeFreq Trim FilterMotor Phase Rot ErrorsMotor Inductance Test ErrorsStator Resistance Test ErrorsMotor Flux (Id) Test ErrorsTorq Block Calc Errors

Torque BlockTorque BlockTorque BlockTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

300301302304

310

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)

Adapter IDAdapter Version

InfoInfo

Adapter ConfigLanguage Select

Data In A1

InfoInfoDrive DataSCANport IO

Diagnostics (4)Diagnostics (4)

See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72 See Page 5ndash72See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77

311312313314315316317320321322323324325326327330331332333334335336337340341342343344345346347348349350352353354355356357358359

Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal MaskStop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner10 Volt In FltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot Offset

SCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog Input

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)

See Page 5ndash70See Page 5ndash70

Chapter 5Programming Parameters

5ndash10

Table 5A ndash 1336T Numerical Parameter Table (Standard Adapter Parameters)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash77See Page 5ndash77See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash79See Page 5ndash79See Page 5ndash79See Page 5ndash79

360361362363364365366367368369370371

Pot ScaleMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleSP Analog Sel SP Analog InSP Analog 1 ScaleSP Analog 2 SelectSP Analog 2 InSP Analog 2 ScaleAnalog Output 1Analog Output 1 Offset

Analog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog OutputAnalog Output

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

384

385

386

387

388

389

390

391

392

393394

395396397398399

404405

406

407

408

372373374375376377378379

Output Select

Input Mode

Input Status

Stop Select 1

Stop Select 2

Accel Rate 1

Accel Rate 2

Decel Rate 1

Decel Rate 2

Mop IncrementMop Value

Pulse PPRPulse EdgePulse ScalePulse OffsetPulse Value

SP Comm RetriesFault Select

Warning Select

Fault Status

Warning Status

Analog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScalemA OutputmA Output OffsetmA Output ScaleSB Analog Out

LogicLogicLogicLogicDrive DataMonitorMonitorLogicLogicLogicLogicVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkMonitorMonitorInfoFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Analog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog Output

Communication IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Diagnostics Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83 See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85

Chapter 5Programming Parameters

5ndash11

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

90389390125302300301370371372373374375606125641444748402292472482252263353501828284862278768310311312313314315316317320321322323324325326327268391392126341

Absolute Overspeed ThresholdAccel Rate 1Accel Rate 2Accel TimeAdapter ConfigAdapter IDAdapter VersionAnalog Output 1Analog Output 1 OffsetAnalog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScaleAt Setpoint 1At Setpoint 2Autotune Diagnostics SelectionAutotune SpeedAutotune StatusAutotune Testpoint DataAutotune Testpoint SelectAutotune Torque LimitBase Motor SpeedBase Slip Freq MaxBase Slip Freq MinBus Precharge TimeoutBus Ridethru TimeoutClear Fault MaskClear Fault OwnerComputed PowerCP Configurable Fault StatusCP Configurable Warning StatusCP Fault Configuration SelectCP Operating OptionsCP Warning Configuration SelectCurrent Setpoint ToleranceData In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2DC Bus VoltageDecel Rate 1Decel Rate 2Decel TimeDirection Owner

5ndash455ndash835ndash835ndash495ndash705ndash705ndash705ndash795ndash795ndash805ndash805ndash805ndash805ndash395ndash395ndash635ndash365ndash365ndash365ndash375ndash355ndash385ndash385ndash385ndash595ndash595ndash735ndash765ndash575ndash425ndash435ndash435ndash605ndash445ndash405ndash705ndash705ndash705ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash725ndash655ndash835ndash835ndash495ndash74

Chapter 5Programming Parameters

5ndash12

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref1022232425121309112021141505011311481492351611621641654074059899150152151269347128291293261238385386167168222260240333343344117118141289252287250139153251

Drive Comm Baud RateDrive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Drive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Task IntervalDrive Comm Transmit AddressDrive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Power Structure TypeDrive Software VersionDroop PercentEncoder Position Feedback LOWEncoder Position Feedback HIEncoder PPRExternal IQ ReferenceExternal Torque Reference 1External Torque Reference 2External Torque StepFault StatusFault SelectFault Testpoint DataFault Testpoint SelectFeedback Device TypeFeedback Filter SelectFeedback Tracker GainFiltered Vel FdbkFlux OwnerForward Motor Speed LimitFrequency Tracker FilterFrequency Trim FilterId OFFSETId Tune (Base Flux Current)Input ModeInput StatusInternal Torque ReferenceInternal Iq ReferenceInverter Carrier FrequencyIq OffsetIq Tune (Base Torque Current)Jog MaskJog 1 OwnerJog 2 OwnerJog Speed 1Jog Speed 2Kf Velocity LoopKff Freq RegulatorKi Flux RegulatorKi Frequency RegulatorKi Slip RegulatorKi Velocity LoopKn Feedback Filter GainKP Flux Regulator

5ndash315ndash335ndash335ndash335ndash335ndash315ndash315ndash315ndash315ndash345ndash345ndash335ndash335ndash335ndash505ndash505ndash505ndash505ndash385ndash545ndash545ndash545ndash545ndash425ndash425ndash465ndash465ndash535ndash535ndash535ndash655ndash755ndash495ndash685ndash685ndash645ndash615ndash825ndash825ndash555ndash555ndash585ndash645ndash615ndash735ndash755ndash755ndash485ndash485ndash515ndash685ndash625ndash675ndash625ndash515ndash535ndash62

Chapter 5Programming Parameters

5ndash13

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

28824914029024630423729534633754565259565770713547778130129361362363376378174972640829723423023223323192951772651798115615762636465185186294263358353

Kp Frequency RegulatorKp Slip RegulatorKp Velocity LoopKsel Freq RegulatorK Slip Language SelectLeakage InductanceLo Test ErrorsLocal OwnerLocal MaskLocal Input StatusLocal Output StatusLogic Command WordLogic OptionsLogic Status LowLogic Status HiLogic Testpoint DataLogic Testpoint SelectmA In FiltrMaximum Dynamic Brake PowerMaximum Dynamic Brake TempMaximum Forward Speed TrimMaximum Reverse Speed TrimMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleMilliAmp OutputMilliAmp Output ScaleMinimum Flux LevelMinimum Overload LimitMotor Current Magnitude FeedbackMotor Control CounterMotor Flux (Id) Test ErrorsMotor InertiaMotor Nameplate AmpsMotor Nameplate FrequencyMotor Nameplate PolesMotor Nameplate VoltsMotor Overload LimitMotor Overload Speed 2Motoring Power LimitMotor Voltage MagnitudeNegative Motor Current Reference LimitNonndashConfigurable Fault StatusNotch Filter FreqNotch Filter QOver Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Perunit Motor CurrentPerunit Motor VoltagePhase Rotation ErrorsPhase Rotation Frequency ReferencePot InputPot In Filtr

5ndash685ndash625ndash515ndash685ndash625ndash705ndash615ndash695ndash755ndash745ndash385ndash385ndash375ndash395ndash385ndash385ndash405ndash415ndash765ndash415ndash415ndash505ndash495ndash775ndash785ndash785ndash805ndash815ndash565ndash455ndash645ndash315ndash695ndash605ndash605ndash605ndash605ndash605ndash455ndash455ndash565ndash645ndash565ndash425ndash545ndash545ndash395ndash395ndash405ndash405ndash575ndash575ndash685ndash645ndash775ndash76

Chapter 5Programming Parameters

5ndash14

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

35936080179175

Pot OffsetPot ScalePowerupDiagnostic Fault StatusPositive Motor Current Reference LimitPositive Torque Ref Limit

5ndash775ndash775ndash425ndash565ndash56

2231191201211221233128303233353426362938372739639539839739934922024133417833612736537936436636836736940434514766285286163165677291332342236

PrechargeRidethru SelectionPreset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Process Trim DataProcess Trim FeedbackProcess Trim Filter BandwidthProcess Trim KI GainProcess Trim KP GainProcess Trim High LimitProcess Trim Low LimitProcess Trim OutputProcess Trim Output GainProcess Trim SelectProcess Trim Setpoint SelectProcess Trim TestpointProcess Trim ReferencePulse EdgePulse PPRPulse OffsetPulse ScalePulse ValueRamp OwnerRated Inverter Output AmpsRated Torque VoltageReference MaskRegen Power LimitReset Drive MaskReverse Motor Speed LimitSP Analog 1 InSP Analog OutSP Analog 1 SelectSP Analog 1 ScaleSP Analog 2 InSP Analog 2 SelectSP Analog 2 ScaleSP Comm RetriesSet Ref OwnerScaled Velocity FeedbackSetpoint SelectSelection for Test DAC 1Selection for Test DAC 2Slave Torque Percent 1Slave Torque Percent 2Speed Setpoint ToleranceStop DwellStall DelayStart MaskStart OwnerStator Resistance

5ndash595ndash485ndash485ndash485ndash495ndash495ndash345ndash345ndash345ndash345ndash355ndash355ndash355ndash345ndash345ndash345ndash355ndash355ndash345ndash845ndash845ndash845ndash845ndash845ndash765ndash585ndash615ndash735ndash565ndash745ndash495ndash785ndash815ndash785ndash785ndash795ndash795ndash795ndash845ndash755ndash525ndash405ndash675ndash675ndash545ndash545ndash405ndash415ndash455ndash735ndash745ndash61

Chapter 5Programming Parameters

5ndash15

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

340387388155274276

Stop OwnerStop Select 1Stop Select 2Tach VelocityTestpoint DataTestpoint Data 2

5ndash745ndash825ndash835ndash545ndash665ndash66

278280284286273275277279281283298183184172173257348224245241138146144143145109108110101100104103133132134136135137134136135137102105107106838545438889

Testpoint Data 3Testpoint Data 4Testpoint Data 5Testpoint Data 6Testpoint SelectionTestpoint Selection 2Testpoint Selection 3Testpoint Selection 4Testpoint Selection 5Testpoint Selection 6Torque Calc ErrorsTorque Limit StatusTorque Mode StatusTorque Reference Testpoint DataTorque Reference Testpoint SelectTransistor Diagnostics ConfigurationTrim OwnerUndervoltage SetpointVde MinimumVde Tune (Base Torque Voltage)Velocity ErrorVelocity FeedbackVelocity Feedback Testpoint Data HIVelocity Feedback Testpoint Data LOWVelocity Feedback Testpoint SelectVelocity Reference Testpoint Data HIVelocity Reference Testpoint Data LOWVelocity Reference Testpoint SelectVelocity Reference 1 HIVelocity Reference 1 LOWVelocity Reference 2 HIVelocity Reference 2 LOWVelocity Reference Output HIVelocity Reference Output LOWVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Scale Factor 1Velocity Scale Factor 2Velocity Trim HIVelocity Trim LOWVP Configurable Fault StatusVP Configurable Warning StatusVP Damping FactorVP Desired BandwidthVP Fault Configuration SelectVP Warning Configuration Select

5ndash665ndash665ndash615ndash675ndash655ndash655ndash665ndash665ndash675ndash675ndash695ndash575ndash575ndash555ndash555ndash635ndash765ndash595ndash625ndash615ndash515ndash525ndash525ndash525ndash525ndash475ndash475ndash485ndash465ndash465ndash475ndash475ndash505ndash505ndash505ndash505ndash505ndash515ndash505ndash505ndash505ndash515ndash465ndash475ndash475ndash475ndash425ndash435ndash365ndash365ndash445ndash44

Chapter 5Programming Parameters

5ndash16

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

40615469352355356357

Warning SelectWnndashFeedback Filter BandwidthZero Speed Tolerance10 Volt In Filtr10 Volt Input10 Volt Offset10 Volt Scale

5ndash855ndash545ndash405ndash765ndash775ndash775ndash77

Standard Adapter Parameters If your 1336 FORCE Drive is equipped with a Standard Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the the Standard Adapter Board Standard Adapter Parameters are divided into four files The complete parameter table for a Standard Adapter equipped 1336 Force is detailed in Figure 52 The table has been divided into Files Groups and Elements for ease of reference

FILE 1 ndash Startup

Drive Data

53228229230231232233235267275276277278279280281282283284285286304385

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRCalc TorqueTorq TP Sel 2Torq TP Data 2Torq TP Sel 3Torq TP Data 3Torq TP Sel 4Torq TP Data 4Torq TP Sel 5Torq TP Data 5Torq TP Sel 6Torq TP Data 6Test DAC 1 Se1Test DAC 2 SelLanguage SelectInput Mode

Figure 52 1336 FORCE Drive Equipped with Standard Adapter Board

Drive Tune

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKi Velocity LoopKp Velocity LoopKf Velocity LoopVel FeedbackMotor InertiaAutotune Diag SelPh Rot Cur RefPhas Rot Freq Ref

Limits Group

5994127128174175176177178179180181389390391392

Logic OptionsService FactorRev Speed LimitFwd Speed LimitMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Motor Cur LimitD1Dt LimitAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2

Fault Setup Group Monitor

86878889909192959697

CP Faukt SelectVP Fault SelectCP Warn SelectVP Warn SelectAbsolute OverspdStall DelayMtr Overload LimMtr Overload Spd 1Motor Overload Spd 2Min Overload Lmt

8148149182184185186264265266

MCB CounterEnc Pos Fdbk LowEnc Pos Fdbk HiComputed PowerPerunit Motor CurrentPerunit Motor VoltageTorque Mode StatusMotor Cur FdbkMotor Volt MagnFreq Command

268269270271386394399

DC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Accessible only while using Drive Tools

Chapter 5Programming Parameters

5ndash17

FILE 2 ndash Communications IO

Figure 52 Standard Adapter Parameters (cont)

Logic

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Over Setpoint 5Speed Setpoint TolCur Setpoint TolZero Speed TolLogic Tstpt DataLogic Testpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

Fault SelectStatus SCANport Owners

80818283848586878889405406407408

340341342343344345346347348349350

Stop OwnerDirection OwnerStart OwnerJog1 OwnerJog2 OwnerReference OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Fault Owner

5254555657585960616263646566676869707172384385387388

Analog Input

352353354355356357358359360361362363364365366367368369

10 Volt in F1ltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot OffsetPot ScalemA InputmA Input OffsetmA Input ScaleSB Analog SelSB Analog InSP Analog 1 ScaleSP Analog 2 SetSP Analog 2 InSP Analog 2 Scale

Analog Output

370371372373374375376377378379

Analog Out 1An Out 1 OffsetAn Out 1 ScaleAnalog Out 2An Out 2 OffsetAn Out 2 ScalemA OutputmA Output OffsetmA Output ScaleSP Analog Out

Pwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

SCANport Masks

330331332333334335336337

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drive MaskLocal Mask

SCANport IO

310311312313314315316317320321322323324325326327

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive to Drive

910111213141516171819202122232425

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv1 AddrD2D Rcv2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv1 Ind1D2D Rcv1 Ind2D2D Rcv2 Ind1D2D Rcv2 Ind2D2D Xmit Data 1D2D Xmit Data 2D2D Rcv1 Data 1D2D Rcv1 Data 2D2D Rcv2 Data 1D2D Rcv2 Data 2

Std Adapter 4xx equipped

Chapter 5Programming Parameters

5ndash18

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123127128129130131132133389390391392393

Vel Ref 1 LowVel Ref 1 HiVel Scale Fctr 1Vel Ref 2 LowVel Ref 2 HiVel Scale Fctr 2Vel Trim LowVel Trim HiVel Ref TP LoVel Ref TP HiVel Ref TP SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Rev Speed LimitFwd Speed LimitMax Rev Spd TrimMax Fwd Spd TrimDroop PercentVel Ref Out LowVel Ref Out HiAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2Mop Increment

Figure 52 Standard Adapter Parameters (cont)

Velocity Fdbk

Error Filter BWVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelVel FeedbackScaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiFdbk Device TypeFdbk Track GainFdbk Filter Sel Fdbk Filter GainFdbk Filter BWTach VelocityFilt Vel FdbkPulse PPRPulse EdgePulse ScalePulse Offset

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filt FreqNotch Filt QExternal Iq RefExt Torq Ref 1Slave Torque 1Ext Torq Ref 2Slave Torque 2Ext Torque StepInt Torque RefInternal Ig RefTorque Ref TPTorq Ref TP SelMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Mtr Cur LmtDiDt LimitComputed PowerTorq Lmt StatTorq Mode Stat

Logic

5254555657585960616263646566676869707172384385387388

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Setpoint SelectSpeed Setpnt TolCur Setpt TolZero Speed TolLogic Tstpt DataLogic Tstpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

142143144145146147148149150151152153154155269395396397398

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

Auto Tune Torque Auto Tune SpeedStator ResLeakage IndBase Flux CurBase Torque CurBase Torque VoltBase Flux VoltVde MaxVqe MaxVde MinBase Slip FreqBase Slip Fr MaxBase Slip Fr MinKp Slip Ki Slip Kp Flux Ki Flux Autotun Diag SelPh Rot Cur RefPh Rot Freq RefTorq TP Sel 1Torq TP Data 1Phs Test Rot ErrLo Test ErrorRs Test ErrorId Test ErrorTorq Calc Error

Vel Reg OutputVel Reg TP LowVel Reg TP HiVel Reg TP SelVelocity ErrorKi Velocity LoopKp Velocity LoopKf Velocity Loop

Torque Block

222223224225226227287288289290291292293

PWM FrequencyPrechRdthru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP OptionsKi Freq RegKp Freq RegKff Freq RegKsel Freq RegFreq Track FiltTrack Filt TypeFreq Trim Filt

Vel Autotune

4041434445464748139140141234256

Auto Tune Torque Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaAuto Tune TPAuto Tune TP SelKi Velocity LoopKp Velocity LoopKf Velocity LoopMotor InertiaAutotun Diag Select

Process Trim

26272829303132333435363738

Proc Trim OutputProc Trim RefProc Trim FdbkProc Trim SelectProc Trim Filtr WProc Trim DataProc Trim KiProc Trim KpProc Trim Lo LmtProc Trim Hi LmtProc Trim Out KProc Trim TPProc Trim TP Sel

Chapter 5Programming Parameters

5ndash19

FILE 4 ndash Diagnostics

Monitor

147148149167168182185186264265266268269270271386394399

Scaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiInt Torque RefInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor Cur FdbkMotor Volt FdbkFreq CommandDC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Figure 52 Standard Adapter Parameters (cont)

Testpoints

Auto Tune TPAuto Tune TP Sel Logic Tstpt DataLogic Tstpt SelFault TPFault TP SelVel Ref TP LowVel Ref TP HiVel Ref TP SelVel Reg TP LoVel Reg TP HiVel Reg TP SelVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelTorq Ref TP SelTorque Ref TPTorque TP Sel 1Torque TP Data 1

Transistor Diag Info

59256257258259260261

15220221300301302304404

Drive SW VersionDrive TypeBase Drive CurrBase Line VoltAdapter IDAdapter VersionAdapter ConfigLanguage SelectSP Comm Retries

474870719899108109110135136137143144145172173273274

Fault SelSts

77787980818283848586878889405406407408

Max DB PowerMax DB TempDB Time ConstPwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

Logic OptionsAutotune Diag SelTrans Diag DisableInverter Diag 1Inverter Diag 2Iq OffsetId Offset

Motor Overload

Mtr Overload Lim Service FactorMtr Overld Spd 1Mtr Overld Spd 2Min Overload Lmt

9294959697

Chapter 5Programming Parameters

5ndash20

PLC Comm Adapter Parameters If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the PLC Comm Adapter Board rather than the Standard Adapter Board PLC Comm Adapter Parameters are divided into four files as they are with a Standard Adapter Board equipped Drive The complete parameter table for aPLC Comm Adapter equipped 1336 Force is detailed in Figure 53 The table has been divided into Files Groups and Elements for ease of referenceFor a detailed description of PLC Comm Adapter parameters refer to the PLC Comm Adapter Reference Manual

FILE 1 ndash Startup

Drive Data Group

53228229230231232233235309

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRLanguage Select

Figure 53 1336 FORCE equipped with a PLC Comm Adapter Board

Drive Tune Group

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKI Vel LoopKP Vel LoopKF Vel LoopVelocity FeedbackMotor InertiaAT Diag SelPhase Rot I RefPhas Rot Req Ref

Limits Group

59125126127128174175176177178179180181

Logic OptionsAccel TimeDecel TimeRev Speed LimitFwd Speed LimitMin Flux LevelPos Motor Tor LimitNeg Motor Tor LimitMotoring Power LimitRegen Power LimitPos Motor Cur LimNeg Motor Cur LimitdIdT Limit

Fault Setup Group Monitor Group

8687888990919294959697

CPFltWarn ConfigVPFltWarn ConfigCP Warn ConfigVP Warn ConfigAbsolute OverspeedStall DelayMotor Ovload LimService FactorMotor Ovload Speed 1Motor Ovload Speed 2Min Overload Lim

8147148149167168182184185186264265266268269270271

Motor Control CntrScaled Velocity FeedbackEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerTorq Mode StatPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt FdbkStator FrequencyDC Bus VoltageFiltered Velocity FdbkInverter Temp FdbkLimited Motor Flux

Chapter 5Programming Parameters

5ndash21

FILE 2 ndash Communications IO

Channel A Group

322323324325326327328329351352353354355356357358427

ChA RIO In 0ChA RIO In 1ChA RIO In 2ChA RIO In 3ChA RIO In 4ChA RIO In 5ChA RIO In 6ChA RIO In 7ChA RIO Out 0ChA RIO Out 1ChA RIO Out 2ChA RIO Out 3ChA RIO Out 4ChA RIO Out 5ChA RIO Out 6ChA RIO Out 7Redund Chan

Figure 53 PLC Comm Adapter Parameters (cont)

Logic Group

Logic CmdLogic Sts LoLogic Sts HiLogic OptionschA Logic CmdchB Logic Cmd

Fault SelectStatus Group SCANport Owners Group

77787980818283848586878889425426430431436437438439440441442443

369370371372373374375376377378379

Stop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner

Channel B Group

330331332333334335336337359360361362363364365366432

ChB RIO In 0ChB RIO In 1ChB RIO In 2ChB RIO In 3ChB RIO In 4ChB RIO In 5ChB RIO In 6ChB RIO In 7ChB RIO Out 0ChB RIO Out 1ChB RIO Out 2ChB RIO Out 3ChB RIO Out 4ChB RIO Out 5ChB RIO Out 6ChB RIO Out 7ChB RIO

52565759367368

Analog Input Group

338339340341342392393394395396397398399

SB Analog InAnalog In 1Analog In 2Analog In 3Analog In 4Analog In 1 OffAnalog In 1 ScaleAnalog In 2 OffAnalog In 2 ScaleAnalog In 3 OffAnalog In 3 ScaleAnalog In 4 OffAnalog In 4 Scale

Analog Output Group

386387388389390400401402403404405406407

SP Analog OutAnalog Out 1Analog Out 2Analog Out 3Analog Out 4Analog Out 1Analog Out 1 OffAnalog Out 1 ScaleAnalog Out 2 ScaleAnalog Out 3 OffAnalog Out 3 ScaleAnalog Out 4 OffAnalog Out 4 Scale

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt StatusNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusCP Flt StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StsSP Flt SelectSP Warn SelSP Flt StatusSP Warn Sts

SCANport Masks

408409410411412413414415

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal Mask

SCANport IO

314315316317318319320321343344345346347348349350

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive To Drive

91011121314151617181920

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv 1 AddrD2D Rcv 2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv 1 Ind 1D2D Rcv 1 Ind 2D2D Rcv 2 Ind 1D2D Rcv 2 Ind 2D2D Xmit Data 1

2122232425

D2D Xmit Data 2D2D Rcv 1 Data 1D2D Rcv 1 Data 2D2D Rcv 2 Data 1D2D Rcv 2 Data 2

Chapter 5Programming Parameters

5ndash22

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123125126127128129130131132133

Vel Ref 1 LoVeL Ref 2 HiVel Scale Factor 1Vel Ref 2 LoVel Ref 2 HiVel Scale Factor 2Vel Trim LoVel Trim HiVel Ref Testpt LoVel Ref Testpt HiVel Ref Testpt SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeRev Speed LimitFwd Speed LimitMax Rev Speed TrimMax Fwd Speed TrimDroop PercentVel Ref Out LoVel Ref Out Hi

Figure 53 PLC Comm Adapter Parameters (cont)

Velocity Fdbk

KF Err Filt BWVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Tesetpt SelVelocity FdbkScaled Vel FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiFdbk Device TypeFdbk Tracker GainFdbk Filter SelKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityFiltered Vel Fdbk

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filter FreqNotch Filter QueExternal Iq RefExt Torque Ref 1Slave Torque Percent 1Ext Torque Ref 2Slave Torque Percent 2External Torque StepInt Torque RefInt Iq RefTorque Ref Testpoint DataTorque Ref Testpnt SelMin Flux LevelPos Torque Ref LimitNeg Torque Ref LimitMotor Power LimitRegen Power LimitPos Motor Cur LimitNeg Motor Cur LimitdIdT LimitComputed PwrTorque Limit StatusTorque Mode Status

Logic

5254555657585960616263646566676869707172367368

Logic CmdLocal Input StsLocal Output StsLocal Sts LoLocal Sts HiTorq Stop ConfigLogic OptionsAt Setpt 1At Setpt 2Over Setpt 1Over Setpt 2Over Setpt 3Over Setpt 4Setpt SelectSpeed Stpt TolCur Setpt TolZero Speed TolLogic Testpt DataLogic Testpt SelStop DwellPt6 Logic CmdPt7 Logic Cmd

142143144145146147148149150151152153154155269

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

AT Torque LimitAT SpeedStator ResistanceLeakage InductanceRated Flux CurrentRated Torque CurrentRated Torque VoltRated Flux VoltageVde MaxVqe MaxVde MinimumBase Slip FreqBase Slip Freq MaxBase Slip Freq MinKp Slip RegulatorKi Slip RegulatorKp Flux RegulatorKi Flux RegulatorAT Diag SelectPhase Rot Cur RefPhase Rot Freq RefTorque Testpoint SelTorque Testpoint DataPhase Rot ErrorsLo Test ErrorsRs Test ErrorsId Test ErrorsTorque Calc Errors

Vel Regulator OutVelocity Reg Testpt LoVelocity Reg Testpt HiVelocity Reg Testpt SelVelocity ErrorKI Vel LoopKP Vel LoopKF Vel Loop

Torque Block

222223224225226227287288289290291292293

Inverter Carrier FreqPrecharge Ridethru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsKi Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency RegulatorFrequency Track FilterTrack Filter TypeFrequency Trim Filter

Velocity Autotune

4041434445464748139140141234256

AT Torque LimAT SpeedVP Desired BWAuto Tune StatusVP Damping FactorTotal InertiaAT Testpt DataAT Tespt SelKI Vel LoopKP Vel LoopKF Vel LoopMotor InertiaAT Diag Select

Process Trim

26272829303132333435363738

Process Trim OutputProcess Trim RefProc Trim FdbkProc Trim SelectProc Trim Filt BWProc Trim DataProc Trim KIProc Trim KPProc Trim Lo LimProc Trim Hi LimProc Trim Out GainProc Trim TestptProc Trim Testpt Sel

Chapter 5Programming Parameters

5ndash23

FILE 4 ndash Diagnostics

Monitor

8147148149167168182185186264265266268269270271

Motor Control CounterScaled Velocity FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt MagnStator FrequencyDC Bus VoltageFiltered Vel FdbkInverter Temp FdbkLimited Motor Flux

Figure 53 PLC Comm Adapter Parameters (cont)

Testpoints

AT Testpt DataAT Testpt SelLogic Testpt DataLogic Testpt SelFault Testpt DataFault Testpt SelVelocity Ref Testpt LoVelocity Ref Testpt HiVelocity Ref Testpt SelVelocity Reg Testpnt LoVelocity Reg Testpnt HiVelocity Reg Testpt SelVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Testpt SelTorque Ref Tespt DataTorque Ref Testpt SelTorque Testpt SelectTorque Testpt Data

Transistor Diag Info

59256257258259260261

15220221300301302303304305306307309

Drive Software VerPower Structure TypeRated Inverter Out AmpsRated Inverter In VoltsAdapter IDAdapter VersionAdapter ConfigChA Dip SwitchChB Dip SwitchChA LED StateCHB LED StatePLC Comm Bd StsLanguage Select

474870719899108109110135136137143144145172173273274

Fault SelectStatus

77787980818283848586878889425426430431436437438439440441442443

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt stsNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StatusSP Flt SelectSP Warn SelectSP Warn StsSP Warn Sts

Logic OptionsAT Diag SelectTrans Diag ConfigInv Dig Result 1Inv Diag Result2Iq OffsetId Offset

Trend IO

454462463464472473474482483484492493

Trend In 1Trend In 1 StatusTrend Out 1Trend In 2Trend In 2 StatusTrend Out 2 StatusTrend In 3Trend In 3 StatusTrend Out 3Trend In 4Trend In 4 StatusTrend Out 4

Trend Setup

455456457458459460461465466467468469470471475476477478479480481485486487488489490491

Trend 1 Operand XTrend 1 Operand YTrend 1 OperatorTrend 1 RateTrend 1 Post SamplesTrend 1 Continuous TrigTrend 1 SelectTrend 2 Operand XTrend 2 Operand YTrend 2 OperatorTrend 2 RateTrend 2 Post SamplesTr2 Cont TriggerTrend 2 SelectTrend 3 Operand XTrend 3 Operand Parm YTrend 3 OperatorTrend 3 RateTrend 3 Post SamplesTrend 3 Continuous TrigTrend 3 SelectTrend 4 Operand XTrend 4 Operand YTrend 4 OperatorTrend 4 RateTrend 4 Post SamplesTrend 4 Continuous TrigTrend 4 Select

Note Trending Functions are NOT implemented in Version 2xx software

Chapter 5Programming Parameters

5ndash24

The complete parameter table for a ControlNet Adapter Board equipped1336 FORCE is detailed in Figure 54 The table has been divided intoFiles Groups amp Elements for ease of reference For a detaileddescription of ControlNet parameters refer to the ControlNet AdapterReference Manual

Figure 54 1336 FORCE equipped with a ControlNet Adapter Board

File 1 ndash Startup➀

Drive Data Group Drive Tune Group Limits Group

Language Sel 309 Autotun Diag Sel 256 Accel Time 125

Encoder PPR 235 Vel Feedback 146 Decel Time 126

Base Motor Speed 229 Vel Desired BW 43 Logic Options 59

Base Motor HP 228 Auto Tune Status 44 Fwd Speed Limit 128

Base Motor Curr 230 Motor Inertia 234 Rev Speed Limit 127

Base Motor Volt 231 Total Inertia 46 Pos Mtr Cur Lmt 179

Base Motor Freq 232 Ki Velocity Loop 139 Neg Mtr Cur Lmt 180

Motor Poles 233 Kp Velocity Loop 140 Pos Mtr Tor Lmt 175

Torque Mode Sel 53 Kf Velocity Loop 141 Neg Mtr Tor Lmt 176

Vel Damp Factor 45 Motor Power Lmt 177

Auto Tune Speed 41 Regen Power Lmt 178

Ph Rot Cur Ref 262 DiDt Limit 181

Ph Rot Freq Ref 263 Min Flux Level 174

Fault Setup Group Monitor Group

CP FltWarn Cfg 86 Filt Vel Fdbk 269

CP WarnNone Cfg 88 Scaled Vel Fdbk 147

VP FltWarn Cfg 87 Int Torque Ref 167

VP WarnNone Cfg 89 Internal Iq Ref 168

Absolute Overspd 90 Computed Power 182

Stall Delay 91 DC Bus Voltage 268

Mtr Overload Lim 92 Motor Volt Fdbk 265

Mtr Overload Spd1 95 Motor Curr Fdbk 264

Mtr Overload Spd2 96 Freq Command 266

Min Overload Lmt 97 Inv Temp Fdbk 270

Service Factor 94 Torque Mode Stat 184

Lim Motor Flux 271

Enc Pos Fdbk Low 148

Enc Pos Fdbk Hi 149

MCB Counter 8

➀ Shaded parameters are Standard 1336 FORCE parameters

ControlNet Parameters

Chapter 5Programming Parameters

5ndash25

File 2 ndash Communications IO

Channel A Group Logic Group Analog Input Group Analog Output Group

CntrlNet In 0 322 ChA Logic Cmd In 367 Analog In 1 339 Analog Out 1 387

CntrlNet In 1 323 Logic Command 52 An In 1 Offset 392 An Out 1 Offset 400

CntrlNet In 2 324 Logic Status Low 56 An In 1 Scale 393 An Out 1 Scale 401

CntrlNet In 3 325 Logic Status Hi 57 Analog In 2 340 Analog Out 2 388

CntrlNet In 4 326 Logic Options 59 An In 2 Offset 394 An Out 2 Offset 402

CntrlNet In 5 327 An In 2 Scale 395 An Out 2 Scale 403

CntrlNet In 6 328 Analog In 3 341 Analog Out 3 389

CntrlNet In 7 329 An In 3 Offset 396 An Out 3 Offset 404

CntrlNet Out 0 351 An In 3 Scale 397 An Out 3 Scale 405

CntrlNet Out 1 352 Analog In 4 342 Analog Out 4 390

CntrlNet Out 2 353 An In 4 Offset 398 An Out 4 Offset 406

CntrlNet Out 3 354 An In 4 Scale 399 An Out 4 Scale 407

CntrlNet Out 4 355 SP Analog In 338 SP Analog Out 386

CntrlNet Out 5 356 SP Analog Sel 391

CntrlNet Out 6 357

CntrlNet Out 7 358

Drv ndash Drv Fault SelSts➂ SCANport Owners SCANport Masks SCANport IO

D2D Tsk Interval 9 SP Fault Sts 442 Stop Owner 369 Port Enable Mask 408 Data In A1 314

D2D Baud Rate 10 SP Warn Sts 443 Start Owner 371 Start Mask 410 Data In A2 315

D2D Xmit Addr 11 SP Fault Sel 440 Jog1 Owner 372 Jog Mask 411 Data In B1 316

D2D Xmit Ind 1 14 SP Warn Sel 441 Jog2 Owner 373 Direction Mask 409 Data In B2 317

D2D Xmit Data 1 20 ICN Fault Sel 425 Direction Owner 370 Reference Mask 412 Data In C1 318

D2D Xmit Ind 2 15 ICN Warn Sel 426 Set Ref Owner 374 Local Mask 415 Data In C2 319

D2D Xmit Data 2 21 CP Flt Status 82 Local Owner 375 Clear Fault Mask 413 Data In D1 320

D2D Rcv 1 Addr 12 VP Flt Status 83 Flux Owner 376 Reset Drive Mask 414 Data In D2 321

D2D Rcv 1 Ind 1 16 CP Warn Status 84 Trim Owner 377 Data Out A1 343

D2D Rcv 1 Data 1 22 VP Warn Status 85 Ramp Owner 378 Data Out A2 344

D2D Rcv 1 Ind 2 17 CP Fault Select 86 Clr Fault Owner 379 Data Out B1 345

D2D Rcv 2 Data 2 23 CP Warn Select 87 Data Out B2 346

D2D Rcv 2 Addr 13 VP Fault Select 88 Data Out C1 347

D2D Rcv 2 Ind 1 18 VP Warn Select 89 Data Out C2 348

D2D Rcv 2 Data 1 24 Ncfg Flt Status 81 Data Out D1 349

D2D Rcv 2 Ind 2 19 PwrUp Flt Status 80 Data Out D2 350

D2D Rcv 2 Data 2 25 Max DB Power 77

Max DB Temp 78

DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash26

File 3 ndash Velocity Torque➀

Velocity Ref Logic Velocity Fdbk Velocity Reg Torque Ref

Preset Speed 1 119 ChA Logic Cmd In 367 Filt Vel Fdbk 269 Vel Reg Output 134 Torque Mode Sel 53

Preset Speed 2 120 Logic Command 52 Vel Feedback 146 Ki Velocity Loop 139 Torq Mode Stat 184

Preset Speed 3 121 Torq Stop Confg 58 Scaled Vel Fdbk 147 Kp Velocity Loop 140 Pos Mtr Cur Lmt 179

Preset Speed 4 122 Logic Options 59 Enc Pos Fdbk Low 148 Kf Velocity Loop 141 Neg Mtr Cur Lmt 180

Preset Speed 5 123 Logic Status Low 56 Enc Pos Fdbk Hi 149 Velocity Error 138 Int Torque Ref 167

Jog Speed 1 117 Logic Status Hi 57 Fdbk Track Gain 151 Vel Reg TP Sel 137 Internal Iq Ref 168

Jog Speed 2 118 At Setpoint 1 60 Fdbk Filter Gain 153 Vel Reg TP Low 135 Computed Power 182

Vel Ref 1 Low 100 At Setpoint 2 61 Fdbk Filter BW 154 Vel Reg TP Hi 136 Torq Lmt Stat 183

Vel Ref 1 Hi 101 Over Setpoint 1 62 Fdbk Device Type 150 External Iq Ref 161

Vel Ref 2 Low 103 Over Setpoint 2 63 Fdbk Filter Sel 152 Ext Torq Ref 1 162

Vel Ref 2 Hi 104 Over Setpoint 3 64 Tach Velocity 155 Ext Torq Ref 2 164

Vel Scale Fctr 1 102 Over Setpoint 4 65 Error Filter BW 142 Slave Torque 1 163

Vel Scale Fctr 2 105 Setpoint Select 66 Vel Fdbk TP Sel 145 Slave Torque 2 165

Vel Trim Low 106 Speed Setpnt Tol 67 Vel Fdbk TP Low 143 Ext Torque Step 166

Vel Trim Hi 107 Cur Setpoint Tol 68 Vel Fdbk TP Hi 144 Notch Filter Freq 156

Vel Ref Out Low 132 Zero Speed Tol 69 Notch Filter Q 157

Vel Ref Out Hi 133 Local In Status 54 Min Flux Level 174

Accel Time 125 Stop Dwell 72 Pos Mtr Tor Lmt 175

Decel Time 126 Local Out Status 55 Neg Mtr Tor Lmt 176

Fwd Speed Limit 128 Logic Tstpt Sel 71 Motor Power Lmt 177

Rev Speed Limit 127 Regen Power Lmt 178

Max Rev Spd Trim 129 DiDt Limit 181

Max Fwd Spd Trim 130 Torq Ref TP Sel 173

Droop Percent 131 Torque Ref TP 172

Vel Ref TP Sel 110

Vel Ref TP Low 108

Vel Ref TP Hi 109

SP Default Ref 416

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash27

Torque Block➀ Process Trim Torque Autotune Velocity Autotune

PWM Frequency 222 Proc Trim Ref 27 Autotun Diag Sel 256 Autotun Diag Sel 256

Prech Rdthru Sel 223 Proc Trim Fdbk 28 Ph Rot Cur Ref 262 Auto Tune Torque 40

Under Volt Stpnt 224 Proc Trim Output 26 Auto Tune Torque 40 Auto Tune Speed 41

Prechrg Timeout 225 Proc Trim Select 29 Auto Tune Speed 41 Total Inertia 46

Ridethru Timeout 226 Proc Trim Ki 32 Ph Rot Freq Ref 263 Motor Inertia 234

CP Options 227 Proc Trim Kp 33 Phs Test Rot Error 294 Auto Tune Status 44

Ki Freq Reg 287 Proc Trim Lo Lmt 34 Lo Test Error 295 Vel Desired BW 43

Kp Freq Reg 288 Proc Trim Hi Lmt 35 Rs Test Error 296 Vel Damp Factor 45

Kff Freq Reg 289 Proc Trim Fltr W 30 Id Test Error 297 Ki Velocity Loop 139

Ksel Freq Reg 290 Proc Trim Data 31 Torq Calc Error 298 Kp Velocity Loop 140

Freq Track Filt 291 Proc Trim Out K 36 Stator Res 236 Kf Velocity Loop 141

Track Filt Type 292 Proc Trim TP Sel 38 Leakage Ind 237 Auto Tune TP Sel 48

Freq Trim Filter 293 Proc Trim TP 37 Base Flux Cur 238 Auto Tune TP 47

Base Torque Cur 240

Base Torque Volt 241

Base Flux Volt 242

Vde Max 243

Vqe Max 244

Vde Min 245

Base Slip Freq 246

Base Slip Fr Max 247

Base Slip Fr Min 248

Kp Slip 249

Ki Slip 250

Kp Flux 251

Ki Flux 252

Torq TP Sel 1 273

Torq TP Data 1 274

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash28

File 4 ndash Diagnostics➀

Monitor Testpoints Fault SelSts Motor Overload

Filt Vel Fdbk 269 Vel Fdbk TP Sel 145 SP Fault Sts 442 Mtr Overload Lim 92

Scaled Vel Fdbk 147 Vel Fdbk TP Low 143 SP Warn Sts 443 Mtr Overld Spd 1 95

Int Torque Ref 167 Vel Fdbk TP Hi 144 SP Fault Sel 440 Mtr Overld Spd 2 96

Internal Iq Ref 168 Vel Reg TP Sel 137 SP Warn Sel 441 Min Overload Lmt 97

Computed Power 182 Vel Reg TP Low 135 ICN Flt Sel 425 Service Factor 94

DC Bus Voltage 268 Vel Reg TP Hi 136 ICN Warn Sel 426

Motor Volt Fdbk 265 Vel Ref TP Sel 110 CP Flt Status 82

Motor Curr Fdbk 264 Vel Ref TP Low 108 VP Flt Status 83

Freq Command 266 Vel Ref TP Hi 109 CP Warn Status 84

Inv Temp Fdbk 270 Auto Tune TP Sel 48 VP Warn Status 85

Torq Mode Stat 184 Auto Tune TP 47 CP Fault Select 86

Lim Motor Flux 271 Logic Tstpt Sel 71 CP Warn Select 87

Enc Pos Fdbk Low 148 Logic Tstpt Data 70 VP Fault Select 88

Enc Pos Fdbk Hi 149 Fault TP Sel 99 VP Warn Select 89

MCB Counter 8 Fault TP 98 Ncfg Flt Status 81

Torq Ref TP Sel 173 PwrUp Flt Status 80

Torque Ref TP 172 Max DB Power 77

Torq TP Sel 1 273 Max DB Temp 78

Torq TP Data 1 274 DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash29

Transistor Diag➀ Trend IO Trend Setup Info

Autotun Diag Sel 256 Tr1 Status 462 Tr1 Opnd Parm X 455 Drive SW Version 1

Logic Options 59 Tr2 Status 472 Tr1 Opnd Parm Y 456 Drive Type 5

Tran Diag Disabl 257 Tr3 Status 482 Tr1 Operator 457 Base Drive Curr 220

Inverter Diag 1 258 Tr4 Status 492 Tr1 Sample Rate 458 Base Line Volt 221

Inverter Diag 2 259 Trend In 1 454 Tr1 Post Samples 459 Adapter Version 301

Iq Offset 260 Trend In 2 464 Tr1 Cont Trigger 460 Adapter ID 300

Id Offset 261 Trend In 3 474 Tr1 Select 461 Language Sel 309

Trend In 4 484 Tr2 Opnd Parm X 465 SP Comm Retries 302

Trend Out 1 463 Tr2 Opnd Parm Y 466 ICN Status 307

Trend Out 2 473 Tr2 Operator 467 ChA LED State 305

Trend Out 3 483 Tr2 Sample Rate 468 DIP Switch ChA 303

Trend Out 4 493 Tr2 Post Samples 469

Tr2 Cont Trigger 470

Tr2 Select 471

Tr3 Opnd Parm X 475

Tr3 Opnd Parm Y 476

Tr3 Operator 477

Tr3 Sample Rate 478

Tr3 Post Samples 479

Tr3 Cont Trigger 480

Tr3 Select 481

Tr4 Opnd Parm X 485

Tr4 Opnd Parm Y 486

Tr4 Operator 487

Tr4 Sample Rate 488

Tr4 Post Samples 489

Tr4 Cont Trigger 490

Tr4 Select 491

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash30

Parameter Descriptions A detailed description of each 1336 FORCE Parameter is contained inthe following listing The parameters are listed in numerical order

Take note that some parameters are used more than once in the 1336FORCE and may be located in more than one File and Group Todetermine if a parameter is used in more than one application refer to thenumerical list which begins on Page 5-3

NOTE The following parameter descriptions in the range from 300 to500 cover the Standard Adapter Only If you have a PLC CommAdapter equipped drive and wish to refer to PLC Comm parameterdescriptions refer to the PLC Comm User Manual If you have aControlNet Adapter equipped drive parameter descriptions are providedat the end of this chapter

NOTE If you wish to record parameter values and links that have beenset for your particular application a User Parameter Sheet is provided inAppendix C

Chapter 5Programming Parameters

5ndash31

Drive Software Version[Drive SIO Version]

Parameter Number 01Parameter Type SourceDisplay Units xxxDrive Units Display units x 100Factory Default 101Minimum Value 000Maximum Value 999

Power Structure Type[Drive Type]

Parameter Number 05Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65635

This parameter stores the present softwarerevision for the firmware productThe firmware value represents the soft-ware version in the range 000 to 999

This number is a unique code that identi-fies the driversquos current and voltage ratingsThis number originates from a serial EEmemory located on the Driversquos Base DriveBoard

Motor Control Counter[MCB Counter]

Parameter Number 08Parameter Type SourceDisplay Units xx secDrive Units NoneFactory Default x 10 secMinimum Value 00 secMaximum Value 655355 sec

This parameter contains a counter thatincrements by 1 every 01 seconds It isintended to be a monitor parameter toindicate that the Motor Control BoardVelocity Processor firmware is executing

Drive Link Task Interval[D2D Tsk Interval]

Parameter Number 09Parameter Type SinkDisplay Units x msDrive Units x2Factory Default 2Minimum Value 1Maximum Value 10

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

Drive Link Transmit Address[D2D Xmit Addr]

Parameter Number 11Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the interval at which drive to drive data will be transmittedand received The intervals are 2 ms intervals up to 20 ms

1 = 2 ms scan2 = 4 ms scan 5 = 10 ms scan 8 = 16 ms scan3 = 6 ms scan 6 = 12 ms scan 9 = 18 ms scan4 = 8 ms scan 7 = 14 ms scan 10 = 20 ms scan

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

This parameter specifies the node addressat which two words of data will be trans-mitted A value of zero disables the trans-mit function

Drive Link Receive 1 Address[D2D Rcv 1 Addr]

Parameter Number 12Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the node addressat which two words of data will be received A value of zero disables the receive function

Chapter 5Programming Parameters

5ndash32

Drive Link Receive 2 Address[D2D Rcv 2 Addr]

Parameter Number 13Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

Drive Link Transmit Indirect 1[D2D Xmit Ind 1]

Drive Link Transmit Indirect 2[D2D Xmit Ind 2]

Parameter Number 15Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 21Minimum Value 1Maximum Value 219

Parameter Number 14Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 20Minimum Value 1Maximum Value 219

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the firstword location of the transmitted message

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the 2ndword location of the transmitted message

This parameter specifies the node addressat which two words of data will bereceived A value of zero disables thereceive function

Drive Link Receive 1 Indirect 1[D2D Rcv 1 Ind 1]

Parameter Number 16Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 22Minimum Value 1Maximum Value 219

Drive Link Receive 1 Indirect 2[D2D Rcv 1 Ind 2]

Parameter Number 17Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 23Minimum Value 1Maximum Value 219

Drive Link Receive 2 Indirect 1[D2D Rcv 2 Ind 1]

Drive Link Receive 2 Indirect 2[D2D Rcv 2 Ind 2]

Parameter Number 19Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 25Minimum Value 1Maximum Value 219

Parameter Number 18Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 24Minimum Value 1Maximum Value 219

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

Chapter 5Programming Parameters

5ndash33

Drive Link Transmit Data 1[D2D Xmit Data1]

Parameter Number 20Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Drive Link Transmit Data 2[D2D Xmit Data2]

Drive Link Receive 1 Data 1[D2D Rcv 1 Data1]

Parameter Number 22Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Parameter Number 21Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the first word of data for transmit

This parameter is the default data locationof the second word of data for transmit

This parameter is the default data locationof the first word of data for receive 1

Drive Link Receive 1 Data 2[D2D Rcv 1 Data 2]

Parameter Number 23Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 1[D2D Rcv 2 Data 1]

Parameter Number 24Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 2[D2D Rcv 2 Data 2]

Parameter Number 25Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the second word of data for receive 1

This parameter is the default data locationof the first word of data for receive 2

This parameter is the default data locationof the second word of data for receive 2

Process Trim Output[Proc Trim Output]

Parameter Number 26Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter represents the scaled andlimited output of the process trimfunction Process Trim consists of a general purpose PI regulator that uses unspecified reference and feedback inputs

Chapter 5Programming Parameters

5ndash34

Process Trim Reference[Proc Trim Ref]

Process Trim Feedback[Proc Trim Fdbk]

Process Trim Select[Proc Trim Sel]

Parameter Number 29Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 1111Enums

Parameter Number 28Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

Process Trim Filter Bandwidth[Proc Trim Fltr W]

Parameter Number 30Parameter Type SinkDisplay Units x radianssecDrive Units 1 = radianssecFactory Default 0 radianssecMinimum Value 0 radianssecMaximum Value 240 radianssec

Parameter Number 31Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 preloadFactory Default +00Minimum Value ndash8000Maximum Value +8000

Parameter Number 27Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default +00Minimum Value ndash8000Maximum Value +8000

Process Trim Data[Proc Trim Data]

This is the reference input value for pro-cess trim The Process Trim Output is up-dated based on the value of this input

This is the feedback input value for pro-cess trim The Process Trim Output pa-rameter is updated based on the value ofthis input

This is a bit coded word of data containingseveral selection options for the processtrim regulator as follows

Bit 0 Trim the Velocity ReferenceBit 1 Trim the Torque ReferenceBit 2 Select Velocity InputsBit 3 Set Output OptionBit 4 Preset Integrator OptionBit 5 Force ON Trim Limit option

This parameter is used to preset the outputof the process trim regulator when eitherthe ldquoSet Output Optionrdquo or ldquoPreset Integra-tor Optionrdquo is selected in parameter 29

This parameter determines the bandwidthof a single pole filter used with the errorinput for process trim The output of thisfilter is used as the input to the processtrim regulator

Process Trim KI Gain[Proc Trim Ki]

Parameter Number 32Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 1000 Ki gainFactory Default 1000Minimum Value 0000Maximum Value 16000

This parameter controls the integral gain ofthe process trim regulator If process trimequals 10 then the process trim PI regula-tor output will equal 1 pu in 1 second for 1pu process trim error

Chapter 5Programming Parameters

5ndash35

Process Trim KP Gain[Proc Trim Kp ]

Process Trim Low Limit[Proc Trim Lo Lmt]

Process Trim High Limit[Proc Trim Hi Lmt]

Parameter Number 35Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash 100Minimum Value ndash 800Maximum Value + 800

Parameter Number 34Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash1000Minimum Value ndash8000Maximum Value +8000

Process Trim Output Gain[Proc Trim Out K]

Parameter Number 36Parameter Type SinkDisplay Units +ndash xxxDrive Units 2048 = +100 gainFactory Default + 100Minimum Value ndash 1600Maximum Value + 1600

Parameter Number 37Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Parameter Number 33Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 10000 Kp gainFactory Default 1000Minimum Value 0000Maximum Value 16000

Process Trim Testpoint[Proc Trim TP]

This parameter controls the proportionalgain of the process trim regulator If theKP process trim is equal to 10 then theprocess trim PI regulator output will equal 1pu for 1 pu process trim error

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the low limit of theprocess trim output value

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the high limit ofthe process trim output value

This parameter selects which location ofthe Process Trim Controller will becomethe testpoint value as followsValue Process Trim Access Point 0 Zero 1 Process Trim Error 2 Process Trim Filter Output 3 Process Trim Control Word

The output of the process trim regulator isscaled by a gain factor This occurs justbefore the upper and lower limit This pa-rameter specifies the gain value to use

Process Trim Testpoint Select[Proc Trim TP Sel]

This parameter indicates the value of theinternal location selected by the ProcessTrim Testpoint Select parameter

Parameter Number 38Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3Enums

Auto Tune Torque Limit[Auto Tune Torque]

Parameter Number 40Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 500 Minimum Value 250 Maximum Value 1000

This parameter specifies the motor torquethat is applied to the motor during theVelocity motor test and the Velocity systemtest 4096 = 100 rated motor torque

Chapter 5Programming Parameters

5ndash36

Auto Tune Speed[Auto Tune Speed]

Parameter Number 41Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default 085 x Base Motor SpeedMinimum Value 03 x Base Motor SpeedMaximum Value Base Motor Speed

This parameter is the speed of the motorduring an auto tune velocity motor testsystem test and system ID measure4096 is base speed

VP Desired Bandwidth[Vel Desired BW]

Parameter Number 43Parameter Type SinkDisplay Units xxx radsecDrive Units Display units x 100Factory Default 500 radsecMinimum Value 001 radsecMaximum Value 10000 radsec

Autotune Status[Auto Tune Status]

Parameter Number 44Parameter Type SourceDisplay Units bitsDrive Units value (of bits)Factory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 00110000011111111Enums

This parameter specifies the velocity loopbandwidth requested by the User anddetermines the dynamic behavior of thevelocity loop The maximum value for thisparameter is changed by the drive when arequest is made to update the the velocityloop gains The vel loop becomes moreresponsive and is able to track a fasterchanging vel ref as bandwidth is increasedSystem and noise limitations will establisha practical upper limit however

This parameter indicates the status of certain conditions related to the autotunefunction This is a bitndashcoded parameterthat is not changeable by the user

VP Damping Factor[Vel Damp Factor]

Parameter Number 45Parameter Type SinkDisplay Units xxDrive Units 2048 = 10 dampingFactory Default 10Minimum Value 05Maximum Value 30

Total Inertia[Total Inertia]

Parameter Number 46Parameter Type SinkDisplay Units xxx secDrive Units Display units x 100Factory Default 200 secMinimum Value 001 secMaximum Value 65500 sec

This parameter determines the dynamicbehavior of the velocity loop The dampingfactor influences the amount of overshootthe velocity loop will exhibit during a tran-sient

This parameter represents the time in se-conds for a motor coupled to a load to ac-celerate from zero to base speed at ratedmotor torque This parameter is calculatedby the Autotune System Inverter Test

Bit 8 ndash 11 = Not UsedBit 12 = TimeoutBit 13 = No Trq Lim

Bit 0 = ExecutingBit 1 = CompleteBit 2 = FailBit 3 = AbortBit 4 = Flux ActiveBit 5 = Not ReadyBit 6 = Not Zero SpdBit 7 = Running

Autotune Testpoint Data[Auto Tune TP]

Parameter Number 47Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates the value of theinternal location selected by the AutotuneTP Sel parameter 48

Chapter 5Programming Parameters

5ndash37

Auto Tune Testpoint Select[Auto Tune TP Sel]

This parameter selects what internal loca-tion of the Velocity Auto Tune Controllerwill become the testpoint value shown inP47 The internal locations available are

Select Value Autotune Access Point

Parameter Number 48Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 10Enums

01234

ZeroAutotune Status BitsAutotune Inhibit Word (all zero = OK)Autotune Error Word (all zero = OK)Calculated Friction (4096 1 pu)

Torque Limit for autotuneAutotune State Word 1Autotune State Word 2Autotune Control BitsMinimum Limit for didt to acheive requested bandwidthMinimum error filter bandwidth

Select Value Autotune Access Point5678910

Logic Command Word[Logic Command]

Parameter Number 52Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This word parameter contains data used toControl Drive logic operation If a bit is setthe function is enabled otherwise it is disabled (inactive)

C B A00001111

00110011

01010101

ndash Zerondash External Ref ndash Preset Speed 1ndash Preset Speed 2ndash Preset Speed 3ndash Preset Speed 4ndash Preset Speed 5ndash External Ref 2

BITS

0123456789101112131415

ndash Ramp Stopndash Start ndash Jog 1ndash Clear Faultndash Forwardndash Reversendash Jog 2ndash Current Limit Stopndash Coast Stopndash Ramp Disablendash Flux Enablendash Process Trim Enablendash Velocity Ref Select Andash Velocity Ref Select Bndash Velocity Ref Select Cndash Reset Drive

Torque Mode Select[Torque Mode Sel]

This is a word parameter used to select thesource for the drive torque reference Theoperation of this parameter functions as aselector switch The position of theselector determines the torque referenceselection as follows

Value Description 0 Zero Torque 1 Velocity Regulate 2 External Torque

Parameter Number 53Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 0Maximum Value 5

Value Description 3 Min Select SpeedTorque (Selects the smallest value when the torque

reference and the torque generated from the speed are compared) 4 Max Select SpeedTorque (Selects the largest value when the torque

reference and the torque generated from the speed are compared 5 Sum Speed and Torque (selects the sum of the torque reference and the

torque generated from the speed)

Chapter 5Programming Parameters

5ndash38

Local Input Status[Local In Status]

Parameter Number 54Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean input sta-tus conditions for the Velocity ProcessorWhen a bit is set to 1 the correspondinginput signal is true

Local Output Status[Local Out Status]

Parameter Number 55Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean outputstatus conditions for the Velocity Proces-sor When a bit is set to 1 the correspond-ing input signal is true

Value Description 0 Brake Request 1 Drive Enable 2 Motor Overtemp Thermoguard 3 Discrete Stop

Value Description 4 External Fault 5 RMS Fault 6 0 = Parall Inv 7 Single Lang

Value Description 8 Test Diag 9 Inverter Status10 Contactor Verify11 Not Used

Value Description12 Not Used13 Not Used14 Not Used15 Not Used

Value Description 0 Brake Enable 1 Turn On Delay Select 2 Not Used 3 Not Used

Value Description 4 Not Used 5 Not Used 6 Not Used 7 Not Used

Value Description 8 Not Used 9 VP Enable10 Pilot Relay11 Not Used

Value Description12 VP Green LED13 VP Red LED14 Not Used15 Not Used

Logic Status Low[Logic Status Low]

Parameter Number 56Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter is the Low part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Logic Status Hi[Logic Status Hi]

Parameter Number 57Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 11111 1111 Enums

This parameter is the Hi part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Value Description 0 Ready to Run 1 Drive Running 2 Cmd Direction (1=FWD 0=Rev) 3 Rotation Direction (1=FWD 0=Rev)

Value Description 4 Accelerating (1=Accel) 5 Decelerating (1=Decel) 6 Warning 7 Faulted

Value Description 8 At Set Speed 9 Local A10 Local B11 Local C

Value Description12 At Zero Speed13 Reference A14 Reference B15 Reference C

Value Description 0 Flux Ready 1 Flux Up 2 Not Used 3 Not Used

Value Description 4 Bus Ridethru 5 Jogging 6 Not Used 7 Not Used

Value Description 8 At Limit 9 Not Used10 At Setpoint 111 At Setpoint 2

Value Description12 Over Setpoint 113 Over Setpoint 214 Over Setpoint 315 Over Setpoint 4

C B A0 0 0 No Change0 0 1 Ref 10 1 0 Ref 20 1 1 Ref 31 0 0 Ref 41 0 1 Ref 51 1 0 Ref 61 1 1 Ref 7

Chapter 5Programming Parameters

5ndash39

Torque Stop Configuration[Torq Stop Config]

Parameter Number 58Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2Enums

This parameter selects how the drive willreact to a stop command when it occurs ina nonndashspeed mode (ex torque mode)Possible selections are0 = Normal Mode ndash Switch to speed modethen perform a controlled stop1 = Stay in selected torque mode until zerospeed is reached2 = Stay in selected torque mode until zerotorque is reached

At Setpoint 1[At Setpoint 1]

Parameter Number 60Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

At Setpoint 2[At Setpoint 2]

Parameter Number 61Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the At Setpoint 1 bit in Logic Status Hi

This parameter is used to specify the setpoint threshold for the At Setpoint2 bit in Logic Status Hi

Logic Options[Logic Options]

Parameter Number 59Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 0010Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter selects the options for logicoperation of the drive as follows

bit Option 0 Start Type A 1 Start Type B 2 Jog Ramp Enable 3 = 1 Jog Coast

= 0 Regen Stop 4 STOP Input Type A 5 STOP Input Type B 6 Do Power Up Diag 7 Do Flux Up Diag

8 Do Start Diag 9 Not Used 10 Not Used 11 = 1 AC Motor Contactor Present 12 = 1 Bipolar Ref +ref value = Forward Dir

ndash ref value = Reverse Dir= 0 Unipolar Bit 4 of P52 = 1 Forward Direction Bit 5 of P52 = 1 Reverse Direction

Over Setpoint 2[Over Setpoint 2]

Parameter Number 63Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the set-point threshold for the Over Setpoint 2 bitin Logic Status Hi

Over Setpoint 1[Over Setpoint 1]

Parameter Number 62Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default +0Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the Over Setpoint 1bit in Logic Status Hi

Start TypeB A0 0 Maint Start Rgen Stop0 1 Maint Start Coast Stop1 0 Momentary Start1 1 Maint Start Rgen Stop

Stop TypeB A0 0 Coast0 1 Normal (RampndashRegen)1 0 I - Limit1 1 Coast

This parameter has no effect if the drive isalready in speed mode when a stop com-mand occurs Coast stop1 commands arealso unaffected by this parameter

1NOTE Coast indicates that the Inverter power has been disabled but actual rotationalstoppage of the motor is dependent on the friction of the connected load

Chapter 5Programming Parameters

5ndash40

Over Setpoint 3[Over Setpoint 3]

Parameter Number 64Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00 Minimum Value ndash8000Maximum Value +8000

Over Setpoint 4[Over Setpoint 4]

Parameter Number 65Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 setpointFactory Default +00 Minimum Value ndash800Maximum Value +800

This parameter is used to specify the set-point threshold for the Over Setpoint 3 bitin Logic Status Hi

This parameter is used to specify the set-point threshold for the Over Setpoint 4 bitin Logic Status Hi

Current Setpoint Tolerance[Cur Setpoint Tol]

Parameter Number 68Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 IqFactory Default 20Minimum Value 00Maximum Value 200

This parameter establishes a hysteresisband around the Setpoints It will be usedto determine when to update the SetpointBits in Logic Status Hi (P57) when config-ured for commanded current option

Speed Setpoint Tolerance[Speed Setpnt Tol]

Parameter Number 67Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = base speedFactory Default base sp 100Minimum Value 00 rpmMaximum Value base speed 10

This parameter establishes a hysteresisband around the At Setpoints It will beused to determine when to update the Set-point Bits in the Logic Status Hi (P57)when configured for actual speed option

Zero Speed Tolerance[Zero Speed Tol]

Parameter Number 69Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = base speedFactory Default base speed 100Minimum Value 00 rpmMaximum Value 8 x base speed

This parameter establishes a band aroundzero speed that will be used to determinewhen to update the At Zero Speed bit inthe Logic Status Low (P56)

Setpoint Select[Setpoint Select]

Parameter Number 66Parameter Type SinkDisplay Units BitsDrive Units bit clear = speed set = currentFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 1111 1111Enums

This parameter makes a selection betweenactual speed or internal Iq current refer-ence for the AtOver Setpoint parametersEach Setpoint Status bit can be set for ei-ther option ( 0 = Actual Speed 1 = Iq Ref-erence)

Bit 0 = At Setpoint 1Bit 1 = At Setpoint 2Bit 2 = Over Setpoint 1Bit 3 = Over Setpoint 2

Bit 4 = Over Setpoint 3Bit 5 = Over Setpoint 4

Logic Testpoint Data[Logic Tstpt Data]

This parameter contains the logic controltestpoint data that has been selected bythe Logic Tstpt Sel parameter P71

Parameter Number 70Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Chapter 5Programming Parameters

5ndash41

Logic Testpoint Select[Logic Tstpt Sel]

Parameter Number 71Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 30Enums

This parameter selects which internal loca-tion in the logic control software will be-come the testpoint value shown in P70The value based upon the select will bestored in the Logic Tstpnt Data parameterThe internal locations of the logic controlsoftware accessible based on the selectvalue are

Select Value Logic Access Point 0 Zero 1 Logic State 2 Edge Filtered Logic Command 3 Logic Control Word 4 Flux Inhibit Conditions 5 Run Inhibit Conditions 6 Current Processor Command Word 7 Current Processor Status Word 8 Diagnostic Request Flag 9 Requested Torque Mode 10 Contactor Fault Flag 11 Monitor Sample 12 Sys Status 13 Loss of CP Enable Acknowledge 14 Last Stop 15 Stop Event

Select Value Logic Access Point 16 Diagnostic Inhibit bits 17 Common Bus Precharge States 18 Contactor Trip Condition 19 Adapter handshake counter 20 Longest handshake count 21 Stop event ndash LED state 22 Stop event ndash System mode register 23 Stop event ndash Fault stop command 24 Stop event ndash Powerup diagnostic status 25 Stop event ndash Nonconfigurable fault status 26 Stop event ndash Current Processor Config Fault Status 27 Stop event ndash Velocity Processor Config Fault Status 28 Stop event ndash Adapter fault status 29 Stop event ndash Logic Command (parameter 52) 30 Stop event ndash Local Inputs (parameter 54)

Stop Dwell[Stop Dwell]

Parameter Number 72Parameter Type SinkDisplay Units xx secDrive Units Display units x 10Factory Default 00 secMinimum Value 00 secMaximum Value 100 sec

This sets an adjustable dwell time beforethe drive disables speed and torque regu-lators when a stop has occurred

Maximum Dynamic Brake Power[Max DB Power]

Parameter Number 77Parameter Type SinkDisplay Units x WattsDrive Units NoneFactory Default 0 WattsMinimum Value 0 WattsMaximum Value 30000 Watts

Maximum Dynamic Brake Temperature[Max DB Temp]

Parameter Number 78Parameter Type SinkDisplay Units x degDrive Units NoneFactory Default 50 deg Minimum Value 50 deg Maximum Value 700 deg

Dynamic Brake Time Constant[DB Time Const]

Parameter Number 79Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 10 secMinimum Value 10 secMaximum Value 600 sec

This parameter defines the power ratingfor the optional Dynamic Brake resistorThis value is used to calculate the per unitR theta for the resistor

This parameter defines the Maximum Tem-perature Rating for the optional DynamicBrake resistor This value is used to estab-lish setpoints for setting and clearing aBrake Overtemperature fault condition

This parameter defines the thermal timeconstant for the Optional Dynamic Brakeresistor This value is used in the brakeresistor thermal model to predict braketemperature as a function of regenerativepower

NOTE Caution should be usedwhen changing the dwell timefrom the factory settingExtended dwell times may not bedesirable from a safety standpointin some applications

Chapter 5Programming Parameters

5ndash42

PowerupDiagnostic Fault Status[PwrUp Flt Status]

Parameter Number 80Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates a faultcondition which has been detected duringpower up or reset of the drive When a bitis ldquo1rdquo the condition is true otherwise thecondition is false

Bit Condition 0 CP PROM Failure 1 CP Internal RAM Failure 2 CP External RAM Failure 3 CP Stack RAM Failure 4 VP Dualport RAM Failure detected by CP 5 Not Used 6 Not Used 7 Not Used 8 VP EPROM Failure

Bit Condition 9 VP Internal RAM Failure 10 VP External RAM Failure 11 VP Stack RAM Failure 12 CP Dualport RAM Failure detected by VP 13 AP Dualport Ram Failure detected by VP 14 Base Drive EE Failure 15 Reserved Leave Zero

CP Configurable Fault Status[CP Flt Status]

Parameter Number 82Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Current Processor (CP)that has been configured to report as aDrive fault condition Each configurationbit matches the bit definitions of Parameter84 86 and 87 When a bit is ldquo1rdquo thecondition is true otherwise the condition isfalse

Nonndashconfigurable Fault Status[Ncfg Flt Status]

Parameter Number 81Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates fault condi-tions in the drive that Cannot be configuredas warnings When a bit is ldquo1rdquo the condi-tion is true otherwise the condition is falseBits 0 ndash 3 are detected by hardware Bits4ndash15 are detected by software

Bit Condition 0 DC Bus Overvoltage Trip 1 Transistor Desaturation 2 Ground Fault 3 Instantaneous Overcurrent 4 Adapter Comm Loss detected by CP 5 MasterSlave Cable Loss

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts)

Bit Condition 10 Analog Power Supply Tolerance 11 Autocommisioning or Transistor Diagnostic Failure 12 Inverter Temperature Trip 13 Software Malfunction detected by VP 14 Not Used 15 Reserved Leave Zero

Bit Condition 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Fluxup Current lt 50

Bit Condition 6 MasterSlave Enable Timeout 7 Not Used 8 Handshake Timeout VP 9 Absolute Overspeed

VP Configurable Fault Status[VP Flt Status]

Parameter Number 83Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as faultconditions Each configuration bit matchesthe definitions of Parameter 85 88 and 89When a bit is ldquo1rdquo the condition is trueotherwise the condition is false

Bit Condition 0 Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending 4 Motor Overload Trip

Bit Condition 10 Math Limit 11 Dynamic Brake Overtemperature 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Trip (IT)

Bit Condition 5 Motor stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit

Chapter 5Programming Parameters

5ndash43

CP Configurable Warning Status[CP Warn Status]

Parameter Number 84Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

VP Configurable Warning Status (bits)[VP Warn Status]

Parameter Number 85Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the current processor (CP) thathave been configured to report as a DriveWarning condition Each configuration bitmatches the bit definitions of parameters82 86 and 87 When a bit is set to ldquo1rdquo thecorresponding condition in the Drive istrue otherwise it is false

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as aDrive warning condition Each configura-tion bit matches the bit definitions ofparameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition inthe Drive is true otherwise it is false

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit 10 Math Limit

Bit Condition 11 Dynamic Brake Resistor Overtemperature 12 Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Foldback

CP FaultWarning Configuration Select[CP Fault Select]

Parameter Number 86Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0010 0011Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definitions ofparameters 82 84 and 87 When a bit isset to rdquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise it will be reported as a WARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Chapter 5Programming Parameters

5ndash44

CP WarningNone Configuration Select[CP Warn Select]

Parameter Number 87Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definition of Pa-rameter 82 84 and 86 When a bit is set toldquo1rdquo the corresponding condition in theDrive will be reported as a FAULT other-wise the condition is reported as aWARNING

VP FaultWarning Configuration Select[VP Fault Select]

Parameter Number 88Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Velocity Processor (VP)that will be reported as either a driveFAULT or drive WARNING condition Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 89 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise the condition is reported as aWARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts) 3 Bus Undervoltage 4 Bus Drop Cycles 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Reserved Leave Zero

Bit Condition 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Trip (IT)

VP WarningNone Configuration Select[VP Warn Select]

Parameter Number 89Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enum

This parameter determines conditions de-tected by the Velocity Processor (VP) thatwill be reported as either a drive FAULT orWARNING or not reported (ignored) Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 88 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as configured byparameter 88 If the bit is set to ldquo0rdquo thecondition is not reported Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault

Bit Condition 8 Not Used 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Foldback (IT)

Chapter 5Programming Parameters

5ndash45

Absolute Overspeed Threshold[Absolute Overspd]

Parameter Number 90Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = 1000 overspeedFactory Default 01 x base speedMinimum Value 00 rpmMaximum Value base speed

This parameter indicates the incrementalspeed above Forward Speed Limit or be-low Reverse Speed Limit that is allowablebefore an Absolute Overspeed Fault isindicated

Stall Delay[Stall Delay]

Parameter Number 91Parameter Type SinkDisplay Units xx secDrive Units sec x 100Factory Default 10 secMinimum Value 01 secMaximum Value 32767 sec

This parameter specifies the amount oftime that the Drive must be in current limitand at zero speed before a Stall Fault willbe indicated

Motor Overload Limit[Mtr Overload Lim]

Parameter Number 92Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Iq for 60 secFactory Default 2000Minimum Value 1100Maximum Value 4000

This parameter specifies the level of Iq current that will cause a Motor OverloadTrip after 60 seconds

Service Factor[Service Factor]

Parameter Number 94Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100Factory Default 100Minimum Value 100Maximum Value 200

This parameter specifies the minimum lev-el of Iq current that will cause a motor over-load (IIT) trip under continuous operationCurrent levels below this value will neverresult in an overload tripExample ndash a service factor of 115 impliescontinuous operation up to 115 of name-plate motor current

Overload Speed 1[Mtr Overld Spd 1]

Parameter Number 95Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use the MinOverload Lmt (parameter 97) as its mini-mum current trip level

Motor Overload Speed 2[Mtr Overld Spd 2]

Parameter Number 96Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use 100 as itsminimum current trip level

Minimum Overload Limit[Min Overload Lmt]

Parameter Number 97Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 currentFactory Default 1000Minimum Value 00 Maximum Value 1000

This is the minimum motor overload triplevel that will be in effect when the motorspeed is at or below Mtr Overld Spd 2(P96)

Chapter 5Programming Parameters

5ndash46

Fault Testpoint Data [Fault TP]

Parameter Number 98Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This parameter contains the fault controltestpoint data that has been selected bythe Fault TP Sel parameter(P99) See thedescription for the Fault TP Sel parameter99 for a list of possible testpoints

Select Value Velocity Reference Access Point 0 Zero 1 Adapter Processor Faulted 2 Actual Velocity when Overspeed occurred 3 Motor Overload Calibration Constant (K) 4 Heatsink NTC Analog Input Voltage 5 Heatsink NTC Foldback Current Limit 6 Negative Analog Supply andor input voltage 7 Positive Analog Supply andor input Voltage 8 Zero 9 Motor Overload Integrator(I2T) level 10 Dynamic Brake Resistor Temperature Degrees C 11 Parameter Limit Status Word 1 12 Parameter Limit Status Word 2 13 Velocity Reference Math Overflow Status 14 Velocity Feedback Math Overflow Status 15 Velocity Regulator Math Overflow Status 16 Torque Reference Math Overflow Status 17 Process Trim Math Overflow Status

VELOCITY Feedback Error Conditions 18 Acceleration Error 19 Illegal State Edge Samples 20 Illegal State Level 21 Encoder Loss Edge Samples

Fault Testpoint Select[Fault TP Sel]

Parameter Number 99Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 32Enums

This parameter selects which internal loca-tion in the fault control software will be-come the testpoint value The value basedupon the selection will be stored in theFault TP parameter 98 The internal loca-tions of the logic control software that areaccessible based on the selected value arelisted below

Select Value Velocity Ref Access Point 22 Encoder Loss Level 23 Iq Reference in per unit Inverter Units 24 Motor Overload Integrator Output Level (IT) 25 Motor Temperature Degrees C 26 Drive to Drive fault status 27 Base Drive EE fault status 28 Base Drive EE drive type address 29 Base Drive EE drive type data 30 Heatsink Warn Temp deg C 31 Heatsink Trip Temp deg C 32 Zero

Velocity Reference 1 LOW (Fraction)[Vel Ref 1 Low]

Parameter Number 100Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This word supplies the fractional part of theexternal velocity reference 1 when external velocity control has been selectedin Logic Command (P52)

Velocity Reference 1 HI (Whole 32 bit)[Velocity Ref 1 Hi]

Parameter Number 101Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

Velocity Scale Factor 1[Vel Scale Fctr 1]

Parameter Number 102Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 10000 gainFactory Default + 10000Minimum Value ndash 40000Maximum Value + 40000

This word supplies the whole number partof external velocity reference 1 when theexternal velocity control has been selectedin Logic Command (P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 1

Chapter 5Programming Parameters

5ndash47

Velocity Reference 2 LOW (Fraction)[Vel Ref 2 Low]

Parameter Number 103Parameter Type SinkDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference 2 HI (Whole 32 bit)[Vel Ref 2 Hi]

Parameter Number 104Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

Velocity Scale Factor 2[Vel Scale Fctr 2]

Velocity Trim LOW[Vel Trim Low]

Parameter Number 106Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Parameter Number 105Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 1000 gainFactory Default +10000Minimum Value ndash40000Maximum Value +40000

This word supplies the fractional part of theexternal velocity reference 2 when the ex-ternal velocity control has been selected inLogic Command (P52)

This word supplies the whole number refer-ence 2 when the external velocity controlhas been selected in Logic Command(P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 2

This word supplies the fractional numberpart of a 32 bit velocity reference trim

Velocity Trim Hi (32 bit)[Vel Trim Hi]

Parameter Number 107Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This word supplies the whole number partof a 32 bit velocity reference trim

Velocity Reference Testpoint Data LOW[Vel Ref TP Low]

Parameter Number 108Parameter Type SourceDisplay Units xDrive Units 1 = 2 128 Base Motor SpeedFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Testpoint Data HI(32 bit)[Vel Ref TP Hi]

This parameter indicates the LOW of the32 bit value of the internal location selectedby the Vel Ref TP Sel (P110)

Parameter Number 109Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base Speed Maximum Value +8 x Base Speed

This parameter indicates the HI 32 bit value of the internal location selected bythe Vel Ref TP Sel (P110)

Chapter 5Programming Parameters

5ndash48

Parameter Number 110Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 12Enums

This parameter selects which internallocation of the velocity reference will be-come the testpoint value shown in P108and 109 The following are the internallocations based upon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Limit Status (HI) Reference Selection (LOW) 2 Selected Reference (HI LOW) 3 Limited Reference (HI LOW) 4 Direction Selected Ref (HI LOW) 5 Fwd Speed Limit (HI)

Rev Speed Limit (LOW) 6 Ramp Input (HI LOW) 7 Ramp Output (HI LOW) 8 Velocity Trim Sum (HI LOW)

Select Value Velocity Reference Access Point 9 Internal Velocity Trim (HI LOW) 10 Trimmed Velocity Reference (HI LOW) 11 Maximum Frequency Limit (HI) Zero (LOW) 12 Reference after Trim Limit (HI LOW) 13 Deadband In (HI LOW) 14 Encoderless On Freq (Low)

Encoderless Off Freq (High) 15 Encoderless Status (Low) 16 Zero

Velocity Reference Testpoint Select[Vel Ref TP Sel]

Jog Speed 1[Jog Speed 1]

Parameter Number 117Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 1 has been selected inthe Logic Command (P52)

Jog Speed 2[Jog Speed 2]

Parameter Number 118Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 2 has been selected inthe Logic Command (P52)

Preset Speed 1[Preset Speed 1]

Parameter Number 119Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Preset Speed 2[Preset Speed 2]

Parameter Number 120Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 1 has been selectedin Logic Command (P52)

This will be the velocity reference used bythe Drive when preset 2 has been selectedin Logic Command (P52)

Preset Speed 3[Preset Speed 3]

Parameter Number 121Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 3 has been selectedin Logic Command (P52)

Chapter 5Programming Parameters

5ndash49

Preset Speed 4[Preset Speed 4]

Parameter Number 122Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 4 has been selectedin the Logic Command (P52)

Preset Speed 5[Preset Speed 5]

This will be the velocity reference used bythe Drive when preset 5 has been selectedin Logic Command (P52)

Parameter Number 123Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Reverse Motor Speed Limit[Rev Speed Limit]

Parameter Number 127Parameter Type SinkDisplay Units ndash xx rpmDrive Units ndash 4096 Base Motor SpeedFactory Default ndash Base Motor SpeedMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 00 rpm

This parameter sets a limit on velocity inthe negative direction The value enteredmust be Negative or Zero The numericrange of this parameter is 0 to ndash 6 timesbase motor speed

Accel Time[Accel Time]

Parameter Number 125Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the ramp rate timefor the velocity reference ramp Time isseconds from zero to base motor speedZero will disable accel ramp See Param389 amp 390 to set this rate Note This parameter not used with a Standard Adapter Board Equipped Drive

Decel Time[Decel Time]

Parameter Number 126Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the decelerationramp time Similar to the parameterabove zero will disable the decel rampSee param 391 amp 392 to set this rateNote This parameter not used with a Standard Adapter Board Equipped Drive

Forward Motor Speed Limit[Fwd Speed Limit]

Parameter Number 128Parameter Type SinkDisplay Units xx rpmDrive Units + 4096 Base Motor SpeedFactory Default Base Motor SpeedMinimum Value + 00 rpmMaximum Value 8 x Base Motor Speed

This parameter sets a limit on velocity inthe positive direction The value enteredmust be Positive or Zero The numericrange of this parameter is +6 x base speedrpm

Maximum Reverse Speed Trim[Max Rev Spd Trim]

Parameter Number 129Parameter Type SinkDisplay Units +ndash xx rpmDrive Units ndash4096 = Base Motor SpeedFactory Default ndash Base SpeedMinimum Value ndash 6 x Base SpeedMaximum Value + 6 x Base Speed

This parameter limits the minimum value ofthe velocity reference after the process trimoutput and the external velocity trim hasbeen added

Chapter 5Programming Parameters

5ndash50

Maximum Forward Speed Trim[Max Fwd Spd Trim]

Parameter Number 130Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + Base SpeedMinimum Value + 00 rpmMaximum Value + 6 x Base Speed

This parameter limits the maximum valueof the velocity reference after the processtrim

Droop Percent[Droop Percent]

Parameter Number 131Parameter Type SinkDisplay Units xxDrive Units Display units x 10Factory Default 0Minimum Value 0Maximum Value 255

This parameter specifies the percent ofbase speed that the velocity reference willbe reduced when at full load torque Thisfeature can be used to cause motor veloc-ity to droop with an increase in load

Velocity Reference Output LOW[Vel Ref Out Low]

Parameter Number 132Parameter Type SourceDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Output HI (32 bit)[Vel Ref Out High]

Parameter Number 133Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This is the low word portion of a 32 bit velocity reference quantity It is the inputterm for the Velocity PI Regulator

This is the high word portion of a 32 bit ve-locity reference quantity It is the inputterm for the Velocity PI Regulator

Velocity Regulator Output[Vel Reg Output]

Parameter Number 134Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = 1000 Iq motorFactory Default + 00 Minimum Value ndash 3000Maximum Value +3000

This parameter represents the torque refer-ence value that appears at the output ofthe Velocity PI Regulator It is the input tothe torque mode selector and is used asthe driversquos torque reference value when intorque mode 1

Velocity Regulator Testpoint DataLOW[Vel Reg TP Low]

Parameter Number 135Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Regulator Testpoint Data HI(32 bit)[Vel Reg TP Hi]

Parameter Number 136Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter indicates the value of theinternal location selected by the VelocityRegulator Testpoint Select parameterP137 The select allows this parameter tobe used as a testpoint for the velocity regulator

This parameter indicates the value of theinternal location selected by the Vel RegTP Sel parameter P137 The select allowsthis parameter to be used as a testpoint forthe velocityregulator

Chapter 5Programming Parameters

5ndash51

Velocity Regulator Testpoint Select[Vel Reg TP Sel]

Velocity Error [Velocity Error]

Parameter Number 138Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Speed rpmMaximum Value +8 x Base Speed rpm

Parameter Number 137Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 15

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in Vel Reg TPLow P135 amp Vel Reg TP Hi P136 The fol-lowing are the internal locations basedupon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Droop Speed Offset (32bit) 2 Drooped Velocity Reference (32 bit) 3 Kf Term (Low) Kf Err (High) 4 Kf Error Filter Output 1 (Low) Kf Error Filter Output 2 (High) 5 Kp Term (32 bit) 6 Or ndash 1st 16 bit (Low) 2nd 16 bit (High) 7 Or ndash 3rd 16 bit (Low) 4th 16 bit (High) 8 Of ndash 1st 16 bit (Low) 2nd 16 bit (High) 9 Of ndash 3rd 16 bit (Low) 4th 16 bit (High) 10 Oe ndash 1st 16 bit (Low) 2nd 16 bit (High) 11 Oe ndash 3rd 16 bit (Low) Not Used (High) 12 Oec1 ndash 1st 16 bit (Low) 2nd 16 bit (High) 13 Oec1 ndash 3rd 16 bit (Low) 4th 16 bit (High) 14 Ki Term (32 bit) 15 Logic Control Word (LOW) Integrator Enable Flag (HIGH)

This parameter contains a value that is thedifference between the whole number por-tion of the velocity regulatorrsquos referenceinput and the velocity feedback

KI ndash Velocity Loop[Ki ndash Velocity Loop]

Parameter Number 139Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 320Minimum Value 00Maximum Value 40960

KP ndash Velocity Loop[Kp ndash Velocity Loop]

Parameter Number 140Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 80Minimum Value 00Maximum Value 2000

This parameter controls the integral errorgain of the velocity regulator Gain has aresolution of 18 therefore a Ki gain of 10is converted to internal drive units as a val-ue of 8

This parameter controls the proportionalerror gain of the velocity regulator Gainhas a resolution of 18 therefore a gain of10 is converted to internal drive units as avalue of 8

KF ndash Velocity Loop[Kf ndash Velocity Loop]

Parameter Number 141Parameter Type SinkDisplay Units xxxDrive Units Display units x 65535Factory Default 100Minimum Value 050Maximum Value 100

This parameter controls the feed forwardgain of the velocity regulator Setting theKf gain to less than one reduces velocityfeedback overshoot in response to a stepchange in velocity reference

KF Error Filter Bandwidth[Error Filter BW]

Parameter Number 142Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 500 RadianSecondsMinimum Value 0Maximum Value 1500 RadianSeconds

This parameter sets the bandwidths of twocascaded low pass filters in the Kf errorpath of the Velocity PI Regulator Band-width is entered in units of radians per second

Chapter 5Programming Parameters

5ndash52

Velocity Feedback Testpoint Data LOW[Vel Fdbk TP Low)

Parameter Number 143Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0uMinimum Value 0uMaximum Value 65535u

Parameter Number 144Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Velocity Feedback Testpoint Data HI(32 bit)[Vel Fdbk TP Hi]

This parameter contains the LOW part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter P145

This parameter contains the HIGH part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parame-ter P145

Velocity Feedback Testpoint Select[Vel Fdbk TP Sel]

Parameter Number 145Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 16Enums

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in P143 amp P144The value based upon the select will bestored in the Vel Fdbk TP Low amp Vel FdbkTP Hi parameter

Select Value Feedback Access Point 0 Zero 1 Encoder Velocity edge (Hi) Diff (Low) 2 Selected Velocity (Low) Difference Velocity (High) 3 2 msec Scan Interval (Low) Zero (High) 4 Edge Pulse Count (Low) Zero (High) 5 Acceleration (Low) Acceleration Error (High) 6 Edges Moved Count (Low) Zero (High) 7 Delta Theta (32 bit) 8 Count Direction (Low) Status Bits (High) 9 Edge to Edge Time (Low) Zero (High) 10 Equal Area Intervals (Low) Zero (High) 11 Empty Intervals (Low) Zero (High) 12 Active Feedback Device 13 Limit Status (Low) Zero (High) 14 Qf ndash 1st 16 bit (Low) 2nd 16 bit (High) 15 Qf ndash 3rd 16 bit (Low) Not Used (High) 16 Zero

Velocity Feedback[Vel Feedback]

Parameter Number 146Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 8 x Base Motor Speed

This parameter indicates the latestmeasured motor velocity information froma feedback device (Tach encoder etc)The value is taken at the output of the selectable feedback filters

Scaled Velocity Feedback[Scaled Vel Fdbk]

Parameter Number 147Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter is a rescaled version of ve-locity feedback from parameter 146 Theinverse of either Velocity Scale Factor 1 or2 is used

Chapter 5Programming Parameters

5ndash53

Feedback Device Type[Fdbk Device Type]

Parameter Number 150Parameter Type SinkDisplay Units xDrive Units NoneFactory Default EncoderMinimum Value 0Maximum Value 7

This parameter selects the source for motor velocity feedback0 ndash Encoder Feedback1 ndash Encoder Feedback2 ndash Encoder Feedback wtracker filter3 ndash Motor Simulator4 ndash External Feedback5 ndash Encoderless velocity estimate with deadband6 ndash Encoderless velocity estimate without deadband7 ndash Encoderless without deadband and low bandwidth

Feedback Tracker Gain[Fdbk Track Gain]

Parameter Number 151Parameter Type SinkDisplay Units xxxxDrive Units 1024 1000 gainFactory Default 1000Minimum Value 0043Maximum Value 1000

Affects gain of the alphandashbeta tracker filterused when Fdbk Device Type = 2Smaller gains result in increased filteringTypical Value = 015 to 07Use 10 to disable

Feedback Filter Select[Fdbk Filt Sel]

Parameter Number 152Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 4

0 = No Filter1 = ldquolightrdquo 3549 radian feedback filter2 = ldquoheavyrdquo 2040 radian feedback filter3 = Single pole Lead Lag feedback filter4 = Notch

Encoder Position Feedback LOW[Enc Pos Fdbk Low]

Parameter Number 148Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the LOW word portion of a 32 bitencoder pulse accumulator Each encoderquadrature edge will be counted resultingin a 4X multiplication As a result this pa-rameter will be scaled such that the posi-tion change per motor revolution is equal to4 times the encoder PPR

Encoder Position Feedback HI[Enc Pos Fdbk HI]

Parameter Number 149Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the HI word portion of a 32 bit en-coder pulse accumulator that was de-scribed for the previous parameter Thisword will change by 1 count for everychange in low count of 65536 4X encoderpulses

Kn ndash Feedback Filter Gain[Fdbk Filt Gain]

Parameter Number 153Parameter Type SinkDisplay Units plusmnxxxDrive Units 256 = 100 gainFactory Default + 100Minimum Value ndash 500Maximum Value +500

Wn ndash Feedback Filter Bandwidth[Fdbk Filt BW]

Parameter Number 154Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 100 RadianSecondsMinimum Value 1 RadianSecondsMaximum Value 900 RadianSeconds

This is the Kn term of the single pole leadlag feedback filter Kn greater than 10 willproduce a lead filter and less than 10 alag filter Kn equal to 10 will disable thefeedback filter

This parameter establishes the breakpointradian frequency for the velocity feedbacklead-lag filter

Chapter 5Programming Parameters

5ndash54

Tach Velocity[Tach Velocity]

Parameter Number 155Parameter Type SinkDisplay Units +ndash xxx rpmDrive Units 4096 = Base Motor SpeedFactory Default 0000 rpmMinimum Value ndash 8 x base speedMaximum Value + 8 x base speed

This word supplies a motor velocity feed-back signal when a source other than anencoder is used This input will typically belinked to an analog input parameter fromthe adapter board

Notch Filter Frequency[Notch Filt Freq]

Parameter Number 156Parameter Type SinkDisplay Units xx HzDrive Units 8 = 10HzFactory Default 135 HzMinimum Value 5 HzMaximum Value 135 Hz

Notch Filter Q[Notch Filter Q]

Parameter Number 157Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 50Minimum Value 2Maximum Value 500

External Iq Reference[External Iq Ref]

Parameter Number 161Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 Iq motorFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

External Torque Reference 1[External Torque Ref 1]

Parameter Number 162Parameter Type SinkDisplay Units xDrive Units NoneFactory Default + 00Minimum Value ndash 800Maximum Value + 800

Slave Torque Percent 1[Slave Torque 1]

Parameter Number 163Parameter Type SinkDisplay Units +ndash xxxDrive Units 4096 = 10 gainFactory Default + 100Minimum Value ndash 200Maximum Value + 200

This parameter supplies an external Iq ref-erence to the Drive The external Iq refer-ence is summed with the internal Iq refer-ence just prior to the current limiter

This word supplies an external motortorque reference to the Drive The externaltorque reference can be selected by settingthe Torque Mode Select parameter (Parm53) to a value of ldquo2rdquo

Ext Torq Ref 1 (P162) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

This parameter sets the center frequencyfor an optional 2ndashpole notch filter The-notch filter is enabled by selecting a valueof lsquo4rsquo in parameter 152

This parameter sets the Quality Factor orQ for the 2ndashpole notch filter described inparameter 156

External Torque Reference 2[Ext Torq Ref 2]

Parameter Number 164Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This word supplies an external motortorque reference to the Drive The Exter-nal Torque Reference can be selected bysetting the Torque Mode Select parameter(Parm 53) to a value of ldquo2rdquo

Slave Torque Percent 2[Slave Torque 2]

Parameter Number 165Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 10 gainFactory Default +100Minimum Value ndash 2000Maximum Value + 2000

Ext Torq Ref 2 (P164) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

Chapter 5Programming Parameters

5ndash55

External Torque Step[Ext Torque Step]

Parameter Number 166Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 00Minimum Value ndash 8000Maximum Value + 8000

This parameter supplies an external torqueoffset to the Drive The Ext Torque Step issummed with the Torque Mode Sel (P53)output prior to the Torque Limiter

Internal Torque Reference[Int Torque Ref]

Parameter Number 167Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash8000Maximum Value +8000

This parameter shows the value of torquereference that is present at the output ofthe torque limiter

Internal Iq Reference[Internal Iq Ref]

Parameter Number 168Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash 8000Maximum Value + 8000

This parameter shows the value of the Iqreference that is present at the output ofthe Iq rate limiter 4096 is 100 Iq motorcurrent

Torque Reference Testpoint Data[Torque Ref TP]

Parameter Number 172Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 (10 pu)Factory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter indicates the value of theinternal location selected by the Torq RefTP Sel parameter P173 The select willallow this parameter to be used as a test-point for the torquereference input

Torque Reference Testpoint Select[Torq Ref TP Sel]

Parameter Number 173Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 31Enums

This parameter selects which internal loca-tion of the torque reference will become thetestpoint value The value based on theselect will be stored in the Torque Ref TP(P172)

Select Value Torque Reference Access Point Select Value Torque Reference Access Point 0 Zero 17 Torque Reference Status 1 NTC Limit 18 Torque Reference Math Overflow Status 2 Inverter Current Limit 19 Active Torque Mode 3 Overload Current Limit 20 Positive Torque Power Limit 4 Positive IQ Limit 21 Negative Torque Power Limit 5 Negative Iq Limit 22 Rated Inverter Current 6 Zero (Not Used) 23 Averaged Motor Flux 7 Torque Limit (Low) 24 lq Current Reference Adjusted for Motor Range 8 Torque Limit (High) 25 lq Sum 9 Scaled External Torque Reference 1 26 Torque Mode Select lq Ref 10 Scaled External Torque Reference 2 27 Inverter Gain 11 Torque Sum 28 Motor Range 12 Torque Command 29 Motor to Inverter Current Ratio 13 Filtered Torque Reference 30 DC Bus Ride-Thru Latch 14 Unlimited Iq Reference 31 Current Processor Regulation Active Flag 15 Current Limited Iq Reference 16 Filtered Iq Reference

Chapter 5Programming Parameters

5ndash56

Minimum Flux Level[Min Flux Level]

Parameter Number 174Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 FluxFactory Default 1000Minimum Value 125Maximum Value 1000

This parameter sets the smallest level offlux that will be used to convert a torque toa current reference Setting the parameterto 4096 will prevent flux reduction and by-pass the torque to current conversion

Pos Torque Reference Limit[Pos Mtr Tor Lmt]

Parameter Number 175Parameter Type SinkDisplay Units xxDrive Units 4096 rated motor torqueFactory Default 2000Minimum Value 00Maximum Value 8000

This parameter provides a user settabletorque limit for positive torque referencevalues Positive motor torque referencewill not be allowed to exceed this value

Neg Torque Reference Limit[Neg Mtr Tor Lmt]

Parameter Number 176Parameter Type SinkDisplay Units ndash xxDrive Units ndash 4096 rated motor torqueFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

Motoring Power Limit[Motoring Power Lmt]

Parameter Number 177Parameter Type SinkDisplay Units xxDrive Units 4096 rated motoring powerFactory Default 2000Minimum Value 00 Maximum Value 8000

This parameter provides for a user entry ofthe maximum power level that will be sup-plied to the motor from the DC bus Themotoring power limit is used in a calcula-tion that results in an internal torque limit

This parameter provides a user settabletorque limit for negative torque referencevalues Negative motor torque referencewill not be allowed to exceed this value

Regen Power Limit[Regen Power Lmt]

Parameter Number 178Parameter Type SinkDisplay Units ndash xxDrive Units 4096 rated regen powerFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

This parameter provides a user entry forthe maximum power level that will be transferred from the motor to the DC bus

Positive Motor Current Reference Limit[Pos Mtr Cur Lmt]

Parameter Number 179Parameter Type SinkDisplay Units xx Drive Units 4096 100 Motor Current (I2)Factory Default 1000Minimum Value 00 Maximum Value 2000

Negative Motor Current ReferenceLimit[Neg Mtr Cur Lmt]

Parameter Number 180Parameter Type SinkDisplay Units ndash xx Drive Units 4096 100 Motor Current (I2)Factory Default ndash 1000Minimum Value ndash 2000Maximum Value + 00

This parameter specifies the largest allow-able positive motor Iq axis current that willbe commanded Bit 0 in Parm 183 indi-cates when this parameter is activelyrestricting Iq current

This parameter determines the largestallowable negative motor Iq axis currentthat will be commanded Bit 8 in Parm 183indicates when this parameter is activelyrestricting Iq current

Chapter 5Programming Parameters

5ndash57

DiDT Limit[DiDt Limit]This parameter determines the largest al-lowable rate of change for the Iq referencesignal This number is scaled in units ofmaximum per unit Iq every 2 msec

Parameter Number 181Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Iq per 2msecFactory Default 200Minimum Value 00Maximum Value 300

Torque Limit Status[Torq Lmt Stat]

Parameter Number 183Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded sum-mary of any condition that may be limitingeither the IQ current or torque reference

0 = Positive Motor IQ Limit1 = Positive NTC Inverter Foldback2 = Positive IT Inverter Foldback3 = Positive Maximum Inverter Current4 = Positive Torque Limit5 = Positive Torque Power Limit6 = Positive Autotune Torque7 = Not Used8 = Negative Motor Iq Limit

9 = Negative NTC Inverter Protection Foldback10 = Negative IT Inverter Protection Foldback11 = Negative Maximum Inverter Current12 = Negative Torque Limit13 = Negative Torque Power Limit14 = Negative Autotune Torque Limit15 = Reserved Leave Zero

Computed Power[Computed Power]Calculated product of Torque Referencetime motor velocity feedback A 125 msecfilter is applied to this result Positive values indicate motoring power negative regenerative power

Parameter Number 182Parameter Type SourceDisplay Units +ndashxxDrive Units 4096 1000 powerFactory Default +00Minimum Value ndash8000Maximum Value +8000

Torque Mode Status[Torq Mode Stat]

Parameter Number 184Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded indica-tion of the currently active torque mode Ifthe drive is running this parameter reflectsthe Torque Mode selected in Torque ModeSel (P 53) If the drive is coasting orstopped this parameter will indicate the ac-tive torque mode is zero If in min or maxmode then the corresponding minmax bitwill be set along with the appropriate speedor torque mode bit as determined by theoutcome of the minmax selectorBits are defined as

Bit 0 ndash Zero Torque (Iq = 0)Bit 1 ndash Speed ModeBit 2 ndash Torque ModeBit 3 ndash Minimum SpeedTorqueBit 4 ndash Maximum SpeedTorqueBit 5 ndash Sum Speed + TorqueBit 6 to Bit 15 ndash Reserved Leave Zero

Perunit Motor Current[Motor Cur Fdbk]

Parameter Number 185Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 motor currentFactory Default 00Minimum Value 00Maximum Value 8000

Displays the perunit value of motor currentas determined from the LEM current sen-sors This data is scaled to read 10 pu atrated motor current This is a version ofparameter 264 that has been scaled to becompatible with analog outputs This datais averaged and updated on a 50 millisec-ond basis

Chapter 5Programming Parameters

5ndash58

Perunit Motor Voltage[Motor Volt Fdbk]Displays the perunit value of motor voltageas determined from an analogndashtondashdigitalconverter input This data is scaled to read10 pu at rated motor voltage This is aversion of parameter 265 that has beenscaled to perunit to be compatible withanalog outputs This data is averaged andupdated on a 50 millisecond basis

Parameter Number 186Parameter Type SourceDisplay Units xxDrive Units 4096 = 1000 motor voltageFactory Default 00Minimum Value 00Maximum Value 8000

Rated Inverter Output Amps[Base Drive Curr]

Parameter Number 220Parameter Type SourceDisplay Units xx ampsDrive Units Display units x 10Factory Default 200 ampsMinimum Value 01 ampsMaximum Value 32767 amps

Current rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type Used forcurrent ref scaling and current processorfeedback scaling

Rated Inverter Input Voltage[Base Line Volt]

Parameter Number 221Parameter Type SourceDisplay Units x voltDrive Units NonFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Drive Nameplate Voltage rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type

Inverter Carrier Frequency[PWM Frequency]

Parameter Number 222Parameter Type SinkDisplay Units x HzDrive Units NoneFactory Default 4000 HzMinimum Value 1000 HzMaximum Value 12000 Hz

This parameter defines the drive carrierfrequency in Hz

Chapter 5Programming Parameters

5ndash59

PrechargeRidethru Selection[PrechRdethru Sel]

Parameter Number 223Filegroup ApplicationBus RegControlParameter Type linkable destinationDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111 Conversion 1 = 1

Parameter 223 lets you choose options forthe bus filter reference prechargeride-through conditions and brakingUse bits 0 through 4 to set the slew rate forthe bus voltage tracker The bus voltagetracker slowly tracks changes in the actualbus voltage If none of the bits (0 through4) are set the slew rate is 005Vsecond

The precharge function of the drive limitsthe current to the bus capacitors whenpower is initially applied to the drive Theprecharge function is completed after aminimum 300 millisecond time delay andbus voltage at least 30 volts greater thanthe undervoltage setpoint and a stable busvoltage Ridethrough provides extendedlogic operating time if the power lines dropout while the drive is running If the pre-charge function is enabled ridethroughalso provides inrush current protection bystarting a precharge in case the incomingpower returns

The bits are defined as follows

Bit Description0 Slew Rate 1

Set to choose a slew rate of 10Vsecond Bit1 Slew Rate 2

Set to choose a slew rate of 5Vsecond2 Slew Rate 3

Set to choose a slew rate of 05Vsecond3 Slew Rate 4

Set to choose a slew rate of 005Vsecond4 Slew Rate 5

Set to choose a slew rate of 0005Vsecond5 Reserved

Leave 0

Undervoltage Setpoint[Under Volt Stpnt]

Parameter Number 224Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 615Minimum Value 100Maximum Value 900

Bus Precharge Timeout[Prechrg Timeout]

Parameter Number 225Parameter Type SinkDisplay Units xx SecDrive Units Display units x 10Factory Default 300 SecMinimum Value 100 SecMaximum Value 65535 Sec

This sets the minimum threshold voltageas a percent of line voltage that will becompared with the DC Bus Voltage as acheck for a Bus Undervoltage condition

This parameter establishes a time delayperiod for DC Bus Precharge If the Drivefails to finish a DC Bus Precharge in thistime a Precharge Timeout will occur

Bus Ridethru Timeout[Ridethru Timeout]

Parameter Number 226Parameter Type SinkDisplay Units xxxx SecDrive Units Display units x 1000Factory Default 2000 SecMinimum Value 0000 SecMaximum Value 65535 Sec

This parameter establishes a time delayperiod for DC Bus Ridethrough If the busremains in a low bus ridethru conditionlonger than this time a Bus ridethru timeout condition will occur

For additional information about PrechargeRidethrough Selectionrefer to Chapter 12 Troubleshooting

Bit Description6 Reserved

Leave 07 Reserved

Leave 08 Fast Fluxup

Set to enable fast flux up9 Reserved

Leave 010 Reserved

Leave 011 Prech Exit

Set to force an exit from precharge after the precharge timeout12 En Comm Bus

Set to enable common bus precharge External fault input is used as precharge enable

13 Dis Prech TmSet to disable bus precharge and undervoltage faults while the drive is disabled

14 Dis Mult PreSet to disable all precharges after the first power up

15 Dis RidethruSet to disable all ridethroughs

Chapter 5Programming Parameters

5ndash60

CP Operating Options[CP Options]

Parameter Number 227Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 0000

For proper operation bits 0 to 6 must beleft at zeroIf bit 7 = 0 this allows the motor to coast toa stop after the flux test is completedIf bit 7 = 1 this brings the motor to a con-trolled stop after the flux test is completed

Parameter Number 228Parameter Type SinkDisplay Units xx HPDrive Units Display units x 10Factory Default 300 HPMinimum Value 10 HPMaximum Value HP

Base Motor Speed[Base Motor Speed]

Motor Nameplate Horsepower[Base Motor HP]

Parameter Number 229Parameter Type SinkDisplay Units x RPMDrive Units xFactory Default 1750 RPMMinimum Value 1 RPMMaximum Value 15000 RPM

Motor Nameplate AMPS[Base Motor Curr]

Parameter Number 230Parameter Type SinkDisplay Units xx ampsDrive Units Display units x 10Factory Default 02 ampsMinimum Value 01 ampsMaximum Value Based on parameter 220

Drive nameplate current rating of themotor Used for current reference scalingand current processor feedback scaling

User entered value of nameplate motorhorsepower The drive uses this informa-tion in the Dynamic Brake Resistortemperature calculation

User entered value of nameplate motorspeed in RPM The drive uses thisinformation to convert motor velocity RPMtofrom drive per unit

Motor Nameplate VOLTS[Base Motor Volt]

Parameter Number 231Parameter Type SinkDisplay Units x VoltDrive Units NoneFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Motor Nameplate Frequency[Base Motor Freq]

Parameter Number 232Parameter Type SinkDisplay Units xx HzDrive Units display units x 10Factory Default 60 HzMinimum Value 1 HzMaximum Value 250 Hz

Drive nameplate voltage rating of themotor

Total number of motor poles in motor

Motor Nameplate Poles[Motor Poles]

Parameter Number 233Parameter Type SinkDisplay Units x polesDrive Units NoneFactory Default 4 polesMinimum Value 2 polesMaximum Value 40 poles

Motor Inertia[Motor Inertia]

Parameter Number 234Parameter Type SinkDisplay Units xxx SecDrive Units Display units x 100Factory Default 060 SecMinimum Value 001 SecMaximum Value 655 Sec

Time taken to acceleratean uncoupled motor from zero to basespeed at rated torque

Drive nameplate frequency rating of themotor

Chapter 5Programming Parameters

5ndash61

Encoder PPR[Encoder PPR]

Parameter Number 235Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024 pprMinimum Value 500 pprMaximum Value 20000 ppr

User entered pulse per revolution rating ofthe feedback device when using anencoder to determine motor velocity

RS Tune[Stator Res]

Parameter Number 236Parameter Type SinkDisplay Units xxx Drive Units 4096 = 10000 Stator ResFactory Default 150Minimum Value 000Maximum Value 10000

Lsigma Tune [Leakage Inductance][Leakage Ind]

Parameter Number 237Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Leakage IndFactory Default 1800Minimum Value 000Maximum Value 10000

Id Tune [Base Flux Current][Base Flux Cur]

Parameter Number 238Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 motor ampsFactory Default 300Minimum Value 00Maximum Value 750

Sum of the stator and cable resistances ofthe motor in a per unit (percent representa-tion) This parameter is determined by theautocommissioning routine

Sum of the motor stator and rotor leakageinductances and the motor cable induc-tance in a per unit base impedance Thisparameter is determined by the autocom-missioning routine

Magnetizing current which produces ratedflux in the motor in a per unit (percent)representation This parameter is deter-mined by the autocommissioning routinebut can be entered manually

Iq Tune (Rated Torque Current)[Base Torque Cur]

Parameter Number 240Parameter Type SinkDisplay Units xxxDrive Units 1024 = 10000 Iq MotorFactory Default 9540 Minimum Value 000Maximum Value 10000

Current which produces rated torque in themotor in a per unit (percent) representa-tion This parameter is determined by theautocommissioning routine but can be en-tered manually

Vde Tune (Base Torque Voltage)[Base Torque Volt]

Parameter Number 241Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default ndash750 voltsMinimum Value ndash4680 voltsMaximum Value 00 volts

D axis voltage command to the motor atrated speed and rated current Parametercalculated by autocommissioning routineand MUST NOT BE CHANGED Datarepresented as XX volts

Vde Maximum (Peak HP)[Vde Max]

Parameter Number 243Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt line to neutral peakFactory Default 1125 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Maximum D axis voltage allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as XXvolts

Vqe Tune (Rated Flux Voltage)[Base Flux Volt]

Parameter Number 242Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Q axis voltage command to the motor atrated speed and rated current if motor isnot in field weakening Parameter calcu-lated by autocommissioning routine andMUST NOT BE CHANGED Data repre-sented as XX volts

Chapter 5Programming Parameters

5ndash62

Vqe Maximum (Constant HP)[Vqe Max]

Parameter Number 244Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4688 volts

Vde Minimum (Constant HP)[Vde Min]

Parameter Number 245Parameter Type SinkDisplay Units xx VoltsDrive Units 16 = 1 volt line to neutral peakFactory Default 30 voltsMinimum Value 00 voltsMaximum Value 500 volts

Kslip (Base Slip Frequency)[Base Slip Freq]

Parameter Number 246Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 0832 HzMinimum Value 0000 HzMaximum Value 10000 Hz

Q axis voltage at which the motor entersfield weakening Parameter calculated byautocommissioning routine and MUSTNOT BE CHANGED Data represented asxx volts

D axis voltage below which the adaption tomotor changes in the torque control is dis-abled Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx volts

Base slip frequency of the motor Parameter calculated by autocommission-ing routine Data represented as xx Hz

Kslip Maximum [Base Slip Fr Max]

Parameter Number 247Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 200 HzMinimum Value 000 HzMaximum Value 3000 Hz

Maximum slip frequency allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx Hz

Kslip Minimum[Base Slip Fr Min]

Parameter Number 248Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hz unit torqueFactory Default 050 HzMinimum Value 000 HzMaximum Value 1000 Hz

Minimum slip frequency allowed on themotor Calculated by autocommissioningroutine and MUST NOT BE CHANGEDData represented as xx Hz

Ki ndash Slip Regulator [Ki Slip]

Kp ndash Flux Regulator[Kp Flux]

Kp ndash Slip Regulator [Kp Slip]

Parameter Number 251Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Parameter Number 250Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 306Minimum Value 0Maximum Value 32767

Parameter Number 249Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 153Minimum Value 0Maximum Value 32767

Proportional Gain of the slip regulatorThis parameter MUST NOT BECHANGEDData represented as x

Integral Gain of the slip regulator Thisparameter MUST NOT BE CHANGEDData represented as x

Proportional Gain of the Flux regulatorThis parameter MUST NOT BECHANGEDData represented as x

Chapter 5Programming Parameters

5ndash63

Ki ndash Regulator[Ki Flux]

Parameter Number 252Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 125Minimum Value 0Maximum Value 32767

Integral gain of the slip regulator This pa-rameter MUST NOT BE CHANGEDData represented as x

AutotuneDiagnostics Selection[Autotun Diag Sel]

Parameter Number 256Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 1111 1111Enums

This parameter allows selection of drivediagnostic and commisioning tests by set-ting individual bits in this parameter

Bit 0 = Inverter transistor DiagnosticsBit 1 = Motor Phase Rotation TestBit 2 = Lsigma Measure TestBit 3 = Rs Measure TestBit 4 = Id Measure TestBit 5 = Torque Block Calc TestBit 6 = Motor Inertia TestBit 7 = System Inertia TestBit 8 = Velocity Loop Gain

Transistor Diagnostics Configuration[Tran Diag Disabl]

Parameter Number 257Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a means of disab-ling certain transistor diagnostic tests bysetting the following bits

Bit 9 = Disable Power Trans V Lower for all testsBit 10 = Disable Power Trans W Upper for all testsBit 11 = Disable Power Trans W Lower for all testsBit 12 = High InductBit 13 = Reserved (Always leave 0)Bit 14 = Reserved (Always leave 0)Bit 15 = Reserved (Always leave 0)High Inductance motors may need extended test time to de-termine opens Setting bit 12 increases the test time

Inverter Diagnostics Result 1[Inverter Diag 1]

Parameter Number 258Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameter 258 amp259

Bit 0 = Software FaultBit 1 = No motor connected or open bus fuse Bit 2 = Phase U and W ShortedBit 3 = Phase U and V shortedBit 4 = Phase V and W shortedBit 5 = Shorted modulesBit 6 = Ground faultBit 7 = Fault before shorted module ranBit 8 = Hardware overvoltage fault occurred

Bit 9 = Hardware desaturation fault occurredBit 10 = Hardware ground fault occurredBit 11 = Hardware phase overcurrent fault occurredBit 12 = Open power transistor(s) See bit 12 in parameter 257Bit 13 = Current feedback fault(s)Bit 14 = Reserved Leave ZeroBit 15 = Reserved Leave Zero

Bit 0 = Disable I feedback phase U offsetBit 1 = Disable I feedback phase W offsetBit 2 = Disable Shorted Transistor TestsBit 3 = Disable Ground Fault TestsBit 4 = Disable Open device testsBit 5 = Not UsedBit 6 = Disable Power Trans U Upper for all testsBit 7 = Disable Power Trans U Lower for all testsBit 8 = Disable Power Trans V Upper for all tests

Chapter 5Programming Parameters

5ndash64

Inverter Diagnostics Result 2[Inverter Diag 2]

Parameter Number 259Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameters 258 amp 259If any of the bits shown below are set thena problem with the associated test isindicated

0 = Transistor U upper shorted 1 = Transistor U lower shorted2 = Transistor V upper shorted3 = Transistor V lower shorted4 = Transistor W upper shorted5 = Transistor W lower shorted

6 = Current fdbk ph U offset too big7 = Current fdbk ph W offset too big8 = Transistor U upper open9 = Transistor U lower open10 = Transistor V upper openSee Parameter 257 bit 12

11 = Transistor V lower open12 = Transistor W upper open13 = Transistor W lower open14 = Current feedback phase U open15 = Current feedback phase W open

Id OFFSET[Id Offset]

Parameter Number 261Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Parameter Number 260Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Iq OFFSET[Iq Offset]

This parameter contains the LEM U offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

This parameter contains the LEM W offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

Phase Rotation Current Reference[Ph Rot Curr Ref]

Parameter Number 262Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Motor CurrentFactory Default 500Minimum Value 00Maximum Value 1000

This parameter sets the current referencethat will be used when the Phase Rotationtest is run (Parm 256 bit 1)

Phase Rotation Frequency Reference[Phase Rot Freq Ref]

Parameter Number 263Parameter Type SinkDisplay Units xx HzDrive Units 128 1 HzFactory Default 30 HzMinimum Value ndash 300 HzMaximum Value +300 Hz

This parameter sets the frequency refer-ence that will be used when the PhaseRotation test is run (Parm 256 bit 1)

Motor Current Magnitude Feedback[Motor Cur Fdbk]

Parameter Number 264Parameter Type SourceDisplay Units xx AmpDrive Units Display units x 10Factory Default 00 ampsMinimum Value 00 ampsMaximum Value 65535 amps

Displays the actual RMS value of the motorcurrent as determined from the LEM cur-rent sensors This data is averaged andupdated on a 50 millisecond basis

Motor Voltage Magnitude[Motor Volt Fdbk]

Parameter Number 265Parameter Type SourceDisplay Units x VoltDrive Units NoneFactory Default + 0 VoltMinimum Value ndash 3000 VoltMaximum Value +3000 Volt

Displays the actual LinendashtondashLine RMS val-ue of motor voltage This data is averagedand updated on a 50 millisecondbasis

Chapter 5Programming Parameters

5ndash65

Stator Frequency[Freq Command]

Parameter Number 266Parameter Type SourceDisplay Units x xxx HzDrive Units 128 1HzFactory Default 0 000 HzMinimum Value ndash255992 HzMaximum Value +255922 Hz

Displays the actual value of motor statorfrequency Units are in Hz times 128 (128 1 Hz)

Parameter Number 268Parameter Type SourceDisplay Units x VltDrive Units NoneFactory Default 0 voltsMinimum Value 0 voltsMaximum Value 1000 volts

DC Bus Voltage[DC Bus Voltage]

Inverter Temperature Feedback[Inv Temp Fdbk]

Parameter Number 270Parameter Type SourceDisplay Units +ndash x degDrive Units NoneFactory Default 0 deg Minimum Value ndash 50 deg Maximum Value +255 deg

This is the actual Bus Voltage as read bythe software from an analog input portUnits are in volts

Inverter temperature determined by NTCdevice on heatsink power structureCan be configured to generate either awarning or fault when heatsink reaches 80degrees C

Filtered Velocity Feedback[Filt Vel Fdbk]

Parameter Number 269Parameter Type SourceDisplay Units xx rpmDrive Units 4096 = base motor speedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

This parameter contains a filtered versionof velocity feedback The value containedin this parameter is not meant to be usedfor control only for display and monitoringpurposes

Limited Motor Flux[Lim Motor Flux]

Parameter Number 271Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 fluxFactory Default 100Minimum Value 125Maximum Value 100

This parameter displays the level of motorfield flux calculated by the current proces-sor and limited by the Min Flux Levelparameter (Param 174)

Parameter Number 267Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 1000 Factory Default 00Minimum Value ndash8000Maximum Value +8000

Calculated Torque[Calc Torque]

This parameter will display the calculatedvalue of motor torque as determined by theVelocity Processor The actual value ofmotor torque will be within 5 of this valueScaling is 4096 at rated motor torque Thisdata is updated on a 2 millisecond basis

Testpoint Selection 1[Torq TP Sel 1]

Parameter Number 273Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

This parameter selects a torque block testpoint The value of that test point can beread from Torq TP Data 1 (Parm 274)

Chapter 5Programming Parameters

5ndash66

Testpoint Data 1[Torq TP Sel 1]

Parameter Number 274Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 2[Torq TP Sel 2]

Parameter Number 275Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 2[Torq TP Data 2]

Parameter Number 276Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 3[Torq TP Sel 3]

Parameter Number 277Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 3[Torq TP Data 3]

Parameter Number 278Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 4[Torq TP Select 4]

Parameter Number 279Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 4[Torq TP Data 4]

Parameter Number 280Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter contains the data selectedby Testpoint Selection 1 (param 273)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 2 (Parm 276)

This parameter contains the data selectedby Testpoint Selection 1 (param 275)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 3 (Parm 278)

This parameter contains the data selectedby Testpoint Selection 3 (param 277)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 4 (Parm 280)

This parameter contains the data selectedby Testpoint Selection 4 (param 279)

Chapter 5Programming Parameters

5ndash67

Testpoint Selection 5[Torq TP Sel 5]

Parameter Number 281Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 5[Torq TP Data 5]

Parameter Number 282Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 6[Torq TP Sel 6]

Parameter Number 283Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 6[Torq TP Data 6]

Parameter Number 284Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Selection for Test DAC 1[Test DAC1 Sel]

Parameter Number 285Parameter TypeDisplay UnitsDrive UnitsFactory Default 1Minimum Value 0Maximum Value 256

Selection for Test DAC 2[Test DAC2 Sel]

Parameter Number 286Parameter TypeDisplay UnitsDrive UnitsFactory Default 4Minimum Value 0Maximum Value 256

This parameter is for factory use only DONOT ATTEMPT TO USE

Ki Frequency Regulator[Ki Freq Reg]

Parameter Number 287Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Integral gain of the frequency regulator insensorless mode This parameter mustnot be changed

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 5 (Parm 282)

This parameter contains the data selectedby Testpoint Selection 5 (param 281)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 6 (Parm 284)

This parameter contains the data selectedby Testpoint Selection 6 (param 283)

This parameter is for factory use only DONOT ATTEMPT TO USE

Chapter 5Programming Parameters

5ndash68

Kp Frequency Regulator[Kp Freq Reg]

Parameter Number 288Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 800Minimum Value 0Maximum Value 32767

Proportional gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Kff Freq Regulator[Kff Freq Reg]

Parameter Number 289Parameter Type SinkDisplay Units xDrive Units 1 = 256Factory Default 1Minimum Value 0Maximum Value 128

Ksel Freq Regulator[Ksel Freq Reg]

Feedforward gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Parameter Number 290Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 67Minimum Value 00Maximum Value 32767

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Frequency Tracker Filter[Freq Track Filt]

Parameter Number 291Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Rotor frequency regulator filter in sensor-less mode This parameter must not bechanged

Tracking Filter Type[Track Filt Type]

Parameter Number 292Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1 (Self Adjust)Minimum Value 0 (Fixed)Maximum Value 128

Frequency Trim Filter[Freq Trim Filt]

Low frequency filter select of the frequencyregulator in sensorless mode This param-eter must not be changed by nonndashfactorypersonnel

Parameter Number 293Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Slip frequency regulator filter in sensorlessmode This parameter must not bechanged

Motor Phase Rotation Errors[Phs Test Rot Err]

Parameter Number 294Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates an error conditiondetected during the motor phase rotationtest1 = Drive condition true0 = Drive condition false

Bits are defined asBit Condition0 1 to 15

Enable Drop OutReserved

Chapter 5Programming Parameters

5ndash69

Motor Inductance Test Errors[Lo Test Error]

Parameter Number 295Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor inductance test1 = Drive condition true0 = Drive condition false

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Zero Current3 AD Overflow at min gain4 Enable drop out5 Sign errorOverflow6 to 15 Reserved

Motor Stator Resistance Test Errors[Rs Test Error]

Parameter Number 296Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Not Used3 Zero Current4 Not Used5 Software Error6 Not Used7 Enable Drop Out8ndash15 Reserved

Motor Flux (Id) Test Errors[Id Test Error]

Parameter Number 297Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor flux (Id) test If abit is set to ldquo1rdquo the Drive condition is trueotherwise the condition is false

Torque Block Calculation Errors[Torq Calc Error]

Parameter Number 298Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates an errorcondition which has been detected duringthe torque block calculations If a bit is setto ldquo1rdquo the Drive condition is true otherwisethe condition is false

Bits are defined as

Bit Condition0 1 to 15

Negative or Zero SlipReserved

Bits are defined as followsBit Condition0 Autotune Speed Low (30 min)1 Identified Id lt zero2 Identified Id gt 100 motor current3 Enable drop out4ndash15 Reserved

Chapter 5Programming Parameters

5ndash70

Adapter Identification Number[Adapter ID]

Parameter Number 300Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 2Minimum Value 2Maximum Value 2

Adapter Software Version[Adapter Version]

Parameter Number 301Parameter Type SourceDisplay Units xxxDrive Units NoneFactory Default xxxMinimum Value 000Maximum Value 999

This parameter displays the StandardAdapter ID

This parameter displays the softwareversion number

Adapter Config[Adapter Config]

Parameter Number 302Parameter Type SourceDisplay UnitsDrive UnitsFactory DefaultMinimum ValueMaximum Value

(Not Used In Present Release)

Language Select[Language Select]

Parameter Number 304Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 1

This parameter makes the selectionbetween two languages0 ndash Primary Language1 ndash Alternate Language

Parameter Number 310Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In A1[Data In A1]

Data In A2[Data In A2]

Data In B1[Data In B1]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 311Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 312Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

NOTE The Parameters shown here in the range from 300 to 500 are Standard Adapter Parameters OnlyParameter descriptions for PLC Comm Adapter Parameters are covered in the PLC Comm Adapter User Manual

Chapter 5Programming Parameters

5ndash71

Data In B2[Data In B2]

Data In C1[Data In C1]

Data In C2[Data In C2]

Data In D1[Data In D2]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 313Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 314Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 315Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 316Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 317Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In D2[Data In D2]

Data Out A1[Data Out A1]

Data Out A2[Data Out A2]

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 321Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 320Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out B1[Data Out B1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 322Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Chapter 5Programming Parameters

5ndash72

Data Out C1[Data Out C1]

Data Out B2[Data Out B2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 323Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 324Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D1[Data Out D1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 326Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out C2[Data Out C2]

Parameter Number 325Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D2[Data Out D2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 327Parameter Type SinkDisplay Units ndashndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

SCANport Port Enable Mask[Port Enable Mask]

Parameter Number 330Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can control the Drive1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash73

SCANport Start Mask[Start Mask]

Parameter Number 332Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a start command1 = Permit Control0 = Deny Control

SCANport Jog Mask[Jog Mask]

Parameter Number 333Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Jog command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Clear Fault Mask[Clear Fault Mask]

Parameter Number 335Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Clear Faults command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Reference Mask[Reference Mask]

Parameter Number 334Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevice can issue a reference command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Direction Mask[Direction Mask]

Parameter Number 331Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a forwardreversecommand1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash74

SCANport Reset Drive Mask[Reset Drive Mask]

Parameter Number 336Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Reset Drive command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Local Control Mask[Local Mask]

Parameter Number 337Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can take local control1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Stop Owner[Stop Owner]

Parameter Number 340Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid stopcommand1 = Stop Input Present0 = Stop Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Direction Owner[Direction Owner]

Parameter Number 341Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofdirection changes1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Start Owner[Start Owner]

Parameter Number 342Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid startcommand1 ndash Start Input Present0 ndash Start Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash75

SCANport Jog 1 Owner[Jog 1 Owner]

Parameter Number 343Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 1command1 = Jog 1 Input present0 = Jog 1 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Reference Owner[Reference Owner]

Parameter Number 345Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe reference changes1 = Current Owner0 = Non Owner

SCANport Jog 2 Owner[Jog 2 Owner]

Parameter Number 344Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 2command1 = Jog 2 Input Present0 = Jog 2 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leavc Zero

SCANport Local Control Owner[Local Owner]

Parameter Number 346Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe drive1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Flux Owner[Flux Owner]

Parameter Number 347Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid fluxcommand1 = Flux Input Present0 = Flux Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash76

SCANport Ramp Owner[Ramp Owner]

Parameter Number 349Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid rampcommand1 = Ramp Input Present0 = Ramp Input Not Present

SCANport Clear Fault Owner[Clr Fault Owner]

Parameter Number 350Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid ClearFault Command1 = Clear Fault Input Present0 = Clear Fault Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Process Trim Owner[Trim Owner]

Parameter Number 348Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are currently issuing a valid process trim command1 = Process Trim Input Present0 = Process Trim Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

10 Volt In Filtr[10 Volt In Filtr]

Parameter Number 352Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequency for the 10 Volt Input

Pot In Filtr[Pot In Filter]

Parameter Number 353Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequecy for the Pot Input

mA In Filtr[mA In Filter]

Parameter Number 354Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointfor the mA Input

Chapter 5Programming Parameters

5ndash77

10 Volt Input[10 Volt Input]

Parameter Number 355Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the +ndash 10 volt input

10 Volt Offset[10 Volt Offset]

Parameter Number 356Parameter Type SinkDisplay Units +ndash xxx voltDrive Units 205 = 1 voltFactory Default +000 voltMinimum Value ndash2000 voltMaximum Value +2000 volt

This parameter determines the offset ap-plied to the raw analog value of the +ndash 10volt input before the scale factor is appliedThis allows the user to shift the range ofthe analog input

10 Volt Scale[10 Volt Scale]

Parameter Number 357Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the +ndash 10 volt input The +ndash 10volt input is converted to +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

Pot Input[Pot Input]

Parameter Number 358Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the pot input

Pot Offset[Pot Offset]

Parameter Number 359Parameter Type SinkDisplay Units +ndash xxx voltsDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog value of the potinput before the scale factor is appliedThis allows the user to shift the range ofthe of the analog input

Pot Scale[Pot Scale]

Parameter Number 360Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +1000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the pot input The pot input isconverted to a +ndash 2048 and then the scaleis applied allowing an effective digital rangeof +ndash 32767

Milli Amp Input[mA Input]

Parameter Number 361Parameter Type SourceDisplay Units xDrive Units NoneFactory Default +0Minimum Value 0Maximum Value +32767

This parameter displays the convertedanalog value of the milli amp input

Chapter 5Programming Parameters

5ndash78

Milli Amp Input Offset[mA Input Offset]

Parameter Number 362Parameter Type SinkDisplay Units + xxxx mADrive Units 128 = 1mAFactory Default +0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw analog value of the milliamp input before the scale factor is ap-plied This allows the user to shift therange of the analog input

Milli Amp Input Scale[mA Input Scale]

Parameter Number 363Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the milli amp input The milliamp input is converted to a +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

SCANport Analog1 Select[SB Analog Sel]

Parameter Number 364Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 365lsquoSP Analog Inrsquo

1 SCANport 12 SCANport 23 SCANport 3

4 SCANport 45 SCANport 56 SCANport 6

SCANport Analog1 In[SB Analog1 In]

Parameter Number 365Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 364 lsquoSP Analog Selrsquo

SP Analog1 Scale[SB Analog1 Scale]

Parameter Number 366Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 365

Chapter 5Programming Parameters

5ndash79

SCANport Analog2 Select[SB Analog2 Sel]

Parameter Number 367Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 368lsquoSB Analog In 2rsquo

1 Scanport 12 Scanport 23 Scanport 3

4 Scanport 45 Scanport 56 Scanport 6

SCANport Analog2 In[SB Analog2 In]

Parameter Number 368Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 367 lsquoSP Analog2 Selrsquo

SP Analog2 Scale[SB Analog2 Scale]

Parameter Number 369Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 368

Analog Output 1[Analog Out 1]

Parameter Number 370Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 1 Offset [An Out 1 Offset]

Parameter Number 371Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog output 1 Theoffset is applied after the scale factor

Chapter 5Programming Parameters

5ndash80

Analog Output 1 Scale[An Out 1 Scale]

Parameter Number 372Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 1 A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Analog Output 2[Analog Out 2]

Parameter Number 373Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 2 Offset[An Out 2 Offset]

Parameter Number 374Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000Minimum Value ndash20000Maximum Value +20000

This parameter determines the offset ap-plied to the raw analog output 2 The offsetis applied after the scale factor

Analog Output 2 Scale[An Out 2 Scale]

Parameter Number 375Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 2 A +ndash 32767digital value is converted by the scale fac-tor which allows abn effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Milli Amp Output[mA Output]

Parameter Number 376Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value +32767

This parameter converts a +ndash 32767digital value to a 4ndash20 mA output

Milli Amp Output Offset[mA Output Offset]

Parameter Number 377Parameter Type SinkDisplay Units +ndash xxxx mADrive Units 128 = 1mAFactory Default 0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw milli amp output The off-set is applied after the scale factor

Chapter 5Programming Parameters

5ndash81

Milli Amp Output Scale[mA Output Scale]

Parameter Number 378Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value 1000

This parameter determines the scale factoror gain for milli amp output A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 20 mA range

SCANport Analog Output[SP Analog Out]

Parameter Number 379Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valuethat is sent to all SCANports

Programmable Output Select[Output Select]

Parameter Number 384Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 8Minimum Value 0Maximum Value 63

This parameter selects the function ofTB7ndash1 Output The NOT column in thefollowing table indicates the value for theinverse condition For example Enteringa value of 0 will result in a Run Readycondition while a value of 32 results in a NOT Run Ready condition

NOT EN 32 0 RUN READY 33 1 RUNNING 34 2 COMMAND DIRECTION 35 3 ROTATING DIRECTION 36 4 ACCELERATING 37 5 DECELERATING 38 6 WARNING 39 7 FAULTED 40 8 AT SET SPEED 41 9 LOCAL A 42 10 LOCAL B 43 11 LOCAL C 44 12 AT ZERO SPEED 45 13 REF A 46 14 REF B 47 15 REF C

NOT EN 48 16 FLUX READY 49 17 FLUX UP 50 18 DIAGNOSTIC COMPLETED 51 19 DIAGNOSTIC ABORTED 52 20 BUS RIDETHRU 53 21 JOGGING 54 22 AUTOTUNE STAT A 55 23 AUTOTUNE STAT B 56 24 AT LIMIT 57 25 NOT USED 58 26 AT SETPOINT 1 59 27 AT SETPOINT 2 60 28 OVER SETPOINT 1 61 29 OVER SETPOINT 2 62 30 OVER SETPOINT 3 63 31 OVER SETPOINT 4

Set P66 to the type of Set Point desiredCurrent or SpeedThen set the appropriate parameter (P60 ndashP65) to monitor your desired SetPoint

Chapter 5Programming Parameters

5ndash82

IO Stop Select 1[Stop Select 1]

Parameter Number 387Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 5 2 = Current limit stop1 = Ramp Stop0 = Coast Stop

Input Status[Input Status]

Parameter Number 386Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 1111 1111Enums

This parameter displays the onoff status ofinputs 1-8 at TB31 = ON0 = Off

Bit Condition0 12

Input 1Input 2Input 3

Bit Condition345

Input 4Input 5Input 6

Bit Condition67

Input 7Input 8

Input Mode[Input Mode]

Parameter Number 385Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 30Enums

This parameter selects the functions of theinputs 1-9 at TB3

Mode 1 2 3 4 5 27 6 7 8 9 2810 291112131415 301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2StopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevPot UpRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3RevSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type12 AccPot UpJogFwdFwdPot OnFwd2nd AccLocRemStop Type12 AccPot upLocRemProc TrimFlux EnSpdTrq2SpdTrq2FwdSpdTrq2Proc TrimFlux EnProc TrimJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd 3Spd 312 DecPot DnLocRemJogSpd 3Spd 3Pot Up1st DecSpd 3Spd 312 DecPot DnStop TypeRampResetSpdTrq1SpdTrq2RampSpdTrq1ResetResetRampSpd 3

Input 7StatusSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Pot Dn2nd DecSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Proc TrimFlux EnResetSpd 2Spd 2Spd 2Spd 2Spd 2

Input 8StatusSpd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1

Chapter 5Programming Parameters

5ndash83

MOP Value[Mop Value]

Parameter Number 394Parameter Type SourceDisplay Units x RPMDrive Units 4096 = Base SpeedFactory Default 00Minimum Value Negative Speed LimitMaximum Value Positive Speed Limit

This parameter displays the MOP value

IO Deceleration Rate 2[Decel Rate 2]

Parameter Number 392Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

Mop Increment[Mop Increment]

Parameter Number 393Parameter Type SinkDisplay Units xx RPM (RPM per sec)Drive Units 4096= Base SpeedFactory Default 10 of base speedMinimum Value 00 RPMMaximum Value Base Speed

This parameter determines the rate ofincrease or decrease to the MOP valueper time

IO Deceleration Rate 1[Decel Rate 1]

Parameter Number 391Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

IO Acceleration Rate 2[Accel Rate 2]

Parameter Number 390Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the 0 rpm tobase speed ramp rate

IO Stop Select 2[Stop Select 2]

Parameter Number 388Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 52 = Current limit stop1 = Ramp Stop0 = Coast Stop

IO Acceleration Rate 1[Accel Rate 1]

This parameter determines the 0 rpm tobase speed ramp rate

Parameter Number 389Parameter Type SinkDisplay Units xx SecDrive Units 10 = 1 secFactory Default 10 secMinimum Value 00 secMaximum Value 65535 sec

Chapter 5Programming Parameters

5ndash84

Pulse Value[Pulse Value]

Parameter Number 399Parameter Type SourceDisplay Units xx RPMDrive Units 4096 = Pulse ScaleFactory Default 00Minimum Value ndash8 x Pulse ScaleMaximum Value +8 x Pulse Scale

This parameter displays the pulse inputvalue

Pulse Offset[Pulse Offset]

Parameter Number 398Parameter Type SinkDisplay Units xx RPMDrive Units NoneFactory Default 00Minimum Value ndash Pulse ScaleMaximum Value + Pulse Scale

This parameter determines the minimumspeed the pulse input will go to

This parameter determines the pulse inputspeed that is equal to 4096 drive units

Pulse Scale[Pulse Scale]

Parameter Number 397Parameter Type SinkDisplay Units x RPMDrive Units 4096Factory Default 1750Minimum Value ndash6000Maximum Value +6000

SP Comm Retries[SP Comm Retries]

Parameter Number 404Parameter Type SourceDisplay Units xDrive UnitsFactory Default 00Minimum Value 0Maximum Value 65535

This parameter monitors the amount ofSCANport communications errorsthat have occurred since power up

Pulse PPR[Pulse PPR]

Parameter Number 395Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024Minimum Value 500Maximum Value 20000

This parameter determines the pulse inputpulses per revolution

Pulse Single or Double Edge[Pulse Edge]

Parameter Number 396Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 2Enums1 = 1 Edge2 = 2 Edges

This parameter determines if rising (single)or rising and falling (double) edges arecounted for the pulse input

Chapter 5Programming Parameters

5ndash85

Fault Status[SA Fault Status]

Parameter Number 407Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1110 0001 0111 1111Enums

This parameter displays the fault status ofthe SCANport device1 = Fault0 = No Fault

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4 ndash 20 mA LossBit 9 ndash Not UsedBit 10 ndash Not UsedBit 11 ndash Not Used

Bit 12 ndash Not UsedBit 13 ndash Illegal Drive Type (Not Configurable)Bit 14 ndash Diff Drive Type (Not Configurable)Bit 15 ndash SCANport error (Not configurable)

Warning Status[SA Warn Status]This parameter displays the warning statusof the SCANport device timeouts1 = Warning0 = No Warning

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6

Parameter Number 408Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

Bit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Fault Select[SA Fault Select]

Parameter Number 405Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter chooses whether a SCAN-port device causes a drive fault a warningbased on lsquoSA Warn Selrsquo (P406) or doesnothing1 = Fault0 = WarningNothing

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Warning Select[SA Warn Select]

Parameter Number 406Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter selects whether a SCAN-port device timeout causes a warning ordoes nothing1 = Warning0 = Does Nothing

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Chapter 5Programming Parameters

5ndash86

This Page Intentionally Blank

Chapter 6

6ndash1

Troubleshooting

General Chapter 6 provides information to guide you in troubleshooting The 1336FORCE Drive employs extensive diagnostics to aid in correcting manymalfunctions that may occur in the system This guide is designed to helpyou interpret the diagnostic response of the Drive when a malfunctionoccurs Possible corrective measures will be explained to help you get theDrive repaired or functional as quickly as possible for most types ofmalfunctions

ATTENTION Only qualified personnel familiar with the1336 FORCE drive system and the associated machinery shouldperform troubleshooting or maintenance functions on the DriveFailure to comply may result in personal injury andorequipment damage

During Start-up you should have recorded board jumper settings for eachboard board software version numbers and the drive and motor nameplate data in Table 4A If it was not record it at this time before beginningany troubleshooting sequences

Required Equipment For initial troubleshooting a programming device is required to read faultcodes In addition to a programming device the following should beavailable before initiating any troubleshooting procedures

Digital Multimeter (DMM) capable of 1000V DC750VAC with one megohm minimum input impedance

Clamp on Ammeter (ACDC) with current ratings to 2X rated current output of 1336 FORCE AC Drive

Dual trace oscilliscope with differential capability digital storage two X10 and one X100 calibrated probes (optional but recommended)

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

Hand tachometer used to monitor motor velocities Programming Device Instruction Manual and Adapter Board

Reference Manuals

Chapter 6Troubleshooting

6ndash2

Fault Descriptions Fault Display ndash Faults are indicated by showing a decimal number of up to5 characters relating to the fault (Figure 61) or by flashing LED sequenceson the Main Control Board The fault will be displayed until a Drive resetor Clear Faults is initiated A Drive Reset will clear all faults but a ClearFaults Command will only clear soft and warning faults Refer to Tables6A amp 6B for a listing and description of the various faults Whenapplicable a possible solution will also be provided

Figure 61Typical Fault Description Display

5500 2

Fault Code Definition ndash The fault code is a 5 character decimal numberthat is defined as follows

SAXXX S = Source DesignatorA = Area DesignatorXXX = Internal Fault Code (0 thru 999)

The Source Designator (S) is the 1st digit of the number0 = Main Board Velocity Processor (VP)1 = Main Board Current Processor (CP)2 = Adapter Processor (PLC Comm Standard Adapter etc)3 = Domino Processor (DP)4 = Reserved

Area Designator (A) is the 2nd digit of a number0 = General1 = Motor2 = Inverter3 = Mtr Control4 = Adapter5 = External Device6 = Communications7 = Reserved8 = Reserved9 = ConverterBrake

Internal Fault Code (XXX)The internal fault codes (last three digits of number) are identified in Table6A thru 6C

Chapter 6Troubleshooting

6ndash3

Table 6A1336 FORCE Main Control Fault Descriptions

Fault Fault Text Parameter

1300013001130021300313004

03008030090301003011030120301302014

12016120171201812019140201602116022

040240302503026120270202803029

120321203312034120351203612037

050480204901050010510105201053050540205503057030580905902060020610606202063

CP EPROM FltCP Int RAM FltCP Ext RAM FltCP Stack RAM FltVP MBI Failure (Dual Port)

VP EPROM FltVP Int RAM FltVP Ext RAM FltVP Stack RAM FltCP MBI Failure AP MBI Failure Power EEPROM Flt

Bus OvervoltageTransistor DesatGround FaultIOC FaultSW Malfunction MS Cable LossMS Ena Timeout

AP Handshake ErrorAbsolute OverspdAnalog Spply TolAtuneDiag FailInv Temperature VP ndash SW Error

Ridethrough TimePrecharge TimeBus DropBus UndervoltBus Drop Cycles gt5Open Circuit

Vel FB LossInv Overtemp PndMtr TemperatureMotor Overld PndMotor Overld TrpMotor StalledExternal Flt InRMS FaultParameter LimitMath LimitDB OvertempAC Contactor Inv Overld PndDrv to Drv ErrorInverter Overload

Bit

8080808080

80808080808080

81818181818181

818181818181

828282828282

838383838383838383838383838383

0001020304

08091011121314

00010203040506

080910111213

000102030405

000102030405060709101112131415

LED

CP Red 1 blinkCP Red 2 blinkCP Red 3 blinkCP Red 4 blinkCP Red 5 blink

VP Red 1 blinkVP Red 2 blinkVP Red 3 blinkVP Red 4 blinkVP Red 5 blinkVP Red 6 blinkVP Red Flashing

CP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid Red

VP Solid RedVP Flashing RedVP Flashing RedCP VP Flash RedVP Solid RedVP Solid Red

CP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing Red

VP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Solid RedVP Flashing RedVP Flashing RedVP Flashing Red

Fault Type

SoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftHard

HardHardHardHardHardHardHard

HardSoftSoftSoftHardHard

SoftSoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftSoftSoftSoftSoftSoftHardSoftSoftSoft

Chapter 6Troubleshooting

6ndash4

The first digit in the 5 character fault number for Standard Adapter Boardfaults is always 2 indicating the source is an Adapter Processor

0 = Velocity Processor (VP)1 = Current Processor (CP)2 = Adapter Processor (Standard Adapter or PLC Comm)3 = Domino Processor (DP)

The Area Designator (2nd digit) and internal fault codes (last three digits)remain the same as described under the Fault Code Definition on page 6ndash2Listed below are the fault codes for the Standard Adapter Board For aPLC Comm Adapter fault codes refer to the PLC Comm Adapter manual

Table 6B1336 FORCE Standard Adapter Fault Descriptions

Fault Description Type24001240022400324004240052400624007

24017240182401924020240212402224024

240292403024031

MBI FailureBRAM FailureVP Handshake FailureCP Handshake FailureVP Mode FailureCP Mode FailureSA Language Failure

SP Port 1 FailureSP Port 2 FailureSP Port 3 FailureSP Port 4 FailureSP Port 5 FailureSP Port 6 Failure4 ndash 20Ma Loss

Drive Type DifferenceIllegal Drive TypeSP Internal Failure

Hard FaultHard FaultHard FaultHard FaultHard FaultHard FaultHard Fault

FaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNone

Soft FaultHard FaultSoft Fault

Fault TextHW MalfunctionHW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionHW Malfunction

SP PT1 TimeoutSP PT2 TimeoutSP PT3 TimeoutSP PT4 TimeoutSP PT5 TimeoutSP PT6 Timeout4 ndash 20Ma Loss

Diff Drv TypeIllegal Drv TypeSW Malfunction

Chapter 6Troubleshooting

6ndash5

FaultWarning Handling The lights on the motor control board indicate the status of the Current andVelocity processors Both the Current and Velocity processors have bothGreen and Red LEDrsquos associated with their status Table 6C explains themeaning of the CP and VP status lights

Table 6CCP and VP Status

Status Meaning

Solid GreenFlashing GreenFlashing RedSolid Red

No FaultDrive WarningDrive Soft FaultDrive Hard Fault

VP LED CP LED

D2D2D3D3

D4D4D5D5

Hard Fault ndash A Drive hard fault is a fault that trips the Drive causing it tocome to a stop This type of fault requires the user to perform a DriveReset to remove the fault

Soft Fault ndash A Drive soft fault will also cause the drive to trip and cometo a stop This type of fault can be removed by doing a Clear Faultscommand after the condition that caused the Drive to trip has beenremoved

Drive Warning ndash A Drive Warning is simply an undesirable conditionthat exists within the Drive It will not cause the Drive to trip A ClearFaults command after the warning condition has been alleviated willremove the warningEverytime the Drive has any of the faults or warnings decribed above afaultwarning message is logged in either the fault or warning queue Thisis designed to aid in troubleshooting

Motor Control Board Faults amp Warnings ndash There are two types of faultand warning queues for the Main Control Board configurable andnonconfigurable

Configurable Faults amp Warnings ndash The configurable fault queuecontains faults that can be set up to either trip the drive or provide only avisual warning while the drive continues to operate

Nonconfigurable Faults amp Warnings ndash The nonconfigurable fault queuecontains faults that you canrsquot disable These faults are the result of acondition that could damage the Drive if allowed to persist The non ndashconfigurable fault queue faults can be viewed in parameter 81 (Fig 62)

In addition to configurable amp nonndashconfigurable faults there are theldquopowerup faultsrdquo

Powerup Faults ndash The powerup faults appear in parameter 80 (Fig 63)These faults primarily consist of problems that could occur with powerupof both the current and velocity processors

Adapter Board Faults ndash Adapter board faults are setup and displayed inseparate parameters from the Main Control Board

Chapter 6Troubleshooting

6ndash6

Figure 62Parameter 81 (Nonndashconfigurable Fault Status)

DC Bus Overvoltage Trip

Transistor Desaturation Trip

Groundfault Trip

Instantaneous Overcurrent Trip

Adapter Comm Loss detected by CP

MasterSlave Cable Loss

MasterSlave Enable Timeout

Not Used

Adapter Comm Loss detected by VP

Absolute Overspeed

Analog Power Supply Tolerance

Autocommission or Transistor Diagnostic Fail

Inverter Temperature Trip

Software Malfunction detected by VP (Task Overrun)

Software Malfunction detected by VP (Illegal Interrupt)

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 63Parameter 80 (PowerupDiagnostic Fault Status)

CP PROM Failure

CP Internal RAM Failure

CP External RAM Failure

CP Stack RAM Failure

CPVP Dualport RAM Failure

NOT USED

NOT USED

NOT USED

VP Prom Failure

VP Internal RAM Failure

VP External RAM Failure

VP Stack RAM Failure

VPCP Dualport RAM Failure

VPAP Dualport RAM Failure

Base Drive EE Failure

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates fault conditions in the Drive that CANNOT be configured as warnings When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false Bit 0ndash3 are detected by hardwareand 4ndash15 are detected by software

This word parameter indicates a fault condition which has been detected during power up or reset of the drive Wherethe bit is set to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash7

Current Processor Faults amp Warnings ndash Both the fault and warningqueues are configurable for either the Current or the Velocity processorYou can configure which Current processor faults you want to trip theDrive by setting Parameter 86 When the Drive trips on one of the faultsset in parameter 86 the CP light on the Main Control board will turn redWhen the drive trips it will coast the motor to a stop Parameter 87 hasthe same bit definitions as parameter 86 but instead of tripping the Drivewill display a warning fault which in turn causes the CP light to flashgreen indicating a warning The Drive will continue to run when there is aCP warning Parameter 82 displays which CP fault caused the Drive totrip while parameter 84 displays any CP warnings that have occurred

Most of the setup for the current processor FaultWarning configurationdeals with DC Bus conditions These Bus conditions deal with the Busprecharge and any type of ride through conditions

Configuring CP Faults and Warnings ndash You can configure which of thefollowing faults you want to trip the drive by using CP FaultWarningConfiguration Select (parameter 86) and CP WarningNone ConfigurationSelect (parameter 87) Parameters 86 and 87 both have the following bitdefinitions

Thisbit

With this text Is defined as

0 RidethruTime A bus ridethrough timeout occurred

1 Prechrg Time A precharge timeout occurred

2 Bus DropA bus voltage drop of 150V below the bus trackervoltage This is covered in detail later in thischapter

3 Bus UndervltA bus voltage drop to a level below the value setin Undervoltage Setpoint (parameter 224)

4 Bus Cyclesgt5More than 5 ridethroughs occurred within a 20second period

5 Open CircuitThe fast flux up current is less than 50 ofcommanded

6ndash15 RESERVED Always leave zero

For each condition that you want the drive to fault on set thecorresponding bit in Fault Select 1 When the drive trips on a conditionthat you set to fault the drive how the drive reacts depends on whichcondition occurred

For bits 0 through 5

bull The red CP light turns on

bull The motor coasts to a stop

Chapter 6Troubleshooting

6ndash8

For each condition that you want the drive to display a warning fault onyou need to

1 Set the corresponding bit in CP Warning None Configuration Select

2 Make sure the corresponding bit in CP Fault Warning ConfigurationSelect is set to 0

When the drive trips on a condition that you set to display a warning

bull The CP light flashes green

bull The drive continues to run

If a particular bit is not set in either CP Fault Warning ConfigurationSelect or CP Warning None Configuration Select the drive ignores thecondition when it occurs

Most of the faultwarning configuration options deal with DC busconditions These bus conditions deal with the bus precharge and anytype of ridethrough conditions The bus precharge and ridethroughconditions are covered later in this chapter

bit = 1

bit = 0

Trips Drive

Fault

Fault Select

Reports as Warning

bit = 1

bit = 0

Reports as Warning

Warning Select

No Report Ignored

Chapter 6Troubleshooting

6ndash9

To understand the precharge and ridethrough faults you need a basicunderstanding of how these functions work as well as the options thatyou can use to alter the way precharge and ridethrough operate in the1336 FORCE drive

Understanding Precharge

The precharge of the drive has different circuits depending on drive sizeFor the precharge operation for large horsepower (40 hp and larger)standalone drives the precharge starts the SCR phase advance andcompletes precharge when the bus is stable For all other drive typesprecharge is completed after a stable bus voltage is achieved and theprecharge device (SCR or relay) byndashpasses the precharge resistor Forcommon bus operation set bit 12 in Precharge Ridethrough Selection(parameter 223) The drive current and voltage ratings stored in EEPromdetermine the standalone operation

With the default configuration the following conditions are needed tocomplete precharge

bull a stable bus voltage for a minimum of 300 milliseconds

bull a bus voltage greater than the value set in Undervoltage Setpoint (parameter 224)

bull a valid control status from the precharge board if present

You can modify the default configuration for common bus drives byusing the external fault (input) and the precharge exit option

bull You can use the external fault input with a cabinet disconnect switchto force precharge when the disconnect is opened and the drive is dis-abled This may reduce current stress when the disconnect is closedagain

bull You can use the exit precharge option to let the precharge completeafter the precharge timeout period (30 seconds) when the bus voltageis not stable All other conditions must be met This is often used inthe case of common or shared bus configurations where other drive(s)may be causing bus voltage variations Only use this option whereneeded otherwise excessive inrush current could open or weaken theline fusesNOTE The precharge timeout fault (Parameter 86) must be disabledto use this option

Before you can enable the inverter all drive types must complete a firsttime precharge This is required even if you have set the disableprecharge function by setting bit 14 of PrechargeRidethrough Selection(parameter 223)

Understanding Prechargeand Ridethrough Faults

Chapter 6Troubleshooting

6ndash10

A filtered or slow average of the bus voltage is developed as areference or bus voltage tracker to determine if a line drop out hasoccurred If a 150 volt (or greater) drop in present bus voltage comparedto the filtered bus voltage occurs the drive can start a ridethrough Theridethrough function

bull disables the drive

bull restarts a precharge

bull waits for the bus to return to within 75 volts of the bus voltage track-errsquos voltage value before starting again

You can use bits 0ndash4 of BusBrake Opts to control the slew rate of thebus voltage tracker Refer to the section on the bus voltage tracker laterin this chapter for additional information

Understanding Ridethrough

Ridethrough provides current inrush protection and extended logicoperating time if the power lines drop out while the drive is runningThe drive is immediately disabled when it senses that the incomingpower lines dropped out (bus capacitor voltage drop) The energy storedin the bus capacitors keeps the logic supplies running for an extendedtime If the power lines return before the logic power supplies losepower you can configure the drive to resume operation without systemintervention (default) The ridethrough timeout is set for two secondsThis means that the drive is configured to fault (default setting) and notautondashrestart if the dropout lasts more than two seconds

ATTENTION You must determine safe autondashrestart andfault configurations at the system and user level Incorrectselection(s) may result in safety concerns andor drivedamage

CP Fault Warning Configuration Select 1 (parameter 86) and CPWarning None Configuration Select (parameter 87) let you specify howyou want the drive to report specific precharge and ridethroughinformation

Ridethrough also protects the drive from excessive inrush current whenthe power returns by entering a precharge mode when ridethrough isinitiated After precharge has finished the drive can completeridethrough and resume normal drive operation The drive is enabledagain after the bus rises to within 75 volts of the bus voltage trackervalue

Chapter 6Troubleshooting

6ndash11

ATTENTION If you are using an external logic powersupply the drive may be able to stay in an indefiniteridethrough state If the power returns to the drive (muchlater) the drive automatically restarts You must thereforehandle the control of enable faults timendashouts driveconfiguration and safety issues at the system level

Use the following parameters to configure the precharge and ridethroughfunctions

bull CP Fault Warning Configuration Select (parameter 86)

bull CP Warning None Configuration Select (parameter 87)

bull Precharge Ridethrough Selection (parameter 223)

bull Undervoltage Setpoint (parameter 224)

In addition Test Select 1 (parameter 93) and Test Data 1 (parameter 92)contain software testpoints that provide additional precharge information

Configuring the Faults and Warnings for Precharge

You can use CP Fault Warning Configuration Select and CP Warning None Configuration Select to enable faultwarning conditions when theappropriate bit is set (1) If a bit is clear (0) in CP Fault WarningConfiguration Select you can choose to have the condition reported as awarning by setting the bit in CP Warning None Configuration SelectThe following are the bits that pertain to precharge

Thisbit

With this text When set generates a fault when

0 RidethruTimeThe ridethrough time exceeds 2 seconds(default see P226)

1 Prechrg TimeThe precharge time exceeds 30 seconds(default see P225)

2 Bus DropThe bus voltage drops 150 volts below thebus tracker voltage This is the level wherethe drive would normally enter ridethrough

3 Bus Undervlt

The bus voltage drops below the level set inUndervoltage Setpoint (parameter 224) Thisis the level where the drive would enterridethrough if it occurs before a 150 volt dropin bus voltage

4 Bus Cyclesgt5

At least 5 ridethrough cycles have occurredwithin a 20 second period This indicates aconverter problem or a problem withincoming power Consider checking theincoming power for a phase loss

Chapter 6Troubleshooting

6ndash12

Using Precharge Ridethrough Selection to ChangePrechargeRidethrough Options

You can use Precharge Ridethrough Selection (parameter 223) tochange how precharge and ridethrough work Precharge RidethroughSelection is a bit encoded word that disables the following functionswhen the appropriate bit is set (1)

Thisbit

Has this definition

0 Sets the bus voltage tracker slew rate to 10 voltssecond

1 Sets the bus voltage tracker slew rate to 5 voltssecond

2 Sets the bus voltage tracker slew rate to 05 voltssecond

3 Sets the bus voltage tracker slew rate to 005 voltssecond

4 Sets the bus voltage tracker slew rate to 0005 voltssecond

5 Reserved Leave zero

6 Reserved Leave zero

7Setting this bit selects the slave drive of a MasterndashSlavecombination to use the master drive analog frequency referencein place of the slave encoder input

8Enables fast flux up This is covered in more detail later in thischapter

9 Reserved Leave zero

10 Reserved Leave zero

11 Forces an exit from precharge after the precharge timeout

12 Identifies the drive as a common bus converter

13

Disables faults or warnings while the drive is disabled Thisallows power up and down the bus for a common bus systemwithout faulting even if the faults or warnings are enabled Forexample faults or warnings only occur if the drive is runningThis may be desirable when external power supplies are used

14

Disables the precharge function after initial power up Any busdrop or undervoltage will not result in precharge This maydestroy the drive if power returns to the system This should beused where you control the input impedance or with a front endconverter that is current limited

15

Disables the ridethrough and precharge functions If the powerlines drop out the drive attempts to continue operation as longas any power is available This may destroy the drive if powerreturns to the system This should be used only where youcontrol the systemrsquos incoming power

Chapter 6Troubleshooting

6ndash13

Using Undervoltage Setpoint

You can use Undervoltage Setpoint (parameter 224) to set the level ofbus voltage that must be present to complete precharge and a level whereridethrough can be initiated If configured as a faultwarningUndervoltage Setpoint sets the bus voltage level that faultswarns thedrive The bus voltage level that is used is determined as follows

Undervoltage Setpoint Rated Inverter Input Voltage (parameter 221) sqrt(2) = bus voltage level for ridethroughs faults or warnings

Using Testpoint Select 1 and Testpoint Data 1 to View SoftwareTestpoints

Additional information concerning precharges and ridethroughs isavailable through Testpoint Select 1 (parameter 273) and Testpoint Data1 (parameter 274)

Viewing the Calculated Undervoltage Value of Bus Voltage

To view the value of the calculated undervoltage

1 Enter a value of 24 into Testpoint Select 1

2 Monitor Testpoint Data 1

You can use this to check the actual bus voltage that causes anundervoltage condition

Checking the Status of the Precharge

To view the precharge status enter a value of 12 into Testpoint Select 1and then monitor Test Data 1 for the precharge status The prechargestatus is bit encoded as follows

Thisbit

When set indicates that

0The precharge function has been completed and the prechargedevice should be on The drive can be enabled only after thisbit is set

1The drive is in ridethrough Precharge must be completed andthe bus must return to within 75 volts of the bus voltage trackerbefore normal drive operation can resume

2 A prechargendashinitiated condition is in ridethrough

3A precharge has been requested due to an external fault (input)Common Bus Configuration only

4The converter is ready for precharge and the controller maystart its precharge function The external precharge board is okif present

Chapter 6Troubleshooting

6ndash14

5The measured bus voltage is not stable (there is a variation ofgreater than plusmn25 volts) and the precharge cannot finish

6 The DC bus voltage is less than line undervolts

7The precharge function cannot complete because the measuredbus voltage is less than 75 volts below the bus voltage trackerThis only applies to precharging after a ridethrough

8 The precharge device has been commanded ON

9 Not used

10 An exit from precharge was requested

11 Precharge was skipped due to an enable dropout

12 An initial (first) precharge is executed

13 A high horsepower drive type is being used

Enabling Fast Flux Up

You can use fast flux up to achieve rated flux conditions andconsequently high torque as fast as possible after an enable Underdefault conditions (no fast flux up) the drive brings the motor to ratedflux conditions in a time proportional to the rotor time constant of themotor These times range from 50 milliseconds for small motors toseveral seconds for large motors If a high load is attempting to bestarted no acceleration occurs until that time has elapsed Enabling fastflux up can decrease that time by a factor of 5 to 10

You can enable the fast flux up function of the drive by setting bit 8 ofPrecharge Ridethrough Selection (parameter 223) In this case

Use Testpoint Select 1 (parameter 273) to check the approximatefluxing time Enter a value of 86 into Testpoint Select 1 to display thefluxing time in Testpoint Data 1 (parameter 274) The time delay isgiven in seconds x 0000977 If the flux time is 0 no fast flux up occursand the drive starts normally If at least 50 of the commanded currentis not measured you can configure the drive to fault at this time usingCP Fault Warning Configuration Select (P86)

Chapter 6Troubleshooting

6ndash15

Forcing the Drive to Complete a Precharge

In some cases the precharge may not complete due to external busdisturbances Setting bit 11 in BusBrake Opts forces the precharge tocomplete at the precharge interval (default 30 seconds) This may causeprecharge damage and should only be used when large inrush currentscannot occur

PrechargeRidethrough Selection (parameter 223) also lets you select arate called a slew rate for the bus voltage tracker The bus voltagetracker slowly tracks changes in the actual bus voltage If the actual busvoltage drops 150 volts or greater below the current value of the busvoltage tracker the drive automatically disables modulation and entersprecharge

Important You should only use the bus voltage tracker if you arehaving ridethrough problems The bus voltage trackeradjusts the bus sensitivity to ridethrough for cases wherethere is an unstable bus

By changing the rate used for the bus voltage tracker you can make yoursystem more or less sensitive to changes in the actual bus voltage Forexample if your drive currently enters precharge after the motor exitsregeneration you may need to change your slew rate

Figure 64 shows an example of the filtered bus voltage reference

Figure 64 Example Bus Voltage Line

Volts

Time

150V

Bus voltage tracker

A

B

CActual bus voltage

At point A the motor was in regeneration so the value of the bus voltagetracker slowly increased

Understanding the BusVoltage Tracker

Chapter 6Troubleshooting

6ndash16

At point B the motor was no longer in regeneration and the bus voltagehad dipped below the nominal range If the drive compared point B withpoint A the drive would have seen a bus drop of 150V and enteredprecharge However because the drive compared point B with the busvoltage tracker the bus drop was less than 150V and the drive continuedoperating

At point C the bus voltage had dropped 150V and the drive entered aprecharge state

Precharge Ridethrough Selection provides the following options forchanging the slew rate

Thisbit

With thistext

Sets the slew rate to

0 Slew Rate 110Vsecond This option is the most sensitive tochanges in the actual bus voltage

1 Slew Rate 2 5Vsecond

2 Slew Rate 3 05Vsecond

3 Slew Rate 4 005Vsecond

4 Slew Rate 50005Vsecond This option is the leastsensitive to changes in the actual bus voltage

If all bits are clear (0) the slew rate is 005Vsecond If more than onebit is set the first bit that is set is used for the slew rate For mostapplications the default slew rate of 005Vsecond which is 1 volt in 20seconds should be appropriate

Chapter 6Troubleshooting

6ndash17

Velocity Processor Faults amp Warnings ndash You can configure whichvelocity processor faults you want to trip the drive by setting Parameter 88(Figure 65) When there is a velocity processor fault the VP light on theMain Control board will blink red (soft fault) for configurable VP faultsWhen this happens the drive will shut off and coast the motor to a stopVP faults can be viewed in parameter 83 (Figure 66) Configurable VPwarnings can be setup in Parameter 89 (Figure 67) and viewed inparameter 85 When a configurable VP warning exists the VP light willbe flashing green but the drive will continue to run Velocity processorwarning faults can be viewed in parameter 85 (Figure 68)

Figure 65 Parameter 88 (VP FaultWarning Configuration Select (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 85 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive will be reported as a FAULT otherwise the condition is reported as aWARNING

Chapter 6Troubleshooting

6ndash18

Figure 66Parameter 83 (VP Configurable Fault Status)

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 67Parameter 89 (VP WarningNone Configuration Select (bits))

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive fault condition Each configuration bit matches the bit definitions of Parameters 85 88 and 89 When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Foldback (IT)This word parameter indicates conditions detected by the Velocity Processor (VP) that will be reported as either a drivefault or warning or not reported at all (ignored) Each configuration bit matches the bit definitions of Parameters 83 85and 88 When a bit is set to ldquo1rdquo the corresponding condition in the Drive will be reported as configured by parameter 88When the bit is set to ldquo0rdquo the condition is not reported

Chapter 6Troubleshooting

6ndash19

Figure 68Parameter 85 (VP Configurable Warning Status (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Foldback (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash20

AutondashTuning Test Procedure AutondashTuning is a procedure which involves the running of a group of testson the motordrive combination Some of these tests check the Drivehardware and others configure Drive parameters for torque control with theattached motorNOTE The Quickstart procedure in Chapter 4 will take you stepndashbyndashstepthrought the Autotuning Procedure The information presented hereexplains how to manually tune specific areas

ATTENTION Power must be applied to the Drive and themotor must be connected for some of the following tests Someof the voltages present are at incoming line potential To avoidelectrical shock hazard or damage to equipment only qualifiedservice personnel should perform the following procedures

Test Overview AutondashTuning includes 6 tests all of which can beperformed on a motor which is either coupled or decoupled from loadThese tests include

The power structure and transistor diagnostics routines let you determine ifany problems exist in the power structure of the drive and determine theprobable cause of these problems

The diagnostic software determines hardware problems through a series ofsystem tests These tests are parameter dependent The test results dependon drive size motor size system wiring and other factors that affectsystem voltage and load impedance

In most cases the software can properly determine if faults exist howeverthere may be some installations where some faults cannot be properlychecked In general test results are listed as failed if a questionable case isfound You must review test results with respect to the whole drive systemto properly interpret whether a real problem exists

You can run the transistor diagnostics before a start by setting bits 6ndash8 ofLogic Options (parameter 59) Transistor diagnostics require motor currentso a userndashstart transition is required to run the tests

To run the transistor diagnostics independently

1 In AutotuneDgn Sel (parameter 256) set bit 0 to 1

2 Enable the drive

The green enable light (D1) turns on very briefly (approximately 300 ms)and then turns off This runs only the transistor diagnostics and leaves thedrive disabled after the diagnostics are complete AutotuneDiagnosticsSelection is automatically cleared to zero after the diagnostics have run

Power Structure andTransistor DiagnosticsTests

Chapter 6Troubleshooting

6ndash21

Because the test results depend on your particular system you candisable tests that may give questionable or nuisance faults UseTransistor Diagnostics Configuration (parameter 257) to disableindividual tests

If you want to disableThen setthis bit

Current feedback phase U offset tests 0

Current feedback phase W offset tests 1

Shorted power transistor tests 2

Ground fault tests 3

Open transistor open motor open current feedbackopen gate drive and open bus fuse tests

4

Power transistor U upper for all tests 6

Power transistor U lower for all tests 7

Power transistor V upper for all tests 8

Power transistor V lower for all tests 9

Power transistor W upper for all tests 10

Power transistor W lower for all tests 11

Bits 5 and 13 through 15 are reserved You must leave these bits 0

Even though you set bits 6 through 11 to disable the individual tests youwill still get a fault with the other tests if there is an open in an individualsection

To test specific modules within the power structure you can disable anytransistor or any combination of transistors You must leave alltransistors enabled under most conditions Use sound judgement toverify that power transistor fault conditions do not exist before disablingtests

Chapter 6Troubleshooting

6ndash22

Inverter Diagnostics Result 1 (parameter 258) and Inverter DiagnosticsResult 2 (parameter 259) contain the results of the transistor diagnostictests

Important Serious component failures may occur if unverified powertransistor fault conditions are ignored or tests are disabledbefore you proceed to run the drive under load

Inverter Diagnostics Result 1 (parameter 258) is defined as follows

When thisbit is set (1)

Then

0 A software fault occurred

1 No motor is connected or a bus fuse is open

2 Phase U and W shorted

3 Phase U and V shorted

4 Phase V and W shorted

5 There are shorted modules

6 A ground fault occurred

7 A fault occurred before the short module ran

8 A hardware overvoltage fault occurred

9 A hardware desat fault occurred

10 A hardware ground fault occurred

11 A hardware phase overcurrent fault occurred

12 There are open power transistor(s)

13 There are current feedback faults

Bits 14 and 15 are reserved

Chapter 6Troubleshooting

6ndash23

Inverter Diagnostics Result 2 (parameter 259) is defined as follows

When thisbit is set (1)

Then

0 Transistor U upper shorted

1 Transistor U lower shorted

2 Transistor V upper shorted

3 Transistor V lower shorted

4 Transistor W upper shorted

5 Transistor W lower shorted

6 The current feedback phase U offset is too large

7 The current feedback phase W offset is too large

8 Transistor U upper open

9 Transistor U lower open

10 Transistor V upper open

11 Transistor V lower open

12 Transistor W upper open

13 Transistor W lower open

14 Current feedback phase U open

15 Current feedback phase W open

If any hardware fault occurs during the open transistor testing then thefollowing occur

bull The hardware fault is saved

bull A phasendashtondashphase fault is set

bull All subsequent testing is stopped

bull Some untested devices may be set as open

Typically you should fix the hardware faults and run open tests again todetermine if any opens exist

What Do Open Transistor Faults Indicate

Open transistor faults could indicate an open anywhere in the control orpower section that turns on a given transistor You should check thepower transistor gate drive signal from the control board through thecabling to the optondashisolators continuing through the gate drives andfinally through the cabling to the power transistor This includes thepower wiring to the motor terminals and the motor If the bus voltage istoo low opens could occur bus voltage should be greater than 85 ofnominal line

Chapter 6Troubleshooting

6ndash24

For proper drive operation it is necessary to have

A A specific phase sequence of the motor leads (M1 M2 M3 M1 M3 M2 etc)

B A specific sequence of encoder leads (pulse A leads B etc)These sequences determine the direction of rotation of the motor shaft on application of torque An improper sequence can result in either the motor rotating the wrong direction or no production of torque This test is used to ensure the above conditions by applying a positive torque and manually checking motor rotation and velocity feedback

Set parameter 256 (Autotune Diagnostics Selection) Bit 3 to a value of 1

Running the Inductance Test

A measurement of the motor inductance is required to determine thereferences for the regulators that control torque This test measures themotor inductance and displays it in Lsigma Tune [Leakage Inductance](parameter 237)

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the inductance test make sure that you have entered thecorrect motor nameplate information

To run the inductance test

1 Set bit 2 in AutotuneDiagnostics Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete Theinductance test runs for approximately 1 minute When a reading isobtained in Lsigma Tune perform the resistance test

Typical values for per unit inductance are in the range of 15 to 25motor impedance The value shown in Lsigma Tune is a percent valueIf you are using long wiring runs the typical value for per unitinductance should increase by the ratio of wiring inductance to motorinductance

Phase Rotation Tests

Sequential Torque BlockTuning

Chapter 6Troubleshooting

6ndash25

The motor inductance measuring routine contains several special faultsIf the drive trips during the inductance test check bits 0 through 5 ofMotor Inductance Test Errors (parameter 295)

If this bitis set (1)

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error you need to1 Run the test again2 Consider replacing the circuit boards

2

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

3

AD Overflow at Min gainThe motor terminal voltage measuring circuit is not working properlyYou need to1 Determine if the motor is connected2 Check cable connections between the gate drive and control boards3 Consider replacing the circuit boards4 Investigate any noise problems

4

Enable Dropout The drive enable was lost during the inductance test Consider runningthe test again and monitor the drive enable (bit 9 of Inverter Status(parameter 54) andor the Inv En LED on the main control board

5

Sign error Overflow The calculated inductance is negative1 Run the test again2 Consider replacing the circuit boards

Chapter 6Troubleshooting

6ndash26

The drive requires a motor resistance measurement to determine thereferences for the regulators that control torque The motor resistancetest measures the motor resistance and displays it in Rs Tune (parameter236) The test runs for approximately 10 ndash 30 seconds

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the resistance test make sure that you have entered thecorrect motor nameplate information

To run the motor resistance test

1 Set bit 3 in AutotuneDiagnostic Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete When areading is obtained in RS Tune perform the flux test

Typical values for per unit motor resistance are in the range of 1 to 3as displayed in RS Tune The value in RS Tune increases as the length ofwiring runs increase

Running the ResistanceTest

Chapter 6Troubleshooting

6ndash27

Several faults have been included to identify some problems that canoccur in the resistance measuring routine If the drive trips during theresistance test check bits 0 through 7 of Motor Stator Resistance TestErrors (parameter 296)

If this bitis set

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error run the test again because the value returned is notreliable

2Not Used

4Not Used

6Not Used

8

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

9Software ErrorA software fault is generated when an improper sequence of events hasoccurred Consider running the test again

10

Enable DropoutThe drive enable was lost during the resistance test Consider running thetest again and monitor the drive enable (bit 9 of Inverter Status (parameter54) andor the Inv En LED on the main control board)

Chapter 6Troubleshooting

6ndash28

What Happens If Multiple Opens OccurIf multiple opens occur several additional faults may be indicated Forexample if transistor U upper and U lower are open the test alsoindicates that current feedback U phase is open Because current cannotrun through phase U the current feedback device cannot be checked andtherefore is listed as a malfunction The type of installation oftendetermines which parts of the transistor diagnostics may or may notwork As a result treat the software only as an aid for testing the powerstructure

What Do I Do If I Get a Software Fault

If bit 0 of Inverter Diagnostics Result 1 (P 258) is set to 1 an impropersequence of events has occurred Either the software cannot distinguishwhat is occurring or there is noise in the system If a fault occursrepeatedly the problem may be a fault that the software cannot directlyidentify (for example a voltage breakdown in a snubber) If this is thecase you need to determine through external measurements if theproblem is real or if there is a noise problem In cases where a specifictest continually results in nuisance faults use Transistor DiagnosticsConfiguration (parameter 257) to disable that test

Chapter 6Troubleshooting

6ndash29

Rated motor flux is required in order to produce rated torque at ratedcurrent

Set Parameter 256 Bit 4 to a value of 1 This selects the Motor FluxTest This test measures the amount of current required to produce ratedmotor flux and displays it in Parameter 238 The motor will accelerateto approximately twondashthirds base speed and then coast for severalseconds This cycle may repeat several times The motor will thendecelerate to a low speed before disabling If the motor will notaccelerate increase parameter 40 (Torque Limit) until the motoraccelerates Parameter 41 (Speed Limit) will change the speed the motoraccelerates to

The Transistor Diagnostics Phase Rotation Inductance and Resistance Tests MUST be run before this test can be performed

Toggle the start bit in the logic command to start the test The Driveenable light will go out when the test is complete When a reading isobtained in Parameter 238 record it and then update the torque blockgains If the test still faults refer to the flux test faults

Flux Test Faults Typical values for rated motor flux range from 20 to 50 Several faults have been added to identify some problemsthat can occur in the flux test Should the drive trip while the flux test isbeing performed the cause can be found using parameter 297 Thepossible faults are detailed in Table 6D

Table 6DFlux Test Fault Descriptions

Bit Fault

0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set

Parameter 41 set to less than 33 speedParm 238 lt 0 CurrentParm 238 gt 100 Drive currentMaster_Slave enable dropout faultNot UsedNot UsedNot UsedNot Used

Responses for faultsParm 41 set to less than 33 speed The Autotune speed must be set higher in order to get a meaningful result out of the flux test

Parm 238 lt 0 Current This indicates that either 1 or some of the parameters are incorrectly set electrical noise iswas present motor phasing could be incorrect or other problems exist

Parm 238 gt 100 Drive Current This identifies flux current greater than the drive rated current This may be due to incorrect parameter settings an undersized drive for the motor or a problem motor

MasterndashSlave Enable Dropout This cable interlock between the Master and Slave drive was opened during the test

Running the Flux Test

Chapter 6Troubleshooting

6ndash30

If you experience problems while running the Flux Test it may be necessary to verify that parameters are set properly The parameters listed in Table 6E are the parameters that directly effect the Flux Test

Table 6EFlux Test Parameters

Parameter Number Description

4041

Autotune Torque LimitAutotune Speed

Reverse Speed Limit

Forward Speed Limit

Positive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitCp Operating Options

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high you may trip out on a BusOvervolts (see note)Set this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet to 0 to allow the motor to coast to stoponce the flux test is completed Set to 128to regen to stop even without a brake oncethe flux test is completed

Note The option to regenerate to stop following identification of flux producing current shouldfunction properly with or without a brake or regeneration unit However if a bus overvoltagefault occurs during the regen to stop the identified value of flux producing current can be retrievedand placed in P238 without rendashrunning the flux identification test with the regen to stopdisabled The identified value of flux can be found by using Software Testpoint Parameter 273 andplacing 67 into it The value of flux can be read by the user in the corresponding testpoint dataparameter 274 The value of 274 is the identified flux current and must then be entered intoparameter 238

127

128

175

176

177

178

179

180

227

100 allows 1 pu torque during accel+ndash 68 is the max for the flux test limitedinternally by the software

Chapter 6Troubleshooting

6ndash31

To update the Torque Block gains bit 5 in Parameter 256 must be set to1 and then a Start command must be given to the drive Bit 5 ofparameter 256 will automatically be set back to zero The values inparameters 240 thru 248 will now to be updated

Calculations This procedure takes the motor parameter information from Parameters 236 237 and 238 along with the inverter and motor nameplate data and calculates the proper regulator references for torque control (Fig 69)

Inductance Test Parameter 237

Calculations

Parameter 240

Parameter 241

Parameter 247

Parameter 248

Resistance Test Parameter 236

Flux Test Parameter 238

MOTOR NP DATA

Figure 69Calculations Test

(Parm 228ndash235)

INVERTER DATA(Parm 220ndash227)

Torque Block Update

Chapter 6Troubleshooting

6ndash32

Velocity Loop Autotune The Velocity Loop Autotune procedure for the 1336 FORCE is designed tolet you determine the maximum bandwidth for a particular system Youcan select operation at any bandwidth at or below the maximum bandwidththat has been calculated

The velocity regulator is a PI regulator with a Velocity Feed Forward term(KF Parm 141) The KF term is user chosen and describes the systemresponse to a change in velocity reference only By decreasing the value ofKF the overshoot of the system will be reduced When KF is 10 thevelocity loop behaves like a normal PI loop with the overshoot equalingapproximately 10 If KF is reduced to 07 (the recommended operatingpoint) then the overshoot is typically less than 1 if KF is reduced evenfurther to 05 (the lowest recommended value) the response becomesunderdamped with no overshoot

The velocity loop KI term (parm 139) is the integral term of the PIregulator The KI term is adjusted to remove any steady state instabilities

The velocity loop KP term (Parm 140) is the proportional term of the PIregulator The KP term is adjusted to determine how the drive responds toa step change in load

IMPORTANT If the velocity regulator is tuned too responsive the motorand load could potentially chatter If tuned nonndashresponsive the regulatorwill seem sluggish The value for Kp will increase as the system inertiaincreases For High inertia systems Kp may be greater than for KI Forlow inertia systems (systems with inertias under 1 Sec) KI will typicallybe larger than KP

Figure 610Velocity Regulator Functional Diagram

Veloc-ity

Time

0

50

KP

KFKI

The list of parameters that must be set to achieve proper velocity looptuning is detailed in Table 6F

Chapter 6Troubleshooting

6ndash33

Table 6FVelocity Loop Parameters

Parameter Number Description

4041

53

Autotune Torque LimitAutotune Speed

Torq Mode Select

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet to Value of 1 for encoder fdbkSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high may trip on a Bus OvervoltagefaultSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not acceleratePulses Per Revolution

127

128

150175

176

177

178

179

180

235

75 allows 75 rated torque during accel75 allows Autotune velocity to go to 75Percent base motor velocitySet to Value of 1 for encoder fdbk

Reverse Speed Limit

Forward Speed Limit

Feedback Device TypePositive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitEncoder PPR

Chapter 6Troubleshooting

6ndash34

Hardware Testpoints The Hardware Testpoints on the Series B 1336 FORCE Control Board areillustrated in Figure 611 The accompanying table details the expectedoutput from each testpoint

Figure 611Main Control Board Test Points

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

Adapter Board Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

TP1TP2TP3TP4TP5TP6TP7TP8TP9

TP10TP11TP12TP13

TP14TP15

DGND+5V+15VAGNDndash15Vndash25 to 25 V0 to 25V+5V when faultedCHA Encoder Fdbk 0 to 5 Square Wave with respect to TP1 or TP25 DGNDTest DAC2 (Development Use Only)Square Wave (Follows Carrier Frequency)Test DAC1 (Development Use Only)CHB Encoder Fdbk 0 to 5V Square Wave with respect to TP1 or TP25 DGNDBus Voltage FDBK (4V = 650 vdc)Feed Forward Voltage (0 to +ndash 75V sine wave)

Flt Trp

1 2 3

1 2 3

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Testpoint Application

TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

Ia FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIc FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIqs Command (0 to +ndash 10V sine wave)Ids Command (0 to +ndash 10V sine wave)Master Reset (5V = Reset)Id FDBK (0 to +ndash 5V sine wave)Feed Forward Voltage (0 to +ndash75V sine wave)ISO 12V for TachometerEncoderISO RTN for TachometerEncoderDGND

Application

Chapter 6Troubleshooting

6ndash35

The Hardware Testpoints on the PLC Comm Adapter Board are illustrated inFigure 612 The accompanying table details the expected output from eachtestpoint

Figure 612PLC Comm Board Test Points

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

TP9 TP10 TP11 TP12 TP13 TP14

TP19

TP20 TP21 TP22 TP23 TP15 TP16 TP17 TP18

TP1TP2TP3TP4TP5TP9TP10TP11TP12TP13TP14

TestpointDGND+5V+15VAGNDndash15VNot UsedNot UsedISO +12 VDCISO ndash5VISO GNDIGND

Application

TP15TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

AIN ndash 1AIN ndash 2AIN ndash 3AIN ndash 4+12VAOUT ndash 1AOUT ndash 2AOUT ndash 3AOUT ndash 4+10V Refndash10V Ref

Application

Chapter 6Troubleshooting

6ndash36

This Page Intentionally Blank

AppendixA

Andash1

Appendix

Motor Cables A variety of cable types are acceptable for 1336 FORCE driveinstallations For many installations unshielded cable is adequateprovided it can be separated from sensitive circuits As an approximateguide allow a spacing of 1 meter (33 feet) for every 10 meters (33 feet)of length In all cases long parallel runs must be avoided

The cable should be 4ndashconductor with the ground lead being connecteddirectly to the drive ground terminal (PE) and the motor frame groundterminal

Shielded Cable ndash Shielded cable is recommended if sensitive circuitsor devices are connected or mounted to the machinery driven by themotor The shield must be connected to the drive ground terminal (PE)and the motor frame ground terminal It is important that the connectionbe made at both ends to minimize the external magnetic field

If cable trays or large conduits are used to distribute the motor leads formultiple drives shielded cable is recommended to reduce or capture thenoise from the motor leads and minimize ldquocross couplingrdquo of noisebetween the leads of different drives The shield should be connected tothe ground (PE) connections at both the motor and drive end

Armored cable also provides effective shielding Ideally it should begrounded only at the the drive (PE) and motor frame Some armoredcable has a PVC coating over the armor to prevent incidental contactwith grounded structure If due to the type of connector the armor mustbe grounded at the cabinet entrance shielded cable should be used withinthe cabinet to continue as far as possible to the coaxial arrangement ofpower cable and ground

In some hazardous environments it is not permissible to ground bothends of the cable armor This is because of the possibility of high currentcirculating at the input frequency if the ground loop is cut by a strongmagnetic field This only applies in the proximity of powerful electricalmachines In this case the ground connection at one end may be madethrough a capacitance which will block the frequency current but presenta low impedance to RF Because of the highly pulsed nature of thecirculating current the capacitor type used must be rated forACndashtondashground voltage Consult factory for specific guidelines

Conduit ndash If metal conduit is preferred for cable distribution thefollowing guidelines must be followed

1 Drives are normally mounted in cabinets and ground connections are made at a common ground point in the cabinet If the conduit is connected to the motor junction box and the drive end no further conduit connections are necessary

Appendix A

Andash2

2 No more than three sets of motor leads can be routed through a single conduit This will minimize ldquocross talkrdquo that could reduce the effectiveness of the noise reduction methods described If more than three drivemotor connections per conduit are required shielded cableas described above must be used If practical each conduit should contain only one set of motor leads

ATTENTION To avoid a possible shock hazard caused byinduced voltages unused wires in the conduit must be grounded atboth ends For the same reason if a drive sharing a conduit isbeing serviced or installed all drives using this conduit should bedisabled This will eliminate the possible shock hazard fromldquocross coupledrdquo drive motor leads

Motor Lead Length ndash Installations with long cables to the motor mayrequire the addition of output reactors or cable terminators to limitvoltage reflections at the motor Refer to the following tables for themaximum length cable allowed for various installation techniques

Appendix A

Andash3

Table A1Maximum Motor Cable Length Restrictions in meters (feet) ndash 380V-480V Drives 1

No External Devices w 1204-TFB2 Term w 1204-TFA1 Terminator Reactor at Drive2

Motor Motor Motor Motor

r e W Motor WA B 1329 1329R HR L A or B 1329 A B 1329 A B or 1329

r e rameDrive kW Motor kW Any

ableAny

ableAny

ableAny

ableCable Type Any

ableCable Type Cable Type Any

ableAny

ableAny

ableDrive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable Shld 3 Unshld

AnyCable Shld3 Unshld Shld3 Unshld

AnyCable

AnyCable

AnyCable

A1 037 (05) 037 (05) 122(40)

335(110)

1143(375)

305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 075 (1) 122(40)

335(110)

1143(375)

305(100)

305(100)

305(100)

305(100)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

Use 1204-TFA1 305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

A2 12 (15) 12 (15) 122(40)

335(110)

1143(375) Unlimited 305

(100)305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 122(40)

335(110)

1143(375)

Applies tonew installa-

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

new installa-tions usingnew motors

d e

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

15 (2) 15 (2) 76(25)

122(40)

1143(375)

e rsand newdrives

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

12 (15) 76(25)

122(40)

1143(375)

For retrofits u s

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

situationscheck withthe motor

u ur

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

the motormanufactur-er for insula-

r

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

22 (3) 22 (3) 76(25)

122(40)

1143(375)

er r sution rating 1829

(600)1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

A3 37 (5) 37 (5) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

22 (3) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 12 4 T 2

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 1204-TFB2229(75)

1829(600)

A4 55-75(75-10)

55-75(75-10)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

B 55-22(75-30)

55-22(75-30)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

C 30-45(X40-X60)

30-45(40-60)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

762(250)

1829(600)

D 45-112(60-X150)

45-112(60-150)

122(40)

305(100)

1143(375)

1829(600)

1829(600)

1829(600)

610(200)

914(300)

E 112-187(150-250)

112-224(150-300)

122(40)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

G 187-448(X250-600)

187-448(250-600)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

Type A Motor Characteristics No phase paper or misplaced phase paper lower quality insulation systems corona inception voltages between 850 and 1000 voltsType B Motor Characteristics Properly placed phase paper medium quality insulation systems corona inception voltages between 1000 and 1200 volts1329R Motors These AC Variable Speed motors are ldquoPower Matchedrdquo for use with Allen-Bradley Drives Each motor is energy efficient and designed to

meet or exceed the requirements of the Federal Energy Act of 1992 All 1329R motors are optimized for variable speed operation andinclude premium inverter grade insulation systems which meet or exceed NEMA MG1 Part 314042

Appendix A

Andash4

Table A2Maximum Motor Cable Length Restrictions in meters (feet) ndash 500V-600V Drives 4

No External Devices w 1204-TFB2 Terminator w 1204-TFA1 Terminator Reactor at Drive 2

Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6

Drive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

A4 075 (1) 075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) 15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

12 (15) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) 22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

NotRecommended

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

Recommended

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

37 (5) 37 (5) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

B 55-15(75-20)

55-15(75-20)

NR 91(30)

152(50)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

C 185-45(25-60)

185-45(25-60)

NR 91(30)

122(40)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

D 56-93(75-125)

56-93(75-125)

NR 91(30)

335(110)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

610(200)

914(300)

1829(600)

E 112-224(150-X300)

112-224(150-X300)

NR 91(30)

213(70)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

G 224-448(300-600)

224-448(300-600)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

H 522-597(700-800)

522-597(700-800)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

NR = Not Recommended1 Values shown are for 480V nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply

values by 085 for high line conditions For input voltages of 380 400 or 415V AC multiply the table values by 125 120 or 115 respectively2 A 3 reactor reduces motor and cable stress but may cause a degradation of motor waveform quality Reactors must have a turnndashturn insulation rating of 2100 volts or

higher3 Includes wire in conduit4 Values shown are for nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply values

by 085 for high line conditions5 Information not available at time of printing6 1329R only

Appendix A

Andash5

Cable Termination Optional Cable Terminator

Voltage doubling at motor terminals known as reflected wavephenomenon standing wave or transmission line effect can occur whenusing drives with long motor cables

Inverter duty motors with phasendashtondashphase insulation ratings of 1600 voltsor higher should be used to minimize effects of reflected wave on motorinsulation life

Applications with nonndashinverter duty motors or any motor withexceptionally long leads may require an output inductor or cableterminator An inductor or terminator will help limit reflection to themotor to levels which are less than the motor insulation value

Tables 2A amp 2B list the maximum recommended cable length forunterminated cables since the voltage doubling phenomenon occurs atdifferent lengths for different drive ratings If your installation requireslonger motor cable lengths a reactor or cable terminator is recommended

Optional Output Reactor

The reactors listed in the 1336 FORCE price list can be used for drive inputand output These reactors are specifically constructed to accomodateIGBT inverter applications with switching frequencies up to 20 KHz Theyhave a UL approved dielectric strength of 4000 volts opposed to a normalrating of 2500 volts The first two and last two turns of each coil are tripleinsulated to guard against insulation breakdown resulting from high dvdtWhen using motor line reactors it is recommended that the drive PWMfrequency be set to its lowest value to minimize losses in the reactorsImportant By using an output reactor the effective motor voltage will belower because of the voltage drop across the reactors ndash this may also meana reduction of the motor torque

Common Mode Cores ndash Common Mode cores will help reduce thecommon mode noise at the drive output and guard against tripping of thedrive caused by capacitive leakage effects The capacitive currents arelarger at higher PWM frequencies

Enclosures Customer Supplied Enclosure Requirements ndash 1336 FORCE drivesinstalled in customer supplied enclosures may be mounted within anenclosure or may be mounted to allow the heatsink to extend outside theenclosure Use the information in Table A3 in combination with theenclosure manufacturerrsquos guidelines for sizing

Appendix A

Andash6

Table A3 ndash Enclosure Requirements

380 ndash 460 VDrives

200 ndash240 VDrives

Catalog NoBase DerateAmps1

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

B001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200B250B300BP300B350BP350B400BP400B450BP450B500B600

500 ndash 600 VDrives

C001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C3005

C3505

C4005

C4505

C5005

C6005

C6505

4512273448657880120149180240291327

256142127344248596578789712015018018024029132740640645945950548157053259967325610121924303545576286109138160252284298354406460505600673

DerateCurve23

NoneNoneNoneFig 1Fig 2Fig 3Fig 44

Fig 5Fig 6Fig 7Fig 8Fig 9Fig 16

NoneNoneNoneNoneFig 10 Fig 1Fig 11Fig 2Fig 12Fig 3Fig 4Fig 44

Fig 13Fig 14Fig 15Fig 15Fig 8Fig 9Fig 16NoneFig 33NoneFig 34NoneFig 35NoneFig 36Fig 17Fig1844444444444

Fig 19Fig 20Fig 21Fig 22Fig 23Fig 24NoneNoneFig 25Fig 26Fig 27Fig 28Fig 29

Heat DissipationDrive Watts 234

1733156200205210215220361426522606755902

152391103117140141141175175193193361361426522606606755902100561910557331295793133593113951485

44

911031171401411411751931933614265224

755890926100014301465150016101700

HeatsinkWatts 2

327248672181993311101110170819442664276937004100

205427039448662872082093393311101110170817081944266427692769370041004805534254556039617563296875700078008767

44

2172513604674925266788999811553197821624

30653625501559357120802089251076712000

TotalWatts 2

491056429211024114313251330206923703186337544555002

35773614976037688619611108110813031303206920692370318633753375445550025810596165106772747071228210793192001025244

308354477607633667853109211741894250426834

38204515594169358550948510425123771400

Base Derate Amps are based onnominal voltage (240 480 or 600V)If input voltage exceeds Drive Rat-ing Drive Output must be derated Refer to Figure 31

1

2Drive Ambient Temperature Rating is40degC If ambient exceeds 40degC thedrive must be derated Refer to Fig-ures 1ndash29

3DriveRating is based on altitudes of1000m (3000 ft) or less If installedat a higher altitude Drive must bederatedRefer to Figure 30

4

Important Two (2) 725 CFM fansare required if an open type drive ismounted in a user supplied enclo-sure

5

Not available at time of publication

Appendix A

Andash7

Derating Guidelines

Drive ratings can be affected by a number of factors If more than onefactor exists consult AllenndashBradley Co

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 21336TndashA015 and B030

75

80

70

85

90

of DriveRated Amps 95

100

65

60

50

55

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 31336TndashA020 and B040

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 41336TndashA025 B050 and BX060

75

80

70

85

90 of Drive

Rated Amps

95

100

65

60

55

45

50

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 11336TndashA010 and B020

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Appendix A

Andash8

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 51336TndashA040

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 61336TndashA050

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 71336TndashA060

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 81336TndashA075 and B150

Carrier Frequency in kHz2 43 5 6

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Appendix A

Andash9

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

65

75

80

70

85

90

of DriveRated Amps 95

100Figure 101336TndashB015

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 91336TndashA100 and B200

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 111336TndashB025

75

80

70

85

90

of DriveRated Amps 95

100

55

65

60

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 121336TndashBX040

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 131336TndashB075

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Appendix A

Andash10

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 141336TndashB100

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 151336TndashB125 and BX150

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 161336TndashB250

70

85

75

65

80

90

95

100 of DriveRated Amps

60

Carrier Frequency in kHz1 4 532 6

Figure 171336TndashB500

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 181336TndashB600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz1 432

Appendix A

Andash11

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 191336TndashC075

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 201336TndashC100

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Figure 211336TndashC125

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

60

1 42 53 6

Figure 221336TndashC150

70

85

75

65

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz1 432 65

Figure 231336TndashC200

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

45

60

Carrier Frequency in kHz1 4 532 6

Appendix A

Andash12

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 241336TndashC250

Carrier Frequency in kHz2

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

60

45

40

1 4 53 6

Figure 251336TndashC400

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 261336TndashC450

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 271336TndashC500

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Appendix A

Andash13

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 281336TndashC600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 291336TndashC650

70

85

75

80

90

95

100 of DriveRated Amps

65

60

55

Carrier Frequency in kHz

50

1 432

of DriveRated Amps

Altitude

m(ft)

100

80

90

0 4000(13200)

3000(9900)

2000(6600)

1000(3300)

Figure 30All Drive Ratings

of DriveRated Amps

Input Voltage

100

80

90

240 480 or 600V Nominal +6+4+2 +10+8

Figure 31Required Only for the following drives1336TndashABCndash025 185 kW (25 HP) at 8 kHz1336TndashABC 22 kW (30 HP) at 6ndash8 kHz1336TndashABC 45 kW (60 HP) at 6 kHz

Appendix A

Andash14

of DriveRated Amps

Figure D-321336E-BP250

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 32BP 250

of DriveRated Amps

Figure D-331336E-BP300

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 33BP 300

Figure 34BP 350

of DriveRated Amps

Figure D-341336E-BP350

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

of DriveRated Amps

Figure D-351336E-BP400

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 35BP 400

Appendix A

Andash15

Figure 36BP 450

of DriveRated Amps

Figure D-361336E-BP450

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 37B700C ampB800C

of DriveRated Amps

Figure D-361336E-B700C and B800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

of DriveRated Amps

Figure D-371336E-C700C and C800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

Figure 38C700C ampC800C

Appendix A

Andash16

Drive Hardware Overview ndash The following illustrations are functionalblock diagrams of the 1336 FORCE Drive detailing the difference inhardware between the various ratings These are basic overviews of the1336 FORCE hardware and should be used as reference material only

Appendix A

Andash17

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

C1

CAPBANK

MOV

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

141312

111098

Schematic Diagram ndash 3 ndash 15 HP 230V 3 ndash 15 HP 460V 3 ndash 20 HP 575V

S

R

TB1

T

CTL

+GND

FAULT

DET

P1P2

UP

P7P8

UN

E2

C1

P3P4

VP

P9P10

VN

E2

E1C2

C1

P5P6

WP

P12

P11

WN

E2

E1C2

U

W

V

E1C2

13

13

GATE DRIVERS

+

ndash

+24V

BRIDGE FAN

BRIDGETERMINALSENSOR (NTC)

To Main Control J1

E1

F3F1

Appendix A

Andash18

Schematic Diagram ndash 20ndash30 HP 230 VAC40ndash60 HP 460 VAC25ndash60 HP 575 VAC

L1

SEETABLE 1

FR

RndashL1

SndashL2

TndashL3FS

FT

TB1ndash5

TB1ndash6

TB1ndash7

PMC1CONV+

DC+

TB1ndash3

DCndash

TB1ndash4

3

2

1

CONVndash

BC

A

SCR4

SCR1SCR3 SCR5

SCR6 SCR5

C1 C2 C2

R1 R2 R321 22 23

SCR5

C4 C5 C6

R4 R5 R611 12 13

E14 E13 E12 E15

STANDARD PRECHARGE BOARD

F1 F2 F3

A

PCB SNUBBER STD

Appendix A

Andash19

Schematic Diagram ndash 20ndash30 HP 230 VAC 40ndash60 HP 460VAC25ndash60 HP 575 VAC

Q1

B1

PMI3

E1B2

E2

C3

B1

PMI2

C1B1

E2

C5

B1

PMI1

C1B1

E2

CAP+

E12CAPPCB

E13CAPPCB

SEETABLE 1

F1

Q4 Q6 Q2

C1

E1

C2

E2

C1

E1

C2

E2

C1

E1

C2

E2

U V W

C7 C8 C9 C11

C10

TB1ndash8 TB1ndash9 TB1ndash10

UndashM1 VndashM2 WndashM3

E5 E9E7

E11

INV+

INVndash

PCB SNUBBER STD74101ndash101ndashXXndashASSrsquoY

74101ndash099ndashSCH

TO CONTROL BOARDINTERFACE

NTC1

PCB MOUNT COMPONENTPCB ARTWORK

ndasht

J11 2 3 4 5 6

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1

TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1VP

3

2

7

6

5

4

1

11

10

9

8

1

ndash12V

1

2

4

1

3

2

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOMRTN

ENCA

ENCA

ENCB

ENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+

SHUNTndash

SHD

TE

PWR

RTN

HILO

1413

12

Y

VELOCITYPROC

R G

CPINVEN

IQS

IDS

VCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1

RTD SEN

RTD2

SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

CAPBANK

F1 F3

A

Appendix A

Andash20

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

CUSTOMERFUSING

CF2

CF3

PE

PE

MOV1

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

DC+

DCndash

CFI

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE TABLE 1SHEET 2

M1

M2

M3

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

To Precharge Board A10

Schematic Diagram ndash 75 amp 100 HP 230 VAC

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash21

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

MOV1

ACOUTPUTPOWER

DC+

DCndash

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

TE

PE

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE SHEET 2

PE

UndashM1

VndashM2

WndashM3

CUSTOMERFUSING

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

13 13 13 13 13 13

1313

Schematic Diagram ndash 150ndash250 HP 380460V 150 ndash 300 HP 575V

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash22

Schematic Diagram ndash X250 ndash 650 HP

CONVSNUBBER

A11

DC+

DCndash

CONVSNUBBER

A12

CONVSNUBBER

A13

ACINPUT

CUSTOMERFUSING

CF1

CF2

CF3

PE

SEETABLE 1SHEET 2

RndashL1

SndashL2

TndashL3

PE

MOV1

PM1

CNVndash

CNV+

K1

G1

TO BLOWERCIRCUIT

SEE SHEET 2

SCR1

SCR4

SCR3

SCR6

SCR5

SCR2

PM2 PM3

(1) (2)

(4) (3)

L1

DC+

DCndash

K1

G1

K1

G1

K2

G2

K2

G2

K2

G2

STANDARD PRECHARGE BOARD

F1 F2 F3

A

Appendix A

Andash23

Schematic Diagram ndash X250ndash650 HP

A

THS1

PE PE PE

INV+

INVndash

C40

C41

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1

VP 3276541

111098

1

ndash12V

12

4132

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOM RTNENCAENCAENCBENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+SHUNTndash

SHD

TE

PWRRTNHILO

141312

Y

VELOCITYPROC

R G

CPINVEN

IQSIDSVCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1RTD SEN

RTD2SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

CAPBANK

F1 F3

Appendix A

Andash24

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

ACOUTPUTPOWER

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

PE

UndashM1

VndashM2

WndashM3

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

Schematic Diagram ndash 300ndash400 HP

To Precharge Board A10

GATE DRIVERS F3STD PRECHARGEBD

F1 F2 F3

F1

Appendix A

Andash25

Schematic Diagram ndash 700ndash800 HP

PE PE PE

CT3

PS+V

CUSTOMER

THS1

F410001

3

CAP BANK

INV+

X

INVndash

CNV+

R10 R12 R11 R13105061

+DC

ndashDC

FUSING

PS+V

3

1

1

PSOMPSndashVPSndashVRL1ndash5RL1ndash9

A10PrechargeCommon BusBoard

J2 J1

TB1

1 4 7 10 1 4

IN POS BUS

IN NEGndashBUS

GATE

CATHODE

1

3

OUT POS BUS

OUT NEG BUS

J3

1

4

7 8 9101112

+SMP

ndashSMP

+15V

ndash15V

COMMON

5VCHARGEAC LINE

UserSupplied120 VACor24 VDC

W1

W1

24VDC120VAC

1ndash2

2ndash3

1 2 3

Appendix A

Andash26

Schematic Diagram ndash 700 ndash 800 HP cont

3

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

21

CT1 40001+15

ndash15U_AMPS 3

21

+15

ndash15W_Amps CT2 40001

PE

PS+V

PS+VPSCOMPSndashVPSndashVRL1ndash5RL1ndash9

GATEDRIVERBOARD

TB5

J13

A1

J6

J9

TB4 J1

+SMP

ndashSMP

+15V

ndash15V

COMMON

+5VCHARGEAC LINE

TO Main Control Board

TB71 2

12

9

654321

6

U_AMPS

W_Amps

J5

ContactorInterface

J2 J10

1 4 7 245

ndash BUS

+BUS

ACT2

ACT1

1 2

TE

24V AUX+

24V AUXndash

J7 J8

A23ndashA28Interface

A23ndashA28Interface

Appendix A

Andash27

Gate Driver Board Connections The connections on 1336 FORCE Gate Driver Boards vary by frame sizeas indicated in the following illustrations

1

J1

1

10

+ BUS

E25

MainControlBoardInterface

TB1

E26 E1

E6 E5

PE

GND

PE

GND

DC +

DC ndash

R (L1)

S (L2)

T (L3)

U (T1)

V(T2)

W(T3)

E20 E19 E21

E29 E22

50

E8

E27

E13 E15 E11

LEM2

LEM1

E16 E12 E14

E10 E9 E17

J4

E18

F1

ndash BUS Motor

To Motor

AC Input Line

RequiredInput Fusing

Required BranchCircuit Disconnect

FAN

PrechargeResistor

BusSwitcherFuse

Frame Size B Gate Driver Board Connections

Appendix A

Andash28

Frame Size C Gate Driver Board Connections

1

J1

MainControlBoardInterface

50

F1

TB4

Main Switcher(Bus Volts gt 24Vdc)

BusSwitcherFuse

J8

Connection to Upper IGBTrsquos

J7

Connection to Lower IGBTrsquos

F3

J9

Standalone or CommonbusPrecharge Board Interface

J10

J2

J6CurrentFeedbackInterface

BusDischargeFuse

Ext 24VSupplyInput

Ground Fault CT

Bus Input

Appendix A

Andash29

Frame Size D Gate Driver Board Connections

1

J1MainControlBoardInterface

50

F1

Logic Level Supply

TB4

Main Switcher(Bus Volts gt 24Vdc)

MainSwitcherBusFuse

J8 Connection to Upper IGBTrsquos

J7Connection to Lower IGBTrsquos

F3

J9

Standalone or Common BusPrecharge Board Interface

J10

J2

J6

BusInput

CurrentFeedbackInterface

GroundFaultCT

BusDischargeFuse

Ext 24VSupplyInput

Appendix A

Andash30

Sensorless Application Notes Sensorless vs Encoder Application Guidelinesndashndash Sensorless is applicable when Speed Regulation requirements are

greater than +ndash 10 of base speed Sensorless may be applicable for regulation requirements between 02 and 10 with manual adjustments Encoder operation is recommended below 02

ndash Sensorless is applicable when the minimum speed is greater than 140 of base speed (ie 45 RPM on a 60 Hz 4 pole motor) Sensorless may be applicable down to speeds of 160 of base speed (30 RPM) if high bandwidth responses are not required Encoder operation is recommended for speeds lt 160 of base speed (30 RPM)

ndash Maximum Speed is the same for sensorless and encoder operation

ndash The maximum velocity bandwidth achievable with sensorless is approximately twice the default bandwidth value Bandwidths higher than this may require an encoder because the velocity ripple may be intolerable or there may be stability problems The maximum bandwidth achievable with sensorless is half the bandwidth achievable with an encoder Note that the maximum achievable bandwidths decrease with increasing inertia for both sensorless and encoder

ndash The starting torque available is the same with sensorless or encoder Available starting torque is at least 150 motor torque and could be as high as 200 if the inverter can supply the current

ndash Minimum (current limit) acceleration and deceleration times are comparable with sensorless and encoder

ndash Torque regulation (+ndash5) is comparable with sensorless and encoder at velocities greater than approximately 25 of base speed At lower speeds sensorless torque regulation may degrade with changing motor temperature

ndash Torque response is comparable with sensorless and encoder (400Hz)

Sensorless Mode Selection ndashndash Param 150 = 5

Minimum preset speed is 160 of base speed When preset speed and actual speed are both lt160 of base speed torque is set to zero When preset speed is gt 160 of base speed torque will be developed to accelerate the motor through the min speed to the preset speed

When a motor is accelerated from a preset speed of 0 to a preset speed gt 160 of base speed the motor will accelerate at the accel rate set by the drive But if the accel rate in the drive is set to 0 or some low value and the acceleration is controlled by ramping the preset speed parameter with a PLC the motor will not accelerate until the preset speed is gt 160 base speed This will result in an accel delay until that speed is reached followed by an acceleration at the speed set by the PLC If this is a problem Mode 7 should be used

ndash Param 150 = 6Minimum preset speed is 11000 of base speed Preset speeds down to zero are permitted although it is very likely that the motor will not operate smoothly at these low speeds This mode will eliminate the problems associated with controlling the acceleration rate by ramping preset speeds from a PLC described in Mode 5 (Param 150 = 5)

ndash Param 150 = 7 (Available in 301 version)Minimum present speed is 11000 of base speed This mode is similar to mode 6 except that the motor can be expected to operate more smoothly and develop higher continuous torque at speeds lt 160 of base speed This mode will also allow operation with lower

Appendix A

Andash31

velocity bandwidths than Mode 5 and allow smoother acceleration

The disadvantage of this mode is that the response to load changes at low speeds is not as fast as mode 5 Also fast speed reversals may not work when the preset speed is ramped from a PLC and the drives acceldecel rate is set to 0

Sensorless Troubleshooting Procedures ndash

ndash Problem Motor wonrsquot accelerate or doesnrsquot start smoothlyndash Possible Solutions

Increase the bandwidth If the bandwidth is too low there is a chance the motor wonrsquot accelerate although the current will increase to current limitIf the regen power limit is 0 increase it to at least ndash5Decrease the acceleration time (faster acceleration)Change Param 150 to mode 7

ndash Problem Motor oscillates after it is up to speed

ndash Possible SolutionsDecrease the bandwidth if the process will allow If this doesnrsquot help set Param 142 to 1500If unstable in field weakening change Param 174 to 100

ndash Problem Inverter trips on absolute overspeed during starting

Increase the bandwidthIf the overspeed occurs during a reversal increase the deceleration time (slower deceleration)

Sensorless FinendashTuning Procedures ndashndash Improving Speed Regulation

Typically the speed regulation (as a function of load) in sensorless mode can be improved by adjusting Param 246 (Base Slip Frequency) after the drive has been completely autondashtuned This parameter is originally calculated during the torque calculation section of autondashtune and is dependent on the nameplate speed of the motor

Ideally this adjustment is made while the motor is fully loaded and at its normal operating temperature Adjust Param 246 until the actual speed as measured by an independent source (ie hand tach) is equal to the desired speed This should result in a minimum steady state speed deviation as load changes The proper slip for good speed regulation is also motor temperature dependent thus if the motor operating temperature normally varies between cold and hot a compromise slip must be selected

ndash Minimizing Acceleration Time from 0 Speed

After a start command is issued there is a 05 sec flux up delay before the motor will start accelerating with sensorless control This delay can be eliminated in subsequent accelerations from 0 speed by configuring the drive to decel down to a preset speed of 0 rather than decelerating to stop

ndash Increasing Speed Range

Speeds down to zero speed may be commanded when Param 150 is set to 7 As operation nears 0 speed cogging may result

Appendix A

Andash32

Software Block Diagram ndash Standard Adapter

SCANport Image In

Data In A1 (310)

SCANports1

2

3

4

5

6

SCANport Analog 1 Select (364)

1

2

3

4

5

6

Data In A2 (311)

Data In B1 (312)Data In B2 (313)Data In C1 (314)

Data In C2 (315)Data In D1 (316)

Data In D2 (317)

Fault Select (405)Warning Select (406) Fault Status (407)

Warning Status (408)Bit1 ndash SCANport 1 Timeout2 ndash SCANport 2 Timeout3 ndash SCANport 3 Timeout4 ndash SCANport 4 Timeout5 ndash SCANport 5 Timeout8 ndash 4ndash20mA Loss13 ndash Illegal Drive Type (Not Configurable) 14 ndash Different Drive Type (Not Configurable)15 ndash SCANport Error (Not Configurable)

SCANport Image Out

Data Out A1 (320)

1

2

3

4

5

6

Data Out A2 (321)Data Out B1 (322)Data Out B2 (323)

Data Out A1 (324)Data Out A2 (325)Data Out D1 (326)

Data Out D2 (327)

SCANport1

2

3

4

5

6

SCANport Analog Out (379)

Discrete IO

Input Mode (385)Input Status (386)

Mode1234

527678

9281029

11121314

15301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2NotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr Flt

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevMOP IncRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3ReverseSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type1st2nd AccMOP IncJogFwdRwdMOP DecFwd2nd AccLocRemStop Type1st2nd AccMOP IncLocRemPTrim EnFlux EnableSpdTrq2SpdTrq2ForwardSpdTrq2PTrim EnFlux EnablePTrim EnJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd Sel 3Spd Sel 31st2nd DecMOP DecLocRemJogSpd Sel 3Spd Sel 3MOP Inc1st DecSpd Sel 3Spd Sel 31st2nd DecMOP DecStop TypeRamp DisResetSpdTrq 1SpdTrq 1Ramp DisSpdTrq 1ResetResetRamp DisSpd Sel 3

Input 7StatusSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2MOP Dec2nd DecSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Ptrim EnFlux EnableResetSpd Set 2Spd Set 2Spd Set 2Spd Set 2Spd Set 2

Input 8StatusSpd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1

Input 9EnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnable

Stop Select 1 (387)Stop Select 2 (388)Accel Rate 1 (389)Accel Rate 2 (390)Decel Rate 1 (391)Decel Rate 2 (392)

SCANport Analog 1 In (365)

TB3ndash19 TB3ndash20 TB3ndash22 TB3ndash23 TB3ndash24 TB3ndash26 TB3ndash27 TB3ndash28 TB3ndash30 TB3ndash21 TB3ndash25 TB3ndash29COMMON

Power Cycle or Reset required to take effect

A

1

2

3

4

5

6

SCANport Analog 2 Select (367)

SCANport Analog 1 Scale (366)

SCANport Analog 2 Scale (368) SCANport Analog 2 In (369)

Appendix A

Andash33

Software Block Diagram ndash Standard Adapter

0123456

MOP Inc (393) MOP Value (394)

Port Enable Mask (330)

1

2

3

4

5

6

C B A0 0 0 ndash No Change0 0 1 ndash External Ref 10 1 0 ndash Preset Speed 10 1 1 ndash Preset Speed 21 0 0 ndash Preset Speed 31 0 1 ndash Preset Speed 41 1 0 ndash Preset Speed 51 1 1 ndash External Ref 2

Local Mask (337)

Start Mask (332)Jog Mask (333)Clear Fault Mask (335)Direction Mask (331)

Reference Mask (334)

Reset Drive Mask (336)

Stop Owner (340)Direction Owner (341)Start Owner (342)Jog 1 Owner (343)Jog 2 Owner (344)Reference Owner (345)Local Owner (346)Flux Owner (347)Trim Owner (348)Ramp Owner (349)Clear Fault Owner (350)

Logic Status (56)

Bit 0 ndash Run ReadyBit 1 ndash RunningBit 2 ndash Command Direction 1 = FWD 0 = REV)Bit 3 ndash Rotating Direction (1 = FWD 0 = REV)Bit 4 ndash AcceleratingBit 5 ndash DeceleratingBit 6 ndash WarningBit 7 ndash FaultedBit 8 ndash AT Set SpeedBit 9 ndash Local ABit 10 ndash Local BBit 11 ndash Local CBit 12 ndash AT Zero SpeedBit 13 ndash Ref ABit 14 ndash Ref BBit 15 ndash Ref C

Logic Status (57)

Bit 0 ndash Flux ReadyBit 1 ndash Flux UpBit 2 ndash Diagnostic CompletedBit 3 ndash Diagnostic CompletedBit 4 ndash Bus RidethruBit 5 ndash JoggingBit 6 ndash Autotune Stat ABit 7 ndash Autotune Stat BBit 8 ndash At LimitBit 9 ndash Not UsedBit 10 ndash At Setpoint 1Bit 11 ndash At Setpoint 2Bit 12 ndash Over Setpoint 1Bit 13 ndash Over Setpoint 2Bit 14 ndash Over Setpoint 3Bit 15 ndash Over Setpoint 4

Fault

Warning

Logic Command (52) (Permanent Link)

Bit 0 ndash Ramp StopBit 1 ndash StartBit 2 ndash Jog 1Bit 3 ndash Clear FaultBit 4 ndash ForwardBit 5 ndash ReverseBit 6 ndash Jog 2Bit 7 ndash Current Limit StopBit 8 ndash Coast StopBit 9 ndash Velocity Ramp AvailableBit 10 ndash Flux EnableBit 11 ndash Process Trim EnableBit 12 ndash Vel Reference Select ABit 13 ndash Vel Reference Select BBit 14 ndash Vel Reference Select CBit 15 ndash Reset Drive

Output Select (384)

TB7ndash6

TB7ndash5

TB7ndash4

TB7ndash9

TB7ndash8

TB7ndash7

Enable (55 Bit 9)

TB7ndash1

TB7ndash2

TB7ndash3

10 Volt Offset (356) 10 Volt Scale (357)10 Volt Input+ TB5 ndash 4ndash TB5 ndash 5

10 Volt Input (355) Analog Out 1 Scale (372) 10 Volt Scale (371)AnalogOutput 1 (370)

Analog Output 1 + TB6 ndash 1 ndash TB6 ndash 2

Pot Offset (359) Pot Scale (360)Pot Input+ TB5 ndash 7ndash TB5 ndash 8

Pot Input (358) Analog Out 1 Scale (375) 10 Volt Scale (374)AnalogOutput 2 (373)

Analog Output 2+TB6 ndash 4 ndash TB6 ndash 5

mA Input Offset (362) mA Input Scale (363)mA Input+ TB5 ndash 10ndash TB5 ndash 11

mA Input (361) mA Output Scale (378) mA Output Offset (377)mA Output 3 (376)

mA Output + TB6 ndash 7 ndash TB6 ndash 8

Pulse PPR (395)Pulse Edge (396)Pulse Scale (397)

Pulse Offset (398) Pulse Value (399)+10V RefCom Refndash10V Ref

TB5ndash1TB5ndash2TB5ndash3

+TB5ndash13ndashTB5ndash14

A

Filter

Filter

354

353

Filter

352

Appendix A

Andash34

36T Firmware Function (Motor Control Board Overview)

PROCESS TRIM

VELOCITYREFERENCE CONTROL

L

B TRIMCONTROL

LC

VR

Tq

DRIVE LOGICCONTROL

VELOCITY PIREGULATOR

GAINS

LC

VELOCITY LOOPAUTOTUNE

3 LOGIC COMMANDS

2 JOGS

2 LOGIC STATUS WORDS

FLUX INHIBIT RUN INHIBIT COND

Tpt

TORQUE TRIM

TL TH

PI

TORQUE LIMIT

VELOCITYFEEDBACK CONTROL

Q

S

VF

φf

TqTORQUE COMMAND

Sheet Connection Symbols

B VELOCITY RAMP OUTPUT

C CURRENT PROCESSOR COMMAND

I f FILTERED Iq REFERENCE

Iq

VELOCITY TRIM

Iq REFERENCE

LC LOGIC CONTROL WORD

M ACTIVE TORQUE MODE

VELOCITY PI REGULATOR OUTPUT

Q

S FILTERED Iq REFERENCE

TL TORQUE LIMIT LOW

TORQUE LIMIT HIGH

TORQUE COMMAND

VELOCITY FEEDBACK

φf

PI

TH

Tq

VELOCITY REFERENCE

TORQUE TRIM

VR

Tpt

5 PRESETS

2 JOGS

2 EXTERNALVELOCITY

REFERENCES

ENCODERLESS

VF

VT

Appendix A

Andash35

36T Firmware Function (Motor Control Board Overview)

2 EXTERNALTORQUEREFERENCES

TORQUE REFERENCECONTROL

M

C

DRIVE FAULTDETECTION

TORQUE BLOCK(DC TO ACCONVERTER)

ANALOG CURRENTREGULATOR

Iq REF (AC)

LOCAL INPUTS

4 FAULT STATUS WORDS

ACMOTORIq

If

1 EXTERNAL Iq Ref

Id REF (AC)

fe

DIGITALENCODER

ENCODERLESS

Appendix A

Andash36

36T Firmware Function (Velocity Reference Overview)

PARAM 52 LOGIC COMMAND WORD

ExternalVelocity Ref 1

SCALE

AUTO TUNEREFERENCE

SELECT

DIRECTIONSELECT

AUTOTUNE

ACTIVE

A

JOGREFERENCE

SELECT

0

JOG 2SPEED

PARM52

102

100101

ExternalVelocity Ref 2

SCALE

105

103104

119

120

121

122

0

123

121314

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2 6

27

118

PROCESS TRIMREFERENCE

REFERENCECONTROL SELECT

41

STOPCOMMAND

078

P54 DISCRETESTOP INPUT

45

PARM52 128

FORWARDSPEED LIMIT

127

REVERSESPEED LIMIT

56

LINEARACCELDECEL

RAMP

LOGICSTATUSPARM

DECEL TIME

125

126

ACCEL TIME

RAMPBYPASS

2679

PARM52

B

PROCESSTRIM VEL INPUT

SELECT

+

ndashC

117JOG 1SPEED

28PROCESS TRIMFEEDBACK

146VELFBK

RAMP OUTPUT

PARM52

PARM52

3

MAXSELECT

2

Parm 59

UNIPOLAR 0

ndash32767BIPOLAR

X (ndash1)

0 0 0Scale8192

Scale8192

2

59

LOGIC OPTION

Vel Ref Type12

Appendix A

Andash37

36T Firmware Function (Trim Control Overview)

PROCESS TRIM

TRIM LIMIT OPTION

STOP

OUTPUT GAIN2048

DATA

PROCESS TRIM PIREGULATOR

RAMP OUTPUT

109HIGH

B

C

108

LOW PASSFILTER

KI4096

KP4096

31

32

33

36

35

HIGH LIMIT

232

LOW LIMIT

LOW

LIMIT

VELOCITYTRIM

29

0

+

+

SELECT VELOCITYOUTPUT

0

+

+

106

10732 Bit ExternalVelocity Trim

ZEROREFERENCE

0

VELOCITY TRIM

LIMIT

TRIMLIMIT

29 0

FREQLIMIT

VR

TO VELOCITYPI REGULATOR

TORQUETRIM

0

Tpt

TO TORQUEREFERENCE

29 1

SELECT TORQUE

29 3

34

29 4

Lc 11FROMDRIVELOGIC

P52

SET OUTPUT OPTION

PRESET INTEG OPTION

130

FWD LIMIT

129

REV LIMIT

Appendix A

Andash38

36T Firmware Function (Velocity Feedback Overview)

DIGITALENCODER

ENCODER SIGNALPROCESSING

SUM

emptyt

DIVIDE

CHAN A

CHAN B

ENCODER FEEDBACK SCALING

PULSE To PER UNIT CONVERSION

LOW SPEEDALGORITHM

A

B

Appendix A

Andash39

36T Firmware Function (Velocity Feedback Overview)

FEEDBACKDEVICESELECT

8192

0

1

3

35492

567

152

0

FILTER

FEEDBACKDEVICE

TYPE

Kn

4

34567

012

1

4

150

FILTERSELECT

3

2 2040FILTER

LeadLag

FILTER

153 154

Wn NotchFilter

2143SCALE

147102 105

Scale 1 Scale 2

VF

155

ENCODERLESSINTERNALFEEDBACK

EXTERNALFEEDBACK

VEL REFSELECT

125 msFILTER

146

VELOCITYFEEDBACK

FV

143 16

TO MOTOROVERLOADFUNCTION

I2TABSOLUTE

OVERSPEED

SELECTEDVELOCITY

TO VELOCITY PI REGULATOR

Scaled VelFeedback

SUM

Q TO VELOCITY PI REGULATOR

Alt Encoder

Motor Sim

A

B

Appendix A

Andash40

36T Firmware Function (Velocity PI Regulator Overview)

VELOCITY PI REGULATOR

INTEGRATOR

VR

SELECT

65535

Kf TERM

I

3

FEEDFORWARD

Kf Velocity Loop

133

HOLD

Q

141

VELOCITY REFERENCE

132

A

65535

Kf

LOWPASS

FILTER

135

+

ndash

14241364135

Wn

Gain

Auto Tune Active

SELECT

50

Kp Velocity Loop 140

A

Gain

Auto Tune Active

Kf ERROR

3136

FAULT TESTPOINT

1596 9

HOLD

S

+

ndash

FROM TRIMCONTROL

DROOPEDVELOCITY

REFERENCE

2136135

9815

3

MATHLIMIT

+

ndash

DROOPGAIN

VF

146

DROOPPERCENT

XX

1298

FROMFEEDBACKCONTROL

FROMFEEDBACKCONTROL

15

131

PARAMETERLIMIT

VELOCITYFEEDBACK

+ ndash

138

VELOCITY ERROR

1598 8

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

Appendix A

Andash41

36T Firmware Function (Velocity PI Regulator Overview)

INTEGRALGAIN

I

PROPORTIONALGAIN

REGULATORENABLE

8

K

SELECT

8

Kp VELOCITY LOOP 139

A

Gain

+ 300

K

8

AUTO TUNEACTIVE

+

TORQUELIMITER183

LIMIT STATUS

1598 1

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

OR

+

2

ndash 300

0

8

PI

134

LC

TOTORQUE

REFERENCECONTROL

LOGICCONTROL

WORD

VELOCITYREGULATOR

OUTPUT

13136

OUTPUTLIMITED

p

= 0

Appendix A

Andash42

36T Firmware Function (Torque Reference Overview)

Limit Selection

TORQUE TRIM

Tpt

FromTrim Control

MINIMUM SELECTOR FOR + LIMIT

NTC LIMIT

A

AUTOTUNEACTIVE

SCALETORQSTEP

ACTIVE TORQUEMODE

M

11172

Torque Sum4096

163

EXTERNALTORQUE

REF 1

162

SLAVETORQUE 1

SCALE

4096

165

164

SLAVETORQUE 2

EXTERNALTORQUE

REF 2

+

PI

SPEED

TORQUE

134

Torque Selection

MIN

MAX

2 1 0

19172

2 1 0C B A

TORQUESELECT

LOGIC BITS

0 0 0 0

0 0 1

TORQUE LIMIT

0 1 0

+ +

+0 1 1

172

1 0 0

18172 13

TORQUE MODE SELECT

NOTCHFILTER

152 = 4 Notch

166

183

0+

1

2

3

4

5

6

0TORQUE

COMMAND

MAXIMUM SELECTOR FOR ndash LIMIT

1172

160NEGATIVE

MOTORCURRENT

LIMIT

179POSITIVEMOTOR

CURRENTLIMIT

( ndash 1)

3172

( ndash 1)

CURRENT TO TORQUE

271

LIMITEDFLUX

POSITIVEIq LIMIT

FLUX

CURRENT TO TORQUE

271

LIMITEDFLUX

FLUX

NEGATIVEIq LIMIT

FROMINVERTEROVERLOAD

PROTECTION

1 0 1

From VelocityPI Regulator

LIMITS

SUM

26

Appendix A

Andash43

36T Firmware Function (Torque Reference Overview)

Power Limits

MIN SELECT AUTOTUNE

TORQUELIMIT

LIMITEDFLUX

TORQUELIMITS

40

+

INTERNAL TORQUEREFERENCE

271

TORQUE TO CURRENT

FLUX+

167

174

8ndash

9

10

12

13

14

MIN FLUX

FULL WAVERECTIFY

Computed Power

XMultiply

Torque Ref

PositiveTorque Limit

MAX SELECT

175

172 20

NegativeTorque Limit

176 7172

Torque Limit Low

8172

Torque Limit High

21172

NEGATIVE TORQUEPOWER LIMIT

POSITIVE TORQUEPOWER LIMIT

1

Vf

1

Vf

+ndash

ndash+

177

146+

VELOCITYFEEDBACK

ndash

167

182

ComputedPower

MOTORINGPOWER

LIMIT

178REGENPOWER

LIMIT

( ndash 1)40

Autotune TorqueLimit

11

LIMIT STATUS

Iq LIMIT PARAM

NTC LIMIT

INVERTER (IT) LIMIT

INVERTER MAXIMUM

TORQUE LIM PARAM

POWER LIM PARAM

AUTOTUNE LIM PARAM

CURRENTLIMITS

MAX SELECT

CURRENTLIMIT

25172

Iq SUM

Iq RATELIMITER

I

Iq

MOTORFLUX

REFERENCETO TORQUEREFERENCE

161EXTERNALIQ

0

Appendix A

Andash44

36T Firmware Function (Torque Block Overview)

SYNCHRONOUS

TO

STATIONARY

TRANSFORMATION

CURRENT COMMAND CONDITIONING

FROMTORQUE

REF

168

Iq

172

MAX MOTORCURRENT

RANGE

172

MIN = ndash8192

MAX = 3072

MIN = 0

DRIVEENABLE

(lq)

RATED FLUX (Id)

238

LIMITER

4096^2ndash[238]^24096

MAX = 8192

DRIVEENABLE

LIMITER

Iq_CMD

Id_CMD

MOTORPOLES

233

THETA e

THETA s

2

HARDWARE

COUNTERS

1024[235]

[233]

4

ENCODERPPR

235

COUNTER 2

COUNTER 1

CHAN A

CHAN B

DIGITALENCODER

Iq_CMD1024

+

+

SLIPREGULATOR

DDT

+

+

THETA r

KSLIP

DELTA_COUNTS

fs(fslip)

fe

(eletrical or stator freq)(rotor)

41

41

R8192

R

ENCODER FEEDBACK CONDITIONING

+

ndash

fr

Appendix A

Andash45

36T Firmware Function (Torque Block Overview)

ANALOG CURRENT REGULATOR

BRIDGE GAIN IN TORQUEndash TESTPOINT 27 WHEN PAR 173=27

INVERTER GAIN

COMMAND

FEEDBACK

172

Iqs

TP18FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

VOLTAGE TP16=25V WITH PEAK RATED-MOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP1 amp TP2=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TP19

TP21

Ids

VOLTAGE TP21=5V WITH PEAK RATEDMOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP3 amp TP4=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TOTAL CURRENT

MOTORCURRENT

MAGNITUDE

XX AMP

264

DAC

260

TP16

+

ndash TP1

TP2

INVERTER GAIN

COMMAND

FEEDBACK

172

FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

DAC

261

+

ndash TP3

TP4

DAC

ADC

++

++

IdOFFSET

IqOFFSET

2048[GAIN]

2048[GAIN]

MAX

MULT

UWV

220INVERTER

AMPSPERUNITMOTOR

CURRENT

XX

185

Appendix A

Andash46

36T Firmware Function (Drive Fault Detection)

lf

91

4

98 18 ACCEL ERROR

98 19 QUAD LOSS EDGE

98 20 QUAD LOSS LEVEL

98 21 PHASE LOSS EDGE

98 22 PHASE LOSS LEVEL

54

857

1256

VELOCITY FEEDBACKTESTPOINTS

98 11 PARAM LIMIT 1

98 12 PARAM LIMIT 2

98 13 MATH LIMIT ndash VEL REF

98 14 MATH LIMIT ndash VEL FBK

98 15 MATH LIMIT ndash VEL REGULATOR

FAULT TESTPOINTS(BIT FIELDS)

FV

95

96

97

92

LC5

98 16 MATH LIMIT ndash TORQUE REF

98 17 MATH LIMIT ndash PROCESS TRIM

QUAD LOSS HSI0

PHASE LOSS HSI1

EXT FAULT

LOGIC STATUS

ENCODER

AT LIMIT

ZERO SPEED

XXX SECSTALL

STOPPED

MOTOR STALLED

BIT 6ndashFAULT CODE 5054

BIT 5ndashFAULT CODE 1053

LOGIC CONTROL WORD

150FEEDBACK DEVICE= ENCODER (1) BIT 0

FAULT CODE 5048

FILTERED

FILTERED

SPEED 1

SPEED 2

MIN

OVERLOAD

BREAKPOINT

ABS

21

ndash05

Y2lq

lq2

MAX

INTG

CALC

LIMIT

0

200

4096

A

B

A

B3891K

AgtB

AgtB

I2T TRIPBIT 4

ndashCODE 1052

I2T PENDINGBIT 3

ndashCODE 1051

MOTOR

CP CONFIGURABLE FAULTWARNING

BIT DESCRIPTION

0 BUS RIDETHROUGH TIMEOUT

1 PRECHARGE TIMEOUT

2 BUS DROP

3 BUS UNDERVOLTAGE

4 BUS DROP CYCLES gt5

5 OPEN CIRCUIT

6 RESERVED

7 RESERVED

8ndash15 NOT USED

PARAMETERS 828486 and 87

CONFIGURABLE FAULTS

lq

LIMIT

OVERLOAD

MOTOR OVERLOAD FUNCTION ldquoI2Trdquo

EDGE

DELAYAND

DELAY

LEVELDETECT

THRESH

(100)

(95)

VEL

LIMIT

94SERVICEFACTOR

Appendix A

Andash47

36T Firmware Function (Drive Fault Overview)

270

128

98 4

87

89

82

83

84

85TC

90

127

FV

LC 5

80

81

WARN

SEL

VP CONFIGURABLE FAULTWARNING

CONFIGFAULTSTATUS

CP

VP

CONFIG WARNSTATUS BITS

CP

VP

XX VOLTS

PARAMETERS 838588 and 89

BIT DESCRIPTION

0 ENCODER FEEDBACK LOSS

1 INVERTER OVERTEMPERATURE PEND

2 MOTOR OVERTEMPERATURE TRIP

3 MOTOR OVERLOAD PENDING ndash IIT

4 MOTOR OVERLOAD TRIP ndash IIT

5 STALLED

6 EXTERNAL FAULT

7 RMS FAULT

POWERTRANSISTOR

HEATSINKTEMPERATURE

(NTC) NTCLOOKndashUP gt

80C05 SEC

INVERTER OVERTEMP PENDING

BIT 1

ltndash20COR

gt100C

05 SECDELAY

INVERTER TEMPERATURE CHECK

LOGICCONTROL

WORD

NOT

RF

LIMIT CHECK

100 msec

HOLD

ABSOLUTE OVERSPEED

BIT 9FAULT CODE

3025

CODE2028

FILTEREDVELOCITYFEEDBACK

ABSOLUTEOVERSPEED

FWD MOTORSPEED LIMIT

REV MOTORSPEED LIMIT

NONndashCONFIGURABE FAULTS

0 BUS OVERVOLTAGE TRIP

1 TRANSISTOR DESATURATION

2 GROUND FAULT

3 INSTANTANEOUS OVERCURRENT

4 SOFTWARE MALFUNCTION ndash (CP)

5 MASTERSLAVE CABLE LOSS

6 MASTERSLAVE ENABLE TIMEOUT

7 RESERVED

8 ADAPTER HANDSHAKE LOSS (VP)

9 ABSOLUTE OVERSPEED

10 ANALOG SUPPLY FAILURE 13 ndash 18V RGE

11 AUTOTUNEDIAG FAIL

0ndash3 ARE HARDWARE FAULTS

12 INVERTER TEMPERATURE TRIP

13 SOFTWARE MALFUNCTION ndash (VP)

14 ILLEGAL INTERRUPT

15 RESERVED

POWERUP FAULTS

STATUSBITS

STATUSBITS

0 CP PROM FAILURE

1 CP INT RAM FAILURE

2 CP EXT RAM FAILURE

3 CP STACK RAM FAILURE

4 VP MBI FAILURE

5

6

7

8 VP PROM FAILURE

9 VP INT RAM FAILURE

10 VP EXT RAM FAILURE

11 VP STACK RAM FAILURE

12 CP MBI FAILURE

13 AP MBI FAILURE

14 EEPROM FAILURE (BASE DRIVE BRD)

15

CP

PO

WE

RU

PV

P P

OW

ER

UP

NONE POWER TRANSISTORHEAT

TEMPERATURE C

DELAY

DRIVE STOPPED

INPUTTABLE

DELAY

BIT DESCRIPTION

8

9 PARAMETER LIMIT

10 MATH LIMIT

11 DYNAMIC BRAKE OVERTEMP

12 AC MOTOR CONTACTOR

13 INVERTER OVERLOAD PENDING ndash IT

14 DRIVEndashTOndashDRIVE FAULT

15 INVERTER OVERLOAD TRIPndashIT or NTC

SELECT

86

88FAULT CP

VPCONFIGSELECT

FAULTCODE2049

BITS

98 2

Actual VelocityAt Overspeed

Appendix A

Andash48

36T Firmware Function (Inverter Overload)

98168

230

220

6172

23

2172

22172

[Iq] x MI

CONVERT MOTOR TOINVERTER UNITS

100 x IM

CONVERT INVERTERTO MOTOR UNITS

Iq x IM

MOTORNAMEPLATEAMPS

RATEDINVERTEROUTPUT AMPS

MAXIMUMINVERTERIq(6144 150)

INTERNALIq REFERENCE

M M

I

I I

M

I

M

TRANSISTORRJC

C RISE

MULT

CONVERT INVERTERTO MOTOR UNITS

30degC

Appendix A

Andash49

36T Firmware Function (Inverter Overload)

1

270

98 25

INVERTER HEATSINKTEMPERATURE C

98

120C

ERROR

ndash100S

INTEGRATOR

LIMITER

300 9

172 1LIMIT STATUS

NTCLIMIT

NTC LIMIT

TO MOTORCURRENTLIMITSELECTION

CONFIGURABLEFAULT

WARNING

83 15

172 3

183 2 10

83 13

IT

PROTECTION

A

B

A

B

LIMIT STATUS

OVERLOAD CURRENT LIMIT

(LIMITING)

(NOT PENDING)

SELECT

TOMOTOR

CURRENTLIMIT

SELECTION

CONFIGURABLEFAULTWARNING

RATED INVERTER Iq IN MOTOR PER UNIT

NTC FOLDBACK PROTECTION

DEVICE JUNCTIONTEMPERATURE C

rsquoIT INVERTER PROTECTION

INVERTER

Appendix A

Andash50

0

1

2

3

4

5

6

7

8

INVERTER TRANSISTOR DIAG

MOTOR PHASE ROTATION TEST

LO MEASURE

RS MEASURE

ID MEASURE

UPDATE TORQUE BLOCK CALC

MEASURE MOTOR INERTIA

MEASURE SYSTEM INERTIA

UPDATE VELOCITY LOOP GAINS

VELOCITY KI 139

VELOCITY KP 140

VELOCITY KF 141

DESIRED XXX RADSEC BANDWIDTH

DAMPING XX FACTOR

LC

43

45

AUTOTUNEDIAGNOSTICSELECTION

0WAIT

1START

3STOP

2MEASURE

256

AUTOTUNETORQUE

40

AUTOTUNESPEED

41

AUTOTUNE PROCEDURE

1 RUN TRANSISTOR DIAGNOSTICS ndash SET BIT 0 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

2 RUN PHASE ROTATION TEST ndash SET BIT 1 IN PARM 256 AND SET START BIT IN LOGIC COMMANDCHECK SIGN OF VELOCITY FEEDBACK (PARM 146) AGAINST FREQ REF (PARM 263)STOP DRIVE AND CLEAR PARAMETER 256SWAP ENCODER PHASES IF NECESSARY TO GET SIGNS TO MATCH

3 RUN TORQUE AUTOTUNE ndash SET BITS 2 THROUGH 5 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

4 RUN VELOCITY AUTOTUNE ndash ENTER DESIRED BANDWIDTH IN PARM 43 SET BITS 6 THROUGH 8 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND CHECK DIDT LIMIT IN PARM 181

181

AUTOTUNESTATUS

AUTOTUNEINHIBIT

ERROR

TORQUELIMIT

XXX SEC 234

XXX SEC

47

47

AUTOTUNE STATES

MOTOR INERTIA

TOTAL INERTIA

I LOOPDIDT LIMIT

V LOOPERROR FILTER BW

142

46

4

5

VELOCITY

LOOP

GAIN

CALCULATIONS

FRICTION

VELOCITY LOOP AUTOTUNE

LOGIC CONTROLDRIVE STOPPED

Appendix A

Andash51

1

2

3

4

DRIVE ENABLE (NO)

MTR THERMO GUARD (NC)

STOP (NC)

EXTERNAL FAULT

VPLED

ADAPTERTERMINALS

J8

LOCALINPUT

STATUS

54

UMCIEPLD

9

TORQUE MODE SELECT

0 ndash ZERO TORQUE1 ndash SPEED REGULATOR2 ndash TORQUE REGULATOR3 ndash MIN TORQUE OR SPEED4 ndash MAX TORQUE OR SPEED5 ndash SUM SPEED amp TORQUE6 ndash ZERO TORQUE7 ndash ZERO TORQUE

50 MSEC SCAN INTERVAL

HIGH BYTE = HANDSHAKE ENABLELOW BYTE = SYSTEM MODE

53

36T Firmware Function (Logic Control)

PSIBOARD

DISCONNECT (NC)16 msec

0

1

2

3

4

5

6

7

8

9

10

BRAKE REQ

DRIVE ENABLE

MOTOR OVERTEMP

DISCRETE STOP

EXTERNAL STOP

RMS FAULT P02

0 = MASTERSLAVE DRIVE

P03

TEST DIG P05

INVERTER STATUS

CONTACTOR VERIFYP26

P24

55

0

1

8

9

10

11

12

13

14

15

LOCALOUTPUTSTATUS

P27

P13

C B A

00001111

00110011

0 ndash ZERO TORQUE1 ndash EXTERNAL REF 10 ndash PRESET SPEED 11 ndash PRESET SPEED REF 20 ndash PRESET SPEED REF 31 ndash PRESET SPEED REF 40 ndash PRESET SPEED REF 51 ndash EXTERNAL REF 2

VELOCITY REF SELECT

BUS VOLTS

52

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NORMAL STOP

START

JOG 1

CLEAR FAULT

FORWARD

REVERSE

JOG 2

CURRENT LIMIT STOP

COAST STOP

VEL RAMP DISABLE

FLUX ENABLE

PROCESS TRIM ENABLE

VEL REF SELECT A

VEL REF SELECT B

VEL REF SELECT C

RESET DRIVE

EDGE

EDGE

EDGE

EDGE

EDGE

70

258 259INVERTERDIAGRESULTS

DISCRETEINPUT

DEBOUNCE

70 12

70 11

J1750 VOLTS

BRAKEINTERFACE

P25

58

0 = NORMAL STOP1 = TORQUE TO 0 SPEED2 = TORQUE TO 0 TORQUE

TORQUE STOP CONFIGURATION

BRAKE ENABLE

TURN ON DELAY P14

ndash ndash ndash ndash ndash ndash ndash ndash ndash

VP ENABLE

PILOT RELAY

GREEN LED

RED LED

INVERTERENABLE

LED

A

B

C

P12

LOGICCOMMAND

WORD

LOCAL DRIVE IO

RequestedTorqueMode

SYMBOL

PARAMETER XXX DATA SINK

PARAMETER YYY DATA SOURCE

BIT

TESTPOINT

OFF SHEETCONNECTION

Appendix A

Andash52

0

1

2

3

FLUX ENABLED

RUN INHIBIT

MOTOR SPINNING

16

STOP EVENT

36T Firmware Function (Logic Control)

NOTUSED

DISCRETE STOP

0

1

2

3

4

5

6

7

AT SETPOINT 1

DRIVE LOGIC STATES

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

54 55

STOP DWELL

70

60

0

59 B A

LAST STOPTYPE

AUTOTUNE COAST

BUS PRECHARGE

COAST STOP (HWSW)

COMMON BUS DISCONNECT (EXT FAULT)

COAST FAULT

NO DRIVE ENABLE J8ndash1

LOSS OF FLUX UP

AC CONTACTOR FAULT

A

B

C

LOGIC OPTION BITS

LOGIC COMMAND PROCESSING

FLUXINHIBIT

BITS

70

70 70 5RUN

INHIBITBITS

START TYPE A

START TYPE B

JOG RAMP ENABLE

JOG COAST(REGEN STOP = 0)

STOP INPUT TYPE A

STOP INPUT TYPE B

DO POWERndashUP DIAG

DO FLUXndashUP DIAG

DO START DIAG

AC CONTACTOR PRESENT = 1

1 = BIPOLAR VEL REF 0 = UNIPOLAR

0011

0101

MAINT START REGEN STOPMAINT START COAST STOPMOMENTARY STARTMAINT START REGEN STOP

B A

0011

0101

COASTNORMALIndashLIMITCOAST

FLUXINHIBIT

FLUX

STOP

1

START

4

DIAG

3

STOPPING

2

RUN

START JOG RESET

8

9

10

11

12

13

14

15

SAVE

4

70 5

RUN INHIBIT

= 0

70 15

70 5

61AT SETPOINT 2

OVER SETPOINT 1 62

63OVER SETPOINT 2

OVER SETPOINT 3 64

65OVER SETPOINT 4

66

67

SETPOINT SELECT

SPD SETPOINT TOL

68

69

Iq SETPOINT TOL

ZERO SPEED TOL

71

72

14

70

D

0 = NONE1 = COAST2 = NORMAL3 = I ndash LIMIT

LOGIC TESTPOINTS

TESTPOINT SELECT

RUNINHIBIT

BITS

E

70 1

LOGIC STATE (0 ndash 4)

F

G

J

KM ACTIVE TORQUE MODE

TO TORQUE REF CONTROL

H

Appendix A

Andash53

36T Firmware Function (Logic Control)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

56

H

LOGIC OPTION BITS

LOGIC CONTROL WORDBITS TO FAULT

CONTROL

70

RUN READY

RUNNING

COMMAND DIRECTION 1= FWD 0 = REV

ROTATING DIRECTION 1 = FWD 0 = REV

ACCELERATING

DECELERATING

WARNING

FAULTED

AT SET SPEED

LOCAL A

LOCAL B

LOCAL C

AT ZERO SPEED

REF A

REF B

REF C

C B A

00001

STOPSTARTRUNSTOPPINGDIAG

STATUS

VP to CP BITS

3

0 11415

D

0 = OKNOT 0 = LOSSOF CP FLUXndashUP

7013

FG

J

LC

E

00110

01010

LOGIC STATE

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

57

FLUX READY

FLUX UP

BUS RIDETHRU

JOGGING

AT LIMIT lt183gt Not = to 0

NOT USED

AT SETPOINT 1

AT SETPOINT 2

OVER SETPOINT 1

OVER SETPOINT 2

OVER SETPOINT 3

OVER SETPOINT 4

LOGIC OPTION BITS

CP to VP BITS

VEL REF CONTROL A

VEL REF CONTROL B

VEL REF CONTROL C

VEL REF CONTROL D

1 = STOPPING

STOPPED

PRECHARGE REQUEST

RAMP CONTROL (1 = RAMP)

SPEED REGULATOR ENABLE

MOTOR SIMULATOR ENABLE

FLUX ENABLE

DIAGNOSTIC ENABLE

VP GAIN CALC

RESET DRIVE

CLEAR FAULT

PROCESS TRIM ENABLECP FLUX LOSS

K

70 6

0 1 2 4 515

70 7

FLUX UPDIAGNOSTIC ACKNOWLEDGEDIAGNOSTIC ERRORMASTER INVERTERSLAVE INVERTER

0 = NO REQNOT 0 = DO DIAG

DIAGNOSTIC REQUEST FLAG

708

FLUX ENABLEDIAGNOSTIC ENABLEENCODERLESS DISABLERIDETHRU ACK

C TO CURRENT PROCESSOR

FROM CURRENT PROCESSOR

LOGIC STATUS

TORQUE BLOCK INTERFACE

See VelRef Testpoint 1

Appendix A

Andash54

Battery Disposal When it becomes necessary to replace the battery that supports the realtime clock on the 1336 FORCE precautions must be taken whendisposing of the old battery The following procedure must be followedwhen disposing of lithium batteries

ATTENTION Do not incinerate or dispose of lithium batteries ingeneral trash collection Explosion or violent rupture is possibleBatteries should be collected for disposal in a manner to preventagainst short circuiting compacting or destruction of caseintegrity and hermetic seal

For disposal batteries must be packaged and shipped in accordance withFederal state local or provincial laws to an appropriate Transfer Storageand Disposal facility

The person disposing of the material is responsible for any hazardscreated in doing so as the material may be considered toxic reactive orcorrosive

AppendixB

Bndash1

CE Conformity

EMC Directive This apparatus is tested to meet Council Directive 89336Electromagnetic Compatibility (EMC) using a technical construction fileand the following standards

bull EN 50081ndash1 ndash2 ndash Generic Emission Standard

bull EN 50082ndash1 ndash2 ndash Generic Immunity Standard

Marked for all applicable directives 1

Emissions EN 50081-1EN 50081-2EN 55011 Class AEN 55011 Class B

Immunity EN 50082-1EN 50082-2IEC 801-1 2 3 4 6 8 per EN50082-1 2

Important The conformity of the drive and filter to any standard doesnot guarantee that the entire installation will conform Manyother factors can influence the total installation and onlydirect measurements can verify total conformity

The following seven items are required for CE conformance

1 Standard 1336 FORCE Drive 037-45 kW (1-60 HP) CE compatible(Series D or higher)

2 Factory installed EMC enclosure (-AE option) or field installed EMCEnclosure Kit (1336x-AEx ndash see page Bndash2)

3 Filter as called out on the following page

4 Grounding as shown on page Bndash2

5 Maximum cable length (drive to motor) of 75 meters (250 feet)

6 Input power (source to filter) and output power (filter to drive amp driveto motor) wiring must be braided shielded cable with a coverage of75 or better metal conduit or other with equivalent or better attenu-ation mounted with appropriate connectors For shielded cable it isrecommended to use a compact strain relief connector with doublesaddle clamp for filter and drive input and compact strain reliefconnector with EMI protection for motor output

7 Control (IO) and signal wiring must be in conduit or have shieldingwith equivalent attenuation

Requirements forConforming Installation

Appendix BCE Conformity

Bndash2

Filter Selection

Filter CatalogNumber

Three-PhaseVolts Used with

FrameReference

1336-RFB-30-A 200-240V 1336T-A001 - A003 A

380-480V 1336T-B001 - B003 B

1336-RFB-27-B 200-240V 1336T-A007 B

380-480V 1336T-B007 - B015 B

1336-RFB-48-B 200-240V 1336T-A010 - A015 B

380-480V 1336T-B020 - B030 B

1336-RFB-80-C 200-240V 1336T-A020 - A030 C

380-480V 1336T-BX040 - BX060 C

1336-RFB-150-D 200-240V 1336T-A040 - A050 D

380-480V 1336T-B060 - B100 D

1336-RFB-180-D 200-240V 1336T-A060 D

380-480V 1336T-B125 - BX150 D

1336-RFB-340-E 200-240V 1336T-A075 - A125 E

380-480V 1336T-B150 - B250 E

1336-RFB-475-G 380-480V 1336T-BX250 - B350 G

1336-RFB-590-G 380-480V 1336T-B400 - B450 G

1336-RFB-670-G 380-480V 1336T-B500 - B600 G

Not Available 380-480V 1336T-B700 - B800 H

EMC Enclosure Kit Selection

Frame Enclosure Kit Catalog NumberFrameReference 200-240V Rating 380-480V Rating 500-600V RatingB 1336-AE4 1336-AE4 1336-AE4C 1336-AE5 1336-AE5 1336-AE5D 1336-AE6 1336-AE6 1336-AE6E 1336-AE7 1336-AE7 1336-AE7FndashH Not Available

RFI Filter Installation

ATTENTION To prevent electrical shock disconnect thepower source before installing or servicing

Important Refer to the instructions supplied with the filter for details

The RFI filter must be connected between the incoming AC supply lineand the drive input terminals

RFI Filter Leakage Current

The RFI filter may cause ground leakage currents Therefore a solidground connection must be provided as shown in the electricalconfiguration scheme shown on the following page

Filter

Appendix BCE Conformity

Bndash3

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some installationsthree-phase supplies are occasionally connected in a 3-wireconfiguration with one phase grounded (Grounded Delta) Thefilter must not be used in Grounded Delta supplies or in anungrounded wye configuration

JOG

ESC SEL

R (L1)

S (L2)

Ground RodGridor Building Structure Steel

T (L3)

PE

Conduit4ndashWire Cable

RFIFilter

Shield Terminated in CableClamp on A Frame Drives

Grounding RFI Filter Grounding

Important Using the RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated intothe filter Therefore the filter must be permanently installed and solidlygrounded (bonded) to the building power distribution ground Ensurethat the incoming supply neutral is solidly connected (bonded) to thesame building power distribution ground

Grounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnectionSome local codes may require redundant ground connections Theintegrity of all connections should be periodically checked

Electrical Configuration

Appendix BCE Conformity

Bndash4

Mechanical Configuration

1 Input power (source to filter) and output power (filter to drive amp drive to motor)wiring must be in conduit or have shieldingarmor with equivalent attenuationSee requirements on page B1

NOTE 1336 FORCE 40ndash60 HP 230V and 60HP 460V mounted in D Frames are NOT CE approved and cannot be used with the RFBndash80ndashC filter

37 ndash 45 kW (1 ndash 60 HP)Frames B amp C

Conduit 1 To Motor 1

ThreendashPhase Input 1

AccessPanel

Flat Washer

Star Washers

Bolt

Important A positive electrical bond must be maintained between drive and filter at all 4 corners Star washers can be eliminated if a positive electrical bond is assured

1336 FORCE

Appendix BCE Conformity

Bndash5

1336 FORCEThrough-the-Wall Mounting)

Frames D amp E 2

1336 FORCE (Conventional Mounting)

Frames D amp E 2

Conduit Box 1

To Motor 1

Access Panel and Input Terminal Block

Lower Access Panel

Filter MountingBracket

Filter MountingBracket

Important Drive and filter must be mounted to a common back plane with a positive electrical bond Spacing is determined by Conduit Box

Three-PhaseInput 1

To Motor 1

Three-PhaseInput 1

Conduit Box 1

NippleFitting

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash6

Filter Mounting (continued)

1336 FORCE (Typical Mounting)

Frame G 2

750(295)

Mounting Brackets

Typical Connectionto Drive

AC Input Terminals

Typical Bracketfor Stability

8310(3272)

Important This information represents the method used to mount 1336-RFB-475 590 amp 670 filters in an Allen-Bradley supplied EMC enclosure User supplied EMC enclosures must follow all of the guidelines shown Illustrations are only intended to identify structural mounting points and hardware shapes You must design and fabricate steel components based on the actual mounting configuration calculated loads and enclosure specifications Refer to Chapter 2 for drive mounting requirements

Important A positive electrical bond must be maintained between the enclosure and filter (including brackets) fans and drive To assure a positive electrical bond any paint near all mounting points must be removed

Important Cooling fans are required for proper drive operation Refer to the User-Supplied Enclosures section in Chapter 2 for CFM recommendations

All Dimensions in Millimeters and (Inches)

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash7

Required Knockout Assignments

Frames B and CFrames A1 through A4

Frame EFrame D

Control IO

Control IO

Control IOFilter Input Filter Input

Filter Input Filter Input

SCANport

Motor Output

Motor Output Motor Output

Motor Output

SCANport

SCANport

SCANport(Side of Drive)Control IO

286349 (113138) - 3 Plcs 222 (088) - 1 Plc 222 (088) - 1 Plc 222286 (088113) - 3 Plcs

8891048 (350413)2 Plcs

127 (050)3 Plcs

349 (138) - 3 Plcs 349500 (138197) - 1 Plc

627762 (247300) - 2 Plcs

Appendix BCE Conformity

Bndash8

This Page Intentionally Blank

AppendixC

Cndash1

User Parameter Values

Use the tables on the following pages to record your particular parametervalue setting for the current application

No Name Default Value No Name Default Value

1 Drive Software Ver 101 47 Autotune TP Data 0000 0000 0000 0000

5 Power Struct Type 0 48 Autotune TP Select 0

8 Motor Cntrl Counter 00 sec 52 Logic Cmd Word 0000 0000 0000 0000

9 Drv Comm Tsk Intrvl 1 53 Torque Mode Sel 1

10 Drv Comm Baud Rate 0 54 Local Input Status 0000 0000 0000 0000

11 Drv Comm Trans Addr 0 55 Local Output Status 0000 0000 0000 0000

12 Drv Comm Rcv 1 Addr 0 56 Logic Status Low 0000 0000 0000 0000

13 Drv Comm Rcv 2 Addr 0 57 Logic Status Hi 0000 0000 0000 0000

14 Dr Comm Xmit Ind 1 20 58 Torq Stop Config 0

15 Dr Comm Xmit Ind 2 21 59 Logic Options 0000 0001 1000 0010

16 Dr Comm Rcv 1 Ind 1 22 60 At Setpoint 1 +00

17 Dr Comm Rcv 1 Ind 2 23 61 At Setpoint 2 +00

18 Dr Comm Rcv 2 Ind 1 24 62 Over Setpoint 1 +00

19 Dr Comm Rcv 2 Ind 2 25 63 Over Setpoint 2 +00

20 Dr Comm Xmit Data 1 0 64 Over Setpoint 3 +00

21 Dr Comm Xmit Data 2 0 65 Over Setpoint 4 +00

22 Dr Comm Rcv1 Data 1 0 66 Setpoint Select 0000 0000 0000 0000

23 Dr Comm Rcv1 Data 2 0 67 Spd Setpoint Tol base speed100

24 Dr Comm Rcv2 Data 1 0 68 Cur Setpoint Tol 20

25 Dr Comm Rcv2 Data 2 0 69 Zero Spd Tolerance base speed100

26 Process Trim Output +000 70 Logic Testpoint Data 0000 0000 0000 0000

27 Process Trim Ref +000 71 Logic Testpoint Sel 0

28 Process Trim Fdbk +000 72 Stop Dwell 10 sec

29 Process Trim Select 0000 0000 0000 0000 77 Max Dyn Brake Pwr 0 Watts

30 Proc Trim Fltr Bdwth 0 radianseconds 78 Max Dyn Brake Tmp 50 deg

31 Proc Trim Data +00 79 Dyn Brk Time Const 10 sec

32 Proc Trim KI Gain 1000 80 Pwr Up Diag Flt Sts 0000 0000 0000 0000

33 Proc Trim KP Gain 1000 81 Non Config Flt Sts 0000 0000 0000 0000

34 Proc Trim Lo Lmt ndash1000 82 CP Config Flt Sts 0000 0000 0000 0000

35 Proc Trim Hi Lmt ndash1000 83 VP Config Flt Sts 0000 0000 0000 0000

36 Proc Trim Out Gain +100 84 CP Config Warn Sts 0000 0000 0000 0000

37 Process Trim Tstpnt +0 85 VP Config Warn Sts 0000 0000 0000 0000

38 Proc Trim TP Sel 0 86 CP FltWarn Sel 0000 0000 0000 0000

40 Auto Tune Trq Lmt 500 87 CP Warn Config Sel 0000 0000 0000 0000

41 Auto Tune Speed 085 x Base Motor Spd 88 VP Fault Select 1111 1111 1111 1111

43 VP Desired BW 500 radianseconds 89 VP Warn Config Sel 0000 0000 0000 0000

44 Autotune Status 5000 radian seconds 90 Abslte Ovrspd Thrsh 01 x base speed

45 VP Damping Factor 10 91 Stall Delay 10 sec

46 Total Inertia 200 sec 92 Mtr Overload Limit 2000

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

94 Service Factor 100 144 Vel Fdbk TP HI +0

95 Mtr Ovrld Speed 1 08 x Base Speed 145 Vel Fdbk TP Select 0

96 Motor Ovrld Speed 2 08 x Base Speed 146 Vel Fdbk +0 0 rpm

97 Min Ovrld Lim 1000 147 Scaled Vel Fdbk 0

98 Fault Tstpt Data 0 148 Enc Pos Fdbk LOW 0

99 Fault Tstpt Sel 0 149 Enc Pos Fdbk HI 0

100 Vel Ref 1 LOW 0 150 Fdbk Device Type None

101 Vel Ref 1 HI 00 rpm 151 Fdbk Tracker Gain 1000

102 Vel Scl Fctr 1 +1000 152 Fdbk Filter Sel 0

103 Vel Ref 2 LOW 0 153 Kn Fdbk Filter Gain +100

104 Vel Ref 2 HI 00 rpm 154 Wn Fdbk Filter BW 100 radianseconds

105 Vel Scl Fctr 2 +1000 155 Tach Velocity +000 rpm

106 Vel Trim LOW 0 156 Notch Filter Freq 135 Hz

107 Vel Trim HI 00 rpm 157 Notch Filter Q None

108 Vel Ref TP LOW 0 161 External Iq Ref +00

109 Vel Ref TP HI 0 162 Ext Trq Ref 1 +00

110 Vel Ref TP Sel 0 163 Slave Torque 1 +100

117 Jog Spd 1 +00 rpm 164 Ext Torq Ref 2 +00

118 Jog Spd 2 +00 rpm 165 Ext Torque 2 +00

119 Preset Speed 1 +00 rpm 166 Ext Torq Step 00

120 Preset Speed 2 +00 rpm 167 Int Torq Ref +00

121 Preset Speed 3 +000 rpm 168 Internal Iq Ref +00

122 Preset Speed 4 +00 rpm 172 Torq Ref TP Data +00

123 Preset Speed 5 +00 rpm 173 Torq Ref TP Sel 0

125 Accel Time 100 seconds 174 Min Flux Level 100

126 Decel Time 100 seconds 175 Pos Mtr Cur Ref Lmt 200

127 Rev Motor Spd Lim ndash Base Motor Speed 176 Neg Mtr Cur Ref Lmt ndash200

128 Fwd Motor Spd Lim Base Motor Speed 177 Motor Power Lmt 200

129 Max Rev Spd Trim ndash base speed 178 Regen Power Lmt ndash200

130 Max Fwd Spd Trim + Base Speed 179 Pos Mtr Cur Ref Lim 100

131 Droop Percent 0 180 Neg Mtr Cur Ref Lim ndash100

132 Vel Ref Out LOW 0 181 DiDt Limit 40

133 Vel Ref Out HI +00 rpm 182 Computed Power +00

134 Vel Reg Out 0 183 Torque Limit Status 0000 0000 0000 0000

135 Vel Reg TP LOW 0 184 Torque Mode Status 0000 0000 0000 0000

136 Vel Reg TP HI 0 185 Perunit Motor Curr 00

137 Vel Reg TP Sel 0 186 Perunit Motor Volt 00

138 Velocity Error +00 rpm 220 Rtd Inv Out Amps 200 amps

139 KI Velocity Loop 320 221 Rtd Inv Input Volts 460 volt

140 KP Velocity Loop 80 222 Inverter Carrier Freq 4000 Hz

141 KF Velocity Loop 100 223 PrechRdthru Sel 0000 0000 0000 0000

143 Vel Fdbk TP LOW 0 224 Undervolt Setpoint 400 volt

Appendix CUser Parameter Values

Cndash1

No Name Default Value No Name Default Value

225 Bus Prech Timeout 300 Sec 271 Lim Motor Flux 100

226 Bus Ridethru Timout 1750 RPM 273 TP Sel 1 0

227 CP Operat Options 0000 0000 0000 0000 274 TP Data 1 0

228 Base Motor HP 300 HP 275 TP Select 2 0

229 Base Motor Speed 1750 RPM 273 TP Sel 1 0

230 Base Motor Current 02 Amps 274 TP Data 1 0

231 Base Motor Volts 460 Volts 275 TP Select 2 0

232 Base Motor Freq 60 Hz 276 TP Data 2 0

233 Motor Poles 4 poles 277 TP Select 3 0

234 Mtr Inertia 060 sec 278 TP Data 3 0

235 Encoder PPR 1024 PPR 279 TP Select 4 0

236 RS Tune 150 280 TP Data 4 100

237 Lsigma Tune 1800 281 TP Select 5 0

238 Id Tune 300 282 TP Data 5 0

240 Iq Tune 9540 283 TP Select 6 0

241 Vde Tune ndash750 volts 284 TP Data 6 0

242 Vqe Tune 3670 volts 285 Select for Tst DAC1 0

243 Vde Maximum 3560 volts 286 Select for Tst DAC2 0

244 Vque Maximum 3670 volts 287 Ki Freq Reg 0

245 Vde Minimum 30 volts 288 Kp Freq Reg 0

246 Base Slip Freq 0469 Hz 289 Kff Freq Reg 0

247 Base Slip Freq Max 200 Hz 290 Ksel Freq Reg 0

248 Base Slip Freq Min 050 Hz 291 Freq Track Filt 0

260 Iq Offset +0 292 Track Filt Type 3

261 Id Offset +0 293 Freq Trim Filt 5000

262 Ph Rot Cur Ref 50 294 Mtr Phs Rot Err 0000 0000 0000 0000

263 Ph Rot Freq Ref 30 Hz 295 Mtr InducTest Error 0000 0000 0000 0000

264 Mtr Cur Mag Fdbk 00 Amps 296 Stator RS Test Error 0000 0000 0000 0000

265 Mtr Volt Fdbk +0 Volts 297 Id Test Errors 0000 0000 0000 0000

266 Stator Freq 0000 Hz 298 Torque Blk Calc 0000 0000 0000 0000

267 Calc Torque 00 300 Adapter ID 2

268 DC Bus Voltage 0 volts 301 Adapter Version xxx

269 Filter Mtr Vel Fdbk 00 rpm 302 Adapter Config

270 Inv Temp Fdbk 0 deg 304 Language Select 0

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

310 Data In A1 0 359 Pot Offset +0000

311 Data In A2 0 360 Pot Scale +1000

312 Data In B1 0 361 Milli Amp Input +0

313 Data In B2 0 362 Milli Amp In Offset +0000 mA

314 Data In C1 0 363 Milli Amp In Scale +2000

315 Data In C2 0 364 SP Analog Sel 1

316 Data In D1 0 365 Sp Analog In 0

317 Data In D2 0 366 Sp An1 Scale 1 (32767)

320 Data Out A1 0 367 Sp Analog Select 1

321 Data Out A2 0 368 Sp Analog2 In 0

322 Data Out B1 0 369 SP An2 Scale 1 (32767)

323 Data Out B2 0 370 Analog Output 1 0

324 Data Out C1 0 371 Analog Out 1 Offset +0000 volt

325 Data Out C2 0 372 An Out 1 Scale +0500

326 Data Out D1 0 373 An Out 2 Scale 0

327 Data Out D2 0 374 Analog Out 2 Offset +0000

330 SP Port Enable Msk 0111 1111 375 An Out 2 Scale +0500

331 SP Direction Mask 0111 1111 376 mA Output 0

332 SP Start Mask 0111 1111 377 mA Output Offset 0000 mA

333 SP Jog Mask 0111 1111 378 Regen Power Lmt +0500

334 SP Ref Mask 0111 1111 379 Pos Mtr Cur Lim 0

335 SP Clr Flt Mask 0111 1111 384 Select for Tst DAC2 8

336 SP Reset Drv Mask 0111 1111 385 Input Mode 1

337 SP Local Cntrl Mask 0111 1111 386 Input Status 0000 0000

340 SP Stop Owner 0000 0000 387 Stop Select 1 0

341 SP Dir Owner 0000 0000 388 Stop Select 2 0

342 SP Start Owner 0000 0000 389 Accel Rate 1 10 sec

343 SP Jog 1 Owner 0000 0000 390 Accel Rate 2 3

344 SP Jog 2 Owner 0000 0000 391 Decel Rate 1 5000

345 SP Ref Owner 0000 0000 392 Decel Rate 2 0000 0000 0000 0000

346 SP Local Owner 0000 0000 393 Mop Increment 0000 0000 0000 0000

347 SP Flux Owner 0000 0000 394 Mop Value 0000 0000 0000 0000

348 SP Trim Owner 0000 0000 395 Pulse PPR 0000 0000 0000 0000

349 SP Ramp Owner 0000 0000 396 Pulse Edge 0000 0000 0000 0000

350 SP Clr Fault Owner 0000 0000 397 Pulse Scale 1750

352 10 Volt In Filtr 00 rs 398 Pulse Offset 00

353 Pot In Fltr 00 rs 399 Pulse Value 00

354 mA In Filtr 00 rs 404 SP Comm Retries 00

355 10 Volt Input 0 405 Fault Select 0000 0000 0111 1111

356 10 Volt Offset 000 Volt 406 Warning Select 0000 0000 0111 1111

357 10 Volt Scale +2000 407 Fault Status 0000 0000 0000 0000

358 Pot Input 0 408 Warning Status 0000 0000 0000 0000

AppendixD

Dndash3

Spare Parts Information

Current 1336 FORCE spare parts information including recommendedparts catalog numbers and pricing can be obtained from the followingsources

AllenndashBradley home page on the World Wide Web athttpwwwabcom

then select ldquoDrives and Motorsrdquo followed by ldquo1336 FORCErdquo from the Product Directory and ldquo Technical Supportrdquo

Select Parts List

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Appendix DSpare Parts

Dndash3

This Page Intentionally Blank

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Index

I-1

AAC Supply Source 2ndash8AC Input Line Fuse Ratings 2ndash12Analog IO ParameterConfiguration 4ndash22Analog Inputs 2ndash30Analog Outputs 2ndash31Analog IO Links 4ndash22AutondashTuning Test Procedure6ndash20

BBattery Disposal Andash54BindashDirectional Operation 2ndash30Bit Enums 3ndash8Bus Voltage Tracker 6ndash15

CCable Termination Andash5Cable and WiringRecommendations 2ndash20CE Filter Bndash2CE Mechanical ConfigurationBndash4CE Requirements Bndash1Configuration (Standard Adapter)2ndash32Configuration (PLC CommAdapter) 2ndash46Communication Configuration4ndash17Control Link Configuration 4ndash20ControlNet Parameters 5ndash24Control Interface Option 2ndash35Control amp Signal Wiring(Standard Adapter) 2ndash28Control amp Signal Wiring (PLCComm Adapter) 2ndash42Control Specifications 1ndash2Control Status Mode 3ndash13Control Wiring 2ndash25Current Processor Faults 6ndash7

DDiscrete Inputs 2ndash44Discrete Outputs 2ndash44 2ndash31Display Mode 3ndash7Derating Guidelines Andash7Drive to Drive Communication2ndash26Drive to Drive HardwareConnection 2ndash27Drive to Drive HardwareConnection 2ndash27Drive Disconnection 2ndash11Drive Features 1ndash12Drive Hardware Overview Andash16

EEnclosure Requirements Andash6Encoder Connections 2ndash26Encoderless Speed Regulation1ndash5EMC Directive Bndash1EEPROM Mode 3ndash10EMIRFI Emission 2ndash13EMIRFI Emission 2ndash13Emmisions 2ndash13Environmental Specifications 1ndash4External Control LinkConfiguration 4ndash21

FFault Descriptions 6ndash2FaultWarning Handling 6ndash5FaultsampWarnings ndash CurrentProcessor 6ndash7Flex IO Module 4ndash34Frame D Drive Connections 2ndash45FaultsampWarnings ndash VelocityProcessor 6ndash17Feedback Devices 1ndash5Flux Test 6ndash29Frame Dimensions 2ndash2Firmware Function OverviewAndash34

Index

I-2

GGate Driver Board ConnectionsAndash27Graphic Programming Terminal3-20Graphic Programming TerminalOperation 3-22Graphic Programming TerminalKeypad Description 3ndash21Grounding Discrete Control andSignal Wiring 2ndash15Grounding Encoder Connections2ndash15Grounding Motor Cables 2ndash15Grounding Sensitive Circuits2ndash15

HHardware Testpoints 6ndash34HIM Control Panel 3ndash1HIM Key Descriptions 3ndash2HIM Module Removal 3ndash4HIM Operation 3ndash4HIM Programming Steps 3ndash6

IInput Devices 2ndash10Input Fusing 2ndash11Input Power Conditioning 2ndash11IO CommunicationConfiguration 4ndash19IO Ratings 2ndash8Immunity 2ndash13Interface Board Installation 2ndash29

LLink Option 3ndash8Lug Selection 2ndash18Lug Kits 2ndash18L4L4E Option 2ndash39L5L5E Option 2ndash40L6L6E Option 2ndash41

MMasterSlave Drive to DriveCommunication 4ndash19Motor Cables 2ndash17 amp A1Mounting Clearances 2ndash1Mounting 2ndash1Multiple Opens 6ndash28

NNuisance Faults 6ndash23

OOptions 1ndash3Option L4L4E Wiring 2ndash39Option L5L5E Wiring 2ndash40Option L6L6E Wiring 2ndash41Output Relay Configuration 4ndash27Open Transistor Faults 6ndash23

PPassword Mode 3ndash16Parameter Descriptions 5ndash24Parameter Table 5ndash3PE Safety Ground 2ndash16Performance Specs 1ndash2PLC Comm Adapter BoardControl Scheme 2ndash45PLC Comm Adapter BoardParameters 5ndash23Phase Rotation Test 6ndash24PLC Comm Adapter BoardControl amp Signal Wiring 2ndash42PLC Comm Switch Settings 2ndash43PLC Comm Adapter BoardConnections 2ndash43PrendashPower Checks 4ndash4Protective Features 1ndash3Process Mode 3ndash9Power Application 4ndash5Power Cabling 2ndash17Power Wiring 2ndash21Power Structure Tests 6ndash20Power Conditioning 2ndash11Precharge Faults 6ndash9

Pulse Input 2ndash31Program Mode 3ndash6

QQuick Start Procedure 4ndash7

RRemote IO Comm Module 4ndash34Repeated ApplicationRemoval ofInput Power 2ndash10Resistance Test 6ndash26RFI Filter 2ndash14 2ndash16 Bndash2RFI Filter Installation Bndash2 2ndash14RFI Filter Leakage Current Bndash22ndash14RFI Filter Grounding Bndash3Reference Signal Connections(PLC Comm) 2ndash43Ridethrough 6ndash10Ridethrough Faults 6ndash9

SSafety Precautions 4ndash1Safety Ground ndash PE 2ndash16SCANport Control Configuration4ndash29Schematic Diagrams Andash17Search Mode 3ndash12Serial Communication Module4ndash33Sequential Torque Block Tuning6ndash24Sensorless Application NotesAndash30Signal Ground ndash TE 2ndash16SLC to SCANport Module 4ndash32Software Block Diagram Andash32Spare Parts Dndash1Speed Regulation with EncoderFeedback 1ndash5Standard Adapter BoardConnections 2ndash28Standard Adapter Parameters5ndash16Startup Configuration 4ndash6

Index

I-3

Startup Mode 3ndash18Startup Safety Precautions 4ndash1Starting and Stopping the Motor2ndash10 2ndash45 2ndash34Switch Settings (PLC Comm)2ndash43

TTE Signal Ground 2ndash16Terminal Block Locations (MainControl Board 2ndash25Terminal Block TBWiring 2ndash21Terminology 1ndash1Test Points 6ndash34TBndash3 Control Interface Option2ndash35TBndash3 Terminal Designations2ndash36Torque Block Tuning 6ndash24Torque Block Update 6ndash31Troubleshooting 6ndash1

UUnbalanced Distribution Systems2ndash9Undervoltage Setpoint 6ndash13Ungrounded Distribution System2ndash9Unindashdirectional Operation 2ndash30

VVelocity Loop Autotune 6ndash32Velocity Processor Faults 6ndash17

WWire Types 2ndash20

Index

I-4

This Page Intentionally Blank

Index

Publication 1336 FORCE-512 September 1998 PN 74002-113-01 (02)Supersedes Publication 1336 FORCEndash512 mdash February 1997 Copyright 1995 Allen-Bradley Company Inc Printed in USA

  • Front Cover
  • Important User Information
  • Document Update
    • HIM UploadDownload Errors
    • Motor Control Board (v6xx)
      • Summary of Changes
      • Table of Contents
      • Introduction
        • Manual Objectives
        • Who Should Use This Manual
        • Terminology
        • Standard Drive Features
        • Performance Specifications
        • Control Specifications
        • Options
        • Protective Features
        • Environmental Specifications
        • Electrical Specifications
        • Feedback Devices
        • Software Compatibility
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v2xx
        • PLC COMM ADAPTER v3xx BOARD
        • v5xx
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v3xx
        • STADARD ADAPTER BOARD
        • v4xx
        • v5xx
        • This Page Intentionally Blank
          • InstallationWiring
            • Chapter Objectives
            • Mounting
            • InputOutput Ratings
            • AC Supply Source
            • Unbalanced Distribution Systems
            • Ungrounded Distribution Systems
            • Input Devices Starting and Stopping the Motor
            • Repeated ApplicationRemoval of Input Power
            • Bypass Contactors
            • Drive Output Disconnection
            • Input Power Conditioning
            • Input Fusing
            • Electrical Interference uacute EMIRFI Immunity
            • Emission
            • RFI Filtering
            • RFI Filter Installation
            • RFI Filter Leakage Current
            • Grounding
            • Sensitive Circuits
            • Motor Cable
            • Encoder Connections
            • Discrete Control and Signal Wiring
            • Signal Ground uacute TE
            • Safety Ground uacute PE
            • RFI Filter
            • Power Cabling
            • Motor Cables
            • Wire Size and Type
            • Lug Kits
            • Power Wiring
            • Control Wiring
            • Encoder Connections
            • Drive to Drive Communication
            • Drive to Drive Setup
            • Figure 214 Drive to Drive Hardware Connection
            • Standard Adapter Board
            • Discrete Outputs
            • Pulse Input
            • Configuration
            • Starting amp Stopping the Motor
            • Control Interface Option uacute TB3
            • Start Enable Stop Clear Fault Ext Flt Reverse 2 Stop Mode Selects Digital Potentiometer (MOP) Run Forward 2 Accel Decel Rates Run Reverse 3 Speed Selects Local Control
            • Option L4L4E uacute Contact Closure Interface Board Requirements
            • Option L5L5E uacute 24V ACDC Interface Board Requirements
            • Option L6L6E uacute 115V AC Interface Board Requirements
            • PLC Communication Adapter Board
            • Switch Settings uacute
            • Discrete Outputs
            • Discrete Inputs
            • Computer Connections to Frame D drives
            • ControlNet Fiber Optic Cable Connections to Frame D drives
            • Configuration
              • Programming Terminals
                • Chapter Objectives
                • HIM Description
                • Key Descriptions
                • Module Removal
                • To remove the module
                • HIM Operation
                • Important
                • GPT Description
                • Keypad Description
                • GPT Operation
                • This Page Intentionally Blank
                  • Start Up
                    • Introduction
                    • Safety Precautions
                    • Required Tools and Equipment
                    • Drive Information
                    • General
                    • PreuacutePower Checks
                    • Power On
                    • Startup Configuration Procedures
                    • Table 4B Sensorless Setup Values
                    • Communication Configuration
                    • Figure 43 D2D Communication
                    • Figure 44 Node Address Transmittal
                    • Figure 45 Master Slave Communication Example
                    • Standard Adapter Board Equipped Drives
                    • PLC Comm Adapter Board Equipped Drives
                    • This Page Intentionally Blank
                      • Programming Parameters
                        • Introduction
                        • Terminology
                        • Parameter Table Structure
                        • Parameter Table (Standard Adapter Equipped Drives)
                        • Standard Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • PLC Comm Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • Figure 54 1336 FORCE equipped with a ControlNet Adapter Board
                        • Parameter Descriptions
                        • This Page Intentionally Blank
                          • Troubleshooting
                            • General
                            • Required Equipment
                            • Fault Descriptions
                            • Table 6A 1336 FORCE Main Control Fault Descriptions
                            • FaultWarning Handling
                            • Hardware Testpoints
                              • Appendix A
                                • Motor Cables
                                • Cable Termination
                                • Enclosures
                                • Derating Guidelines
                                • Gate Driver Board Connections
                                • Sensorless Application Notes
                                • Software Block Diagram - Standard Adapter
                                  • Motor Control Board Overview
                                  • Velocity Reference Overview
                                  • Trim Control Overview
                                  • Velocity Feedback Overview
                                  • Velocity PI Regulator Overview
                                  • Torque Reference Overview
                                  • Torque Block Overview
                                  • Drive Fault Detection
                                  • Drive Fault Overview
                                  • Inverter Overload
                                  • Velocity Loop Autotune
                                  • Logic Control
                                    • Battery Disposal
                                      • CE Conformity
                                        • EMC Directive
                                        • Requirements for Conforming Installation
                                        • Filter
                                        • Electrical Configuration
                                        • Grounding
                                        • Mechanical Configuration
                                        • Required Knockout Assignments
                                          • User Parameter Values
                                          • Spare Parts Information
                                          • Index
                                          • Back Cover
                                            • PDF Job Options

                                              Offset Print Specs

                                              POD Print Specs

                                              1. Refer to Document Update on Page 5
                                              Print On Demand Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 20 bond
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 90 Bristol Index
                                              Ink - Cover Black (1-1-0-1)
                                              Binding Perfect bind (above 220 pages110 sheets)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Per vendor standard method
                                              Delivery Specified by Buyer
                                              Offset Print Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 50 smooth white offset (house stock)
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 8-10 pt coated 1S (house weight amp stock)
                                              Ink - Cover Black and PMS 187 red aqueous coated (2-1-0-1)
                                              Binding Perfect bind (120 pages minimum)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Specified by Buyer
                                              Delivery Specified by Buyer
                                              PDF Job Options
                                              Tab Description
                                              General File Options
                                              Compatibility Acrobat 40
                                              3 Optimized PDF
                                              Resolution 1200 dpi
                                              Binding Left
                                              Compression Color Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Grayscale Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Monochrome Bitmap Images
                                              3 Bicubic Downsampling at 300 dpi
                                              3 Compression CCITT Group 4
                                              3 Compress Text and Line Art
                                              Fonts 3 Embed All Fonts
                                              3 Subset All Embedded Fonts Below 100
                                              When Embedding Fails Warn and Continue
                                              Embedding Base 14 Fonts
                                              Color Conversion
                                              3 Leave Color Unchanged
                                              Options
                                              3 Preserve Overprint Settings
                                              3 Preserve Under Color Removal amd Black Generation
                                              3 Preserve Transfer Functions
                                              Advanced Options
                                              3 Preserve Level 2 copypage Semantics
                                              Document Structuring Convensions (DSC)
                                              3 Process DSC
                                              3 Preserve EPS Info from DSC
                                              3 Preserve OPI Comments
                                              3 Preserve Document Info from DSC
                                              Default Page Size
                                              3 Letter
Page 2: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx

Important User Information Because of the variety of uses for the product described in this publicationthose responsible for the application and use of this control equipmentmust satisfy themselves that all necessary steps have been taken to assurethat each application and use meets all performance and safetyrequirements including any applicable laws regulations codes andstandards

The illustrations charts sample programs and layout examples shown inthis guide are intended solely for purposes of example Since there aremany variables and requirements associated with any particularinstallation Allen-Bradley Company does not assume responsibility orliability (to include intellectual property liability) for actual use based uponthe examples shown in this publication

Allen-Bradley publication SGI-11 Safety Guidelines for the ApplicationInstallation and Maintenance of Solid-State Control (available from yourlocal Allen-Bradley office) describes some important differences betweensolid-state equipment and eletromechanical devices that should be takeninto consideration when applying products such as those described in thispublication

Reproduction of the contents of this copyrighted publication in whole or inpart without written permission of the Allen-Bradley Company Inc isprohibited

Throughout this manual we use notes to make you aware of safetyconsiderations

ATTENTION Identifies information about practices orcircumstances that can lead to personal injury or death propertydamage or economic loss

Attentions help you

bull identify a hazard

bull avoid the hazard

bull recognize the consequences

Important Identifies information that is especially important forsuccessful application and understanding of the product

Document Update

1336 FORCE AC Drive User Manual

This document provides new and updated material for the 1336 FORCE Adjustable Frequency AC Drive User Manual publication 1336 FORCE-512 dated September 1998 Please place this document with your manual for future reference

HIM UploadDownload Errors

The following information describes the possible errors that can be encountered during a HIM UploadDownload procedure

HIM UploadDownload Errors

Motor Control Board (v6xx)

The following changes should be noted if a v6xx Motor Control Board is being used

Fault Name Error Displayed Probable Cause ActionHIM -gt Drive ERROR 1 The HIM calculated a checksum for the file to be

downloaded then checked the EEPROM checksum of the download The checksums did not match indicating the file stored in the HIM is invalid and the download was not successful

Upload a valid uncorrupted file from the source drive and then repeat the download

ERROR 2 The number of parameters in the HIM file is different than the number of parameters in the drive file The smaller of the two numbers is the number of parameters downloaded The last downloaded parameter number is displayed

Verify that the correct file is being downloaded to the correct drive then press the Enter key

Manually reprogram parameters with numbers higher than the last number downloaded or whose values were incorrect

ERROR 3 The file in the HIM is for a different type of drive than the drive to which it is connected (ie 1336 FORCE file to 1336 IMPACT drive) Downloads can only occur between like drive types

None - Download not allowed

ERROR 4 The value just transferred to the drive is an illegal value (out of range too high or too low) for the parameter

Record the parameter number displayed and then press Enter to continue the download Manually reprogram all recorded parameters after the download is complete

ERROR 5 The download was attempted while the drive was running Stop the drive and repeat the download attemptERROR 6 The file in the HIM is for a different HP or voltage drive than

the drive to which it is connected (ie 1336 FORCE 10 HP file to 1336 FORCE 15 HP drive)

If the download is desired press the Enter key If not desired press the ESCape key to end the download

Drive -gt HIM ERROR 1 The HIM calculated a checksum as the file was uploaded and compared it to the HIM file checksum stored after the upload The checksums did not match indicating the upload was not successful and the HIM file is now corrupted

Repeat the Upload

2 1336 FORCE AC Drive User Manual

Page 1ndash6

The table has been updated to include v6xx of the Motor Control Board

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxv6xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

1336 FORCE AC Drive User Manual 3

Page 1ndash7

The table has been updated to include v6xx of the Motor Control Board A note was added to v5xx of the Standard Adapter Board

MOTOR CONTROL BOARD

STANDARDADAPTERBOARD

v1xxv1xx

v2xx v3xx v5xx6xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

v5xx - Compatiblev6xx - Drive to drive communicationsonly compatible at 125k baudNot Compatible at 250k or 500k

4 1336 FORCE AC Drive User Manual

Pages 3ndash20 through 3ndash24

GPT information does not apply

Page 5ndash31

Important note added to ldquoDrive Link Baud Raterdquo description

Important If a v6xx drive is added to the drive link that has v5xx or less it will only operate at 125k baud If all drives on the drive link are v6xx it can operate at 250k and 500k baud

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

wwwrockwellautomationcom

Americas Rockwell Automation 1201 South Second Street Milwaukee WI 53204-2496 USA Tel (1) 4143822000 Fax (1) 4143824444EuropeMiddle EastAfrica Rockwell Automation VorstlaanBoulevard du Souverain 36 1170 Brussels Belgium Tel (32) 2 663 0600 Fax (32) 2 663 0640Asia Pacific Rockwell Automation Level 14 Core F Cyberport 3 100 Cyberport Road Hong Kong Tel (852) 2887 4788 Fax (852) 2508 1846

Power Control and Information Solutions Headquarters

Publication 1336 FORCE-512DU2 ndash February 2007 PN 74002-113-01 (03)Supersedes 1336 FORCE-512DU2 dated February 2006 Copyright copy 2007 Rockwell Automation Inc All rights reserved Printed in USA

US Allen-Bradley Drives Technical Support - Tel (1) 2625128176 Fax (1) 2625122222 Email supportdrivesrarockwellcom Online wwwabcomsupportabdrives

Summary of Changes

Summary of Changes

Summary of Manual Changes The 501 release of the 1336 FORCE 512 User Manual contains some newand updated information The new and updated information is summarizedin the table below For further information refer to the page numbersprovided

Description of New or Updated Information Page Type

H frame dimensions added 2-7 NewLine fuse ratings updated 2-7 ClarificationMotor Cable requirements added 2-16 NewH frame terminal block added 2-22 NewFigure 2ndash17 upgraded 2-29 ClarificationH Frame Terminal Block Location added 2-34 NewFrame D ControlNet connection info added 2-43 NewControlNet Parameter Table added 5-24 NewParameter 71 updated 5-35 ClarificationParameter 92 updated 5-39 ClarificationParameter 185 added 5-51 NewParameter 186 added 5-52 NewParameter 223 updated 5-53 ClarificationParameter 224 updated 5-53 ClarificationParameter 229 updated 5-54 ClarificationParameter 233 updated 5-54 ClarificationParameter 257 updated 5-57 ClarificationParameter 258 updated 5-57 ClarificationParameter 259 updated 5-57 ClarificationParameter 294 updated 5-62 ClarificationParameter 385 updated 5-76 ClarificationUnderstanding Precharge and Ridethru Faults 6ndash9 NewUnderstanding the Bus Voltage Tracker 6ndash15 NewPower structure and transistor Diag tests 6ndash20 NewSequential Torque Block Tuning 6ndash24 NewH Frame Motor cable restrictions added A-4 NewBC 700 amp BC 800 Derating Guidelines added Andash15 New700 ndash 800 HP Schematic added Andash25 NewSoftware Block Diagram updated Andash32 ClarificationTorque Block Firmware Diagram updated Andash45 ClarificationLithium Battery Disposal information added Andash54 NewCE mechanical configuration diagram added Bndash5 Bndash6 Bndash7 NewSpare Part Appendix added D-1 New

This Page Intentionally Blank

Table of Contents

i

Introduction Chapter 1Manual Objectives 1-1

Who Should Use This Manual 1-1

Terminology 1-1

Standard Drive Features 1-2

Performance Specifications 1-2

Control Specifications 1-2

Options 1-3

Protective Features 1-3

Environmental Specifications 1-4

Electrical Specifications 1-4

Feedback Devices 1-5

Software Compatibility 1-6

InstallationWiring Chapter 2Chapter Objectives 2-1

Mounting 2-1

Dimensions 2-2

InputOutput Ratings 2-7

AC Supply Source 2ndash7

Input Devices 2ndash9

Drive Output Disconnection 2ndash10

Input Power Conditioning 2ndash10

Input Fusing 2ndash10

Electrical Interference ndash EMIRFI 2ndash12

RFI Filtering 2ndash13

Grounding 2ndash14

Power Cabling 2ndash16

Wire Size and Type 2ndash16

Lug Kits 2ndash17

Power Wiring 2ndash20

Control Wiring 2ndash23

Encoder Connections 2ndash24

Drive to Drive Communication 2ndash24

Standard Adapter Board 2ndash26

Control amp Signal Wiring (Standard Adapter Board) 2ndash26

Interface Board Installation amp Removal 2ndash27

Standard Adapter Analog Inputs 2ndash28

Standard Adapter Analog Outputs 2ndash29

Standard Adapter Discrete Outputs 2ndash29

Pulse Input (Standard Adapter Equipped Drives) 2ndash29

Starting amp Stopping the Motor (Standard Adapter Equipped Drives) 2ndash32

Control Interface Option ndash TB3 2ndash33

Table of Contents

ii

Control amp Signal Wiring (PLC Comm Adapter Board) 2ndash40

Switch Settings (PLC Comm Board) 2ndash41

Discrete Outputs (PLC Comm Adapter) 2ndash42

Discrete Inputs (PLC Comm Adapter) 2ndash42

Control Scheme 2ndash45

Computer Connections (Frame D Drives) 2ndash45

ControlNet Connections (Frame D Drives) 2ndash45

Configuration (PLC Comm Adapter) 2ndash46

Programming Terminals Chapter 3Chapter Objectives 3-1

HIM Description 3-1

HIM Module Removal 3-4

HIM Operation 3-4

HIM Programming Steps 3-19

GPT Description 3-20

Keypad Description 3-21

GPT Operation 3-22

GPT Programming Options 3-24

StartndashUp Chapter 4Introduction 4-1

Safety Precautions 4-1

Required Tools and Equipment 4-2

Drive Information 4-3

General 4-4

PrendashPower Checks 4-4

Power On 4-5

Startup Configuration Procedures 4-6

Quick Startup Procedure 4-7

Manual Startup Mode 4-10

Communication Configuration 4-17

Drive to Drive Communication 4-17

IO Communication Configuration 4-20

External Control Link Configuration 4-21

Analog IO Parameter Configuration 4-23

SCANport Analog IO Parameter Configuration 4-27

Output Relay Configuration 4-27

Pulse Input Configuration 4-28

MOP Configuration 4-28

SCANport Image Configuration 4-28

SCANport Control Configuration 4-29

Table of Contents

iii

Control Interface Option 4-29

Using the SCANport Image 4-30

IO Image Table 4-31

SLC to SCANport Module 4-32

Serial Communications Module 4-33

Remote IO Communications Module 4-34

Programming Parameters Chapter 5Introduction 5-1

Terminology 5-1

Parameter Table Structure 5-2

Parameter Table (Numerical) 5-3

Parameter Table (Alphabetical) 5-11

Standard Adapter Parameters 5-16

PLC Comm Adapter Parameters 5-20

Parameter Descriptions 5-24

ControlNet Parameters 5-80

Troubleshooting Chapter 6General 6-1

Required Equipment 6-1

Fault Descriptions 6-2

Fault Code Definition 6-2

Main Control Board Fault Descriptions 6-3

Standard Adapter Board Fault Descriptions 6-4

FaultWarning Handling 6-5

Current Processor Faults amp Warnings 6-7

Understanding Precharge and Ridethrough Faults 6-9

Understanding the Bus Voltage Tracker 6-15

Auto-Tuning Test Procedure 6-20

Power Structure and Transistor Diagnostics Tests 6-20

Phase Rotation Tests 6-24

Sequential Torque Block Tuning 6-24

Running the Resistance Test 6-26

Running the Flux Test 6-29

Torque Block Update 6-31

Velocity Loop Autotune 6-32

Hardware Testpoints 6-34

Table of Contents

iv

Appendix Appendix AMotor Cables A-1

Cable Termination A-5

Enclosures A-5

Derating Guidelines A-7

Drive Hardware Overview A-16

Schematic Diagrams A-17

Gate Driver Board Connections A-27

Sensorless Application Notes A-30

Software Block Diagram ndash Standard Adapter A-32

Firmware Function Overview Diagrams A-34

Battery Disposal A-54

CE Conformity Appendix BEMC Directive B-1

Requirements for Conforming Installation B-1

Filter B-2

Electrical Configuration B-3

Grounding B-3

Mechanical Configuration B-4

Required Knockout Assignments B-7

User Parameter Values Appendix CValue Table C-1

Spare Parts Information Appendix DInformation Location D-1

Chapter 1

1ndash1

Introduction

Manual Objectives The purpose of this manual is to provide the user with the necessaryinformation to install program start up and maintain the 1336 FORCEDigital AC Drive This manual should be read in its entirety beforeoperating servicing or initializing the 1336 FORCE Drive

Who Should Use This Manual This manual is intended for qualified service personnel responsible forsetting up and servicing the 1336 FORCE AC Drive You must haveprevious experience with and a basic understanding of electricalterminology programming procedures required equipment and safetyprecautions before attempting any service on the 1336 FORCE Drive

ATTENTION Only personnel familiar with the 1336FORCE Drive and the associated machinery should plan orimplement the installation startndashup and subsequentmaintenance of the Drive Failure to comply may result inpersonal injury andor equipment damage

ATTENTION An incorrectly applied or installed Drivecan result in component damage or a reduction in productlife Wiring or application errors such as undersizing themotor incorrect or inadequate AC supply or excessiveambient temperatures may result in damage to the Drive ormotor

ATTENTION This Drive contains ESD (ElectrostaticDischarge sensitive parts and assemblies Static controlprecautions are required when installing testing servicingor repairing this assembly Component damage may resultif ESD control procedures are not followed If you are notfamiliar with static control procedures referenceAllenndashBradley Publication 8000ndash452 Guarding againstElectrostatic Damage or any other applicable ESDprotection handbook

Terminology Detailed definitions of industrial automation and technical terms usedthroughout this manual may be found in the INDUSTRIALAUTOMATION GLOSSARY ndash a guide to AllenndashBradley technicalterms Publication AGndash71

Chapter 1Introduction

1ndash2

Standard Drive Features The Bulletin1336 FORCE Field Oriented AC Drive is a microprocessorcontrolled Digital AC Drive with the following features

bull 1 to 650 HP at 0 ndash 250 HZ constant torquebull Four Quadrant operation availablebull High Performance Digital Velocity Loopbull Microprocessor controlled field oriented current loopbull Simplified programming through the use of a Parameter Table that

features data entries in engineering units with English descriptionsbull Nonvolatile Parameter Storagebull Extensive diagnostics including both logic board and power

structure testsbull Time stamped nonvolatile FaultWarning Queuebull Real Time Clockbull Reference Time Stampbull Run Time Accumulatorbull Enclosed Constructionbull Multiple Communication Interfacesbull Complete Encoder Interfacebull Drive to Drive Linkbull SCANportTM Peripheral Interface

Performance Specificationsbull Speed Regulation to 0001 of top speedbull Torque Regulation to plusmn 5 of rated motor torquebull Power Loss RidendashThru capability of two secondsbull Flying Start Capability of starting into a spinning motorbull Torque Linearity 1bull Overload Capability 150 for 1 minute 200 of motor rating for

10 seconds up to inverter limitbull Programmable AccelDecel rates from 0 to 6553 secondsbull Current limit programmable from 200 of rated output current

Control Specificationsbull Indirect SelfndashOrganized FieldndashOriented Control

Currentndashregulated sine coded PWM with programmable carrier frequencyHP Drive Rating Carrier Frequency1ndash3 HP 4 kHz 1ndash12 kHz75ndash30 HP 4 kHz 1ndash12 kHz40ndash60 HP 4 kHz 1ndash12 kHz75ndash125 HP 2 kHz 1ndash6 kHz150ndash250 2 kHz 1ndash6 kHz300ndash500 2 kHz 1ndash4 kHz600ndash650 15 kHz 1ndash4 kHz700ndash800 1 kHz 1ndash4 kHzRefer to Derating Guidelines in the Appendix of this manual

bull Output Voltage Range ndash 0 to rated voltagebull Output Frequency Range ndash 0 to 250 Hzbull Speed Regulation with Encoder Feedback ndash 0001 of Top Speed

over a 1001 Speed Range

Chapter 1Introduction

1ndash3

bull Encoderless Speed Regulation ndash 1 of Top Speed over a 401 Speed Range

bull AccelDecel ndash Independently programmable accel and decel times Program from 0 to 6553 seconds in 01 second increments

bull Current Limit ndash Independent Motoring and Regenerative Limitbull Inverse Time Overload Capability ndash Class 20 protection with

speedndashsensitive response Adjustable from 0ndash200 of rated output current in 3 speed ranges ndash 21 41 amp 101 UL Certified ndash Meets NEC Article 430

Optionsbull Standard Adapter Board which provides

ndash 2 Analog Inputs +ndash10Vndash 2 Analog Outputs +ndash 10Vndash One 4ndash20mA inputndash One 4ndash20mA outputndash 5 or 12 vdc pulse inputndash +ndash 10V reference voltagesndash At Speed Run Fault and Alarm contacts

bull PLC Communication Adapter Board which providesndash 4 Analog Inputs +ndash10Vndash 4 Analog Outputs +ndash 10Vndash +ndash 10V Reference voltagesndash RIODHTM+ Communications (2 channels selectable)ndash Function Blocks

bull DriveToolsTM PC Windows TM based programming software compatible with the 1336 FORCE Drive and also other AllenndashBradley 1336 and 1395 products

bull Dynamic Braking

bull AC Motor Contactor

Protective Features The 1336 FORCE Drive incorporates the following protective measures

bull Programmable Motor Overload Protection (I2T) investigated by UL to comply with NEC Article 430

bull Programmable Inverter Overload Protection (IT)bull Overspeed Detection even when operating as a torque followerbull Programmable Stall Detectionbull Peak output current monitoring to protect against excessive current

at the output due to a phase to ground or phase to phase shortbull Ground fault monitoringbull DC Bus Voltage monitoring to protect against underover voltage

conditionsbull Power Structure Heatsink Temperature Monitoring

Chapter 1Introduction

1ndash4

Environmental Specifications The following environmental guidelines apply to both the 1336 FORCEDrive and all devices and accessories connected to the Drivebull Ambient Operating Temperature

IP00 Open 0 to 50 degrees C (32 to 122 degrees F) IP20 NEMA Type 1 Enclosed 0 to 40 degrees C (32 to 104 degrees F) IP65 NEMA Type 4 Enclosed 0 to 40 degrees C (32 to 104 degrees F)

bull Storage Temperature (all constructions) ndash40 to 70 degrees C (ndash40 to 158 degrees F)

bull Relative Humidity 5 ndash 95 nonndashcondensingbull Altitude 1000m (3300 ft) without derating bull Shock 15g peak for 11ms duration (+ 10 ms)bull Vibration 0006 inches (0152 mm) displacement 1G peak

Electrical Specificationsbull Input Voltage Rating

200 ndash 240VAC Standalone 3 Phase +10 ndash15 nominal 380 ndash 480VAC Standalone 3 Phase +10 ndash15 nominal 500 ndash 600VAC Standalone 3 Phase +10 ndash15 nominal 513 ndash 621 VDC Common Bus +10 ndash15 nominal 776 VDC Common Bus +10 ndash15 nominal

bull Input Power Rating 2 ndash 134 KVA (230V) 2 ndash 437 KVA (380V)

2 ndash 555 KVA (460V) 23 ndash 578694 KVA (500600V)

bull Input Frequency 5060HZ (plusmn3HZ)

bull Standard Output Voltage Four frame sizes are available Each frame size is line dependent and can power a motor between the following voltages200 ndash 240 Vac (line dependent)380 ndash 480 Vac (line dependent)500 ndash 600 Vac (line dependent)If voltage required for your application is not shown contact AllenndashBradley for specific application

bull Output Current 25 ndash 673A

bull Output Power 2 ndash 116 KVA (230V)2 ndash 190 KVA (380V)2 ndash 208 KVA (415V)2 ndash 537 KVA (460V)2 ndash 671 KVA (575V)

Note For information on factors that could effect the power output of the drive please refer to the Enclosure and Derating Guidelines in the Appendix of this manual

bull Output Horsepower (Continuous) 75 ndash 650HP

bull Overload CapabilityContinuous ndash 100 Fundamental current1 minute ndash 150

Chapter 1Introduction

1ndash5

bull Output Frequency Range 0 ndash 250 HZ

bull Output Waveform Sinusoidal (PWM)

bull Max Short Circuit Current Rating 200000A rms symmetrical 600 volts (when used with specified AC input line fuses as detailed in Table 2A)

bull Ride Through 2 seconds minimum

bull Efficiency 975 at rated amps nominal line volts

Feedback Devices

bull Encoder Incremental dual channel 12 volts 500mA Supply 512 Volt 10ma Min Inputs isolated with differential transmitter 1025 KHz max Quadrature 90deg plusmn27deg 25degC Duty Cycle 50 + 10

bull Speed Regulation with Encoder Feedback 0001 of Top Speed over a 1001 Speed RangeEncoderless Speed Regulation 05 of Top Speed over a 401 SpeedRange

Chapter 1Introduction

1ndash6

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

Chapter 1Introduction

1ndash7

MOTOR CONTROL BOARD

STADARDADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible

Chapter 1Introduction

1ndash8

This Page Intentionally Blank

Chapter 2

2ndash1

InstallationWiring

Chapter Objectives Chapter 2 provides the information needed to properly mount and wire the1336 FORCE Drive Since most startndashup difficulties are the result ofincorrect wiring every precaution must be taken to assure that the wiring iscompleted as instructed All items must be read and understood before theactual installation begins

IMPORTANT The end user is responsible for completing theinstallation wiring and grounding of the 1336 FORCE drive and forcomplying with all National and Local Electrical Codes

ATTENTION The following information is merely a guide forproper installation The National Electrical Code and any othergoverning regional or local code will overrule this informationThe Allen-Bradley Company cannot assume responsibility forthe compliance or the noncompliance to any code national localor otherwise for the proper installation of this drive or associatedequipment A hazard of personal injury andor equipmentdamage exists if codes are ignored during installation

Mounting When the 1336 FORCE drive is delivered in a NEMA Type 1 enclosure itmust be mounted so that there is sufficient space at the top sides and frontof the cabinet to allow for heat dissipation as shown in Figure 21

Figure 21Mounting Requirements

Attention Care must be taken toprevent debris (metal shavingsconduit knockouts etc) fromfalling into the drive whileperforming any installation workon or around the drive A hazardof personal injury andorequipment damage exists if foreignmaterial lodges inside the drive

JOG

ESC SEL

1016 mm (40 in)

JOG

ESC SEL

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

UP

Chapter 2InstallationWiring

2ndash2

Figure 22 IP20 (NEMA Type 1) Dimensions ndash Frames B and C

C MaxD

A

Y

CC

E B

Z

BB

AA

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 1ndashFixed

286349 222(11251375 0875)

286349 222(11251375 0875)

ShippingWeight

227 kg(50 lbs) 386 kg(85 lbs)

CC

719(283)

719(283)

Frame 1

Reference

B1 B2

C

A

2764(1088)

3018(1188)

B

4763(1875)

7010(2760)

C Max

2250(886)

2250(886)

D

2126(837)

2380(937)

E

4610(1815)

6858(2700)

Y

3200(126)

3200(126)

Z

76(030)

76(030)

AA

1311(516)

1311(516)

BB

1808(712)

3747(1475)

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts(Location Will Vary with HP)

Chapter 2InstallationWiring

2ndash3

Figure 23IP 20 (NEMA Type 1) Dimensions ndash Frame D

DA

Y

CC

E B

Z

BB

AA

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 3ndashFixed627762 349500 349(247300 138197 138)

ShippingWeight1089 kg(240 lbs)

CC719(283)

Frame 1ReferenceD

A3815(1502)

B12400(4882)

C Max2708(1066)

D3259(1283)

E12162(4788)

Y2794(110)

Z1194(047)

AA1311(516)

BB6886(2711)

C Max

Chapter 2InstallationWiring

2ndash4

Figure 24IP 20 (NEMA Type 1) Dimensions ndash Frame E

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

D

AY

E B

Z

BB

CC

C Max

KNOCKOUTS3ndashDUAL SIZE 6ndashFIXED

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 6ndashFixed

8891016 127(350400 050)

ShippingWeight

186 kg(410 lbs)

163 kg(360 lbs)

CC

1519(598)

1263(497)

Frame 1

ReferenceEndashEnclosed

EndashOpen

A

5110(2012)

5110(2012)

B

14986(5900)

14986(5900)

C Max

4244(1671)

3726(1467)

D

4775(1880)

4775(1880)

E

14478(5700)

14478(5700)

Y

168(066)

168(066)

Z

401(161)

401(161)

AA

1950(768)

1384(545)

BB

9014(3549)

6800(2677)

Chapter 2InstallationWiring

2ndash5

Figure 25IP 20 (NEMA Type 1) Dimensions ndash Frame F

22860(9000)

7620(3000)

2527(995)

6350(2500)

379(149)

2748(1082)

1930(760)

12192(4800)

All Dimensions in Millimeters and (Inches)

ConduitAccess Area

Bottom View

315(124)

6985(2750)

2985(1175)

508(200)

Shipping Weight4150 kg(915 lbs)

Chapter 2InstallationWiring

2ndash6

Figure 26IP 20 (NEMA Type 1) Dimensions ndash Frame G

23241(9150)

Removable Lifting Angle

7620(3000)

635 (250)

6350(2500)

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

290(114)

159 (063) Diandash 2 Mtg Holes ndash

4318(1700)

3810(1500)

2985(1175)

429(169)

2540(1000)

5476(2156)

Conduit Access Area

6604(2600)

508(200)

4318(1700)

(Top)

ConduitAccess Area

(Bottom)

Shipping Weight4536 kg(1000 lb)

Chapter 2InstallationWiring

2ndash7

Figure 27IP 20 (NEMA Type 1) Dimensions ndash Frame H

Removable Lifting Angle

23241(9150)

All Dimensions in Millimeters and (Inches)

6350(25)

5080(20)

7620(30)

Conduit AccessArea

Conduit AccessArea

Top ViewBottom View

Top Mounted Fan

6350(2500)

12700(50)

12700(50)

6350(25)

Manufacturer-dependentmay be shorter

Chapter 2InstallationWiring

2ndash8

InputOutput Ratings The input and output current ratings grouped by drive voltage rating areprovided in the following table

200ndash240V

Cat No

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

InputkVA

InputAmps

24ndash510ndash1212ndash1417ndash2023ndash2825ndash3027ndash3043ndash5153ndash6460ndash7282ndash99100ndash120111ndash134

512283549677379123154174238289322

OutputkVA2511141926313248607296116130

OutputAmps45122723374826457828012031492180424029143274

380ndash480V

Cat NoB001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200BX250B250B300B350B400B450B500B600BP250BP300BP350BP400BP450B700CB800C12B700C12B800C

InputkVA

InputAmps

24ndash59ndash1214ndash1818ndash2323ndash2923ndash2632ndash4140ndash5041ndash5248ndash606261ndash7778ndash9998ndash124117ndash148148157ndash198191ndash241231ndash291212ndash268265ndash335300ndash379330ndash416372ndash470391ndash494439ndash555230ndash291265ndash334300ndash378313ndash396346ndash437517ndash625647ndash817517ndash625647ndash817

361422283543496263757593119149178178238290350322403455501565594668350402455476526835965835965

OutputkVA25111722273338475261617696120143143191233282259324366402454477537282324366383424677783677783

OutputAmps25601392092723374184825876457827829691203149218041804240029143536327440644592505157025992673435364064459248105317850983850983

575V

Cat NoC001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C300C350C400C450C500C600C650C700C80012C700C12C800C

InputkVA

InputAmps

2ndash35ndash69ndash1111ndash1317ndash2021ndash2627ndash3231ndash3740ndash4848ndash5752ndash6273ndash8894ndash112118ndash142136ndash163217ndash261244ndash293256ndash307304ndash364349ndash419394ndash473434ndash520514ndash617578ndash694616ndash739639ndash767616ndash739639ndash767

3610121925313646556084108137157251282296351403455501594668756786756786

OutputkVA2610121924303545576285109137157251283297352405457503597671767797767797

OutputAmps25699121892363034645157261685810911386159725252836298353640644592505159926734770800770800

AC Supply Source 11ndash485 kW (75ndash650HP) drives are suitable for use on a circuit capable ofdelivering up to a maximum of 200000 rms symmetrical amperes 600volts maximum when used with the AC input line fuses specified in Table2A The 1336 FORCE does not contain input power short circuit fusingSpecifications for the recommended size and type to provide drive inputpower protection against short circuits are on the following pages

ATTENTION To guard against personal injury andor equipmentdamage caused by improper fusing use only the recommendedline fuses specified in Table 2A Branch circuit breakers ordisconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash9

Unbalanced Distribution Systems

The drive is designed for use with conventional threendashphase supplies whichare symmetrical with respect to ground Surge suppression devices areincluded to protect the drive from lightningndashinduced overvoltages betweenline and ground For this reason the drive must not be used directly withsupplies where one phase is grounded (Grounded Delta) In such cases anisolation transformer must be used to provide a supply balanced withrespect to ground

Ungrounded Distribution Systems

All 1336 FORCE drives are equipped with an MOV (Metal Oxide Varistor)that provides voltage surge protection and phasendashtondashphase plusphasendashtondashground protection which is designed to meet IEEE 587 TheMOV circuit is designed for surge suppression only (transient lineprotection) not continuous operation

With ungrounded distribution systems the phasendashtondashphase MOVconnection could become a continuous current path to ground MOVlinendashtondashline and linendashtondashground voltages should not exceed the valueslisted below Exceeding these values may cause physical damage to theMOV

1 2 3 4

Joules = (B)Ground

Three-PhaseAC Input T

SR

Joules = (A)Joules = (A)

Joules = (A)

Line-to-Line MOV RatingEnergy Rating = 2 x Line-Line Rating (A)

Line-to-Ground MOV RatingEnergy Rating = Line-Line (A) + Line-Ground (B)

Frame ReferenceDevice Rating (V)Line-Line (A)Line-Ground (B)

B - C 240 480 600160 160 160220 220 220

A 240 480 600160 140 NA220 220 NA

D - G 240 480 600140 140 150220 220 220

LinendashtondashLine MOV RatingEnergy Rating = 320 JoulesTurn On Voltage = 1020V (nominal)

LinendashtondashGround MOV RatingEnergy Rating = 380 JoulesTurn On Voltage = 1330V (nominal)Input Devices Starting and Stopping the Motor

Chapter 2InstallationWiring

2ndash10

Input Devices Starting and Stopping the Motor

ATTENTION The drive startstop control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC power is removed therewill be a loss of inherent regenerative braking effect amp the motorwill coast to a stop An auxiliary braking method may berequired

Repeated ApplicationRemoval of Input Power

ATTENTION The drive is intended to be controlled by controlinput signals that will start and stop the motor A device thatroutinely disconnects then reapplies line power to the drive forthe purpose of starting and stopping the motor is not recom-mended If this type of circuit is used a maximum of 3 stopstartcycles in any 5 minute period (with a minimum 1 minute restbetween each cycle) is required These 5 minute periods must beseparated by 10 minute rest cycles to allow the drive prechargeresistors to cool Refer to codes and standards applicable to yourparticular system for specific requirements and additionalinformation

Bypass Contactors

ATTENTION An incorrectly applied or installed system canresult in component damage or reduction in product life Themost common causes are

bull Wiring AC line to drive output or control terminals

bull Improper bypass or output circuits not approved by AllenndashBradley

bull Output circuits which do not connect directly to the motor

bull Incorrect or inadequate AC supply

bull Excessive ambient temperature

Contact AllenndashBradley for assistance with application or wiring

Chapter 2InstallationWiring

2ndash11

Drive Output Disconnection Any disconnecting means wired to Drive output terminals M1 M2 and M3must be capable of disabling the Drive if opened during Drive operationIf opened during Drive operation the Drive will fault It is recommendedthat the Drive Enable be removed before the contactor is opened Whenthe Drive Enable is removed the Drive will stop modulating

Input Power Conditioning Typically the 1336 FORCE is suitable for direct connection to athreendashphase AC power line There are however certain power lineconditions which may introduce the possibility of drive input powercomponent malfunction To reduce the possibility of these malfunctions aline reactor or isolation type transformer may be required

The basic rules for determining if a line reactor or isolation typetransformer is required are as follows

1 If the AC line supplying the drive has power factor correction capacitorsconnected an AC line reactor or isolation type transformer must beconnected between the capacitor bank and the input to the drive

2 If the AC line frequently experiences transient power interruptions orsignificant voltage spikes an AC line reactor or isolation typetransformer may be required

Refer to ldquoUnbalanced Distribution Systemsrdquo

Input Fusing

ATTENTION The 1336 FORCE does not provide input powershort circuit fusing Specifications for the recommended fusesize and type to provide drive input power protection againstshort circuits are provided in Table 2A Branch circuit breakersor disconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash12

Table 2AMaximum Recommended AC Input Line Fuse Ratings (fuses are user supplied)

Drive CatalogNumber

kW (HP) Rating 200ndash240VRating

380ndash480VRating

500ndash600VRating

UL Class CC T J1 ndash BS88 (non-UL installations)

1336Tndash _ _ F10 075 (1) 10A 6A ndash

1336Tndash _ _ F30 22 (3) 25A 15A ndash

1336Tndash _ _ F50 37 (5) 40A 20A ndash

1336Tndash _ _ 001 075 (1) 10A 6A 6A

1336Tndash _ _ 003 22 (3) 15A 10A 10A

1336Tndash _ _ 007 55 (75) 40A 20A 15A

1336Tndash _ _ 010 75 (10) 50A 30A 20A

1336Tndash _ _ 015 11 (15) 70A 35A 25A

1336Tndash _ _ 020 15 (20) 100A 45A 35A

1336Tndash _ _ 025 185 (25) 100A 60A 40A

1336Tndash _ _ 030 22 (30) 125A 70A 50A

1336Tndash _ _ 040 30 (40) 150A 80A 60A

1336Tndash _ _ 050 37 (50) 200A 100A 80A

1336Tndash _ _ X060 45 (60) ndash 100A ndash

1336Tndash _ _ 060 45 (60) 250A 125A 90A

1336Tndash _ _ 075 56 (75) ndash 150A 110A

1336Tndash _ _ 100 75 (100) ndash 200A 150A

1336Tndash _ _ 125 93 (125) ndash 250A 175A

1336Tndash _ _ X150 112 (150) ndash 250A ndash

1336Tndash _ _ 150 112 (150) ndash 300A 225A

1336Tndash _ _ 200 149 (200) ndash 400A 350A

1336Tndash _ _ 250 187 (250) ndash 450A 400A

1336Tndash _ _ X300 224 (300) ndash ndash 400A

Bussmann FWPGould Shawmut Andash70C Semindashconductor Type

1336Tndash _ _ X250 187 (250) ndash 450A ndash

1336Endash _ _ P2502 187 (250) ndash 450A2 ndash

1336Tndash _ _ 300T 224 (300) ndash 450A 400A

1336Endash _ _ 3002 224 (300) ndash 500A2 450A

1336Tndash _ _ 350 261 (350) ndash 500A 450A

1336Endash _ _ 3502 261 (350) ndash 600A2

1336Tndash _ _ 400 298 (400) ndash 600A 500A

1336Endash _ _ 4002 298 (400) ndash 600A2

1336Tndash _ _ 450 336 (450) ndash 800A 600A

1336Endash _ _ 4502 336 (450) ndash 700A2 600A

1336Tndash _ _ 500 373 (500) ndash 800A 800A

1336Tndash _ _ 600 448 (600) ndash 900A 800A

1336Tndash _ _ 650 485 (650) ndash ndash 800A

1336Tndash _ _ 700C2 522 (700) ndash 600A3 700A3

1336Tndash _ _ 800C2 597 (800) ndash 700A3 700A3

1 Both fast acting and slow blow are acceptable

2 Fuses are supplied with F and H Frame drives

3 Two fuses in parallel are required

Chapter 2InstallationWiring

2ndash13

Electrical Interference ndash EMIRFI Immunity

The immunity of 1336 FORCE drives to externally generated interferenceis good Usually no special precautions are required beyond the installationpractices provided in this publication

It is recommended that the coils of DC energized contactors associatedwith drives be suppressed with a diode or similar device since they cangenerate severe electrical transients

In areas subject to frequent lightning strikes additional surge suppressionis advisable Suitable MOVs connected between each line and groundshould be used (see Figure 2ndash8)

Emission

Careful attention must be given to the arrangement of power and groundconnections to the drive to avoid interference with nearby sensitiveequipment Refer to ldquoMotor Cablesrdquo Appendix A The cable to the motorcarries switched voltages and should be routed well away from sensitiveequipment

The ground conductor of the motor cable should be connected to the driveground (PE) terminal directly Connecting this ground conductor to acabinet ground point or ground bus bar may cause high frequency currentto circulate in the ground system of the enclosure The motor end of thisground conductor must be solidly connected to the motor case ground

Shielded or armored cable may be used to guard against radiated emissionsfrom the motor cable The shield or armor should be connected to the driveground terminal (PE) and the motor ground as outlined above

Common mode chokes are recommended at the drive output to reduce thecommon mode noise

An RFI filter can be used and in most situations provides an effectivereduction of RFI emissions that may be conducted into the main supplylines

If the installation combines a drive with sensitive devices or circuits it isrecommended that the lowest possible drive PWM frequency beprogrammed

Chapter 2InstallationWiring

2ndash14

RFI Filtering 1336 FORCE drives can be installed with an RFI filter which controlsradiondashfrequency conducted emissions into the main supply lines andground wiring

If the cabling and installation recommendation precautions described inthis manual are adhered to it is unlikely that interference problems willoccur when the drive is used with conventional industrial electronic circuitsand systems Also refer to ldquoMotor Cablesrdquo in the Appendix of this manual

However a filter is recommended if there is a likelihood of sensitivedevices or circuits being installed on the same AC supply or if the motorcable exceeds 50 meters (164 feet) Beyond this length capacitance toground will increase the supply emissions

Where it is essential that very low emission levels must be achieved or ifconformity with standards is required (EN 55011 VDE0875 BSA FCC)the optional RFI filter should be used

Important The conformity of the drive and filter to any standard does notassure that the entire installation will conform Many other factors caninfluence the total installation and only direct measurements can verifytotal conformity

RFI Filter Installation

The RFI filter must be connected between the incoming AC supply lineand the drive power input terminals

In general it is best to install the filter on the same mounting platephysically close (and with short connections) to the drive

Important To assure that the RFI filter is effective the motor cable mustbe shielded or armored and the guidelines given in this manual must befollowed Refer to ldquoMotor Cablesrdquo in the Appendix

RFI Filter Leakage Current

The optional RFI filter may cause ground leakage currents Therefore anappropriate ground connection must be provided (refer to groundinginstructions on the following page)

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some countries threendashphasesupplies are occasionally connected in a 3ndashwire configurationwith one phase grounded (Grounded Delta) The filter must notbe used in Ground Delta supplies

Chapter 2InstallationWiring

2ndash15

Grounding Refer to the grounding diagram on the following page The drive must beconnected to the system ground at the power ground (PE) terminalprovided on the power terminal block (TB1) Ground impedance mustconform to the requirements of national and local industrial safetyregulations (NEC VDE 0160 BSI etc) and should be inspected and testedat appropriate and regular intervals

In any cabinet a single lowndashimpedance ground point or ground bus barshould be used All circuits should be grounded independently and directlyThe AC supply ground conductor should also be connected directly to thisground point or bus bar

Sensitive Circuits

It is essential to define the paths through which the high frequency groundcurrents flow This will assure that sensitive circuits do not share a pathwith such current and to minimize the area enclosed by these pathsCurrent carrying ground conductors must be separated Control and signalground conductors should not run near or parallel to a power groundconductor

Motor Cable

The ground conductor of the motor cable (drive end) must be connecteddirectly to the drive ground terminal (PE) not to the enclosure bus barGrounding directly to the drive (and filter if installed) provides a directroute for high frequency current returning from the motor frame andground conductor At the motor end the ground conductor should also beconnected to the motor case ground

If shielded or armored cables are used the same grounding methods shouldbe used for the shieldarmor as well

Encoder Connections

If encoder connections are required they must be routed in grounded steelconduit The conduit must be grounded at both ends Ground the cableshield at the drive only

Discrete Control and Signal Wiring

The control and signal wiring must be grounded at a single point in thesystem remote from the drive This means the 0V or ground terminalshould be grounded at the equipment end not the drive end If shieldedcontrol and signal wires are used the shield must also be grounded at thispoint

Chapter 2InstallationWiring

2ndash16

Signal Ground ndash TE

The TE terminal block is used for all control signal shields internal to thedrive It must be connected to an earth ground by a separate continuouslead

Any PLC IO communication link must be run in grounded steel conduitThe conduit should be bonded to ground at both ends Ground the cableshield at the drive end only

The maximum and minimum wire size accepted by this block is 21 and030 mm2 (14 and 22 AWG) Maximum torque is 136 Nndashm (12 lbndashin)Use Copper wire Only

Safety Ground ndash PE

This is the safety ground required by code The ground bus can beconnected to adjacent building steel (girder joist) or a floor ground loopprovided grounding points comply with NEC regulations

RFI Filter

Important Using an optional RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated in thefilter to clamp line surges to a limited voltage above ground potentialTherefore the filter must be permanently installed and solidly groundedGrounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnection Theintegrity of this connection should be periodically checked

Figure 28Recommended 1336 FORCE Grounding

JOG

ESC SEL

R (L1)

S (L2)

PE

Ground Rod

T (L3)

PE

U (T1)

Shield

RIODH+

Shield

CommonModeCore

CommonMode Core

Conduit4ndashWire Cable

To ComputerTE Ground

+ CommonMode

ChokesThese are options that can

be installed as needed

Ground perLocal Codes

Motor Frame

MotorTerminator

PE

V (T2)

W (T3)

PEGnd

+DC

DC

Chapter 2InstallationWiring

2ndash17

Power Cabling Input and output power connections are performed through terminal blockTB1 on the Gate Driver Board for Frame Size B (1ndash15 HP 240V 1ndash30 HP380V 1ndash20 HP 600V) drives For larger horsepower drives (frame sizesCDEG and H) TB1 terminal blocks are located on the bottom of thedrive where both the input and output power connections are to be made

Important For maintenance and setup procedures the drive may beoperated without a motor connected

Table 2BTB1 Signals

Terminal Description

PE Power Earth Ground

R (L1) S (L2) T (L3) AC Line Input Terminals

+DC ndashDC DC Bus Terminals

U (T1) V (T2) W (T3) Motor Connection

ATTENTION The National Codes and standards (NEC VDEBSA etc) and local codes outline provisions for safely installingelectrical equipment Installation must comply with specifica-tions regarding wire types conductor sizes branch circuitprotection and disconnect devices Failure to do so may result inpersonal injury andor equipment damage

Motor CablesA variety of cable types are acceptable for use with the 1336 FORCEThe choice of cable type is important to a successful application Motorcables must have an insulation thickness in excess of 15 mils The THHNtype wire or any wire with a nylon coating is not recommended forinstallations where there is a reasonable risk of wire damage (includingsmall nicks in coating or insulation) due to pulling through conduit orwhere moisture is present If wire integrity can be assured and no moistureis present THHN wire must have a minimum insulation thickness greaterthan 15 mils if conduit is used Refer to page 2ndash18 under Conduit forrecommendations on the number of cables per conduit

Refer to the Cable recommendations section in the Appendix of thismanual for additional information on specific cables

Wire Size and Type Wire sizes must be selected individually observing all applicable safetyand NEC and local regulations Due to the drive overload capacity theconductors for the transformer primary and secondary must be sized (at aminimum) for 125 of the maximum motor current The motorconductors must also be rated for 125 of the full load motor current Thedistance between the drive and motor may affect the size of the conductorsused

Chapter 2InstallationWiring

2ndash18

Shielded type wire is recommended in control circuits for protectionagainst interference A shielded wire is required for all signal wires Therecommended conductor size must be a minimum of 16 AWG The bestinterference suppression is obtained with a wire having an individual shieldfor every twisted pair Figure 29 shows recommended cable shielding

Figure 29Cable Shielding Recommendations

12411242

3682368382718281

82918301

83118321

2 ConductorShielded Cable

2 Conductor Shielded Cable

Multi-Conductor ShieldedCable with IndividualShielded twisted Pairs

Shield

Shield

Shield

TE

TE

TE

Shield Connection

Lug Kits DEF and G frame drives have stud type terminals andor bus barsboltsthat require standard crimpndashtype connectors for cable terminationConnectors such as TampB COLORndashKEYED Connectors or equivalent arerecommended Table 2C shows the lug selection for one possible cablechoice Choose connectors for each installation based on the desired cablesizes the application requirements and all applicable national state andlocal codes

Chapter 2InstallationWiring

2ndash19

Table 2C Lug Selection

r e atalo

AC Input R S TOutput U V W and PE

DC+DCndash 2 TE

Drive CatalogNumber

Cable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty Number1336EndashA040 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA050 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA060 (1) 1072 (40) (8) 54168 1 (1) 133 (6) (2) 54135 1 (1) 212 (4) (1) 54139 1

1336EndashA075 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54109 (1) 212 (4) (1) 54139 1

1336EndashA100 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 336 (2) (1) 54142 1

1336EndashA125 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashB060 (1) 424 (1) (8) 54147 1 (1) 84 (8) (2) 54131 1 (1) 133 (6) (1) 54135 1

1336EndashB075 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB100 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB125 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashBX150 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashB150 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54110 (1) 212 (4) (1) 54139 1

1336EndashB200 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashB250 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashBX250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashBP250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashB300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashBP300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashB350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashBP350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashB400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashBP400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashB450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashBP450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashB500 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashB600 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashC075 (1) 336 (2) (8) 54142 1 (1) 133 (6) (2) 54135 1 (1) 84 (8) (1) 54131 1

1336EndashC100 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashC125 (1) 674 (20) (8) 54158 1 (1) 267 (3) (2) 54147 1 (1) 133 (6) (1) 54135 1

1336EndashC150 (1) 1072 (40) (8) 54111 (1) 424 (1) (2) 54148 (1) 133 (6) (1) 54135 1

1336EndashC200 (2) 674 (20) (8) 54110T(8) 54110B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashC250 (2) 850 (30) (8) 54111T(8) 54111B

(1) 674 (20) (2) 54110 (1) 267 (3) (1) 54142 1

1336EndashCX300 (3) 850 (30) (16) 54111 NA NA1336EndashC300 (3) 850 (30) (16) 54111 NA NA1336EndashC350 (3) 535 (10) (24) 54109 NA NA1336EndashC400 (3) 674 (20) (24) 54110 Consult Factory NA NA1336EndashC450 (3) 850 (30) (24) 54111

Consult FactoryNA NA

1336EndashC500 (3) 1072 (40) (24) 54112 NA NA1336EndashC600 (3) 1270 (250 MCM) (24) 54174 NA NA1336EndashC700C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 541101336EndashC800C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 54110

1 516rdquo Stud All other studs are 38rdquo2 Lugs shown for DC+ndash are based on dynamic brake sizing of 50 of (motor rating X 125) Select proper lugs based on required braking torque3 T amp B COLOR-KEYED Connectors require T amp B WT117 or TBMndash6 Crimper tool or equivalent Lugs should be crimped according to manufacturerrsquos tool instructions

Chapter 2InstallationWiring

2ndash20

Table 2DCable and Wiring Recommendations

Category

Power

Control

Signal

(Process)

Signal(Comm)

WiringClass

1

2

3

5

Signal Definition

AC Power (600V or greater)

AC Power (less than 600V)

AC Power

115V ACDC Logic

115V AC Power

24V ACDC Logic

Analog Signals DC Supplies

Digital (low speed)

Digital (high speed)

SerialCommunication

Serial Communication (greaterthan 20k baud)

Signal Examples

23kV 3Ph AC Lines

460V 3Ph AC Lines

AC Motor

Relay LogicPLC IOMotor Thermostat

Power SuppliesInstruments

PLC IO

ReferenceFeedbackSignal 5 to 24V DC

TTL

IO Encoder CounterPulse Tach

RS-232 422 to TerminalsPrinters

PLC Remote IO PLC Data Highway

Cable Type

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

Shielded Cable ndash Belden 87358737 8404

Shielded Cable ndash Belden 97289730

Shielded Cable ndash BeldenRS-232 ndash 8735 8737RS-422 ndash 9729 9730

Twinaxial Cable ndash A-B1770-CD

1

0

39

39

318

234

39

0

36

312

56

39

36

0

39

78

318

312

39

0

91011

Note 6

Note 6

Note 6

13

SpacingNotes

125

125

125

Minimum Spacing in Inches between Classes ndashSteel ConduitTray

Example Spacing relationship between 480V AC incoming power leads and 24V DC logic leads

ndash 480V AC leads are Class 2 24V DC leads are Class 6ndash For separate steel conduits the conduits must be 3 inches (76 mm) apartndash In a cable tray the two groups of leads are to be 6 inches (152 mm) apart

Spacing Notes

1 Both outgoing and return current carrying conductors are to be pulled in sameconduit or laid adjacent in tray

2 Cables of the following classes can be grouped togetherA Class 1 Equal to or above 601 voltsB Classes 23 and 4 may have their respective circuits pulled in the

same conduit or layered in the same trayC Classes 5 and 6 may have their respective circuits pulled in the

same conduit or layered in the same trayNote Bundle may not exceed conditions of NEC 310

D Classes7 and 8 may have their respective circuits pulled in the same conduit or layered in the same trayNote Encoder cables run in a bundle may experience some amount of EMI coupling The circuit application may dictate separate spacing

E Classes 9 10 and 11may have their respective circuits pulled in the same conduit or layered in the same trayCommunication cables run in a bundle may experience some amount of EMI coupling and corresponding communication faults The application may dictate separate spacing

3 All wires of class 7 thru 11 MUST be shielded per the recommendations

4 In cable trays steel separators are advisable between the classgroupings

5 If conduit is used it must be continuous and composed of magneticsteel

6 Spacing of communication cables classes 2 thru 6 isCONDUIT SPACING THRU AIR115 Volts ndash 1 inch 115 Volts ndash 2 inches230 Volts ndash 15 inches 230 Volts ndash 4 inches460575 Volts ndash 3 inches 460575 Volts ndash 8 inches575 volts ndash proportional to 6rdquo 575 volts proportional to 12rdquoper 1000 volts per 1000 volts

General Notes

1 Steel conduit is recommended for all wiring classes (Classes 7-11)

2 Spacing shown between classes is the minimum required for parallel runsless than 400 feet Greater spacing should be used where possible

3 Shields for shielded cables must be connected at one end only The otherend should be cut back and insulated Shields for cables from a cabinet to anexternal device must be connected at cabinet end Shields for cables fromone cabinet to another must be connected at the source end cabinetSplicing of shielded cables if absolutely necessary should be done so thatshields remain continuous and insulated from ground

4 Power wire is selected by load 16AWG is the minimum recommended sizefor control wiring

6

7

8

9

11

2345

Note 6 13 0

Chapter 2InstallationWiring

2ndash21

Power Wiring On 1 to 30 HP drives input and output power connections are performedthrough a 10 position terminal block TB1 located on the Gate DriverBoard On drives larger than 30 HP input and output power connectionsare made at seperate terminal strips located at the bottom of the drive Thedrive connections are illustrated in Figure 210 The C thru Gconfigurations of TB1 are stud terminations and require the use of lug typeconnectors to terminate the field installed conductors Cat No1336ndashLUGndashXXXX Lug Kits are available for use with theseconfigurations of TB1 The wire size used is determined by selecting theproper lug kit based on the Cat No of the drive Refer to Table 2C todetermine the correct lug kit for your application

Figure 210Terminal Block TB1

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

Required 1Input Fusing

AC Input Line

To Motor

200ndash240V 75ndash11 kW (10ndash15 HP) Terminal Designations380ndash480V 15ndash22 kW (20ndash30 HP) Terminal Designations

500ndash600V 15 kW (20 HP) Terminal Designations

Dynamic Brake

To Motor1 Required Branch

Circuit Disconnect

B1 Frame

B2 Frame

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

AC Input Line

To Motor

To Motor

200ndash240V 075ndash55 kW (1ndash75 HP) Terminal Designations380ndash480500ndash600V 075ndash11 kW (1ndash15 HP) Terminal Designations

Dynamic Brake

Required 1Input Fusing

1 Required Branch

Circuit Disconnect

Chapter 2InstallationWiring

2ndash22

Figure 210Terminal Block TB1 cont

PEGRD

PEGRD

DC+

Dynamic Brake

Required 1Input Fusing

DCndash

R(L1)

S(L2)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 15ndash22 kW (20ndash30 HP) Terminal Designations380ndash480V 30ndash45 kW (40ndash60 HP) Terminal Designations

500ndash600V 185ndash45 kW (25ndash60 HP) Terminal Designations

1 Required Branch

Circuit Disconnect

C Frame

To Motor

PE PEDC +Brake

1 RequiredInput Fusing

DC ndashBrake

R(L1)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 30ndash45 kW (40ndash60 HP) Terminal Designations380ndash480V 45ndash112 kW (60ndash150 HP) Terminal Designations500ndash600V 56ndash112 kW (75ndash150 HP) Terminal Designations

1 Required BranchCircuit Disconnect

TE

S(L2)

To Motor

DC +Brake

380ndash480V 224ndash448 kW (300ndash600 HP) Terminal Designations500ndash600V 187ndash485 kW (250ndash650 HP) Terminal Designations

To Motor

DC ndashBrakeRequired 1

Input Fusing

AC Input Line

W(M3)

U(M1)

V(M2)

Brake terminals are locatedbehind the ldquoUrdquo terminal

Access terminalsfrom side of chassis

(located at bottom of drive) W

UV

1 Required BranchCircuit Disconnect

R(L1)

S(L2)

T(L3)

typical terminal layout(located at top of drive)

RS

T

D Frame G Frame

Chapter 2InstallationWiring

2ndash23

Figure 210 contTerminal Block TB1

200ndash240V 56ndash75 kW (75ndash100 HP) Terminal Designations380ndash480V 112ndash187 kW (150ndash250 HP) Terminal Designations500ndash600V 112ndash149 kW (150ndash200 HP) Terminal Designations

TEBUS INPUT OUTPUT

ndash DC

+DC

PE PE RndashL1 SndashL2 TndashL3 UndashM1 VndashM2 WndashM3

Required 1Input Fusing

To Motor

AC Input Line

1 Required BranchCircuit Disconnect

To Motor

E Frame

typical terminal

380-480V 187-336 kW (250-450 HP) Terminal Designations

To Motor

T-L3R-L1 S-L2 W-M3U-M1PE V-M2F Frame

Input Fusing(Supplied)

AC Input Line

1 Required BranchCircuit Disconnect

DC ndashBrake

DC +Brake

Chapter 2InstallationWiring

2ndash24

Figure 210 contTerminal Block TB1

DC +Brake

R(L1)

S(L2)

T(L3)

380-480V 522-597 kW (700-800 HP) Terminal Designations500-600V 522-597 kW (700-800 HP) Terminal Designations

To Motor

DC ndashBrakeRequired

Input Fusing1

AC Input Line

(located at bottom of drive)

W(M3)

U(M1)

V(M2)

W

UV

H Frame

1 Required BranchCircuit Disconnect

1 User supplied

Chapter 2InstallationWiring

2ndash25

Control Wiring

ATTENTION When user installed control and signal wiringwith an insulation rating of less than 600V is used this wiringmust be routed inside the drive enclosure so that it is separatedfrom any other wiring and uninsulated live parts Failure to do socould result in equipment damage or unsatisfactory Drive performance

Encoder Brake and Drive to Drive interface connections are performed onthe Main Control Board (Fig 211) The maximum and minimum wiresize accepted by TB10 and TB11 on the Main Control Board is 33 and006 mm2 (12 and 30 AWG) Maximum torque for both terminal blocks is079 Nndashm (7 lbndashin) Use copper wire only

Figure 211Terminal Block Locations Main Control Board

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

AdapterBoard Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

D1D2D3D4D5D43D47

GreenGreenRedGreenRedAmberGreen

Drive EnableVP IndicatorVP IndicatorCP IndicatorCP Indicator Drive to Drive StatusDrive to Drive Power

ON ndash Drive Running OFF ndash Drive Not RunningON ndash No Faults OFF ndash See D3Refer to Fault Codes in Table 4AON ndash No Faults OFF ndash See D5Refer to Fault Codes in Table 4ASolid ndash OK Blinking ndash FaultON ndash Power OFF ndash No Power

Flt Trp

1 2 3

1 2 3

Jumper +5VDC

J3

J4

1ndash2

1ndash2

+12VDC Purpose

2ndash3

2ndash3

Encoder Voltage SelectionEncoder Voltage Selection

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Chapter 2InstallationWiring

2ndash26

Encoder Connections The Encoder connections are made at terminal block TB10 on the MainControl Board as detailed in Figure 212

Figure 212Encoder Connections

Encoder

Shield

Common

+12 Volts

Encoder B

Encoder B

Encoder A

Encoder A

6

7

5

4

3

1

2

TB10

Drive to Drive Communication The TB11 connector on the Main Control Board (Figure 213) is used toconnect the Drive to Drive Communication Interface

Figure 213Drive to Drive Connections

4

3

5

(SHD)

(C_L)

(V+)

2

RTN (Vndash)

TB11

1

(C_H)

Drive to Drive Setup ndash The hardware setup for Drive to Drive (D2D)consists of a shielded cable going from CN+ and CNndash between the drivesThe shields are to be tied together and grounded at one point (TE)TB11ndash3 SHD is an open connection and is used to tie ground wire togetherA wire must go from TB11ndash3 to TE Bus Place a 120Ω terminatingresistor on both ends of the cable You must supply the 8 ndash18 VDC thatpowers the D2D Figure 214 shows a typical D2D connection using therequired AllenndashBradley Isolation Board Recommended cable is Drive toDrive cable (AndashB 1485ndashCndashPIndashC) which is available in 50 150 300 and600 meter lengths

Chapter 2InstallationWiring

2ndash27

Figure 214 Drive to Drive Hardware Connection

DRIVE 1

RTN +15V

(Customer Supplied)

120Ω

Isolator Board

OutputV+CHShdCLVndash

J2

InputV+CHShdCLVndash

J1

24V 1A Max(PN 1336T ndash D2DIS)

1 2 3 4V +

5

CndashH

C1 C2

Shd

8ndash18 VDCPower Supply

PE

CndashL V ndash

DRIVE 2

1 2 3 4V +

5CndashH Shd CndashL V ndash

DRIVE 3

120Ω

1 2 3 4V +

5CndashH Shd CndashL V ndash

ToTEBus

Chapter 2InstallationWiring

2ndash28

Standard Adapter Board When installing and wiring the Standard Adapter board you need to dealwith the following issuesbull Control and Signal Wiringbull Interface Board Installation and Removal

Control amp Signal Wiring ndash If your 1336 FORCE Drive is equipped witha Standard Adapter Board terminal blocks TB5 TB6 and TB7 located atthe bottom center of the board (Figure 215) are used for control and signalwiring (Drive Permissives) The Standard Adapter Board is connected tothe Main Control Board through J1 the Main Control Interface

The maximum and minimum wire size accepted by TB5 TB6 and TB7 is33 and 006 mm2 (12 and 30 AWG) Maximum torque for these terminalblocks is 079 Nndashm (7 lb ndash in) Recommended control signal wire isbull Belden 8760 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shieldedbull Belden 8770 or equiv ndash 0750 mm2 (18 AWG) 3 ndash Conductor Shieldedbull Belden 9460 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shielded

Figure 215Standard Adapter Board Connections

LANGUAGE MODULE

1

J11

TP1

Port 1

TB5

J9

D1

TE

Port 2

TP3

J1Main Control InterfaceJ5

BRAM

AgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgrave

TP2

TP6

TP5

+5V

DGND

+15V

AGND

ndash15VEN DIS

D2

1

L OPTION BOARD

TB6 TB7

TP7 TP8

12V ISO ISO COM

Jumper

J13

J1331

+5V DC

1 to 2

+12V DC

2 to 3

Purpose Jumper

J5

Position

1 to 22 to 3

Purpose

BRAM Write EnableBRAM Write Disabled

14 121 8

Stat

us

LED STATE DESCRIPTION

D1 (Green) OFF

Flashing

Solid ON

D2 On or No Power

Adapter Warning Fault

Adapter OK

D2 (RED) OFF

Flashing

Solid ON

D1 On or No Power

Adapter Soft Fault

Adapter Hard Fault

TE

1

20

J10 J12

20

1

Refer to Fault Codes in Table 6B

Pulse Input Voltage Selection

Chapter 2InstallationWiring

2ndash29

Interface Board Installation and Removal ndashIMPORTANT If the L Option Board is being installed Standard AdapterBoard jumpers at pins 3 amp 4 and 17 amp 18 of J10 must be removed and theproper Input Mode selected (Figure 216) If the L Option board isremoved these jumpers must be reinstalled and the Input Mode parametermust be programmed to ldquo1rdquo

Figure 216Interface Board Jumper Locations

JOG

ESC

SEL

Figure 217Reference Signal Connections (Standard Adapter Board)

TB51 2 3 4 5 6 7 8 9 10 11 12

TB613 14

TB7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12

+10V ndash10VCom

+ ndash SH + ndash + ndash

4 to 20ma0 to plusmn10V

SH SH + ndash

PulseSource

0 to plusmn10V

+ ndash SH + ndash

0 to plusmn10V 4 ndash 20 ma

SH + ndash

AnalogOutputs

Run FaultRelay

AlarmRelay

TE TE

Programmable Run Fault Alarm

Terminal

TB5

Signal

SH Shield Ground

123 DC Power Supply

4567 Input Impedance = 20K Ohms

1011

Pulse Input forFrequency Ref

+5V DC ndash Jumper xx Set to xx+12V DC ndash Jumper xx Set to xx

Scale Factor (Pulse PPR) must be set

TB6 SH

1245

Shield Ground

0 to +ndash 10 VDC Output

Output Impedance = 100 Ohms

78 4 ndash 20 ma DC Output

Input Impedance = 130 Ohms

1314

4 ndash 20ma Input

Output Impedance = 100 Ohms

TB7 TE

456

Logic Earth Ground Shield Ground

Fault Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

789 Alarm Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

ProgrammableSupply

Note This output is programmable through P384

If using a potentiometer reference 25K Ω minimum

External to Drive

DC Power Supply

+ndash 10VDC 50 mA per voltage

Output Impedance = 20 Ohms

User Supplied Analog Device

0 to +ndash 10V DC Input

Terminal Block

Chapter 2InstallationWiring

2ndash30

Analog Inputs ndash There are (2) analog inputs to the Standard AdapterBoard (Figure 218) that have a range of plusmn10V (1) 4ndash20 mA analog inputand (1) pulse source input with a digital resolution of 12 bits These inputsare differential inputs with noise rejection filtering

Each input has a gain and offset adjustment The AD converter is a 12 bitdevice where an input value of +10V will result in a digital value of 2048Likewise an input value of ndash10V will result in a digital output value ofndash2048

NOTE Analog input parameters must be linked to a velocity referenceparameter as well as a scaling and offset parameter for an analog input tofunction

NOTE Refer to Chapter 4 Startup for Analog IO configurationinformation

Figure 218Analog Input Connections

Typical Connections for Unidirectional Operation

Typical Connections for Bidirectional Operation

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

REFERENCE POT25 kΩ MINIMUM

TB5

1

ndash 10V DC (POWER SUPPLY) 3

ADC

REVERSE

FORWARD

R

Reverse

ReverseRelay

Forward

6

0 to+ndash10V

7

8

2

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

2

6

REFERENCE POT25 kΩ MINIMUM

TB5

Connect toEither 1 or 3(ONLY ONE)

1

ndash 10V DC (POWER SUPPLY) 3

ADC7

8

0 to+ndash10V

Chapter 2InstallationWiring

2ndash31

Analog Outputs ndash There are (2) analog outputs from the StandardAdapter Board that have a range of + 10V and (1) 4ndash20 mA output with adigital resolution of 12 bits

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB7 onthe Standard Adapter Board Fault outputs provide warning or fault signalsbased on Drive ProgrammingFault NC Fault ComFault NO ndash A form C NONC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 219Typical Digital Output (Standard Adapter)

Fault Com (Digital Out)

Fault NC (Digital Out)

6

5

4

TB7

Fault NO (Digital Out)

Pulse InputThe pulse input lets an external source provide the drive with a digitalreference or trim signal Pulse input is a differential input with a maximumfrequency of 100 kHz

Figure 220Pulse Input Connection

5 ndash 12V Pulse Input 100 kHz max

12

13

14

TB5

TE

Unidirectional

The pulse input can be useful if you have a system with multiple drives andyou want encoder magnetic pickup or other drives that provide a pulse tosupply the reference for additional drives You could use this reference toensure that all drives run at the same speed or to ensure that the speed ofthe other drives is related to the speed of the reference

Chapter 2InstallationWiring

2ndash32

ConfigurationThe 1336 FORCE Drive is shipped prendashconfigured meaning that some ofthe inputs and outputs are linked to a predefined signal Figure 221 showsthe 1336 FORCE standard configuration when equipped with a StandardAdapter Board The user has the flexibility to configure the Drive for aparticular application

Chapter 2InstallationWiring

2ndash33

Figure 221Standard Adapter Links

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select 1 (Par 364)

365

SP Analog In 1 (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)

1 2 3 4 5

366

Scale

369

Scale

Chapter 2InstallationWiring

2ndash34

Starting amp Stopping the Motor

ATTENTION The 1336 FORCE Drive control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC input power is removedthere will be a loss of inherent regenerative braking effect and themotor will coast to a stop An auxiliary braking method may berequired

Figure 222 illustrates the location of the terminal blocks that are used forinterfacing control signals to a 1336 FORCE equipped with a StandardAdapter Board

Figure 222Terminal Block Locations

TB1TB11TB3

TB4TB6

Power Terminal BlockControl amp Signal WiringControl Interface Option24V DC Auxiliary InputHigh Voltage DC Auxiliary Input480V Output (F Frame Only)Shield Terminals

TB1TB10 11TB3TB4TB6TB9TE

Frames B C Frames D E

TB1

TB11

TB3Control Interface

Option

Control InterfaceOption

TB1

TB1Location

TB1 LocationTB4

TB6TE

TB1

Frame G

Frame F

U V Wamp BrakeTerminals

TB10 11

TB3

BrakeTerminals

R S T

TE

TE

PEGround

TB10 11

TB3

TB9

TB1Location

TB10

TB10

Frame H

U V Wamp BrakeTerminals

TB10 11

TB3

+ -

TE

PE Ground

TB1Location

TB1 Power Terminal BlockTB10 11 Control amp Signal WiringTB3 Control Interface OptionTB4 (For Factory Use Only)TB6 (For Factory Use Only)TB9 480V Output (F Frame Only)TE Shield Terminals

Chapter 2InstallationWiring

2ndash35

Control Interface Option ndash TB3The Control Interface Option provides a means of interfacing varioussignals and commands to the 1336 FORCE by using contact closures

Six different versions of the option are available

L4 Contact Closure Interface L4E Contact Closure Interface with Encoder Feedback Inputs1

L5 +24V ACDC InterfaceL5E +24V ACDC Interface with Encoder Feedback Inputs1

L6 115V AC InterfaceL6E 115V AC Interface with Encoder Feedback Inputs1

1 Encoder feedback inputs are connected to TB10 on the FORCE Drive Do Not connect Encoder Feedback inputs to the Control Interface Option card

The user inputs are connected to the option board through TB3 The L4 L5and L6 options each have nine control inputs The function of each inputmust be selected through programming as explained later in this sectionThe L4E L5E and L6E options are similar to L4 L5 and L6 with theaddition of encoder feedback inputs which are not used with the 1336FORCE

Available InputsA variety of combinations made up of the following inputs are available

Start EnableStopClear Fault Ext FltReverse 2 Stop Mode SelectsDigital Potentiometer (MOP) Run Forward2 AccelDecel Rates Run Reverse3 Speed Selects Local Control

The available combinations are shown in Figure 224 Programming the[Input Mode] parameter to one of the Input Mode numbers listed willselect that combination of input functions

Important The [Input Mode] parameter can be changed at any time butthe change will not affect drive operation until power to the drive has beenremoved and bus voltage has decayed completely When changing the[Input Mode] parameter the functions of the TB3 inputs will change whenpower is reapplied to the drive

Important If a Control Interface Option is not installed the [Input Mode]parameter must be set to 1 (default) and jumpers must be installed If thedrive was shipped from the factory without the option these jumpers willhave been installed

The programming options of the Control Interface Option allow the user toselect an input combination to meet the needs of a specific installationAppropriate selection of a combination may be done by using Figure 224First determine the type of startstopdirection control desired Then selectthe remaining control functions available Record the selected modenumber below

Selected Mode Number _____________________

Chapter 2InstallationWiring

2ndash36

Figure 223 provides the terminal designations for TB3 The maximum andminimum wire size accepted by TB3 is 21 and 030 mm2 (14 and 22AWG) Maximum torque for all terminals is 136 Nndashm (12 lbndashin) UseCopper wire only

Figure 223TB3 Terminal Designations

NOTE Terminals 31 thru 36 are not used with 1336 FORCE applications

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Included on L4E L5E amp L6E OnlyNOT USED

Inpu

t 1

Inpu

t 2 (S

top)

Com

mon

Inpu

t 3

Inpu

t 4

Inpu

t 5

Com

mon

Inpu

t 6

Inpu

t 7

Inpu

t 8

Com

mon

Enab

le

Enco

der B

Enco

der N

OT

A

Enco

der N

OT

B

Enco

der A

+12V

(200

mA

max

)

Enco

der C

omm

on

The following table defines the input state of the Speed Select inputs for adesired frequency source

Table 2ESpeed Select Input State vs Frequency Source

Speed Select 3 Speed Select 2 Speed Select 1 Velocity Reference Source

TB3 Terminal 26 Terminal 27 Terminal 28 Interface Option (MOD L4L5L6)

O O O Ext Ref 1 Para 101

O O X Preset Speed Ref 1 (P 119)

O X O Preset Speed Ref 2 (P 120)

O X X Preset Speed Ref 3 (P 121)

X O O Preset Speed Ref 4 (P 122)

X O X Preset Speed Ref 5 (P 123)

X X O External Reference 2 (P 104)

X X X Last State

Equivalent truth table implemented in Parameter 52 Logic Command Word

Para 52 Bit 14 Bit 13 Bit 12 Velocity Reference Source Bits

O O X Ext Ref 1 (P 101)

O X O Preset Speed Ref 1 (P 119)

O X X Preset Speed Ref 2 (P 120)

X O O Preset Speed Ref 3 (P 121)

X O X Preset Speed Ref 4 (P 122)

X X O Preset Speed Ref 5 (P 123)

X X X External Reference 2 (P 104)

O O O No Reference or Last State

0 = Open ndash input removed X = Closed ndash input present

Unless otherwise configured this will default to the HIM speed reference input

Chapter 2InstallationWiring

2ndash37

Figure 224Input Mode Selection amp Typical TB3 Connections

19

20

21

22

23

24

25

26

27

28

29

30

Status

Not StopClear Fault 3

Common

Status

Status

Status

Common

Status

Status

Status

Common

Enable 3

[Input Mode] 1Factory Default

19

20

21

22

23

24

25

26

27

28

29

30

Start

Not StopClear Fault 378

Common

RevFwd5

Auxiliary 3

Common

Speed Select 2 1

Speed Select 1 1

Common

Enable 3

Jog StopType

2nd1stAccel

DigitalPot Up

SpeedSelect 31

SpeedSelect 31

2nd1stDecel

DigitalPot Dn

2 3 4 5279 6Mode

[Input Mode] 2ndash6 17 18ThreendashWire Control with SinglendashSource Reversing

1 See Speed Select Table on previous page2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 5 For Common Bus ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for Reverse Direction Control7 Soft Fault Reset Only Must Cycle Power to Drive to Clear Hard Fault Hard Fault = See Troubleshooting Section

8 Soft Fault Refer to Para 59 to Configure Start amp Stop Type9 Digital Pot Value Zeroed When Stop Asserted

ProcTrim

LocalControl2

Jog Flux EnJog

Ramp Reset

17 18

Chapter 2InstallationWiring

2ndash38

Figure 225Input Mode Selection amp Typical TB3 Connections

Run Forward 4 6

Not StopClear Fault 378

Common

Run Reverse 4 6

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

LocalControl 2

StopType

2nd1stAccel

DigitalPot Up

LocalControl 2

SpeedSelect 3 1

SpeedSelect 3 1

2nd1stDecel

DigitalPot Dn

StopType

12 13 14 15 309 16

Mode

[Input Mode] 12ndash16TwondashWire Control SinglendashSource Control

19

20

21

22

23

24

25

26

27

28

29

30

Start 6

Not StopClear Fault 378

Common

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

Forward 6

Forward 6

DigitalPot Dn

Forward 6

2ndAccel

Jog SpeedSelect 3 1

SpeedSelect 3 1

DigitalPot Up

1stDecel

[Input Mode] 7ndash11ThreendashWire Control with MultindashSource Reversing

Reverse 4 6

Reverse 46

DigitalPot Up

Reverse 4 6

1st

Accel

7 8 9 289 10 299 11

Mode

SpeedSelect 2 1

SpeedSelect 2 1

SpeedSelect 2 1

DigitalPot Dn

2ndDecel

19

20

21

22

23

24

25

26

27

28

29

30

1 See Table 2E2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 to allow operation5 For Common ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for reverse direction control7 Soft Fault Reset Only Must recycle power to drive to clear Hard fault ndash see Troubleshooting8 Refer to Para 59 to configure Start amp Stop type9 Digital Pot Value Zeroed When Stop Asserted

Speed Select 2 1

SpdTq2

SpdTq3

Proc Trim

19

SpdTq1

SpdTq2

SpdTq3

Flux En

20

SpdTq1

Fwd

Rev

Reset

21

Ramp Dis

SpdTq2

SpdTq3

Spd Sel 2

SpdTq1

22

23 24 25 26

ProcTrim

Reset

Flux En Proc Trim

Reset Ramp Dis

Jog

Spd Sel 3

Parameter 53 (SpdTrq Mode Sel) becomes read only

Chapter 2InstallationWiring

2ndash39

Figure 226Option L4L4E Wiring

19 20 21 22 23 24 25 26 27 28 29 30 31 32A A

ENCRET

ENC12V

33 34 35 36

Typical of Each Input

Typical

L4 L4E Options

Isolated+5V

IsolatedGround

01microf 01microf

01microf

107k

470 470 12V

681

100

909

5VJP4

IGND

107k

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

TB3

NOTUSED

Option L4L4E ndash Contact Closure Interface Board Requirements

Circuits used with Option L4L4E must be capable of operating with low =true logic Reed type input devices are recommended

In the low state external circuits must be capable of a sinking current ofapproximately 10mA to pull the terminal voltage low to 30V DC or less

In the high state external circuits must allow the terminal voltage to rise toa voltage of 40ndash50V DC

The L4L4E option is compatible with the following AllenndashBradley PLCmodulesbull 1771ndashOYLbull 1771ndashOZL

Chapter 2InstallationWiring

2ndash40

Figure 227Option L5L5E Wiring

Typical

TB3

L5 L5E Options

A AENCRET

ENC12V

Common

+24V

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

022microf

1k

20k

510

510 510

User Supplied24V ACDC

Contacts shown are general refer to Figures 224 amp 225 forInput Mode selection and recommended contact types

NOTUSED

Option L5L5E ndash 24V ACDC Interface Board Requirements

Circuits used with Option L5L5E must be capable of operating with high= true logic

DC external circuits in the low state must generate a voltage of no morethan 8V DC Leakage current must be less than 15 mA into a 25k ohmload

AC external circuits in the low state must generate a voltage of no morethan 10V AC Leakage current must be less than 25 mA into a 25k ohmload

Both AC and DC external circuits in the high state must generate a voltageof +20 to +26 volts and source a current of approximately 10 mA for eachinput

The L5L5E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOB bull 1771ndashOQ16bull 1771ndashOB16bull 1771ndashOBD bull 1771ndashOYLbull 1771ndashOBN bull 1771ndashOZLbull 1771ndashOQ bull 1771ndashOBB

Chapter 2InstallationWiring

2ndash41

Figure 228Option L6L6E Wiring

Typical of Each Input

L6 L6E Options

A AENCRET

ENC12V

115V AC Fuse

Common

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

015microf033f

022microf

49

499k

20k

100 100

User Supplied115V AC

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

Fuse

TB3

NOTUSED

Option L6L6E ndash 115V AC Interface Board Requirements

Circuits used with Option L6L6E must be capable of operating with high= true logic In the low state circuits must generate a voltage of no morethan 30V AC Leakage current must be less than 10 mA into a 65k ohmload In the high state circuits must generate a voltage of 90ndash115V AC+ndash10 and source a current of approximately 20 mA for each inputThe L6L6E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOW bull 1771ndashOAbull 1771ndashOWN bull 1771ndashOAD (contact factory for recommended series rev level)

Chapter 2InstallationWiring

2ndash42

PLC Communication Adapter Board Control and Signal Wiring ndash When installing and wiring the PLCCommunication Adapter Board you need to deal with the following issuesbull Control and Signal Wiringbull Jumper Settings for IO CircuitsIf your 1336 FORCE Drive is equipped with a PLC Comm Adapter Boardterminal blocks TB20 amp TB21 located at the bottom center of the PLCComm Board (Figure 229) are used for control and signal wiring (DrivePermissives) Connector TB21 provides the interface for Analog Input andOutput reference signals as detailed in Figure 230

Figure 229PLC Comm Board Connections

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

NOTE For more information on the PLC Communication Board including LEDs and Jumpers refer to the PLC Communication UserManual 1336 FORCE 513

CHANNEL A

SHIELD

CHANNEL B

2

1

SHIELD2

1

The maximum and minimum wire size accepted by TB20 TB21 ChannelA and Channel B is 33 and 006 mm2 (12 and 30 AWG) Maximumtorque for these terminal blocks is 079 Nndashm (7 lb ndash in) Only copperwire may be used

Chapter 2InstallationWiring

2ndash43

Figure 230Reference Signal Connections (PLC Comm Adapter)

TB20

1 2 3 4 5 6 7 8 9 10

TB21

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Common

Terminal Block

TerminalNumber(s)

TB20

Signal

1 Drive Enable (NO)

2 Motor Thermoguard (NC)

3 Normal Stop (NC)

Analog Out 1

Analog Out 2

Analog Out 3

Analog Out 4

4

5

6

External Fault (NC)

Input Common

7

8

9

Fault Output (NC)

Fault Output (COM)

10 Fault Output (NO)

TB21 1 OUT 1

2 COM 1

3

COM 24

5

6

7

8

9

10

OUT 2

OUT 3

COM 3

OUT 4

COM 4

IN 1+

IN 1ndash

11

12

13

14

15

16

IN 2+

IN 2ndash

IN 3 +

IN 3ndash

IN 4+

IN 4 ndash

17

18

19

+10V

COM

ndash10V

DriveEnable

MotorThermo

Norm Stop

ExtFault

Fault Relay

Analog In 1

Analog In 2

Analog In 3

Analog In 4

+10 ndash10Comm

Note If using a pot as an input 25KΩ min

Refer to Parameter 58 description for explanation of modes

Pin jumper J3 on the PLC Communication Adapter Board Enables orDisables the BRAM (Battery Backup RAM) Write function as follows

Jumpered 1 ndash 2 = EnabledJumpered 2 ndash 3 = Disabled

The PLC Communication Adapter Board 120V24V jumper settings for I0circuits (J8 ndash J11) are detailed in the 1336 FORCE PLC CommunicationsAdapter User Manual Publication 1336 FORCEndash 513

Switch Settings ndash There are DIP switches and jumpers located on the PLCCommunications Adapter Board that have been preset at the factoryCommunication is received through Channels A and B Thiscommunication protocol is defined through SW U2 ndash U5 If you need toreconfigure the switches or jumpers consult the 1336 FORCE PLCCommunications Adapter User Manual

Chapter 2InstallationWiring

2ndash44

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB20on the PLC Communication Adapter Board Fault outputs provide warningor fault signals based on drive programmingFault NCFault ComFault NO ndash A form C NO NC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 231Typical Digital Output

Fault Com (Digital Out)

Fault NC (Digital Out)

10

9

8

TB20

Fault NO (Digital Out)

Discrete InputsDiscrete Inputs to the 1336 FORCE are only supplied when a PLCCommunication Adapter Board is used These inputs are supplied atterminal block TB20Discrete inputs serve to enable and stop the Drive as well as providechecks on drive and motor operation

Figure 232Typical Digital Output

EXT FAULT (Digital Out)

INPUT COM (Digital Common)

NORM STOP (Digital In)

6

4

3

TB20

2

1

(Common)

MOTOR THERMO (Digital In)

DRIVE ENABLE (Digital In)

115V AC+24V DC (HIGH)

EXTERNAL FAULT

STOP

MOTOR THERMO

ENABLE

Chapter 2InstallationWiring

2ndash45

Figure 2ndash33 illustrates a typical stop control scheme that might be usedwhen the 1336 FORCE is equipped with a PLC Communication AdapterBoard For further information on PLC Communication Adapter boardoperation and configuration refer to the PLC Communication AdapterBoard User Manual 1336 FORCE 513

Figure 233Control Scheme

TB20

Drive Enable 12024V

Motor Thermo 12024V

Stop 12024V

Ext Fault 12024V

Input Common

Fault NC

Fault Com

Fault NO

120V24V

Input Common

Note Terminal Blocks TB20 amp TB21 are pull apart terminal blocks to aid in making cable connections Bothterminal blocks will accept wire sizes from 30ndash12 AWG (006 ndash 33 mm2)

This is a configurable stop see parameter 59 under the Drive Logic group for Start and Stop options Input must be jumpered if not used

Computer Connections to Frame D drivesIn some cases it will be necessary to use a DH+ port connection kit whenconnecting some computers to a 1336 FORCE drive in FRAME D ONLY

Refer to the Installation instructions included with Frame D drives formore information on the use and installation of this kit

ControlNet Fiber Optic Cable Connections to Frame D drivesIf you are installing the fiber optic cable for ControlNet on a Frame Ddrive special note should be taken of the following

ndash The strain relieflatching cover assembly must be removed from the cable connectors due to space constraints The cable connectors must then be separately plugged into the ControlNet board connectors on Frame D drives ONLY

ndash Correct orientation of the loose cables is determined by the color of the connectors The blue connector must be plugged into the dark grey connection on the board The black connector plugs into the light grey connection on the board The cable with the black connector is the transmit cable (TX) and the cable with the blue connector is the receive (RX) cable Reset the drive after connecting the cables and the ControlNet system should be ready to operate

Chapter 2InstallationWiring

2ndash46

ConfigurationThe 1336 FORCE Drive is shipped pre-configured which means that someof the inputs and outputs are linked to a predefined signal Figure 234shows the 1336 FORCE standard configuration when equipped with a PLCCommunication Adapter Board The user has the flexibility to configurethe Drive for a particular application

Figure 234PLC Comm Adapter Links

PLC Comm Adapter Channel B

1

Logic CMD In Port 6

OUTPUT IMAGE TABLEGROUP NUMBER

1336 FORCERemote IO Interface

331

OFFSET

400

SCALEAnalog Outputs Drive ParametersTB21

1

Reserved For-Block Transfer

PLC CONTROLLER

FULL021324354657

024135246357

34 12 1402461357

332333334335336337

01234567

INPUT IMAGE TABLEGROUP NUMBER

FULL021324354657

34 12 1402461357

01234567

360361362363

36710153

2 3 4

27

DriveParameters

Ext Vel Ref 1 HiTorque Mode SelectProcess Trim Ref

56269264265

364365366

182266

1 ndash Full Rack2 ndash 34 Rack3 ndash 12 Rack4 ndash 14 Rack

Logic Status LowFiltered Vel FdbkMotor Current Fdbk

Computed PowerMotor Voltage Fdbk

Stator Frequency

2 3 4 5 6 7 8

+ndash+ndash+ndash+ndash

91011 1213 1514

16 1817 19

ndash+ndash+ndash+ndash+

COMM

401 387

OFFSET

402

SCALE

403 388

OFFSET

404

SCALE

405 389

OFFSET

406

SCALE

407 390

ndash

+10VCommon

ndash10V

Analog InputsOFFSET

392

SCALE

393 339

OFFSET

394

SCALE

395 340

OFFSET

316

SCALE

317 341

OFFSET

318

SCALE

319 342

PowerSupply

269 Filtered Vel Fdbk

182 Computed Power

264 Motor Current Fdbk

265 Motor Voltage Fdbk

104 Ext Vel Ref 2 Hi

28 Process Trim Fdbk

+ndashProc Trim Fdbk

Ext Vel Ref 2 Hi

+ndash

Filtered Vel Fdbk

Comm

Computed Power

Comm

Motor Current Fdbk

Comm

Motor Voltage Fdbk

Comm

330

359024135246357

Chapter 3

3ndash1

Programming Terminals

Chapter Objectives Chapter 3 provides an overview of the optional Programming Terminalsavailable for use with the 1336 FORCE Drive The various controls andindicators found on the Human Interface Module (HIM) and the GraphicProgramming Terminal (GPT) are both explained in this chapterAdditional in depth information on the Graphic Programming Terminalcan be found in the GPT programming Manual

HIM Description When the drive mounted HIM is supplied it will be accessible from thefront of the drive as shown in Figure 31 The HIM has two mainfunctionsbull To provide a means of programming the drive and viewing operating parametersbull To allow different drive functions to be controlled

ATTENTION When a drive mounted HIM is notsupplied on enclosed NEMA Type 1 (IP 20) drives theblank cover plate (option HAB) must be installed to closethe opening in the front cover of the enclosure Failure toinstall the blank cover plate allows access to electricallylive parts which may result in personal injury andorequipment damage

When a drive mounted HIM is supplied with enclosedNEMA Type 1 (IP 20) drives but has been removed fromits mounting cradle for remote operation the blank coverplate must be installed in place of the HIM

The HIM is divided into two sections Display Panel and Control PanelThe Display Panel provides a means of programming the Drive andviewing the various operating parameters The Control Panel allows youto control different drive functions

Figure 31Human Interface Module Location

Display Panel

Control Panel

Human Interface Module(HIM)

JOG

ESC SEL

Chapter 3Programming Terminals

3ndash2

Figure 32HIM Front Panel

LCD Display

AB0273A

Key Descriptions

Descriptions of the keys used with the 1336 FORCE Drive are presented inthe following paragraphs Remaining keys that are not described (shaded infigure above) are not used and reserved for future use

EscapeWhen pressed the ESCape key will cause the programmingsystem to go back one level in the menu tree

SelectPressing the SELect key alternately causes the top or bottomline of the display to become active The flashing first characterindicates which line is active

IncrementDecrementThese keys are used to increment and decrement avalue or scroll through different groups or parameters

EnterWhen pressed a group or parameter will be selected or aparameter value will be entered into memory After a parameterhas been entered into memory the top line of the display willautomatically become active allowing another parameter (orgroup) to be chosen

AB0269A

AB0270A

AB0282A

AB0295A AB0267A

Chapter 3Programming Terminals

3ndash3

Key Descriptions (continued)

AB0283A

StartBy default this key will initiate drive operation if hardware isenabled and no other control devices are sending a Stop commandTo change this function the [Command Mask] and [Typ 1 LogicAxis] parameters must be reconfigured Refer to Chapter 5

StopWhen pressed a stop sequence will be initiated at the SystemModule causing a controlled stop to be initiated in each axis asdetermined by [Stop Mode] [Stop Time Lim] and [Stopping Cur]

JogBy default when this key is pressed the motor will jog at aspeed determined by the [Jog Vel] parameter for any axis that isenabled (default will be 20 of motor rated speed) Releasingthe key will stop the function

Change Direction (JogDigital Velocity Reference Modes Only)Pressing this key will cause the motor to change direction Theappropriate Direction Indicator will light to indicate direction

Direction LEDs (Indicators)These LEDs will illuminate to indicate the direction of motorrotation for Axis 0 (by default)

UpDown Arrows (only available with digital speed control)Pressing these keys will increase or decrease the HIMfrequency command An indication of this command willbe shown on the visual Speed Indicator The drive willrun at this command if the HIM is the selected frequencyreference See [Freq Select 12]

Pressing both keys simultaneously stores the currentHIM frequency command in HIM memory Cyclingpower or removing the HIM from the drive will set thefrequency command to the value stored in HIM memory

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

Speed Indicator (only available with digital speed control)Illuminates in steps to give an approximate visualindication of the commanded speed

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

AB0267A

AB0275A

AB0281A

AB0285A

AB0287A

AB0295A

AB0265A

NotePot Range0 ndash 32767

Chapter 3Programming Terminals

3ndash4

Module Removal For handheld operation the module can be removed and located up to 10 meters(33 feet) from the Drive

ATTENTION Some voltages present behind the Drive frontcover are at incoming line potential To avoid an electric shockhazard use extreme caution when removingreplacing the HIM

Important Removing a HIM (or other SCANport device) from a drivewhile power is applied will cause a ldquoSerial Faultrdquo unless the [Logic Mask]parameter has been set to disable this fault or Control Logic (Control Statusmenu) has been disabled (Series A version 30 or Series B HIM) SettingBit 1 of the [Logic Mask] parameter to ldquo0rdquo will disable ldquoSerial Faultrdquo froma HIM on port 1 Note that this also disables all HIM control functionsexcept StopTo remove the module

1 Assure that power has been removed [Logic Mask] has been set orControl Logic has been disabled

2 Take the drive front cover off and simply slide the module down andout of its cradle Remove cable from module

3 Remove HIM as described in the following sequence If Jog controlis required after the HIM is reconnected repeat steps 1 but selectldquoEnablerdquo

4 Connect the appropriate cable between the HIM and theCommunications Port (Adapter 23 4 or 5)

5 Reverse the above steps to replace the module Apply power resetBit 1 of the [Logic Mask] or enable Control Logic

HIM Operation When power is first applied to the drive the HIM will cycle through aseries of displays These displays will show drive name HIM ID numberand communication status Upon completion the Status Display (seeFigure 33) will be shown

Figure 33Status Display

AB0286A

This display shows the current status of the drive (ie ldquoStoppedrdquoldquoRunningrdquo etc) or any faults that may be present (refer to Chapter 6 forfault information) On a Series A (version 30) or Series B HIM (see back ofHIM) the Status Display can be replaced by the Process Display orPassword Login menu See appropriate sections on the following pages formore information

From this display pressing any key will cause ldquoChoose Moderdquo to bedisplayed Pressing the Increment or Decrement keys will allow differentmodes to be selected as described on the pages that follow

Chapter 3Programming Terminals

3ndash5

DisplayWhen selected the Display mode allows any of the parameters to beviewed However parameter modifications are not allowed

Program Program mode provides access to the complete listing of parametersavailable for programming

ProcessThe Process mode displays two user-selected parameters with text andscaling programmed by the user

EEPROM This mode allows all parameters to be reset to the factory default settingsIn addition a Series B HIM will allow parameter uploaddownloadbetween the HIM and drive BRAM (Battery Backup RAM) jumper mustbe in ldquoEnablerdquo position in order to change parameters

Search (Series A version 30 or Series B HIM Only)This mode will search for parameters that are not at their default values

Control Status (Series A version 30 or Series B HIM Only)Permits the drive logic mask to be disabledenabled allowing HIM removalwhile drive power is applied Disabling the logic mask with a Series A HIMbelow version 30 can be accomplished with [Logic Mask] as explained onpage 3ndash4 This menu also provides access to a fault queue which will list thelast four faults that have occurred ldquoTriprdquo displayed with a fault indicates theactual fault that tripped the drive A clear function clears the queue ndash it willnot clear an active fault

LinkLink mode provides a method of transferring data from a source parameterto a linkable sink parameter When a PLC Comm Adapter Board is usedup to (50) links are allowed Links can be programmed only when theDrive is not running Links are stored in BRAM and established at powerup BRAM recall andor system reset

PasswordThe Password mode protects the drive parameters against programmingchanges by unauthorized personnel When a password has been assignedaccess to the ProgramEEProm modes and the Control LogicClear FaultQueue menus can only be gained when the correct password has beenentered The password can be any five digit number between 00000 and65535

Refer to the Password section of the example that follows

Chapter 3Programming Terminals

3ndash6

or

or

or

Program Mode

or

The Program mode allows access to changeparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoProgramrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnos-ticsrsquo lsquoVelocity Torquersquo lsquoCommunica-tion IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Torque Ref) Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Parameter 53 Torque Mode Sel)

If the parameter you have selected hasbit definition information use the Selectkey to access the 2nd or 3rd lineContinue to press the Select key toaccess the desired bit Use the Inc orDec key to change the valueNOTE If the cursor is a blinkingunderline instead of a flashing characteryou are either in Display mode or aretrying to change a readndashonly parameterFor detailed information on changing bitcoded parameters refer to the Bit Enumssection in this chapter

Press the Enter key to save yourchanges

Choose ModeDisplay

Choose ModeProgram

Choose FileVelocity Torque

Torque Mode Sel

Choose GroupLogic

Choose GroupTorque Ref

or

Chapter 3Programming Terminals

3ndash7

or

or

or

Display Mode

or

The Display mode allows access to viewparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoDisplayrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnosticsrsquo lsquoVelocity TorquersquolsquoCommunication IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Info) Choices includeTransistor Diag Motor Overload FaultSelSts Testpoints Monitor Linear Listand Info Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Adapter ID Param 300)

Choose ModeProcess

Choose ModeDisplay

Choose FileVelocity Torque

Adapter ID

Choose GroupMonitor

Choose GroupInfo

Chapter 3Programming Terminals

3ndash8

or

Bit ENUMsMasksLogic Mask

TB3X1111111

With drive software versions above 200 anda Series A (software version 30) or Series BHIM bit ENUMS (16 character text strings)will be displayed to aid interpretation of bitparameters

Select a bit parameter with the Increment(or Decrement) keys

Press the SELect key to view the ENUMof the first bit Pressing this key again will move the cursor to the left one bit

A blinking underline cursor will indicate that you are in the Display mode or that aRead Only parameter as been accessed Aflashing character will indicate that the value can be changed

Individual bits of a ReadWrite parametercan be changed in the same manner Pressing the SELect key will move the cursor (flashing character) one bit to the left That bit can then be be changed by pressing the IncrementDecrement keys

Link The Link Option allows you to view all current links in the drive and change orclear these links

From the Status display press Enter ldquoChoose Moderdquo will be shown

Press the Increment or Decrement key toreach the Link Option

Press Enter and either the Clear Links or Set Links option screen will appearToggle between the screens using the Incor Dec key

From the Clear Links screen use the Enter key to clear all links

To change links use the Inc or Dec key to reach the link you wish to changeUse the Sel key to access the 2nd line in the display and then change the link using the Inc or Dec key

Choose ModeProcess

Choose ModeLink

or

LinkClear All Links

Drive SW Versionlt 1 gt lt ndash ndash 0 gt

or

or

Chapter 3Programming Terminals

3ndash9

Process Mode When selected the Process mode will allowyou to monitor 6 different prendashprogrammedprocesses 2 of these processes can bedisplayed at one time

Use the Enter key to select the ProcessMode

Press the Enter key again to access theProcess Variable display

Press the Enter key again if you wish tomonitor the processes under ProcessVariable 1

Use the IncDec keys to view the sixprocesses that are currently programmedon line 1

To move to the second Process VariableLine Press the Select key This willallow you to access the six processesunder Process Variable 2

To return to a previous level press theEscape key

Note HIM Series B Version 106 willallow changing of the 6 process dis-plays

Choose ModeProcess

+ 000 Freq Cmd+ 000 Vel FB

Process Var 1=1Process Var 2=2

or

Chapter 3Programming Terminals

3ndash10

AB0282A

or

or

AB0287A

AB0270A

or

or

EEProm Mode

Reset Defaults

Drive ndashgt HIM

The EEProm mode is used to restore all settingsto factory default values or uploaddownloadparameters between the HIM and drive (SeriesB HIM Only)

To restore factory defaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will bedisplayed

Press the Increment (or Decrement) keyuntil ldquoEEPromrdquo is displayed If EEPromis not in the menu programming ispassword protected Refer to PasswordMode later in this section

Press Enter

Press the Increment (or Decrement) keyuntil ldquoReset Defaultsrdquo is displayed

Press Enter to restore all parameters totheir original factory settings

Press ESC Display returns to ChooseMode Screen

Press the Stop key to reset the fault

Note Reset Defaults only modifiesparameters in RAM To save in EE doa ldquoSaverdquo or to recall what is in EE toRAM do a ldquoRecallrdquo

Important If [Input Mode] was previous-ly set to a value other than ldquo1rdquo cycledrive power to reset

To upload a parameter profile from the driveto the HIM you must have a Series B HIM

From the EEProm menu (see steps A-Cabove) press the IncrementDecrementkeys until ldquoDrive ndashgt HIMrdquo is displayed

Press Enter A profile name (up to 14characters) will be displayed on line 2 ofthe HIM This name can be changed or anew name entered Use the SEL key tomove the cursor left The IncrementDecrement keys will change the charac-ter

Stopped+000 Hz

Choose ModeDisplay

Choose ModeEEProm

EEPromReset Defaults

Choose ModeEEPROM

EEPromDrive ndashgt HIM

Drive ndashgt HIM1 A

Chapter 3Programming Terminals

3ndash11

or

Drive ndashgt HIM (continued) Press Enter An informational displaywill be shown indicating the drive typeand firmware version

Press Enter to start the upload Theparameter number currently beinguploaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the upload

ldquoCOMPLETErdquo displayed on line 2 willindicate a successful upload PressEnter If ldquoERRORrdquo is displayed seeChapter 6

1336T VectorVersion 302

Drive ndashgt HIM 60|||||

Drive ndashgt HIM 210COMPLETE

HIM ndashgt DriveTo download a parameter profile from theHIM to a drive you must have a Series BHIM

Important The download function will only beavailable when there is a valid profile storedin the HIM

From the EEProm menu press theIncrementDecrement keys until ldquoHIM ndashgtDriverdquo is displayed

Press the Enter key A profile name willbe displayed on line 2 of the HIMPressing the IncrementDecrement keyswill scroll the display to a second profile(if available)

Once the desired profile name is dis-played press the Enter key An informa-tional display will be shown indicatingthe version numbers of the profile anddrive

Press Enter to start the download Theparameter number currently beingdownloaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the download

A successful download will be indicatedby ldquoCOMPLETErdquo displayed on line 2 ofthe HIM Press Enter If ldquoERRORrdquo isdisplayed see Chapter 6

1336T Vector302 ndash gt 302

EEpromHIM ndashgt Drive

HIM ndashgt Drive1 A

HIM ndashgt Drive 60|||||

Drive ndashgt HIM 210COMPLETE

or

Chapter 3Programming Terminals

3ndash12

or

or

or

Search Mode The Search Mode is only available with aSeries A (version 30) or Series B HIM

This mode allows you to search through theparameter list and display all parameters thatare not at the factory default values Thismode also offers an option to searchparameter links for links that are not factorydefaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoSearchrdquo is displayed

Press Enter The HIM will display theSearch Parameters or Search Linksscreen Use the Increment or Decre-ment key to toggle between screens

From the Search Parameters displaypress Enter The HIM will searchthrough all parameters and display anyparameters that are not at their factorydefault values

Press the Increment (or Decrement) keyto scroll through the list

To search parameter links toggle to theSearch Links display from the SearchParameters display using the Incrementor Decrement key

From the Search Links display pressEnter The HIM will search through alllinks and display any links that are notat their factory default values

Choose ModeSearch

Choose ModeDisplay

Proc Trim Fdbkndash003 28

SearchParameters

Proc Trim Fdbklt28x ndash ndash ndash 355

Search Links

Chapter 3Programming Terminals

3ndash13

AB0282A

or

or

Control Status Mode

Choose ModeControl Status

Choose ModeDisplay

Control LogicDisabled

Control StatusControl Logic

The Control Status mode is only availablewith a Series A (version 30) or Series BHIM

This mode allows the drive logic mask to bedisabled thus preventing a Serial Faultwhen the HIM is removed with drive powerapplied The logic mask can be disabledwith Series A HIM versions below 30 byusing [Logic Mask] as explained on page34

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoControl Statusrdquo is displayed PressEnter

Select ldquoControl Logicrdquo using theIncrementDecrement keys Press Enter

Press the SELect key then use theIncrement (or Decrement) key to selectldquoDisabledrdquo (or ldquoEnablerdquo)

Press Enter The logic mask is nowdisabled (or enabled)

or

Chapter 3Programming Terminals

3ndash14

AB0270A

or

or

or

(continued)Control Status Mode

Fault QueueClear Faults

This menu provides a means to view thefault queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoFault Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The fault queue will bedisplayed ldquoTriprdquo displayed with a faultwill indicate the fault that tripped thedrive

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe fault occurrence press the Enter key

To clear the fault queue press ESCapeThen use the IncrementDecrement keysto select ldquoClear Queuerdquo Press EnterPlease note that ldquoClear Queuerdquo will notclear active faults

Control StatusFault Queue

Fault QueueView Queue

Serial FaultF 10 Trip 1

Reprogram FaultF 48 2

12022 11

or Fault QueueClear Queue

Chapter 3Programming Terminals

3ndash15

AB0270A

or

or

or

(continued)Control Status Mode

Warning QueueClear Warnings

This menu provides a means to view thewarning queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoWarning Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The warning queue will bedisplayed

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe warning occurrence press the Enterkey

To clear the warning queue pressESCape Then use the IncrementDecre-ment keys to select ldquoClear QueuerdquoPress Enter Please note that ldquoClearQueuerdquo will not clear active warnings

Control StatusWarning Queue

Warning QueueView Queue

Vel Fdbk LvlF 5048 5

12022 11

Warning QueueClear Queue

or

Reset Sequence

or

A reset sequence is available on Series BHIMs with 106 or later software

From the Startup Completed displaypress the Enter key

Press the Increment (or Decrement) keyuntil ldquoStartup Reset Sequencerdquo isdisplayed Press Enter

Press the Enter key again to relaunch theStartup sequence

Start UpCompleted

Start UpReset Sequence

Entering Start UpPress lsquoENTERrsquo

Chapter 3Programming Terminals

3ndash16

or

or

or

or

or

Password Mode The factory default password is 0 (whichdisables password protection) To change thepassword and enable password protectionperform the following steps

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoModifyrdquo is displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyto scroll to your desired new passwordWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter to save your new password

Press Enter again to return to thePassword Mode

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

With a Series A (version 30) or SeriesB HIM the Password mode can beprogrammed to appear when drivepower is applied Simultaneously pressthe Increment and Decrement keyswhile the Password display is shown

Sets Password Displayas Power-Up Display

Choose ModePassword

Choose ModeDisplay

PasswordModify

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

Chapter 3Programming Terminals

3ndash17

or

or

Password Mode (continued)Login to the Drive

or

The ProgramEEProm modes and theControl LogicClear Queue menus are nowpassword protected and will not appear inthe menu To access these modes performthe following steps

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter ldquoLoginrdquo will be displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyuntil your correct password is displayedWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter

The Program and EEProm modes willnow be accessible To prevent futureaccess to program changes logout asdescribed in step 1

Logout from the Drive To prevent unauthorized changes toparameters Logout must be performed asdescribed below

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

Choose ModePassword

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

or

Chapter 3Programming Terminals

3ndash18

or

or

Startup Mode

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear If you DO NOT need toenter motor nameplate data toggle to theNo (N) selection and press EnterA display asking you to run the MotorConnect Diagnostics will appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor informationBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesBase Motor SpeedFeedback Device Type

NOTE For more information on thecomplete Quick Startup sequence referto Chapter 4 All tests and entries arecovered in greater detail in the Startupchapter

or

Motor ConnectDiagnostics Y

Chapter 3Programming Terminals

3ndash19

Figure 34 HIM Programming Steps

PowerndashUp andStatus Display

Choose Mode

or or or or

DisplayProcess Program EEProm Search Control

StatusPassword Link

Operator Level

Mode Level

Process DisplayReset DefaultsDrive to HIMHIM to DriveRecall ValuesSave Values

Control LogicFault Queue

LoginLogoutModify

Clear Links

File LevelParameter Files

Group LevelParameter Groups

Element LevelParameters

(Read Only) (ReadWrite)

(See Chapter 5)

(See Chapter 5)

(See Chapter 5)

(Linear List Available)

1 1

2

2

1 Him Versions 202 amp Up2 Series B HIM Only

Set Links

Startup

Change Process Disp3ParamLinks Reset Drive

Warning Queue

3

ContinueReset Seq

3 Series B V 106 amp up

Chapter 3Programming Terminals

3ndash20

GPT Description When an optional GPT (Figure 35) is supplied it will be either mounted tothe front of the Drive as a panel mount terminal or supplied as a remotedevice with a 18 meter (6 foot) long cable The GPT offers a 40 by 8character display that can also be used as a graphics display to showtrending graphs etc

Figure 351201 Graphic Programming Terminal

B5

PRESET 1 PRESET 3

D7

E8

F9

A4

C6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Chapter 3Programming Terminals

3ndash21

Keypad Description The GPT keyboard (Figure 35) is provided as either a 26 key version(nonndashruntime) or 30 key (runtime version) The runtime version asshown in Figure 36 provides additional Start Stop Jog and Directionkeys

Figure 36GPT Keypad

B

5

PRESET 1 PRESET 3

D

7E

8F

9

A

4C

6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Start Key Stop Key

Chapter 3Programming Terminals

3ndash22

When power is first applied to the drive or device a series of hardwarediagnostic tests will run before the Power Up Logo Screen shown inFigure 37 appears Once the initialization has been completed and allinformation from the drive is uploaded the terminal will display eitherthe Main Menu screen or the Process Display screen depending on theterminal setup information

Figure 37GPT Power Up Logo Screen

AumlAumlAumlAuml

0 25 50 75 100

1201 GPT InterfaceAllen Bradley CoCopyright 94 v1 01

Initializing

If it has not been deactivated through the terminal during setup theProcess Display Screen (Figure 38) showing you the programmedprocess variables will appear next If the Process Display Screen isdeactivated the Main Menu Screen (39) will appear first

Figure 38Process Display Screen

MainMenu DSP_Mode

000 Freq CMD000 Vel FB000 COMP PWR000 MTR V FB000 MTR I FB000 Torq FB

Sts Not EnabledDir ForwardOut

Info

When the Process Display Screen is active it is necessary to press theMain Menu Option (F2 soft designator) on the Process Display to reachthe Main Menu The Main Menu contains the password option thatprovides a highlighted dialog box for password entry

GPT Operation

Chapter 3Programming Terminals

3ndash23

The Configuration option (F1 soft designator) allows you to directlyaccess Process parameters from the Process Display screen The DisplayMode option (F3 soft designator) allows you to enter the Logo Status orMeter modes for the Process Display parameters

IMPORTANT Main Menu screens are dynamic and will change basedon functionality provided by adapter and drive status

Figure 39Main Menu Screen

Password ProcDspy

Main Menu

Help TextDescriptionFor Each Menu ItemSelected

1 ndash Parameter2 ndash Link Summary3 ndash Fault Queue4 ndash Warning Queue5 ndash EEPROMBRAM6 ndash Clock Data7 ndash Function Block8 ndash Special

Help

IMPORTANT Only 5 of the 8 Main Menu options are displayed at onetime on the screen Scroll with the IncDec keys to access all eightselections

Figure 310 details the complete menu tree for the GPT ProgrammingTerminal This menu is dynamic and all options may not be supportedby your Drive or SCANport device If you need more detailedinformation on Key functions Menu Screens or general Terminaloperation refer to the appropriate chapter in the GPT user manual

Chapter 3Programming Terminals

3ndash24

Figure 310GPT Programming Options

Power UpLogo Screen

MainMenu

Screen

ProcessDisplayScreen

ProcessConfigScreen

ProcessProgramScreen

1Parameter

2Link

Summary

3Fault

Queue

4WarningQueue

5EEBRAMFunction

6ClockData

7Function

Block

8Special

File

DECINC+

Group

Element

Sink

Source

Fault List

1 Save Par to EE2 Recall EE Par

Warning Entry List

NumericalParameter Screens

FGE Mode

Linear Mode

2 Set Ref3 Load Ref Stamp

Upload

Command

File ID

IO Node

Download

Interval

Event File

Edit List

DataTransfer

VersionInfo

AutotuneTests

ChangePasswordStartup

TrendFunction

DriveIdentity

1 Clear Warning

1 Clear Flt

2 Clear Warn Q

1 Set Clock

4 Zero Acc

2 Clear Flt Q3 Drive Reset

3 Init Par to RAM

➊ This list is dynamic and will change for various Drive States and DriveProduct functions

4 Evnt File Store5 Evnt File Recall6 Evnt File Init7 Proc FB Links8 Clear FB Links

SaveRecallDefault

HIM gt GPT

GPT gt HIM

Chapter 3Programming Terminals

3ndash25

This Page Intentionally Blank

Chapter 4

4ndash1

StartndashUp

Introduction This chapter describes the procedure for the proper start up and tuning ofthe 1336 FORCE AC drive Among the procedures you must perform inthis chapter are the following

bull Prendashpower checksbull Powerndashon checksbull Communication Configurationbull Parameter Programmingbull Motor and Feedback Polarity Checksbull Drive Tuning and Calibration

Safety Precautions

ATTENTION Hazard of Electric Shock exists in this drive Power circuits are optically isolated from control driver circuitsPower circuit components are ldquofloatingrdquo with respect to ldquogroundrdquoUse only approved methods of isolating test equipment when mak-ing measurements in power circuits

ATTENTION Only qualified personnel familiar with the 1336FORCE AC Drive and its associated machinery should plan andimplement the installation startup and subsequent maintenance ofthe Drive Failure to comply may result in personal injury andorequipment damage

ATTENTION Working with energized industrial control equip-ment can be hazardous Severe injury or death can result fromelectrical shock burn or unintended actuation of controlled equip-ment Hazardous voltages may exist in the cabinet even with thecircuit breaker in the off position Multiple sources of power maybe connected to this drive Recommended practice is to disconnectand lock out control equipment from power sources and dischargestored energy in capacitors if present before coming in contactwith any equipment in this cabinet During startup it will be nec-essary to work in the vicinity of energized equipment The SafetyRelated Practices of NFPA 70E ldquoELECTRICAL SAFETY FOREMPLOYEE WORKPLACESrdquo must be followed at all timesDO NOT work alone on energized equipment

Chapter 4Startup

4ndash2

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

ATTENTION This Drive contains ESD (ElectrondashStatic Dis-charge) sensitive devices Static control precautions are requiredwhen installing testing servicing or repairing this assemblyThese precautions should be applied when working with logicboards AND any components in the power section A properlygrounded wrist strap should be worn when contacting any compo-nent in the drive If you are not familiar with static control proce-dures before servicing reference AllenndashBradley Publication8000ndash452 Guarding against Electrostatic Damage or any otherapplicable ESD protection handbook

Required Tools and Equipment The following equipment is required for startndashup and tuning

bull Digital Multimeter (DMM) capable of 1000V DC750V AC with input resistance of at least 1 megohm

bull Hand Tachometer used to monitor motor velocitiesbull User Manuals for optional equipmentbull DriveTools Software (optional)

This startndashup sequence specifies using hand instruments such asmultimeters tachometers ammeters and an oscilliscope to carry out thisstartndashup test procedure If you have the optional DriveTools software forthe 1336 FORCE Drive it can be used to simplify the startup procedureThis option can be used to set input commands manipulate parameters andverify frequencies and voltage levels

IMPORTANT This startup sequence for a Series B Drive assumes thatyou have a HIM Programming Terminal If a different programmingdevice is used you must alter the startup accordingly

Chapter 4Startup

4ndash3

Drive Information During Startup the following information must be recorded for referenceIt is important that an accurate list of drive components be maintained andreferred to when contacting service personnel

Table 4A Data Checks ndash

DRIVE NAMEPLATE DATACatalog NumberSerial NumberSeries

AC Input Volts Amps

AC Output Volts Amps

MOTOR NAMEPLATE DATACatalog NumberSerial NumberSeries

Horsepower Rating

RPM

AC Input Volts Amps

Poles

Hz

ENCODER NAMEPLATE DATA

Input Power Supply

Output Type

Pulses Per Rev

Maximum Speed

Maximum Frequency

PPR

Board Revision Level

Horsepower Rating

Catalog NumberSerial NumberSeries

VoltsInput Signal Level Volts

MAIN CONTROL BOARD

PLC COMM BOARDBoard Revision Level

GATE DRIVER BOARD

STANDARD ADAPTER BOARDBoard Revision Level

Board Revision Level

kw

kw

PLC Comm Adapter Board Switch SettingsU2

U3

U4

U5

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

5 6 7 8

5 6 7 8

Standard Adapter Board Jumper Settings

J5 1 2 2 3PositionPosition

J13 1 2 2 3J10 3 4 17 18

Chapter 4Startup

4ndash4

General Only qualified electrical technicians andor electrical engineers familiarwith solid state controls and circuitry should attempt a 1336 FORCEstartndashup Figure 41 outlines the sequence that is required to startndashup the1336 FORCE DriveFigure 41Bulletin 1336 FORCE StartndashUp Sequence

ExternalWiring Checks

PREndashPOWER CHECKS

InternalDrive Checks

CommunicationConfiguration

LIVEndashPOWER CHECKS

VoltageMeasurements

StandardIO Checks

PARAMETER PROGRAMMING

POLARITY CHECKS

DRIVE TUNING

EncoderCheck

MotorCheck

PrendashPower Checks PrendashPower checks are meant to identify any problems prior to applyingvoltage to the system The drive should be checked for any damage thatmay have occurred during shipment and installation You should alsoverify that all jumpers and configuration controls are properly applied forthe application at hand Finally you must check all wiring external to thedrive for accuracy and reliability

External Wiring Checks1 Verify that all external IO wires are properly terminated in the

terminal blocks A full point ndash to ndash point continuity check should be performed on all IO wiring connected to the drive

Chapter 4Startup

4ndash5

2 Verify that the incoming power connections are properly connected and tight Also verify that the power source is properly sized and protected for your particular drive

3 Verify that the motor power connections are properly connected and tight Motor Phasing should be checked Motor Phase A should be connected to Drive output phase A likewise Phase B and C should be properly terminated to their respective terminals This phasing will be double checked later in this procedure

4 Verify that the encoder feedback device is properly connected The encoder should be a quadrature device with a 12V input power requirement and either 12V or 5V differential outputs Jumpers J3 andJ4 on the Main Control Board (Figure 27) must be set for the desired output Phasing of the encoder should be checked in that A and A B and B are properly terminated This phasing will be double checked later in this procedure

5 If your Drive is equipped with a Standard Adapter Board verify that the Pulse Input Voltage Selection jumper is set correctly for your application Jumper J13 should be set across pins 1 and 2 for +5V DC input and across pins 2 and 3 for +12V DC input voltage

6 If your Drive is equipped with a PLC Comm Adapter Board verify that the standard IO inputs on the PLC Comm Board are configured for the proper input voltage level The Standard IO can be configuredfor operation at 24V DC or 120V AC To select the proper voltage set the jumpers on J5 J6 J7 and J8 across pin 1 and 2 if the input voltage level is 120V AC and across pins 2 and 3 if the input voltage level is 24V DC

Power On After all prendashpower checks have been completed the incoming power maybe applied The application of power for each system can be differentMake sure you know the safety controls associated with the system Powershould only be applied if you have a thorough understanding of the 1336FORCE Drive and the associated system design

bull Measure the incoming line voltage between L1 and L2 L2 and L3 andL1 and L3 Use the DMM on AC Volts highest range (1000 VAC) The input voltage should equal the drive rated input voltage present on the driversquos nameplate within +ndash10 If the voltage is out of toleranceverify the drive rating is correct for the application if it is adjust the incoming line voltage to within +ndash10

Chapter 4Startup

4ndash6

Startup Configuration Procedures After you have completed all wiring and power up the drive the parameterconfiguration procedure must be completed using one of the StartupConfiguration Procedures (Quick or Manual) The configurationprocedures used here assumes you have a HIM programming terminal anda Standard Adapter Board in your Drive If you are using a differentprogramming method or a PLC Comm Adapter Board the configurationprocedure will have to be altered to match your particular setup

ATTENTION Failure to complete the parameter configurationcould result in injury to personnel or damage to the drive andthe motor when attempting to perform the remaining steps inthe Configuration Procedure

Apply power to the Drive The HIM display will appear as shown in Figure 42

ATTENTION During some startup procedures the motor willrotate Hazard of personal injury exists due to unexpected startsrotation in the wrong direction or contact with the motor shaft If possible uncouple the motor from the load and place a guardaround the motor shaft

Figure 42HIM PowerndashUp Display

LCD Display

AB0273A

Chapter 4Startup

4ndash7

or

or

Quick Start Procedure

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

1 An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor information1 Base Motor Current2 Base Motor Volts3 Base Motor Frequency4 Motor Poles5 Base Motor Speed6 Feedback Device Type

When all motor and feedback data havebeen entered a display asking you ifyou wish to run the Motor ConnectDiagnostics will appear Press the Enterkey to initiate the test sequence Insubsequent displays you will be asked ifyou wish to run the following tests1 Inverter Diagnostics2 Motor Rotation TestPress the green Start key to run thediagnostic testPress the red Stop key when the MotorRotation Test has completed

or

Motor ConnectDiagnostics Y

Transistor DiagPress START

Check MotorRotation Y

Chapter 4Startup

4ndash8

or

Quick Start Procedure cont

Measure Paramrsquos Press START

Autotune Torqueamp Vel Loops Y

Change Vel BW amprecalc Gains Y

Autotune TheVelocity Loop Y

1 After Inverter Diagnostics has concluded orif you answer NO to the Motor ConnectDiagnostics question a display will appearasking if you wish to run the AutotuneTorque amp Velocity sequence

Press the Enter key to initiate the test

If you answer YES to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Measure Parameters2 Autotune The Velocity Loop3 Change Velocity Bandwidth amp

recalculate Gains4 Configure Analog Inputs5 Continue CH3 amp 4

configuration6 Configure Analog Outputs7 Configure SCANport

ATTENTION Hazard of PersonalInjury exists when running the AutotuneTorque amp Velocity sequence as motorrotation occurs with several of thesetests

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

ConfigureAnalog Inputs Y

Continue CH 3 amp4 config Y

Configure AnalogOutputs Y

ConfigureSCANport Y

Startup Completed

Chapter 4Startup

4ndash9

or

Quick Start Procedure cont

Configure IO Y

ConfigureInput Mode Y

ConfigureScanport Y

If you answer NO to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Configure IO2 Configure Scanport3 Configure Input Mode4 Configure Pulse Input5 Configure MOP6 Configure Analog Input7 Configure Analog Output

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

If you wish to return to the Startupsequence to make additional changesthis can be accomplished from theStartup Completed display Afterpressing the Enter key use the INC orDEC key to toggle to Reset SequencePress the Enter key again and you cannow rendashenter the Startup routine

Startup CompletePress lsquoENTERrsquo

ConfigurePulse Input Y

ConfigureMOP Y

ConfigureAnalog Input Y

ConfigureAnalog Output Y

Startup Completed

Startup Reset SequenceStartup Completed

ResetSequence

or

Chapter 4Startup

4ndash10

AB0282A

or

or

or

Choose MODE Program

Choose FileStartup

Press the ESC key to access the Drive Mode MenuThe Choose Mode display should appear as shownbelowUse the INCDEC keys to scroll thru the DriveMode menu selections until the PROGRAMselection is reachedPress the ENTER key to enter the Program ModeThe HIM display should appear as shown below

Drive Mode Menu

Drive Mode Menu Selections

Press Enter The Choose Group Display will appear Press the INC or DEC key to reach LINEAR LIST

Press the ENTER key to access the Linear ListmenuThe display should appear as shown below

EEPROMPASSWORDDISPLAYPROCESSPROGRAM

LINKSEARCH

CONTROL STATUSSTARTUP

Choose GroupLINEAR LIST

Drive SW Version301 1 LINEAR LIST

Parameter Number 1

Use the INCDEC keys to scroll to Parameter 150Parameter 150 is feedback device type1 = Encoder feedback5 = Sensorless feedback (Similar to armaturevoltage feedback for a DC Drive)Note If choosing sensorless feedback the bandwidth of thevelocity loop will be significantly reduced

Press the SEL key to access the feedback devicetype selection and use the INCDEC keys to togglebetween the selections

Note If sensorless feedback is selected the drivewill fault on feedback loss You must set bit 0 inparms 88 and 89 from 1 to 0 before clearing thisfault and proceeding with the autotune

The feedback device type can be accepted bypressing the ENTER key The display should nowappear as shown below

Fdbk Device TypeVel Est woDB 150 LINEAR LIST

Parameter Number 150Sensorlessfeedback

or

Manual Startup Mode

Use the INCDEC keys to select the Startup File

Chapter 4Startup

4ndash11

AB0270A

or

Drive Data Startup

Linear ListStartup

After the feedback device type has been selectedand accepted press the ESC key to return to theStartup Menu The display should appear asshown below

STARTUP MENU

Use the INCDEC keys to scroll thru the StartupMode menu selections until DRIVE DATAis reached

Press the ENTER key to access the Drive Datamenu

NOTE These parametersare primarily motorencoder specific param-eters that are used forscaling Drive output tomotor input require-ments

DRIVE DATADRIVE TUNE

LIMITSFAULT SETUP

MONITORLINEAR LIST

DRIVE DATA MENU

Not Used inSensorless Mode

The HIM will allow you to toggle between the IODrive Data menu parameters using the INCDECkeys The definitions of the IO Drive Data menuparameters is detailed below

bull Language Select ndash This parameter indicates whether English or an alternate language will be used for parameter and fault display text

bull Input Mode ndash Defines the function of the inputs on the ldquoLrdquo option board

bull Encoder PPR ndash Number of pulses per revolution for encoder

bull Base Motor Speed ndash Motor Nameplate Speed

bull Base Motor HP ndash Motor Nameplate Horsepower

bull Base Motor Current ndash Motor Nameplate Current

bull Base Motor Volts ndash Motor Nameplate Voltage

bull Base Motor Frequency ndash Motor NameplateFrequency

Language Select 304Input Mode 385

Encoder PPR 235Base Motor Speed 229

Base Motor HP 228Base Motor Current 280

Base Motor Volts 231Base Motor Freq 232Torq Mode Select 53

Undervoltage Setpoint224

Motor Poles 235

NOTE It is important that you retain a record of thefeedback device that was selected because thebandwidth of the velocity regulator will be significantly reduced when the drive is used withoutan encoder

If using a 230V driveparameter 224 should beset to a value of 200V

Chapter 4Startup

4ndash12

or

and

AB0270A

or

AB0282A

Base Motor Speed 1750 RPM

To change a value in any of 10 Drive Data menuparameters the following sequence which showsyou how to change motor base speed should befollowed

Press the SEL key to move from the Drive DataMenu parameter to the Drive Data Value Whenthis is successful a blinking box will appear nextto the Ram value as shown in the following figure

Blinking

Use the INCDEC keys to scroll to the desiredvalue then press the ENTER key to accept the newvalue

When you have entered all Drive Data menu parameters press the ESC key to return to theStartup Menu The display should now appear asshown in the following example

bull Motor Poles ndash Number of Motor Poles (Nameplate)bull Undervoltage Setpoint ndash Sets minimum threshold

voltage for a Bus undervoltage condition Should beset to a value of 200V for 230V AC drives and 400V for a 460VAC drive

bull Torque Mode Select ndash This parameter is used to select the source for the drive torque reference (Must be set to Speed Mode for auto commissioning)

Base Motor Speed 1750 RPMAumlAuml

BlinkingBox

and

DRIVE DATA STARTUP

Use the INCDEC keys to scroll thru the Startupmenu until the Limits option is displayed TheHIM display should now appear as shown belowPress the ENTER key to move into the Limitsmenu

LIMITS STARTUP

ATTENTION The MotorPole Entry is critical to allAutotune tests Make certainyou are entering the correctnumber of poles for yourmotor before proceedingwith the Autotune sequence

Chapter 4Startup

4ndash13

or

AB0270A

or

AB0282A

or

Fwd Speed Limit 1750 RPM

Use the INCDEC keys to scroll through the Limitsmenu selections

When you reach the Limit selection that you wishto change press the SEL key to move the blinkingcursor down to the value field

Limits Menu Selections

Once the cursor is in the value field the INCDECkeys can be used to scroll to the selected valueAfter the desired value is reached the ENTER keymust be pressed to accept the value Thisprocess should be repeated for all of the theparameters in the Limit Menu selection

After all of the parameters in the Limit Menu havebeen setndashup press the ESC key to take you back tothe Startup Menu The HIM Display should nowappear as shown below

You must now access the Drive Tuning option in theStartup menu Use the INCDec keys to scrollthrough the Startup Menu until the Drive Tuningselection is reached The HIM display should nowappear as shown below

When Drive Tune appears press the ENTER key toaccess the Drive Tune Menu

The Parameters you will need to set up in the DriveTune sequence are detailed in the list located in theright column For detailed descriptions of theseparameters and their operation refer to Chapter 5 inthis Manual under Group 1 ldquoSTARTUP FILErdquo

The Drive Tune Parameters can be accessed byusing the INCDEC keys to scroll through the DriveTune Menu Using the default values for theseparameters will work in most cases If the defaultvalue does not work refer to the parameter valueranges in Chap 5 for possible alternate values

Accel Rate 1 389Decel Rate 1 391Accel Rate 2 390Decel Rate 2 391Logic Options 59

Fwd Speed Limit 128Rev Speed Limit 127Pos Mtr Cur Lmt 179Neg Mtr Cur Lmt 180Pos Mtr Tor Lmt 175Neg Mtr Tor Lmt 176Motor Power Lmt 177Regen Power Lmt 178

DiDt Limit 181 Fwd Speed Limit +1750 RPM

Blinking Firstthen

Blinking

Drive Tune Menu Selections

Autotune Diag Sel 256Vel Feedback 146

Vel Desired BW 43Auto Tune Status 44

Motor Inertia 234Total Inertia 46

Ki Velocity Loop 139Kp Velocity Loop 140Kf Velocity Loop 141

Vel Damp Factor 45Auto Tune Speed 41Ph Rot Cur Ref 262

Ph Rot Freq Ref 263

Drive Tune Startup

Limits Startup

Chapter 4Startup

4ndash14

or

AB0282A

or

AB0282A

Scroll to the Autotune Diag Sel parameter Set Bit0 to a value of 1 and then press the ENTER keyand the START button This will execute the In-verter Transistor Diagnostics test which will take300 mSec to run Bit 0 will automatically be setback to 0 upon successful completion of the Invert-er Transistor Diagnostics test If the test fails(nonndashzero value with flashing CP or VP light) re-fer to the Startup troubleshooting section of thismanual (Chap 6) While you are performing theInverter Transistor Diagnostics Test the HIM dis-play should appear as shown below

The purpose of the Inverter Transistor DiagnosticTest is to help you find any problems that mightexist in the installation as well as taking care ofsetting offset in both the Id amp Iq regulators(Parameters 260 amp 261 in the linear list)

The next test you must run is the Phase RotationTest This is accomplished by setting bit 1 to a value of 1 in the Autotune Diag Sel parameter(Parm 256) and pressing the START key toexecute the test The HIM display should appear asshown below

Autotune Diag Sel 00000000 00000001 Bit 0

Autotune Diag Sel 00000000 00000010

Bit 1

When the START key is pressed the motor shouldrotate at a rate specified by both Phase Rotation Frequency Ref and a current output as specified bythe Phase Rotation Currency Ref Typically defaultvalues for both Ph Rot Freq Ref and Ph Rot Cur Refwill work correctly

Interpreting Phase Rotation Results1 In phase rotation the motor should turn in the

direction you define as positive velocity If the motor turns in the wrong direction shut the drivedown remove power and reverse any two motor leads

2 If no motor rotation occurs refer to the Startup troubleshooting section of this manual

3 In phase rotation with the motor now turning in the positve direction the sign of the velocity feedback (P146) should be positive If it isnegative reverse the A and A (NOT A) encoderleads or the B and B (Not B) leads

Note Step 3 is skipped with asensorless drive

ATTENTION During thisportion of the Autotune Sequence reverse motor rotation is a possiblity Ifyour process equipmentcould be damaged by rotation in the wrong direction you must uncouplethe motor from the load before running the Phase Rotation test

Chapter 4Startup

4ndash15

or

or

AB0282A

or

AB0282A

or

AB0282A

After the Phase Rotation test has been performed and themotor rotates in the positive direction with positive en-coder feedback you are ready to tune both the Torq Loopand Velocity Loop of the Drive Tuning both the Torq ampVelocity loops requires setting bits 2 thru 8 to a value of1 and then pressing ENTER followed by pressing theSTART key on the HIM The HIM display should nowappear as shown below

Performing both the Torq and Velocity Loop tests willtake approximately 1 min 30 sec to complete Shaft rota-tion will occur in the latter part of these tests While thetest is being executed the green enable light on the Mo-tor Control board will be on Once these tests are com-plete bits 2 through 8 in the Auto Tune Diag Sel parame-ter will be set back to a value of 0 and the green enablelight will go out If the Drive trips a flashing or solid redVP or CP LED will be present on the Motor ControlBoard When complete save the parameters to EEPROM using the EEPROMndashSAVE option underMENUThe fault that caused the drive to trip will appear on theHIM display Refer to the Startup Troubleshooting section of this manual for possible solutions to the displayed fault Perform both the Torque and Velocityloop autotune tests again after the problem has been re-solvedWhen you have successfully completed the Torque andVelocity Tune tests scroll to the Vel Desired Band Width(Parm 43) in the Drive Tune Menu using the INCDECkeys

Autotune Diag Sel 00000001 11111100

Bits 2 thru 8

Vel Desired BW 1000 RS Enter desired BW here

Blinking Firstthen

BlinkingAumlAumlAumlAuml

Enter the desired bandwidth by pressing the SEL key tocursor down to the value field Use the INC and DECkeys to scroll to the desired BW When the appropriatevalue is selected the ENTER should be pressed to acceptthe entered valueBased on the value entered in the Vel Desired BW theKp amp Ki Velocity Loop Values will change when Bit 8 isset in the Autotune Diag Sel (Parm 256) and the STARTKey is pressed The HIM display should now appear asshown below

Autotune Diag Sel 00000001 00000000

Bit 8 set to 1 toexecute update of

velocity regulatorgains

Note When using asensorless versionthe values listed inTable 4B must beused

Chapter 4Startup

4ndash16

or

AB0287A

Vel Feedback 10000 RPM

After the New Values for Kp amp Ki have been cal-culated you are now ready to start the Drive inVelocity mode Before starting the Drive use theINCDEC keys to scroll to Vel Feedback in theDrive Tune Menu Start the Drive by pressing theSTART key on the HIM Press the SPEED IN-CREMENT key to slowly increment the velocityreference Observe velocity feedback and motorshaft rotation making sure both are stable If theyare not (shaft produces a jittery oscillating or jud-ering rotation) press the STOP key immediatelyand readjust the desired bandwidth This will enternew values for both Kp amp Ki After these new val-ues have been entered you are now ready to restartthe Drive in velocity mode and observe motorshaft rotation and velocity feedback for stability Ifproblems still occur refer to the Velocity LoopAutotune troubleshooting section of this manual(Chap 6) The HIM display should now appear asshown below

This Figure should be stable (no wander-

ing of RPM value)

Additional Sensorless Drive InstructionsIf the sensorless mode is being used (Param 150 = 5ndash7) set Param 43 Param 141 and Param 142 based on the measuredinertia expressed in Parameter 46 (Autotune) in Table 4BSelect Bit 8 of Param 156 and then attempt a Start

Table 4BSensorless Setup Values

Param 46 Param 43

lt 2 Sec

2ndash5 Sec

5ndash20 Sec

gt20 Sec

Param 141 Param 142

10 rad

5 rad

1 rad

5 rad

7

7

7

7

50 rad

25 rad

25 rad

25 rad

bull If the motor wonrsquot start increase the bandwidth (Param 43) select bit 8 of Param 256 and attempt a restart

bull If the motor chatters or velocity ripple is too high decrease the bandwidth (Param 43) select bit 8 of Param 256 and restart

bull If the motor continues to chatter set Param 142 to zero

NOTE For additional information on sensorless operation refer to Appendix A of this manual

Chapter 4Startup

4ndash17

Communication ConfigurationDrive to Drive Communication ndash Drive to Drive Communication (D2D)provides high speed communications between drives D2D is capable ofconnecting up to 64 Drives together using three different transfer rates125K (64 nodes) 250K (64 nodes) and 500K (32 nodes) baud

Hardware Setup ndash Refer to Chapter 2 Installation for Drive to Drivewiring L Option wiring and Pulse Input Configuration

Data Transfer ndash The D2D which allows multiple transmitters tobroadcast information based on priority to multiple receivers which choosethe information they wish to receive The D2D will operate at threedifferent baud rates as shown in the following chart

Baud Rate

125k

Max Distance (End to End)

250k

500k

Data Rate

330m

140m

50m

600us

300us

150us

Max Transmitters (2ms task)

3

6

13

The baud rate choices allow for different end to end distances and numberof transmitters The distance is based on the propagation delay of thesignal through the wire and the maximum transmitters come from notexceeding the 2ms task The propagation delay is based on CAN variablesThe number of transmitters is based on the data rate

2 ms

600us (1) 600us(3)

600us(1)600us(4)

600us (2)

2 ms

600us (1) 600us(3)600us (2) 600us (1) 600us(3)600us (2)

600us(2) 600us(3) 600us(1) 600us(2) 600us(3)

2 ms

Shown above is the D2D set at 125k baud with 3 and 4 transmitters With3 transmitters the data rate never exceeds 2ms and all the data is receivedwithin the 2ms task In the case of 4 transmitters the fourth transmitterdoes not always get transmitted due to the priority of the transmitters Thelower the node address the higher the priority All the data is not seenevery 2ms task Data transfer errors also effect how much data istransferred Errors in the transfer will cause retransmission of the data andmay cause the data rate to exceed 2ms Within the drive itself the VelocityProcessor (VP) will be running the D2D in its 2ms task With the use ofD2D indirects data can be transferred within 2ndash3ms from one drive toanother and 4ndash5ms from one drive to another and back

VelocityFunctions

D2D Xfer

150us 300us600us

Data Transmitted

D2DRx

150us300us600us

VelocityFunctions

2 ms Task

D2DTx

D2DTx

D2D Xfer

D2DTx

2 ms Task

D2DTx

The D2D receive and transmit are on both sides of the velocity functionsThis is to improve the data rate

Chapter 4Startup

4ndash18

Message Transfer ndash The D2D allows each drive to transfer two wordsand receive two words from two different drives for a total words receivedof four (Figure 43)

Figure 43 D2D Communication

Transmit

P11 Node Address

P14 Data 1 Indirect

P15 Data 2 Indirect

P20 Data 1

P21 Data 2

Receive 1

P12 Node Address

P16 Data 1 Indirect

P17 Data 2 Indirect

P22 Data 1

P23 Data 2

Receive 2

P13 Node Address

P18 Data 1 Indirect

P19 Data 2 Indirect

P24 Data 1

P25 Data 2

Node Address ndash The node address for the transmit is the address at whichthe drive will transmit its two words of data The node address for each ofthe receives is the address of the drive which you wish to receive twowords of data from If the node address is set to zero then the transmit orreceive is disabled It is up to you to make sure there are no duplicatetransmit node addresses If duplicate addresses exist you must change oneaddress Refer to the example in Figure 44Figure 44 Node Address Transmittal

Drive 1

P11 Xmit Node Address 32

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 27

Drive 2

P11 Xmit Node Address 0

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 32

Drive 3

P11 Xmit Node Address 5

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 27

Drive 4

P11 Xmit Node Address 27

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 0

Note that a drive cannot receive its own address and both receives cannotbe set to the same address unless it is zero

Data Indirect ndash The indirect function for the transmit indicates to theD2D transmit (TX) where it should obtain data The receive it indicates tothe D2D receive (RX) where it should put its data Indirect parameters canhave either VP or CP parameters entered into them or they can haveindirect data parameters entered into them as shown in the followingexamples

Transmitter ExampleP14 Drive Transmit indirect 1 ndash Any VPCP Parameter

or ndash P20 (Drive Xmit Data 1)P20 would then have a value or be linked to a non VPCP parm

Chapter 4Startup

4ndash19

Receiver ExampleP16 Drive Receive Indirect 1 ndash Any VPCP Parameter

or ndash P22 (Receive 1 Data 1)P22 would then have a value or a non VPCP parm linked to it

Data ndash The D2D TX and RX data exists as non VP parameters in theparameter table This allows data outside the Motor Control Board to getaccess to the D2D Data parameter examples were shown in the previoustransmitter and receiver examples

Master Slave Drive to Drive Communication ndash Figure 45 illustratesan example of D2D applied to a masterslave drive set up The masterdrive receives its speed reference from a speed pot wired to analog input 1on a PLC Comm board P339 (Analog In1) is linked to P101 (Ext Vel Ref)on the master drive P392 (Analog In 1 Offset) and P393 (analog In1Scale) are set accordingly Analog Input 1 must be passed from the masterdrive to the slave drive and connected to the P101 (Ext Vel Ref) using theD2D protocol

Setting up the Master drive requires that a transmit address be chosen Anaddress 1 is chosen in this example P14 (Drive Xmit Indirect 1) will havea value of 20 entered into it (which means look to P20 (Drive Xmit Data1)) P20 (Drive Xmit Data 1) must be linked to P339 (Analog In1) Thisis where the data comes from that will be transmitted

Figure 45MasterSlave Communication Example

Master

P11 Drive Xmit Address ndash Transmitter Station Address ndash 1P14 Drive Xmit Indirect 1 ndash VPCP Parm or P20 ndash20P20 Drive Xmit Data 1 ndash Non VPCP Parm Linked ndash 339 (Analog In 1)

P339 (Analog In 1) linked P101) (Ext Vel Ref)P392 (Analog In1 Offset)P393 (Analog In 1 Scale)

Drive to DriveAnalog Inputs

0 ndash 10V

Slave

P12 Drive Receive 1 Address ndash Transmitter you are getting data from ndash 1P16 Drive Receive Indirect 1 ndash VPCP Parm or P22 ndash101 (Ext Vel Ref)

P102 (Vel Scale Factor)Used to Control Gear Ratio

Drive to Drive

Chapter 4Startup

4ndash20

The slave drive is set up by first setting P12 (Drive Receive 1 Address)P12 contains the address of the tranmitter that you wish to receive datafrom In this example a value of 1 is entered indicating that data shouldbe read from transmitter 1 P16 (Drive Receive Indirect 1) should be set toP101 (Ext Vel Ref) It should be noted that the typical transmission timefrom the master to the slave is between 4ms to 6ms using links otherwiseusing indirects it is only 2ms to 4ms

IO Communication ConfigurationThe Standard IO of the 1336 FORCE Drive must be checked to verifyproper operation The Standard IO is used to interface control circuits intothe drive It is very important that this interface is functioning properly

Standard Adapter Board Equipped Drives If a Control Interface option is installed verify that the Stop Enable andExt Fault interlock inputs are present Voltage level is dependent upon theControl Interface option installed (Refer to Page 227 for Input Mode(Param 385) setting

IMPORTANT The Stop Enable and Ext Fault inputs must be presentbefore the drive will start Refer to LEDs D1 and D2 shown in Figure 213to determine Drive Status

If this option is not installed verify that two jumpers are installed one atpins 3amp 4 and the other at pins 17 amp 18 of J10 If an Ext Fault occurscheck the Fault Mask Programming In parameters 88 and 89 Bit 6 needsto be defined to mask the soft fault and warning indication

PLC Comm Adapter Board Equipped Drives

1 The DRIVE ENABLE (TB20 terminal 1) on the PLC Comm Board input allows the drive to honor a START command D11 on the PLC Comm board a green LED reflects the present state of the DRIVE ENABLE If D11 is illuminated then the drive is enabled and the transistors will be allowed to turn on Parameter 54 bit 1 also reflects the status of the DRIVE ENABLE input

2 The EXTERNAL FAULT (TB20 terminal 4) PLC Comm input allows you to tie a signal into the 1336 FORCE that will be monitored by the Velocity Processor (VP) If the input voltage is removed the VP will issue a fault or warning based on the configuration of that fault and the red LED D5 on the PLC Comm board will be illuminated When Input voltage is applied D5 will not be illuminated

3 The MOTOR THERMOGUARD (TB20 terminal 2) input allows you to tie a signal from the thermondashswitch in the motor into the 1336 FORCE that will be monitored by the Velocity Processor (VP) The red LED D9 will illuminate if an overtemp condition occurs

Chapter 4Startup

4ndash21

4 The NORMAL STOP (TB20 terminal 3) input is stop command that will stop the drive according to the specified Stop Mode The drive responds the same way it would if the STOP bit were set in any Logic Command The red LED D7 reflects the present state of the STOP input When a Stop is in effect the LED is illuminated and the Drive is not allowed to run

5 The FAULT OUT (TB20 terminals 8910) input is a Form C relay contact Red LED D4 reflects the status of relay contact If the LED is illuminated the contact is not energized

External Control Link ConfigurationThe 1336 FORCE AC Drive has been designed to accept control inputthrough the use of Adapter Boards A portion of the Drive Control hasbeen designed to act as an interface from the point of view of externaldevices In order to perform the control functions required by the specificapplication it is necessary to configure various control and referenceinformation such as logic commands speed reference and torquereference Additionally for the external control equipment to monitoroperation conditions in the drive (such as logic status actual speed actualtorque) configuration provides a way for this information to be transferredto the external device

Configuration links must be made between sink and source parameters toallow this information to transfer The source parameter provides the datato be sent to the receiving sink parameter For Example To send the information from Analog Input 1 (Parameter355) to External Velocity Reference 1 (Parameter 101) of the drivethen P101 must be linked to P355 All sink and source parameters in the1336 FORCE AC Drive are available to provide information and sinkparameters can receive information from source parameters The drive isshipped with prendashconfigured links between the Standard Adapter board orPLC Comm board and the Main Control board The user has the flexibilityto reconfigure the drive for a particular application For more informationon how to use a particular programming device to configure the 1336FORCE AC Drive refer to the instruction manual for that particulardevice

Figure 46 shows the as shipped prendashconfiguration links for a 1336FORCE AC Drive equipped with a Standard Adapter board Refer to thePLC Communications Adapter User Manual (1336 FORCE 513) forinformation on prendashconfigured links for PLC Comm equipped drives

PLC COMM Adapter Board Equipped Drives

For PLC Comm Adapter Board Equipped Drives refer to the 1336 FORCEPLC Communication Adapter User Manual (1336 FORCE 513) forconfiguration information

Chapter 4Startup

4ndash22

Figure 47Standard Adapter Links

369

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

1 2 3 4 5

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)Scale

Scale

366

Chapter 4Startup

4ndash23

Analog IO Parameter ConfigurationWhen you have accomplished the hard wiring of the Analog IO to theStandard Adapter Board terminals as was detailed in Chapter 2 it is stillnecessary to set up the parameters in the Drive to allow for data flowbetween the Adapter Board and the Drive Each InputOutput hasparameters associated with it as shown in Figure 47 Set-Up parametersare used to program the Standard Adapter Board functions such as Scaleand Offset Configuration parameters allow the Standard Adapter Board tocommunicate with the Drive and must be linked to analog inputs andoutputs

Each analog input and output is associated with a scaling and offset set-upparameter These parameters must be adjusted for each analog device

The Drive works with internal drive units Each parameter is a 16 bit wordwhich allows a range of plusmn 32767 internal units The Drive is scaled so that4096 is equal to one unit of the quantity being regulated A plusmn 10V DCsignal applied to an analog input is converted to a digital value of plusmn 2048providing a total range of 4096 When calibrating analog inputs a scalefactor is applied to this value to provide an effective range of plusmn 32767 16 times 2048 The offset parameter determines the offset in volts applied tothe raw analog value before the scale factor is applied This allows you toshift the range of the analog input by plusmn 4096 drive units (plusmn20 volts)

Figure 47Analog IO Links

5ndash12V Pulse Input

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

355356 Offset357 Scale

358

361

ndash10V RefCommon

+ndash

In1

TE

TB6

1 2 3 4 5 6 7 8

370

373

376

+ndashPot In put

TEMain+Main ndash

4ndash20mA Input

TE+ndash

Analog + Out 1

+ndash

TE

TE+ndash

+ndash

395 PPR396 Edge397 Scale398 Offset

399

Standard Adapter

PowerSupply

In1

359 Offset360 Scale

10V Input 10V Input

In1 In1

362 Offset363 Scale

Pot Input

mA Input

Pulse Value In1 In1

371 Offset372 Scale

Analog Output 1

Analog Output 2 Analog + Out 2

mA Output

374 Offset375 Scale

mA Out +

377 Offset378 Scale

Chapter 4Startup

4ndash24

A 10V Input and a Pot Input will be used in detailing the scaling and offsetparameters At Pot Input between TB5 terminals 7 and 8 a potentiometerwith a range of plusmn10V DC has been connected Parameter 358 has been linkedto Parameter 104 (Velocity Reference 2 HI) in the Drive which gives thepotentiometer control of the external velocity reference To calibrate the potto control 100 base speed in both directions the scaling parameter must beadjusted The default value of the scale parameters allows a total range of4096 ndash2048 to +2048 This allows only 50 base speed in each directionBy setting a scale factor of 2 in Parameter 360 (An In 1 Scale) the digitalinput is multiplied by 2 providing a range of ndash 4096 to + 4096 or 100 basespeed in both directions If the user wanted a range of plusmn 2 times base speedthe scale factor would have to be 4 (Base Speed = 4096 2 times Base Speed= 8192 2048 times 4 = 8192) Parameter 359 (Offset) will remain at thedefault value of zero allowing the input range to be ndash10V to +10V Therange of the offset parameter is plusmn 20V DC as shown in Figure 48

Figure 48Potentiometer with a +10V Range to Control 0 to +100 Base Speed

10V POT

0ndash10V

A

D

SCALE

+20480

ndash2048

+20480

ndash2048

+40960

ndash4096

OFFSETPAR 359 = 0

RANGE OF 20V

0

000

ndash10Vndash2048X 2

ndash4096

+10V+2048X 2

+4096

PAR 360X 2

plusmn

+10V

POTENTIOMETER DIGITAL VALUESCALEFINAL VALUE PAR 401

PAR 104plusmn 2048(= plusmn10V)

Par 358

Pot Input

VELOCITYREFERENCE 2

HIMULTIPLEXER

For 10V Input a 0 to 10 volt potentiometer will be used to adjust the TorqueReference from ndash100 to +100 To accomplish this both the scale andoffset parameters will need to be adjusted By linking Parameter 355 toParameter 162 Torque Reference the potentiometer connected to AnalogInput becomes the Torque Reference Signal This signal must be scaled andoffset in order to get the entire plusmn 100 in the 0-10 volt range A digitalrange of 8192 (plusmn 4096) must now be scaled for an analog range of 10 voltsand must be offset so 5 volts on the potentiometer will indicate 0 Torque

Chapter 4Startup

4ndash25

As shown in Figure 49 the offset voltage adds the corresponding digitalvalue to the range In this case an offset of ndash5 volts adds a digital value ofndash1024 to the range This causes 0 volts on the potentiometer to register asndash1024 digital internal to the drive and 10 volts on the potentiometer will be+1024 to the drive This can then be scaled by a factor of 4 (8192 drive units) so that 0 volts sends a digital value of ndash4096 for ndash100torque and 10 volts sends a digital value of +4096 for +100 torque

Figure 49Potentiometer 0ndash10V Range to Control +ndash 100 Torque Reference

0ndash10V POT

010v

A

D

SCALE

0to

2048

ndash1024+1024

+4096+4096

RANGE OF 20V

0

00

ndash10Vndash2048

+10V+2048

PAR 357X 4

+0v

POTENTIOMETER DIGITAL VALUEOFFSET BY ndash5V

10Vndash10V

5V1024

00

ndash1024ndash4096

+1024+4096ADDING ndash1024

SCALE BY 4

PAR 162plusmn 2048(= plusmn10V)

OFFSETPar 356 = ndash5V

Par 355MULTIPLEXER

10V Input

Analog outputs are set up similar to analog inputs Each output has a scaleand offset parameter along with a specific variable parameter used forlinking Differences occur because of the direction of information flow Thedrive sends a digital value in drive units which must be matched to thevoltage of the monitoring device Similar to analog inputs the analog outputconverts a plusmn2048 to plusmn10VDC Thus when the drive sends plusmn100 BaseSpeed (equal to plusmn4096) it must be scaled by 05 to be in the proper range(plusmn4096 times 05 = plusmn2048) Offset can be plusmn 20VDC even though the physicallimit is plusmn10VDC This allows you to offset the signal anywhere within theentire range

Chapter 4Startup

4ndash26

In Figure 410 Analog Output 1 is used as an example to detail the scalingand offset parameters At Analog Output 1 a meter with a range of 0-10 VDC has been connected Parameter 370 has been linked to Parameter 146(Velocity Feedback) In order for the meter to indicate speed in bothdirections the scale and offset parameters must be adjusted as shown inFigure 410 Working in the opposite direction as the analog inputs apply thescale factor first The drive sends a plusmn4096 digital value to indicate plusmn100velocity feedback for a total digital range of 8192 The meter having ananalog range of 0-10V DC requires a digital range of 2048 This isaccomplished by applying a scale factor of 025 (8192 times 025 = 2048)In order to have the 0-10V DC meter indicate plusmn100 feedback an offsetmust be applied Offset parameters for analog outputs will again add thecorresponding digital value to the range In this case an offset of 5 volts addsa digital value of 1024 to the range This will allow full range deflection onthe 0 to 10 volt meter with 5 volts indicating zero speed

Figure 410Analog Output 1 +ndash 100 Speed Indication

ndash100B SPD 0 SPD

+100B SPD

5V

0V 10V

+4096 (+100 SPEED)0

ndash4096 (ndash100 SPEED)

+10240

ndash1024

+2048+1024

0

+10V = + 100 BASE SPEED+5V = 0 SPEED

SCALEPAR 372X 025

OFFSETPAR 371

5V = 1024

D

A

SCALED BY 025

0V = ndash100

OFFSET BY 5V ADDING 1024DIGITAL VALUE

METER VOLTAGE BASE SPEED

ndash 4096

ndash 1024+ 1024

00 VOLTS

ndash 100

0

0+ 1024

05 VOLTS

0

4096

+ 1024+ 1024

204810 VOLTS

+ 100

(plusmn 2048 = plusmn10V)

PAR 146 PAR 370

VELOCITYFEEDBACK ANALOG OUT 1

DIGITAL RANGEFROM DRIVE

Chapter 4Startup

4ndash27

SCANport Analog IO Parameter Configuration

SCANport analog IO is what is received from and sent to the SCANportdevices

Figure 411SCANport IO Parameter Configuration

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

1 2 3 4 5

379

SP Analog Out (Par 379)

HIMDefault setting of Drive Parameter 364 = 1

1 2 3 4 5

SP Analog In Select (Par 367)

368

SP Analog In (Par 368)

Default setting of Drive Parameter 367 = 1

Scale

366

Scale

369

To receive analog input from a device the SCANport Analog Input Selectparameter 364 must be set to the SCANport device port number and theSCANport Analog Input parameter 365 must be linked to a sink Set thescale as needed For example if the HIM is plugged into Port 1 and it is tocontrol external velocity you would then enter 1 for SCANport Analog InputSelect (364) and link External Velocity (101) to SCANport Analog Input(365) You may scale the velocity through External Velocity Scale (102) orthrough SP Analog Scale (366)

The Drive sends SCANport Analog Output parameter 379 to all devicesconnected to SCANport To send data out to the SCANport devices youmust link SCANport Analog Output (379) to a source For example If theHIM is to receive Velocity Feedback you would link SCANport AnalogOutput (379) to Velocity Feedback (269)

Output Relay ConfigurationThe outputs consist of three (3) permanently configured and one (1)programmable output

The three permanently configured relays are Run Warning and Fault Runis a normally open contact that closes when current is applied to the motor It follows the enable LED on the Motor Control Board Warning has anormally open and close contact that energizes when there is no warningsand dendashenergizes when there is a warning Fault has a normally open andclose contact that energizes when there are no faults and dendashenergizes whenthere is a fault

Chapter 4Startup

4ndash28

The programmable relay is a normally open contact and is configuredthrough the Output Select parameter 384 It allows the relay to follow asingle bit within the Logic Status parameters 56 and 57 The relay can beconfigured to follow the bit function or the not of the bit function ForExample When the motor is at set speed and you wish the contact to closeyou must enter AT SET SPEED (8) When the motor is at set speed and youwish to have the contact open you must enter NOT AT SET SPEED (40)into Output Select (384)

Pulse Input Configuration

The pulse input allows an external source to provide the drive with a digitalreference or trim signal (Fig 412) It is a differential input with a maximumfrequency of 100khz The pulse input parameters consist of PPR (395)Scale (397) Edges (396) and Offset (398) The PPR is the number of pulsesper one revolution The scale determines the RPM at 1 per unit (4096) Theedges are either one edge ndash rising edge of the pulse or two edges ndash the risingand falling edge of the pulse Two edges provide better resolution Theoffset sets the minimum speed For example You have a lead drive with a1024 PPR encoder with a base speed of 1750 The follower uses the leaddriversquos encoder but runs at half the speed The followerrsquos ppr should be1024 scale should be set to 3500 offset should be 0 and a link should bemade from external reference (101) to Pulse Value (399)

Figure 412Pulse Input Configuration

399

MOTOR CONTROL BOARD

LeadDrive

396

EDGE

395

PPR

397

SCALE

398

OFFSET

AumlAuml AumlAuml

AumlAuml

101PulseValue

Ext Speed Ref

To calculate ScaleFollower Base Speed xLead RPM

Follower RPM

MOP Configuration

The MOP function is controlled by the L Option IO modes 5 9 and 15The MOP up and MOP down increment and decrement the MOP valueparameter 394 based on the MOP increment parameter 393 which is in RPMper second

SCANport Image Configuration

The SCANport image is a mechanism for transferring data to and fromSCANport devices It operates the same way as a PLC image with its 1412 34 and full racks The SCANport image is setup by a SCANportdevice such as a GD1 module or a RIO to SCANport gateway

Chapter 4Startup

4ndash29

SCANport Control Configuration

The SCANport controls are the functions that control the motor like startstop jog etc The control can come from up to 6 SCANport devices and LOption Inputs at the same time The control is based on a ownershipmechanism which allows certain functions to have only one owner and otherfunctions to have multiple owners Speed reference direction and localfunctions are the only one owner functions The other functions like startstop jog etc are considered multiple owner functions Ownership is when aSCANport device or L option Input commands a function As long as thatfunction is commanded that device will be the owner of that function ForExample Device 1 is commanding a forward direction this is a one ownerfunction No other device can change the direction until Device 1 stopscommanding the forward direction If Device 1 is commanding a start whichis a multiple owner function other devices can also command a start Ifdevice 1 stops commanding a start the drive will continue to run if anotherdevice is still commanding a startNOTE A rising edge is required for start and jog functions If jog iscommanded and the drive has been stopped Start and Jog functions will notoperate from any device until the Jog command is stopped The same holdstrue if a Start is commanded while the drive is stopped

The parameters in the range from 340 to 350 indicate the owner of eachfunction The owner is identified by the bit in the parameter as follows

Bit 0 ndash L Option InputsBit 1 ndash SCANport device 1 SCANport device number isBit 2 ndash SCANport device 2 determined by the SCANportBit 3 ndash SCANport device 3 connectionBit 4 ndash SCANport device 4Bit 5 ndash SCANport device 5Bit 6 ndash Internal GatewayBit 7 ndash Not Used

This is very useful for determining who may own a function

Masking of the control functions allows control functions to be enabled ordisabled for all or some of the devices The parameter bit configuration isthe same as the example detailed above with 0 indicating disable and 1indicating enable The masking control starts with the port enable maskwhich enables or disables all of the devices control functions then the localcontrol mask which allows a device to take full control of the drive to theindividual masks like start jog direction speed reference clear faults andreset

Control Interface OptionThe Control Interface Option Modes configure the Control Interface OptionThe different modes are explained in Chapter 2 The modes allow the user tosetup the inputs to meet the requirements of their application The InputMode parameter 385 sets the mode and takes effect on a power cycle or resetThe Input Status parameter 386 indicates the status of the input except for theenable input which can be seen in parameter 54 bit 1 The Stop Selectparameters 387 amp 388 select the way the stop input will function on the L

Chapter 4Startup

4ndash30

option only based on the stop type in modes 3 13 and 16 Stop fromSCANport devices follow parameter 59 bits 4 amp 5 The Accel Rates (389 amp390) and Decel Rates (391 amp 392) are selected by modes 4 11 and 14

NOTE Mode 2 3 4 5 and 6 take permanent ownership of the directionfunction

NOTE If the Control Interface Option is other than 1 the Control InterfaceOption speed reference will take ownership of the speed reference To allowother devices to control speed reference disable the Control Interface Optionspeed reference with the speed reference mask (334)

Using the SCANport ImageYou can view the values in the SCANport image table by using parameters310 through 317 for input and 320 through 327 for output

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data In A1 (Par 310)

Data In A2 (Par 311)

Data In B1 (Par 312)

Data In B2 (Par 313)

Data In C1 (Par 314)

Data In C2 (Par 315)

Data In D1 (Par 316)

Data In D2 (Par 317)

SCANport Image In

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data Out A1 (Par 320)

Data Out A2 (Par 321)

Data Out B1 (Par 322)

Data Out B2 (Par 323)

Data Out C1 (Par 324)

Data Out C2 (Par 325)

Data Out D1 (Par 326)

Data Out D2 (Par 327)

SCANport Image Out

SCANport Device 6 SCANport Device 6

1336 FORCE

Logic Command

Reference

Logic Status

Feedback

SCANport gateways or adapters to RIO DF1DH485 DeviceNet SLCand Flex IO are some of the devices that can transfer data between theSCANport IO image and another device

Refer to the appropriate manual for your specific adapter

Chapter 4Startup

4ndash31

Within the 1336 FORCE drive the IO image table resembles thefollowing

Logic Command Word Logic Status LOW(parameter 52) (parameter 56)Bit 0 Normal Stop Bit 0 Run ReadyBit 1 Start➀ Bit 1 RunningBit 2 Jog 1➀ Bit 2 Command DirBit 3 Clear Fault Bit 3 Rotating DirBit 4 Forward Bit 4 AcceleratingBit 5 Reverse Bit 5 DeceleratingBit 6 Jog 2➀ Bit 6 WarningBit 7 Cur Lim Stop Bit 7 FaultedBit 8 Coast Stop Bit 8 At Set SpeedBit 9 Spd Ramp Dis Bit 9 Local ABit 10 Flux Enable Bit 10 Local BBit 11 Process Trim Bit 11 Local CBit 12 Speed Ref A Bit 12 At Zero SpdBit 13 Speed Ref B Bit 13 Speed Ref ABit 14 Speed Ref C Bit 14 Speed Ref BBit 15 Reset Drive Bit 15 Speed Ref C

Logic Status HI(parameter 57)Bit 0 Flux ReadyBit 1 Flux UpBit 2 Not UsedBit 3 Not UsedBit 4 Bus RidethruBit 5 JoggingBit 6 Not UsedBit 7 Not UsedBit 8 At LimitBit 9 Not UsedBit 10 At Setpoint 1Bit 11 At Setpoint 2

➀ These functions require an edge in order to take effect

1336 FORCE DriveController

Logic Evaluation Block Logic Command Wrd (p 52)SP An 2 Sel (p 367) SP An 2 Scale (p 369) SP An In2 Value (p 368)Data In A1 (p 310) Preset Speed 1 (p 119)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314) Speed Ref 1 (p 101)Data In C2 (p 315) Vel Scale Factor (p 102)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOWHI (param 5657) SP An Output (p 379) Velocity Feedback (p 146)Data Out A1 (p 320) Motor Current Magnitude Feedback (p 264)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

Link Link

Link

Link

The following examples are provided to show how the 1336 FORCE driveinterfaces with some of the available adapters These are only examplesYou should also refer to the appropriate manual for your gateway foradditional information

Chapter 4Startup

4ndash32

SLC to SCANport ModuleThe following figure shows how the IO image table for the SLCprogrammable controller relates to the 1336 FORCE drive In thisexample the drive is connected to channel 1 of the SLC module inenhanced mode If this were an example of basic mode only the O12O13 I12 and I13 entries would be used

1336 FORCE DriveController

SLCIO Image

Output Image

O12O13

O18➀

O19➀

O110➀

O111➀

O112➀

O113➀

O114➀

O115➀

I12I13

I18➀

I19➀

I110➀

I111➀

I112➀

I113➀

I114➀

I115➀

Input Image

Logic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOW (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

SLC toSCANport

Module

Logic CommandReference

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Logic StatusFeedback

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Backplane SCANport

➀ Available only in enhanced mode

➁ Optionally enabled viaG file in SLC processor

M Files Message HandlerMessageBuffers

Chapter 4Startup

4ndash33

Serial Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Serial CommunicationsModule is used

1203ndashGx2DF1DH485 to SCANport

N400ndash63 BTW EmulationN410➀ Logic CommandN411➀ ReferenceN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

1336 FORCE DrivePLC SLCor PC

DF1DH485Serial Messages

(Write)

DF1DH485Serial Messages

(Read)

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status Low (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

N400ndash63 BTR EmulationN410➀ Logic StatusN411➀ FeedbackN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

SCANport

➀ Optionally enabled usingDIP switches on the adapter

Chapter 4Startup

4ndash34

Remote IO Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Remote IOCommunications Module is used

Remote IOCommunications

Module

Block TransferLogic Command

ReferenceDatalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

Block TransferLogic StatusFeedback

Datalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

1336 FORCE DriveController

PLC IO Image

Output Image

O010O011O012O013O014O015O016O017

I010I011I012I013I014I015I016I017

Input Image

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status LO (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

RIO SCANport

➀ Optionally enabled usingDIP switches on the module

8 words maximum

8 words maximum

Flex IO ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Flex IO Module isused

1203ndashFM1and 1203ndashFB1

Modules

Logic CommandReference➀

Logic StatusFeedback

1336 FORCE DriveFlex Adapter

Logic Evaluation BlockSP An 2 Sel (p 367)

Logic Status Low (p 56)SP An Output (p 379)

SCANport

RIODeviceNetControlNetOthers

Chapter 4Startup

4ndash35

This Page Intentionally Blank

Chapter 5

5ndash1

Programming Parameters

Introduction This chapter contains the information required to assist you inprogramming the 1336 FORCE AC Drive for a specific application afterinitial startndashup Drives are shipped programmed with default values andare preconfigured for the options installed

Parameters 0 thru 288 are the parameters for the 1336 FORCE MotorControl Board Parameters 300 and above cover the Adapter Board ofthe 1336 FORCE DRIVE The 1336 FORCE parameter table has beenbroken down into three different table types as follows

Table 5A lists parameters in numeric order with page referencesTable 5B lists parameters alphabetically with page referencesFigures 52 amp 53 list Standard Adapter and PLC Comm Adapter parameters by file and group

Parameters are divided into 4 Files to help ease programming andoperator access as follows

1 Startup File2 Communications IO File3 Velocity Torque File4 Diagnostics File

These four Files are then divided into Groups with each parametermaking up an Element in a specific group Parameters may be used asElements in more than one group Refer to Table 5A for a numericalbreakdown of the FileGroupElement designations

NOTE Parameters that appear in more than one group in Table 5A arelisted after the initial entry in italics

Terminology The definition of terms related to the parameter table include

Configuration ndash The process of linking Sink to Source parameters

Configuration Parameters ndash Parameters used to transfer data betweenthe drive control and external devices The Configuration Parameters arecategorized into two types

1 Source Parameters ndash Parameter used as a source of data2 Sink Parameters ndash Parameter used to receive data input

All parameters in the 1336 FORCE AC Drive can be used for evaluation(sink or source) and some can be modified dynamically (sink only) tomeet application requirements

Drive Units ndash The actual value of the parameter as it is stored within theDrive parameter table The drive units may be converted to engineeringunits or to hexidecimal for display using the Programming Terminal ormay be displayed directly in drive units All internal values in the driveare in terms of Per Unit numbering

Chapter 5Programming Parameters

5ndash2

Engineering Units ndash A label given to parameter data which specifieswhat units are to be used to display the parameter value on theProgramming Terminal Examples of engineering units include RPM etc

NonndashVolatile Memory ndash Data memory in the drive which retains thevalues of all data even when power is disconnected from the drivecontrol BRAM (Battery Backed Random Access Memory) chips areused for the nonndashvolatile memory to store some of the drive parameters

Parameter Table ndash Table of parameter entries for all configuration andsetup parameters used in the drive

Parameter Entry ndash Information stored in the drive which contains theparameter number parameter data and all other information related to thespecific parameter

Parameter ndash Memory location used to store drive data Each parameteris given a number called the parameter number The parameter valuemay be specified in decimal or in hexadecimal When specified inhexadecimal the word ldquoHexrdquo will appear after the parameter value

Per Unit Numbering ndash Per Unit numbering is a numbering systemwhich defines a specific numeric value as representing 100 of aparticular quantity being measured The number 4096 is used in manyplaces in the drive to represent 1 Per Unit (100) [pu]

Parameter Table Structure All data used to perform the Drive functions is stored in the ParameterTable Each parameter entry in the parameter table contains thefollowing information

No ndash The parameter number in decimal

Name ndash Parameter text as it appears on the Programming Terminal

Display Units ndash Specifies what engineering units will be used to displaythe parameter value on the Programming Terminal (RPM etc) Thisis specified first in the Units column of the Parameter Table

Drive Units ndash Specifies the Conversion Units as seen in the Drive

Figure 51 Drive Units Example

4096DriveUnits

Drive Units

Conversion Formula

1750RPM

Engineering Units

Factory Default ndash Parameter value as it will appear after the DriveInitialize (Init) command has been sent from the Programming TerminalThe Init values are the same as the default values listed in the ParameterDescriptions section of this chapter

Min ndash Minimum allowable value for the parameter If no min value isgiven the parameter has not been assigned a minimum limit

Max ndash Maximum allowable value for the parameter If no max value isgiven the parameter has not been assigned a maximum limit

Enum ndash Allows numbers or bits to be represented by text

Chapter 5Programming Parameters

5ndash3

Parameter Table (Standard Adapter Equipped Drives)Note For PLC Comm equipped drives refer to your PLC Comm User Manual for parameter descriptions For ControlNet Adapter equippeddrives refer to your ControlNet Adapter Manual for parameter descriptions

Table 5A ndash 1336 FORCE Numerical Parameter Table

Param No Parameter Name (Element) Group01050809101112131415161718192021222324252627282930313233343536373840

41

43

44

45

46

47

48

52

Drive Software VersionDrive Power Structure TypeMotor Control CounterDrive Comm Task IntervalDrive Comm Baud RateDrive Comm Transmit AddrDrive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Comm Receive 1 Indirect 1Drive Comm Receive 1 Indirect 2Drive Comm Receive 2 Indirect 1Drive Comm Receive 2 Indirect 2Drive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Process Trim OutputProcess Trim ReferenceProcess Trim FeedbackProcess Trim SelectProcess Trim Filter BandwidthProcess Trim DataProcess Trim KI GainProcess Trim KP GainProcess Trim Low LimitProcess Trim High LimitProcess Trim Output GainProcess Trim TestpointProcess Trim Setpoint Select

InfoInfoMonitorDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimVelocity AutotuneTorque AutotuneVelocity AutotuneTorque AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneTestpointsVelocity AutotuneTestpointsLogicLogic

Auto Tune Torque Limit

Auto Tune Speed

VP Desired Bandwidth

Autotune Status

VP Damping Factor

Total Inertia

Auto Tune Testpoint Data

Auto Tune Testpoint Select

Logic Command Word

File (File No)

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Communications IO (2)

Param DescrptSee Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash37See Page 5ndash37See Page 5ndash37See Page 5ndash37

Chapter 5Programming Parameters

5ndash4

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

77787980

81

82

83

84

Torque RefDrive DataLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTransistor DiagLimitsLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTestpointsLogicLogicTestpointsLogicLogicFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Torque Mode Select

Local Input Status

Local Output Status

Logic Status LOW

Logic Status HI

Torque Stop Configuration

Logic Options

At Setpoint 1

At Setpoint 2

Over Setpoint 1

Over Setpoint 2

Over Setpoint 3

Over Setpoint 4

Setpoint Select

Speed Setpoint Tolerance

Current Setpoint Tolerance

Zero Speed Tolerance

Logic Testpoint Data

Logic Testpoint Select

Stop Dwell

Maximum Dynamic Brake PowerMaximum Dynamic Brake TempDynamic Brake Time ConstantPowerupDiagnostic Fault Status

NonndashConfigurable Fault Status

CP Configurable Fault Status

VP Configurable Fault Status

CP Configurable Warning Status

File (File No)

Velocity Torque (3)Startup File (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Communications IO (2)Diagnostics (4)Startup (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Comm IO (2)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Diagnostics (4)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)

Param DescrptSee Page 5ndash37See Page 5ndash37See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39 See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40 See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash43See Page 5ndash43

Chapter 5Programming Parameters

5ndash5

Table 5A ndash 1336T Numerical Parameter Table (Cont)

86

87

88

89

909192

94

95

96

97

9899100101102103104105106107108

109

110

117118119120121122123125126127

128129

CP Fault Configuration

CP Warning Configuration Select

VP Fault Configuration Select

VP Warning Configuration Select

Absolute Overspeed ThresholdStall DelayMotor Overload Limit

Service Factor

Motor Overload Speed 1

Motor Overload Speed 2

Minimum Overload Limit

Fault Testpoint DataFault Testpoint SelectVelocity Reference 1 LOW (FRACTION)Velocity Reference 1 HI (WHOLE 32 bit)Velocity Scale Factor 1Velocity Reference 2 LOW (FRACTION)Velocity Reference 2 HI (WHOLE 32 bit)Velocity Scale Factor 2Velocity Trim LOWVelocity Trim HI (32 bit)Velocity Reference Testpoint Data LOW

Velocity Reference Testpoint Data HI

Velocity Reference Testpoint Select

Jog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeReverse Motor Speed Limit

Forward Motor Speed LimitMaximum Reverse Speed Trim

Param No Parameter Name (Element) Group File (File No)

Fault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SetupFault SetupFault SetupMotor OverloadMotor OverloadLimitsFault SetupMotor OverloadFault SetupMotor OverloadFault SetupMotor OverloadTestpointsTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefTestpointsVelocity RefTestpointsVelocity RefTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefLimitsVelocity RefVelocity Ref

Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Startup (1)Startup (1)Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)

85 VP Configurable Warning Status Fault SelectStatusFault SelectStatus

Communications IO (2)Diagnostics (4)

Param Descrpt

See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44 See Page 5ndash44See Page 5ndash44See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49

Can be viewed only with PLC Comm Board installed

Chapter 5Programming Parameters

5ndash6

Table 5A ndash 1336T Numerical Parameter Table (Cont)

130131132133

Maximum Forward Speed TrimDroop PercentVelocity Reference Output LOWVelocity Reference Output HI (32 bit)

Param No Parameter Name (Element) Group File (File No)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Param DescrptSee Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50

Velocity RefVelocity RefVelocity RefVelocity Ref

136

137

138139

140

141

142143

144

145

146

147

148

149

150151152153154155156157161162163164165166167

168

134135

Velocity Regulator Testpoint Data HI

Velocity Regulator Testpoint Select

Velocity ErrorKI ndash Velocity Loop

KP ndash Velocity Loop

KF ndash Velocity Loop

KF Error Filter BandwidthVelocity Feedback Testpoint Data LOW

Velocity Feedback Testpoint Data HI

Velocity Feedback Testpoint Select

Velocity Feedback

Scaled Velocity Feedback

Encoder Position Feedback LOW

Encoder Position Feedback HI

Fdbk Device TypeFdbk Tracker GainFdbk Filter SelectKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityNotch Filter FreqNotch Filter QExternal Iq ReferenceExternal Torque Reference 1Slave Torque Percent 1External Torque Reference 2Slave Torque Percent 2External Torque StepInternal Torque Reference

Internal Iq Reference

Velocity Regulator OutputVelocity Regulator Testpoint Data LOW

Velocity RegTestpointsVelocity RegTestpointsVelocity RegVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity FdbkVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkDrive TuneVelocity FdbkMonitorVelocity FdbkMonitorMonitorVelocity FdbkMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefMonitorTorque RefMonitor

Velocity RegVelocity RegTestpoints

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity TorqueStartup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)

Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51 See Page 5ndash46 See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55

Chapter 5Programming Parameters

5ndash7

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No)

Torque RefTestpointsTorque RefTestpointsTorque RefLimit

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)

172

173

174

Param Descrpt

See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash56See Page 5ndash56

Torque Reference Testpoint Data

Torque Reference Testpoint Select

Minimum Flux Level

176

177

178

179

180

181

182

183184185

186

220221222223224225226227228229230231232233234

235236237238240241242243244245246

175

Neg Torque Reference Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current Reference Limit

Negative Motor Current Reference Limit

DIDT Limit

Computed Power

Torque Limit StatusTorque Mode StatusPerunit Motor Current

Perunit Motor Voltage

Rated Inverter Output AmpsRated Inverter Input VoltageInverter Carrier FrequencyPrechargeRidethru SelectionUndervoltage SetpointBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsBase Motor HorsepowerBase Motor SpeedBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesMotor Inertia

Encoder PPRRs Tune (Stator Resistance)Leakage InductanceId Tune (Base Flux Current)Iq Tune (Base Torque Current)Vde Tune (Base Torque Voltage)Vqe Tune (Base Flux Voltage)Vde Maximum (Peak HP)Vqe Maximum (Constant HP)Vde MinimumK Slip (Base Slip Frequency)

Pos Torque Reference Limit

Torque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefMonitorMonitorTorque RefTorque RefMonitorMonitorMonitorMonitorInfoInfoTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockDrive DataDrive DataDrive DataDrive DataDrive DataDrive DataDrive TuneVelocity AutotuneDrive DataTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Torque RefLimits

Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Velocity Torque (3)Startup (1)

See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57 See Page 5ndash57 See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash62See Page 5ndash62See Page 5ndash62

Chapter 5Programming Parameters

5ndash8

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

246247248249250251252256

Base Slip FrequencyBase Slip Freq MaxBase Slip Freq MinKp ndash Slip RegulatorKi ndash Slip RegulatorKp ndash Flux RegulatorKi ndash Flux RegulatorAutotuneDiagnostics Selection

Torque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneDrive TuneTorque AutotuneVelocity AutotuneTransistor Diag

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash63See Page 5ndash63See Page 5ndash63See Page 5ndash63

259260261262

263

264

265

266

267268

269

270

271

273

274

275276277278279280281282283284285286287288289290

257258

Inverter Diagnostics Result 2Iq OffsetId OffsetPhase Rotation Current Reference

Phase Rotation Frequency Reference

Motor Current Magnitude Feedback

Motor Voltage Magnitude

Stator Frequency

Calculated TorqueDC Bus Voltage

Filtered Motor Velocity Feedback

Inverter Temperature Feedback

Limited Motor Flux

Testpoint Selection

Testpoint Data

Testpoint Selection 2Testpoint Data 2Testpoint Selection 3Testpoint Data 3Testpoint Selection 4Testpoint Data 4Testpoint Selection 5Testpoint Data 5Testpoint Selection 6Testpoint Data 6Selection for Test DAC 1Selection for Test DAC 2Ki Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency Regulator

Transistor Diagnostics ConfigurationInverter Diagnostics Result 1

Transistor DiagTransistor DiagTransistor DiagTorque AutotuneDrive TuneTorque AutotuneDrivetuneMonitorMonitorMonitorMonitorMonitorMonitor

MonitorMonitorMonitorMonitorVelocity FdbkMonitorMonitorMonitorMonitorTestpointsTorque AutotuneTestpointsTorque AutotuneFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyTorque BlockTorque BlockTorque BlockTorque Block

Transistor DiagTransistor Diag

Diagnostics (4)Diagnostics (4)Diagnostics (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)

Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Velocity Torque (4)Diagnostics (4)Velocity Torque (4)DO NOT USE DO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEVelocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Diagnostics (4)Diagnostics (4)

See Page 5ndash63See Page 5ndash63See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65 See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash68See Page 5ndash68See Page 5ndash68

Chapter 5Programming Parameters

5ndash9

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash69See Page 5ndash69See Page 5ndash69See Page 5ndash69

291292293294295296297298

Frequency Tracking FilterTracking Filter TypeFreq Trim FilterMotor Phase Rot ErrorsMotor Inductance Test ErrorsStator Resistance Test ErrorsMotor Flux (Id) Test ErrorsTorq Block Calc Errors

Torque BlockTorque BlockTorque BlockTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

300301302304

310

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)

Adapter IDAdapter Version

InfoInfo

Adapter ConfigLanguage Select

Data In A1

InfoInfoDrive DataSCANport IO

Diagnostics (4)Diagnostics (4)

See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72 See Page 5ndash72See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77

311312313314315316317320321322323324325326327330331332333334335336337340341342343344345346347348349350352353354355356357358359

Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal MaskStop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner10 Volt In FltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot Offset

SCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog Input

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)

See Page 5ndash70See Page 5ndash70

Chapter 5Programming Parameters

5ndash10

Table 5A ndash 1336T Numerical Parameter Table (Standard Adapter Parameters)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash77See Page 5ndash77See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash79See Page 5ndash79See Page 5ndash79See Page 5ndash79

360361362363364365366367368369370371

Pot ScaleMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleSP Analog Sel SP Analog InSP Analog 1 ScaleSP Analog 2 SelectSP Analog 2 InSP Analog 2 ScaleAnalog Output 1Analog Output 1 Offset

Analog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog OutputAnalog Output

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

384

385

386

387

388

389

390

391

392

393394

395396397398399

404405

406

407

408

372373374375376377378379

Output Select

Input Mode

Input Status

Stop Select 1

Stop Select 2

Accel Rate 1

Accel Rate 2

Decel Rate 1

Decel Rate 2

Mop IncrementMop Value

Pulse PPRPulse EdgePulse ScalePulse OffsetPulse Value

SP Comm RetriesFault Select

Warning Select

Fault Status

Warning Status

Analog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScalemA OutputmA Output OffsetmA Output ScaleSB Analog Out

LogicLogicLogicLogicDrive DataMonitorMonitorLogicLogicLogicLogicVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkMonitorMonitorInfoFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Analog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog Output

Communication IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Diagnostics Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83 See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85

Chapter 5Programming Parameters

5ndash11

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

90389390125302300301370371372373374375606125641444748402292472482252263353501828284862278768310311312313314315316317320321322323324325326327268391392126341

Absolute Overspeed ThresholdAccel Rate 1Accel Rate 2Accel TimeAdapter ConfigAdapter IDAdapter VersionAnalog Output 1Analog Output 1 OffsetAnalog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScaleAt Setpoint 1At Setpoint 2Autotune Diagnostics SelectionAutotune SpeedAutotune StatusAutotune Testpoint DataAutotune Testpoint SelectAutotune Torque LimitBase Motor SpeedBase Slip Freq MaxBase Slip Freq MinBus Precharge TimeoutBus Ridethru TimeoutClear Fault MaskClear Fault OwnerComputed PowerCP Configurable Fault StatusCP Configurable Warning StatusCP Fault Configuration SelectCP Operating OptionsCP Warning Configuration SelectCurrent Setpoint ToleranceData In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2DC Bus VoltageDecel Rate 1Decel Rate 2Decel TimeDirection Owner

5ndash455ndash835ndash835ndash495ndash705ndash705ndash705ndash795ndash795ndash805ndash805ndash805ndash805ndash395ndash395ndash635ndash365ndash365ndash365ndash375ndash355ndash385ndash385ndash385ndash595ndash595ndash735ndash765ndash575ndash425ndash435ndash435ndash605ndash445ndash405ndash705ndash705ndash705ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash725ndash655ndash835ndash835ndash495ndash74

Chapter 5Programming Parameters

5ndash12

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref1022232425121309112021141505011311481492351611621641654074059899150152151269347128291293261238385386167168222260240333343344117118141289252287250139153251

Drive Comm Baud RateDrive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Drive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Task IntervalDrive Comm Transmit AddressDrive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Power Structure TypeDrive Software VersionDroop PercentEncoder Position Feedback LOWEncoder Position Feedback HIEncoder PPRExternal IQ ReferenceExternal Torque Reference 1External Torque Reference 2External Torque StepFault StatusFault SelectFault Testpoint DataFault Testpoint SelectFeedback Device TypeFeedback Filter SelectFeedback Tracker GainFiltered Vel FdbkFlux OwnerForward Motor Speed LimitFrequency Tracker FilterFrequency Trim FilterId OFFSETId Tune (Base Flux Current)Input ModeInput StatusInternal Torque ReferenceInternal Iq ReferenceInverter Carrier FrequencyIq OffsetIq Tune (Base Torque Current)Jog MaskJog 1 OwnerJog 2 OwnerJog Speed 1Jog Speed 2Kf Velocity LoopKff Freq RegulatorKi Flux RegulatorKi Frequency RegulatorKi Slip RegulatorKi Velocity LoopKn Feedback Filter GainKP Flux Regulator

5ndash315ndash335ndash335ndash335ndash335ndash315ndash315ndash315ndash315ndash345ndash345ndash335ndash335ndash335ndash505ndash505ndash505ndash505ndash385ndash545ndash545ndash545ndash545ndash425ndash425ndash465ndash465ndash535ndash535ndash535ndash655ndash755ndash495ndash685ndash685ndash645ndash615ndash825ndash825ndash555ndash555ndash585ndash645ndash615ndash735ndash755ndash755ndash485ndash485ndash515ndash685ndash625ndash675ndash625ndash515ndash535ndash62

Chapter 5Programming Parameters

5ndash13

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

28824914029024630423729534633754565259565770713547778130129361362363376378174972640829723423023223323192951772651798115615762636465185186294263358353

Kp Frequency RegulatorKp Slip RegulatorKp Velocity LoopKsel Freq RegulatorK Slip Language SelectLeakage InductanceLo Test ErrorsLocal OwnerLocal MaskLocal Input StatusLocal Output StatusLogic Command WordLogic OptionsLogic Status LowLogic Status HiLogic Testpoint DataLogic Testpoint SelectmA In FiltrMaximum Dynamic Brake PowerMaximum Dynamic Brake TempMaximum Forward Speed TrimMaximum Reverse Speed TrimMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleMilliAmp OutputMilliAmp Output ScaleMinimum Flux LevelMinimum Overload LimitMotor Current Magnitude FeedbackMotor Control CounterMotor Flux (Id) Test ErrorsMotor InertiaMotor Nameplate AmpsMotor Nameplate FrequencyMotor Nameplate PolesMotor Nameplate VoltsMotor Overload LimitMotor Overload Speed 2Motoring Power LimitMotor Voltage MagnitudeNegative Motor Current Reference LimitNonndashConfigurable Fault StatusNotch Filter FreqNotch Filter QOver Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Perunit Motor CurrentPerunit Motor VoltagePhase Rotation ErrorsPhase Rotation Frequency ReferencePot InputPot In Filtr

5ndash685ndash625ndash515ndash685ndash625ndash705ndash615ndash695ndash755ndash745ndash385ndash385ndash375ndash395ndash385ndash385ndash405ndash415ndash765ndash415ndash415ndash505ndash495ndash775ndash785ndash785ndash805ndash815ndash565ndash455ndash645ndash315ndash695ndash605ndash605ndash605ndash605ndash605ndash455ndash455ndash565ndash645ndash565ndash425ndash545ndash545ndash395ndash395ndash405ndash405ndash575ndash575ndash685ndash645ndash775ndash76

Chapter 5Programming Parameters

5ndash14

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

35936080179175

Pot OffsetPot ScalePowerupDiagnostic Fault StatusPositive Motor Current Reference LimitPositive Torque Ref Limit

5ndash775ndash775ndash425ndash565ndash56

2231191201211221233128303233353426362938372739639539839739934922024133417833612736537936436636836736940434514766285286163165677291332342236

PrechargeRidethru SelectionPreset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Process Trim DataProcess Trim FeedbackProcess Trim Filter BandwidthProcess Trim KI GainProcess Trim KP GainProcess Trim High LimitProcess Trim Low LimitProcess Trim OutputProcess Trim Output GainProcess Trim SelectProcess Trim Setpoint SelectProcess Trim TestpointProcess Trim ReferencePulse EdgePulse PPRPulse OffsetPulse ScalePulse ValueRamp OwnerRated Inverter Output AmpsRated Torque VoltageReference MaskRegen Power LimitReset Drive MaskReverse Motor Speed LimitSP Analog 1 InSP Analog OutSP Analog 1 SelectSP Analog 1 ScaleSP Analog 2 InSP Analog 2 SelectSP Analog 2 ScaleSP Comm RetriesSet Ref OwnerScaled Velocity FeedbackSetpoint SelectSelection for Test DAC 1Selection for Test DAC 2Slave Torque Percent 1Slave Torque Percent 2Speed Setpoint ToleranceStop DwellStall DelayStart MaskStart OwnerStator Resistance

5ndash595ndash485ndash485ndash485ndash495ndash495ndash345ndash345ndash345ndash345ndash355ndash355ndash355ndash345ndash345ndash345ndash355ndash355ndash345ndash845ndash845ndash845ndash845ndash845ndash765ndash585ndash615ndash735ndash565ndash745ndash495ndash785ndash815ndash785ndash785ndash795ndash795ndash795ndash845ndash755ndash525ndash405ndash675ndash675ndash545ndash545ndash405ndash415ndash455ndash735ndash745ndash61

Chapter 5Programming Parameters

5ndash15

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

340387388155274276

Stop OwnerStop Select 1Stop Select 2Tach VelocityTestpoint DataTestpoint Data 2

5ndash745ndash825ndash835ndash545ndash665ndash66

278280284286273275277279281283298183184172173257348224245241138146144143145109108110101100104103133132134136135137134136135137102105107106838545438889

Testpoint Data 3Testpoint Data 4Testpoint Data 5Testpoint Data 6Testpoint SelectionTestpoint Selection 2Testpoint Selection 3Testpoint Selection 4Testpoint Selection 5Testpoint Selection 6Torque Calc ErrorsTorque Limit StatusTorque Mode StatusTorque Reference Testpoint DataTorque Reference Testpoint SelectTransistor Diagnostics ConfigurationTrim OwnerUndervoltage SetpointVde MinimumVde Tune (Base Torque Voltage)Velocity ErrorVelocity FeedbackVelocity Feedback Testpoint Data HIVelocity Feedback Testpoint Data LOWVelocity Feedback Testpoint SelectVelocity Reference Testpoint Data HIVelocity Reference Testpoint Data LOWVelocity Reference Testpoint SelectVelocity Reference 1 HIVelocity Reference 1 LOWVelocity Reference 2 HIVelocity Reference 2 LOWVelocity Reference Output HIVelocity Reference Output LOWVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Scale Factor 1Velocity Scale Factor 2Velocity Trim HIVelocity Trim LOWVP Configurable Fault StatusVP Configurable Warning StatusVP Damping FactorVP Desired BandwidthVP Fault Configuration SelectVP Warning Configuration Select

5ndash665ndash665ndash615ndash675ndash655ndash655ndash665ndash665ndash675ndash675ndash695ndash575ndash575ndash555ndash555ndash635ndash765ndash595ndash625ndash615ndash515ndash525ndash525ndash525ndash525ndash475ndash475ndash485ndash465ndash465ndash475ndash475ndash505ndash505ndash505ndash505ndash505ndash515ndash505ndash505ndash505ndash515ndash465ndash475ndash475ndash475ndash425ndash435ndash365ndash365ndash445ndash44

Chapter 5Programming Parameters

5ndash16

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

40615469352355356357

Warning SelectWnndashFeedback Filter BandwidthZero Speed Tolerance10 Volt In Filtr10 Volt Input10 Volt Offset10 Volt Scale

5ndash855ndash545ndash405ndash765ndash775ndash775ndash77

Standard Adapter Parameters If your 1336 FORCE Drive is equipped with a Standard Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the the Standard Adapter Board Standard Adapter Parameters are divided into four files The complete parameter table for a Standard Adapter equipped 1336 Force is detailed in Figure 52 The table has been divided into Files Groups and Elements for ease of reference

FILE 1 ndash Startup

Drive Data

53228229230231232233235267275276277278279280281282283284285286304385

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRCalc TorqueTorq TP Sel 2Torq TP Data 2Torq TP Sel 3Torq TP Data 3Torq TP Sel 4Torq TP Data 4Torq TP Sel 5Torq TP Data 5Torq TP Sel 6Torq TP Data 6Test DAC 1 Se1Test DAC 2 SelLanguage SelectInput Mode

Figure 52 1336 FORCE Drive Equipped with Standard Adapter Board

Drive Tune

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKi Velocity LoopKp Velocity LoopKf Velocity LoopVel FeedbackMotor InertiaAutotune Diag SelPh Rot Cur RefPhas Rot Freq Ref

Limits Group

5994127128174175176177178179180181389390391392

Logic OptionsService FactorRev Speed LimitFwd Speed LimitMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Motor Cur LimitD1Dt LimitAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2

Fault Setup Group Monitor

86878889909192959697

CP Faukt SelectVP Fault SelectCP Warn SelectVP Warn SelectAbsolute OverspdStall DelayMtr Overload LimMtr Overload Spd 1Motor Overload Spd 2Min Overload Lmt

8148149182184185186264265266

MCB CounterEnc Pos Fdbk LowEnc Pos Fdbk HiComputed PowerPerunit Motor CurrentPerunit Motor VoltageTorque Mode StatusMotor Cur FdbkMotor Volt MagnFreq Command

268269270271386394399

DC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Accessible only while using Drive Tools

Chapter 5Programming Parameters

5ndash17

FILE 2 ndash Communications IO

Figure 52 Standard Adapter Parameters (cont)

Logic

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Over Setpoint 5Speed Setpoint TolCur Setpoint TolZero Speed TolLogic Tstpt DataLogic Testpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

Fault SelectStatus SCANport Owners

80818283848586878889405406407408

340341342343344345346347348349350

Stop OwnerDirection OwnerStart OwnerJog1 OwnerJog2 OwnerReference OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Fault Owner

5254555657585960616263646566676869707172384385387388

Analog Input

352353354355356357358359360361362363364365366367368369

10 Volt in F1ltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot OffsetPot ScalemA InputmA Input OffsetmA Input ScaleSB Analog SelSB Analog InSP Analog 1 ScaleSP Analog 2 SetSP Analog 2 InSP Analog 2 Scale

Analog Output

370371372373374375376377378379

Analog Out 1An Out 1 OffsetAn Out 1 ScaleAnalog Out 2An Out 2 OffsetAn Out 2 ScalemA OutputmA Output OffsetmA Output ScaleSP Analog Out

Pwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

SCANport Masks

330331332333334335336337

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drive MaskLocal Mask

SCANport IO

310311312313314315316317320321322323324325326327

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive to Drive

910111213141516171819202122232425

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv1 AddrD2D Rcv2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv1 Ind1D2D Rcv1 Ind2D2D Rcv2 Ind1D2D Rcv2 Ind2D2D Xmit Data 1D2D Xmit Data 2D2D Rcv1 Data 1D2D Rcv1 Data 2D2D Rcv2 Data 1D2D Rcv2 Data 2

Std Adapter 4xx equipped

Chapter 5Programming Parameters

5ndash18

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123127128129130131132133389390391392393

Vel Ref 1 LowVel Ref 1 HiVel Scale Fctr 1Vel Ref 2 LowVel Ref 2 HiVel Scale Fctr 2Vel Trim LowVel Trim HiVel Ref TP LoVel Ref TP HiVel Ref TP SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Rev Speed LimitFwd Speed LimitMax Rev Spd TrimMax Fwd Spd TrimDroop PercentVel Ref Out LowVel Ref Out HiAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2Mop Increment

Figure 52 Standard Adapter Parameters (cont)

Velocity Fdbk

Error Filter BWVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelVel FeedbackScaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiFdbk Device TypeFdbk Track GainFdbk Filter Sel Fdbk Filter GainFdbk Filter BWTach VelocityFilt Vel FdbkPulse PPRPulse EdgePulse ScalePulse Offset

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filt FreqNotch Filt QExternal Iq RefExt Torq Ref 1Slave Torque 1Ext Torq Ref 2Slave Torque 2Ext Torque StepInt Torque RefInternal Ig RefTorque Ref TPTorq Ref TP SelMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Mtr Cur LmtDiDt LimitComputed PowerTorq Lmt StatTorq Mode Stat

Logic

5254555657585960616263646566676869707172384385387388

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Setpoint SelectSpeed Setpnt TolCur Setpt TolZero Speed TolLogic Tstpt DataLogic Tstpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

142143144145146147148149150151152153154155269395396397398

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

Auto Tune Torque Auto Tune SpeedStator ResLeakage IndBase Flux CurBase Torque CurBase Torque VoltBase Flux VoltVde MaxVqe MaxVde MinBase Slip FreqBase Slip Fr MaxBase Slip Fr MinKp Slip Ki Slip Kp Flux Ki Flux Autotun Diag SelPh Rot Cur RefPh Rot Freq RefTorq TP Sel 1Torq TP Data 1Phs Test Rot ErrLo Test ErrorRs Test ErrorId Test ErrorTorq Calc Error

Vel Reg OutputVel Reg TP LowVel Reg TP HiVel Reg TP SelVelocity ErrorKi Velocity LoopKp Velocity LoopKf Velocity Loop

Torque Block

222223224225226227287288289290291292293

PWM FrequencyPrechRdthru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP OptionsKi Freq RegKp Freq RegKff Freq RegKsel Freq RegFreq Track FiltTrack Filt TypeFreq Trim Filt

Vel Autotune

4041434445464748139140141234256

Auto Tune Torque Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaAuto Tune TPAuto Tune TP SelKi Velocity LoopKp Velocity LoopKf Velocity LoopMotor InertiaAutotun Diag Select

Process Trim

26272829303132333435363738

Proc Trim OutputProc Trim RefProc Trim FdbkProc Trim SelectProc Trim Filtr WProc Trim DataProc Trim KiProc Trim KpProc Trim Lo LmtProc Trim Hi LmtProc Trim Out KProc Trim TPProc Trim TP Sel

Chapter 5Programming Parameters

5ndash19

FILE 4 ndash Diagnostics

Monitor

147148149167168182185186264265266268269270271386394399

Scaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiInt Torque RefInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor Cur FdbkMotor Volt FdbkFreq CommandDC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Figure 52 Standard Adapter Parameters (cont)

Testpoints

Auto Tune TPAuto Tune TP Sel Logic Tstpt DataLogic Tstpt SelFault TPFault TP SelVel Ref TP LowVel Ref TP HiVel Ref TP SelVel Reg TP LoVel Reg TP HiVel Reg TP SelVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelTorq Ref TP SelTorque Ref TPTorque TP Sel 1Torque TP Data 1

Transistor Diag Info

59256257258259260261

15220221300301302304404

Drive SW VersionDrive TypeBase Drive CurrBase Line VoltAdapter IDAdapter VersionAdapter ConfigLanguage SelectSP Comm Retries

474870719899108109110135136137143144145172173273274

Fault SelSts

77787980818283848586878889405406407408

Max DB PowerMax DB TempDB Time ConstPwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

Logic OptionsAutotune Diag SelTrans Diag DisableInverter Diag 1Inverter Diag 2Iq OffsetId Offset

Motor Overload

Mtr Overload Lim Service FactorMtr Overld Spd 1Mtr Overld Spd 2Min Overload Lmt

9294959697

Chapter 5Programming Parameters

5ndash20

PLC Comm Adapter Parameters If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the PLC Comm Adapter Board rather than the Standard Adapter Board PLC Comm Adapter Parameters are divided into four files as they are with a Standard Adapter Board equipped Drive The complete parameter table for aPLC Comm Adapter equipped 1336 Force is detailed in Figure 53 The table has been divided into Files Groups and Elements for ease of referenceFor a detailed description of PLC Comm Adapter parameters refer to the PLC Comm Adapter Reference Manual

FILE 1 ndash Startup

Drive Data Group

53228229230231232233235309

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRLanguage Select

Figure 53 1336 FORCE equipped with a PLC Comm Adapter Board

Drive Tune Group

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKI Vel LoopKP Vel LoopKF Vel LoopVelocity FeedbackMotor InertiaAT Diag SelPhase Rot I RefPhas Rot Req Ref

Limits Group

59125126127128174175176177178179180181

Logic OptionsAccel TimeDecel TimeRev Speed LimitFwd Speed LimitMin Flux LevelPos Motor Tor LimitNeg Motor Tor LimitMotoring Power LimitRegen Power LimitPos Motor Cur LimNeg Motor Cur LimitdIdT Limit

Fault Setup Group Monitor Group

8687888990919294959697

CPFltWarn ConfigVPFltWarn ConfigCP Warn ConfigVP Warn ConfigAbsolute OverspeedStall DelayMotor Ovload LimService FactorMotor Ovload Speed 1Motor Ovload Speed 2Min Overload Lim

8147148149167168182184185186264265266268269270271

Motor Control CntrScaled Velocity FeedbackEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerTorq Mode StatPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt FdbkStator FrequencyDC Bus VoltageFiltered Velocity FdbkInverter Temp FdbkLimited Motor Flux

Chapter 5Programming Parameters

5ndash21

FILE 2 ndash Communications IO

Channel A Group

322323324325326327328329351352353354355356357358427

ChA RIO In 0ChA RIO In 1ChA RIO In 2ChA RIO In 3ChA RIO In 4ChA RIO In 5ChA RIO In 6ChA RIO In 7ChA RIO Out 0ChA RIO Out 1ChA RIO Out 2ChA RIO Out 3ChA RIO Out 4ChA RIO Out 5ChA RIO Out 6ChA RIO Out 7Redund Chan

Figure 53 PLC Comm Adapter Parameters (cont)

Logic Group

Logic CmdLogic Sts LoLogic Sts HiLogic OptionschA Logic CmdchB Logic Cmd

Fault SelectStatus Group SCANport Owners Group

77787980818283848586878889425426430431436437438439440441442443

369370371372373374375376377378379

Stop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner

Channel B Group

330331332333334335336337359360361362363364365366432

ChB RIO In 0ChB RIO In 1ChB RIO In 2ChB RIO In 3ChB RIO In 4ChB RIO In 5ChB RIO In 6ChB RIO In 7ChB RIO Out 0ChB RIO Out 1ChB RIO Out 2ChB RIO Out 3ChB RIO Out 4ChB RIO Out 5ChB RIO Out 6ChB RIO Out 7ChB RIO

52565759367368

Analog Input Group

338339340341342392393394395396397398399

SB Analog InAnalog In 1Analog In 2Analog In 3Analog In 4Analog In 1 OffAnalog In 1 ScaleAnalog In 2 OffAnalog In 2 ScaleAnalog In 3 OffAnalog In 3 ScaleAnalog In 4 OffAnalog In 4 Scale

Analog Output Group

386387388389390400401402403404405406407

SP Analog OutAnalog Out 1Analog Out 2Analog Out 3Analog Out 4Analog Out 1Analog Out 1 OffAnalog Out 1 ScaleAnalog Out 2 ScaleAnalog Out 3 OffAnalog Out 3 ScaleAnalog Out 4 OffAnalog Out 4 Scale

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt StatusNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusCP Flt StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StsSP Flt SelectSP Warn SelSP Flt StatusSP Warn Sts

SCANport Masks

408409410411412413414415

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal Mask

SCANport IO

314315316317318319320321343344345346347348349350

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive To Drive

91011121314151617181920

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv 1 AddrD2D Rcv 2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv 1 Ind 1D2D Rcv 1 Ind 2D2D Rcv 2 Ind 1D2D Rcv 2 Ind 2D2D Xmit Data 1

2122232425

D2D Xmit Data 2D2D Rcv 1 Data 1D2D Rcv 1 Data 2D2D Rcv 2 Data 1D2D Rcv 2 Data 2

Chapter 5Programming Parameters

5ndash22

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123125126127128129130131132133

Vel Ref 1 LoVeL Ref 2 HiVel Scale Factor 1Vel Ref 2 LoVel Ref 2 HiVel Scale Factor 2Vel Trim LoVel Trim HiVel Ref Testpt LoVel Ref Testpt HiVel Ref Testpt SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeRev Speed LimitFwd Speed LimitMax Rev Speed TrimMax Fwd Speed TrimDroop PercentVel Ref Out LoVel Ref Out Hi

Figure 53 PLC Comm Adapter Parameters (cont)

Velocity Fdbk

KF Err Filt BWVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Tesetpt SelVelocity FdbkScaled Vel FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiFdbk Device TypeFdbk Tracker GainFdbk Filter SelKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityFiltered Vel Fdbk

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filter FreqNotch Filter QueExternal Iq RefExt Torque Ref 1Slave Torque Percent 1Ext Torque Ref 2Slave Torque Percent 2External Torque StepInt Torque RefInt Iq RefTorque Ref Testpoint DataTorque Ref Testpnt SelMin Flux LevelPos Torque Ref LimitNeg Torque Ref LimitMotor Power LimitRegen Power LimitPos Motor Cur LimitNeg Motor Cur LimitdIdT LimitComputed PwrTorque Limit StatusTorque Mode Status

Logic

5254555657585960616263646566676869707172367368

Logic CmdLocal Input StsLocal Output StsLocal Sts LoLocal Sts HiTorq Stop ConfigLogic OptionsAt Setpt 1At Setpt 2Over Setpt 1Over Setpt 2Over Setpt 3Over Setpt 4Setpt SelectSpeed Stpt TolCur Setpt TolZero Speed TolLogic Testpt DataLogic Testpt SelStop DwellPt6 Logic CmdPt7 Logic Cmd

142143144145146147148149150151152153154155269

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

AT Torque LimitAT SpeedStator ResistanceLeakage InductanceRated Flux CurrentRated Torque CurrentRated Torque VoltRated Flux VoltageVde MaxVqe MaxVde MinimumBase Slip FreqBase Slip Freq MaxBase Slip Freq MinKp Slip RegulatorKi Slip RegulatorKp Flux RegulatorKi Flux RegulatorAT Diag SelectPhase Rot Cur RefPhase Rot Freq RefTorque Testpoint SelTorque Testpoint DataPhase Rot ErrorsLo Test ErrorsRs Test ErrorsId Test ErrorsTorque Calc Errors

Vel Regulator OutVelocity Reg Testpt LoVelocity Reg Testpt HiVelocity Reg Testpt SelVelocity ErrorKI Vel LoopKP Vel LoopKF Vel Loop

Torque Block

222223224225226227287288289290291292293

Inverter Carrier FreqPrecharge Ridethru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsKi Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency RegulatorFrequency Track FilterTrack Filter TypeFrequency Trim Filter

Velocity Autotune

4041434445464748139140141234256

AT Torque LimAT SpeedVP Desired BWAuto Tune StatusVP Damping FactorTotal InertiaAT Testpt DataAT Tespt SelKI Vel LoopKP Vel LoopKF Vel LoopMotor InertiaAT Diag Select

Process Trim

26272829303132333435363738

Process Trim OutputProcess Trim RefProc Trim FdbkProc Trim SelectProc Trim Filt BWProc Trim DataProc Trim KIProc Trim KPProc Trim Lo LimProc Trim Hi LimProc Trim Out GainProc Trim TestptProc Trim Testpt Sel

Chapter 5Programming Parameters

5ndash23

FILE 4 ndash Diagnostics

Monitor

8147148149167168182185186264265266268269270271

Motor Control CounterScaled Velocity FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt MagnStator FrequencyDC Bus VoltageFiltered Vel FdbkInverter Temp FdbkLimited Motor Flux

Figure 53 PLC Comm Adapter Parameters (cont)

Testpoints

AT Testpt DataAT Testpt SelLogic Testpt DataLogic Testpt SelFault Testpt DataFault Testpt SelVelocity Ref Testpt LoVelocity Ref Testpt HiVelocity Ref Testpt SelVelocity Reg Testpnt LoVelocity Reg Testpnt HiVelocity Reg Testpt SelVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Testpt SelTorque Ref Tespt DataTorque Ref Testpt SelTorque Testpt SelectTorque Testpt Data

Transistor Diag Info

59256257258259260261

15220221300301302303304305306307309

Drive Software VerPower Structure TypeRated Inverter Out AmpsRated Inverter In VoltsAdapter IDAdapter VersionAdapter ConfigChA Dip SwitchChB Dip SwitchChA LED StateCHB LED StatePLC Comm Bd StsLanguage Select

474870719899108109110135136137143144145172173273274

Fault SelectStatus

77787980818283848586878889425426430431436437438439440441442443

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt stsNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StatusSP Flt SelectSP Warn SelectSP Warn StsSP Warn Sts

Logic OptionsAT Diag SelectTrans Diag ConfigInv Dig Result 1Inv Diag Result2Iq OffsetId Offset

Trend IO

454462463464472473474482483484492493

Trend In 1Trend In 1 StatusTrend Out 1Trend In 2Trend In 2 StatusTrend Out 2 StatusTrend In 3Trend In 3 StatusTrend Out 3Trend In 4Trend In 4 StatusTrend Out 4

Trend Setup

455456457458459460461465466467468469470471475476477478479480481485486487488489490491

Trend 1 Operand XTrend 1 Operand YTrend 1 OperatorTrend 1 RateTrend 1 Post SamplesTrend 1 Continuous TrigTrend 1 SelectTrend 2 Operand XTrend 2 Operand YTrend 2 OperatorTrend 2 RateTrend 2 Post SamplesTr2 Cont TriggerTrend 2 SelectTrend 3 Operand XTrend 3 Operand Parm YTrend 3 OperatorTrend 3 RateTrend 3 Post SamplesTrend 3 Continuous TrigTrend 3 SelectTrend 4 Operand XTrend 4 Operand YTrend 4 OperatorTrend 4 RateTrend 4 Post SamplesTrend 4 Continuous TrigTrend 4 Select

Note Trending Functions are NOT implemented in Version 2xx software

Chapter 5Programming Parameters

5ndash24

The complete parameter table for a ControlNet Adapter Board equipped1336 FORCE is detailed in Figure 54 The table has been divided intoFiles Groups amp Elements for ease of reference For a detaileddescription of ControlNet parameters refer to the ControlNet AdapterReference Manual

Figure 54 1336 FORCE equipped with a ControlNet Adapter Board

File 1 ndash Startup➀

Drive Data Group Drive Tune Group Limits Group

Language Sel 309 Autotun Diag Sel 256 Accel Time 125

Encoder PPR 235 Vel Feedback 146 Decel Time 126

Base Motor Speed 229 Vel Desired BW 43 Logic Options 59

Base Motor HP 228 Auto Tune Status 44 Fwd Speed Limit 128

Base Motor Curr 230 Motor Inertia 234 Rev Speed Limit 127

Base Motor Volt 231 Total Inertia 46 Pos Mtr Cur Lmt 179

Base Motor Freq 232 Ki Velocity Loop 139 Neg Mtr Cur Lmt 180

Motor Poles 233 Kp Velocity Loop 140 Pos Mtr Tor Lmt 175

Torque Mode Sel 53 Kf Velocity Loop 141 Neg Mtr Tor Lmt 176

Vel Damp Factor 45 Motor Power Lmt 177

Auto Tune Speed 41 Regen Power Lmt 178

Ph Rot Cur Ref 262 DiDt Limit 181

Ph Rot Freq Ref 263 Min Flux Level 174

Fault Setup Group Monitor Group

CP FltWarn Cfg 86 Filt Vel Fdbk 269

CP WarnNone Cfg 88 Scaled Vel Fdbk 147

VP FltWarn Cfg 87 Int Torque Ref 167

VP WarnNone Cfg 89 Internal Iq Ref 168

Absolute Overspd 90 Computed Power 182

Stall Delay 91 DC Bus Voltage 268

Mtr Overload Lim 92 Motor Volt Fdbk 265

Mtr Overload Spd1 95 Motor Curr Fdbk 264

Mtr Overload Spd2 96 Freq Command 266

Min Overload Lmt 97 Inv Temp Fdbk 270

Service Factor 94 Torque Mode Stat 184

Lim Motor Flux 271

Enc Pos Fdbk Low 148

Enc Pos Fdbk Hi 149

MCB Counter 8

➀ Shaded parameters are Standard 1336 FORCE parameters

ControlNet Parameters

Chapter 5Programming Parameters

5ndash25

File 2 ndash Communications IO

Channel A Group Logic Group Analog Input Group Analog Output Group

CntrlNet In 0 322 ChA Logic Cmd In 367 Analog In 1 339 Analog Out 1 387

CntrlNet In 1 323 Logic Command 52 An In 1 Offset 392 An Out 1 Offset 400

CntrlNet In 2 324 Logic Status Low 56 An In 1 Scale 393 An Out 1 Scale 401

CntrlNet In 3 325 Logic Status Hi 57 Analog In 2 340 Analog Out 2 388

CntrlNet In 4 326 Logic Options 59 An In 2 Offset 394 An Out 2 Offset 402

CntrlNet In 5 327 An In 2 Scale 395 An Out 2 Scale 403

CntrlNet In 6 328 Analog In 3 341 Analog Out 3 389

CntrlNet In 7 329 An In 3 Offset 396 An Out 3 Offset 404

CntrlNet Out 0 351 An In 3 Scale 397 An Out 3 Scale 405

CntrlNet Out 1 352 Analog In 4 342 Analog Out 4 390

CntrlNet Out 2 353 An In 4 Offset 398 An Out 4 Offset 406

CntrlNet Out 3 354 An In 4 Scale 399 An Out 4 Scale 407

CntrlNet Out 4 355 SP Analog In 338 SP Analog Out 386

CntrlNet Out 5 356 SP Analog Sel 391

CntrlNet Out 6 357

CntrlNet Out 7 358

Drv ndash Drv Fault SelSts➂ SCANport Owners SCANport Masks SCANport IO

D2D Tsk Interval 9 SP Fault Sts 442 Stop Owner 369 Port Enable Mask 408 Data In A1 314

D2D Baud Rate 10 SP Warn Sts 443 Start Owner 371 Start Mask 410 Data In A2 315

D2D Xmit Addr 11 SP Fault Sel 440 Jog1 Owner 372 Jog Mask 411 Data In B1 316

D2D Xmit Ind 1 14 SP Warn Sel 441 Jog2 Owner 373 Direction Mask 409 Data In B2 317

D2D Xmit Data 1 20 ICN Fault Sel 425 Direction Owner 370 Reference Mask 412 Data In C1 318

D2D Xmit Ind 2 15 ICN Warn Sel 426 Set Ref Owner 374 Local Mask 415 Data In C2 319

D2D Xmit Data 2 21 CP Flt Status 82 Local Owner 375 Clear Fault Mask 413 Data In D1 320

D2D Rcv 1 Addr 12 VP Flt Status 83 Flux Owner 376 Reset Drive Mask 414 Data In D2 321

D2D Rcv 1 Ind 1 16 CP Warn Status 84 Trim Owner 377 Data Out A1 343

D2D Rcv 1 Data 1 22 VP Warn Status 85 Ramp Owner 378 Data Out A2 344

D2D Rcv 1 Ind 2 17 CP Fault Select 86 Clr Fault Owner 379 Data Out B1 345

D2D Rcv 2 Data 2 23 CP Warn Select 87 Data Out B2 346

D2D Rcv 2 Addr 13 VP Fault Select 88 Data Out C1 347

D2D Rcv 2 Ind 1 18 VP Warn Select 89 Data Out C2 348

D2D Rcv 2 Data 1 24 Ncfg Flt Status 81 Data Out D1 349

D2D Rcv 2 Ind 2 19 PwrUp Flt Status 80 Data Out D2 350

D2D Rcv 2 Data 2 25 Max DB Power 77

Max DB Temp 78

DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash26

File 3 ndash Velocity Torque➀

Velocity Ref Logic Velocity Fdbk Velocity Reg Torque Ref

Preset Speed 1 119 ChA Logic Cmd In 367 Filt Vel Fdbk 269 Vel Reg Output 134 Torque Mode Sel 53

Preset Speed 2 120 Logic Command 52 Vel Feedback 146 Ki Velocity Loop 139 Torq Mode Stat 184

Preset Speed 3 121 Torq Stop Confg 58 Scaled Vel Fdbk 147 Kp Velocity Loop 140 Pos Mtr Cur Lmt 179

Preset Speed 4 122 Logic Options 59 Enc Pos Fdbk Low 148 Kf Velocity Loop 141 Neg Mtr Cur Lmt 180

Preset Speed 5 123 Logic Status Low 56 Enc Pos Fdbk Hi 149 Velocity Error 138 Int Torque Ref 167

Jog Speed 1 117 Logic Status Hi 57 Fdbk Track Gain 151 Vel Reg TP Sel 137 Internal Iq Ref 168

Jog Speed 2 118 At Setpoint 1 60 Fdbk Filter Gain 153 Vel Reg TP Low 135 Computed Power 182

Vel Ref 1 Low 100 At Setpoint 2 61 Fdbk Filter BW 154 Vel Reg TP Hi 136 Torq Lmt Stat 183

Vel Ref 1 Hi 101 Over Setpoint 1 62 Fdbk Device Type 150 External Iq Ref 161

Vel Ref 2 Low 103 Over Setpoint 2 63 Fdbk Filter Sel 152 Ext Torq Ref 1 162

Vel Ref 2 Hi 104 Over Setpoint 3 64 Tach Velocity 155 Ext Torq Ref 2 164

Vel Scale Fctr 1 102 Over Setpoint 4 65 Error Filter BW 142 Slave Torque 1 163

Vel Scale Fctr 2 105 Setpoint Select 66 Vel Fdbk TP Sel 145 Slave Torque 2 165

Vel Trim Low 106 Speed Setpnt Tol 67 Vel Fdbk TP Low 143 Ext Torque Step 166

Vel Trim Hi 107 Cur Setpoint Tol 68 Vel Fdbk TP Hi 144 Notch Filter Freq 156

Vel Ref Out Low 132 Zero Speed Tol 69 Notch Filter Q 157

Vel Ref Out Hi 133 Local In Status 54 Min Flux Level 174

Accel Time 125 Stop Dwell 72 Pos Mtr Tor Lmt 175

Decel Time 126 Local Out Status 55 Neg Mtr Tor Lmt 176

Fwd Speed Limit 128 Logic Tstpt Sel 71 Motor Power Lmt 177

Rev Speed Limit 127 Regen Power Lmt 178

Max Rev Spd Trim 129 DiDt Limit 181

Max Fwd Spd Trim 130 Torq Ref TP Sel 173

Droop Percent 131 Torque Ref TP 172

Vel Ref TP Sel 110

Vel Ref TP Low 108

Vel Ref TP Hi 109

SP Default Ref 416

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash27

Torque Block➀ Process Trim Torque Autotune Velocity Autotune

PWM Frequency 222 Proc Trim Ref 27 Autotun Diag Sel 256 Autotun Diag Sel 256

Prech Rdthru Sel 223 Proc Trim Fdbk 28 Ph Rot Cur Ref 262 Auto Tune Torque 40

Under Volt Stpnt 224 Proc Trim Output 26 Auto Tune Torque 40 Auto Tune Speed 41

Prechrg Timeout 225 Proc Trim Select 29 Auto Tune Speed 41 Total Inertia 46

Ridethru Timeout 226 Proc Trim Ki 32 Ph Rot Freq Ref 263 Motor Inertia 234

CP Options 227 Proc Trim Kp 33 Phs Test Rot Error 294 Auto Tune Status 44

Ki Freq Reg 287 Proc Trim Lo Lmt 34 Lo Test Error 295 Vel Desired BW 43

Kp Freq Reg 288 Proc Trim Hi Lmt 35 Rs Test Error 296 Vel Damp Factor 45

Kff Freq Reg 289 Proc Trim Fltr W 30 Id Test Error 297 Ki Velocity Loop 139

Ksel Freq Reg 290 Proc Trim Data 31 Torq Calc Error 298 Kp Velocity Loop 140

Freq Track Filt 291 Proc Trim Out K 36 Stator Res 236 Kf Velocity Loop 141

Track Filt Type 292 Proc Trim TP Sel 38 Leakage Ind 237 Auto Tune TP Sel 48

Freq Trim Filter 293 Proc Trim TP 37 Base Flux Cur 238 Auto Tune TP 47

Base Torque Cur 240

Base Torque Volt 241

Base Flux Volt 242

Vde Max 243

Vqe Max 244

Vde Min 245

Base Slip Freq 246

Base Slip Fr Max 247

Base Slip Fr Min 248

Kp Slip 249

Ki Slip 250

Kp Flux 251

Ki Flux 252

Torq TP Sel 1 273

Torq TP Data 1 274

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash28

File 4 ndash Diagnostics➀

Monitor Testpoints Fault SelSts Motor Overload

Filt Vel Fdbk 269 Vel Fdbk TP Sel 145 SP Fault Sts 442 Mtr Overload Lim 92

Scaled Vel Fdbk 147 Vel Fdbk TP Low 143 SP Warn Sts 443 Mtr Overld Spd 1 95

Int Torque Ref 167 Vel Fdbk TP Hi 144 SP Fault Sel 440 Mtr Overld Spd 2 96

Internal Iq Ref 168 Vel Reg TP Sel 137 SP Warn Sel 441 Min Overload Lmt 97

Computed Power 182 Vel Reg TP Low 135 ICN Flt Sel 425 Service Factor 94

DC Bus Voltage 268 Vel Reg TP Hi 136 ICN Warn Sel 426

Motor Volt Fdbk 265 Vel Ref TP Sel 110 CP Flt Status 82

Motor Curr Fdbk 264 Vel Ref TP Low 108 VP Flt Status 83

Freq Command 266 Vel Ref TP Hi 109 CP Warn Status 84

Inv Temp Fdbk 270 Auto Tune TP Sel 48 VP Warn Status 85

Torq Mode Stat 184 Auto Tune TP 47 CP Fault Select 86

Lim Motor Flux 271 Logic Tstpt Sel 71 CP Warn Select 87

Enc Pos Fdbk Low 148 Logic Tstpt Data 70 VP Fault Select 88

Enc Pos Fdbk Hi 149 Fault TP Sel 99 VP Warn Select 89

MCB Counter 8 Fault TP 98 Ncfg Flt Status 81

Torq Ref TP Sel 173 PwrUp Flt Status 80

Torque Ref TP 172 Max DB Power 77

Torq TP Sel 1 273 Max DB Temp 78

Torq TP Data 1 274 DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash29

Transistor Diag➀ Trend IO Trend Setup Info

Autotun Diag Sel 256 Tr1 Status 462 Tr1 Opnd Parm X 455 Drive SW Version 1

Logic Options 59 Tr2 Status 472 Tr1 Opnd Parm Y 456 Drive Type 5

Tran Diag Disabl 257 Tr3 Status 482 Tr1 Operator 457 Base Drive Curr 220

Inverter Diag 1 258 Tr4 Status 492 Tr1 Sample Rate 458 Base Line Volt 221

Inverter Diag 2 259 Trend In 1 454 Tr1 Post Samples 459 Adapter Version 301

Iq Offset 260 Trend In 2 464 Tr1 Cont Trigger 460 Adapter ID 300

Id Offset 261 Trend In 3 474 Tr1 Select 461 Language Sel 309

Trend In 4 484 Tr2 Opnd Parm X 465 SP Comm Retries 302

Trend Out 1 463 Tr2 Opnd Parm Y 466 ICN Status 307

Trend Out 2 473 Tr2 Operator 467 ChA LED State 305

Trend Out 3 483 Tr2 Sample Rate 468 DIP Switch ChA 303

Trend Out 4 493 Tr2 Post Samples 469

Tr2 Cont Trigger 470

Tr2 Select 471

Tr3 Opnd Parm X 475

Tr3 Opnd Parm Y 476

Tr3 Operator 477

Tr3 Sample Rate 478

Tr3 Post Samples 479

Tr3 Cont Trigger 480

Tr3 Select 481

Tr4 Opnd Parm X 485

Tr4 Opnd Parm Y 486

Tr4 Operator 487

Tr4 Sample Rate 488

Tr4 Post Samples 489

Tr4 Cont Trigger 490

Tr4 Select 491

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash30

Parameter Descriptions A detailed description of each 1336 FORCE Parameter is contained inthe following listing The parameters are listed in numerical order

Take note that some parameters are used more than once in the 1336FORCE and may be located in more than one File and Group Todetermine if a parameter is used in more than one application refer to thenumerical list which begins on Page 5-3

NOTE The following parameter descriptions in the range from 300 to500 cover the Standard Adapter Only If you have a PLC CommAdapter equipped drive and wish to refer to PLC Comm parameterdescriptions refer to the PLC Comm User Manual If you have aControlNet Adapter equipped drive parameter descriptions are providedat the end of this chapter

NOTE If you wish to record parameter values and links that have beenset for your particular application a User Parameter Sheet is provided inAppendix C

Chapter 5Programming Parameters

5ndash31

Drive Software Version[Drive SIO Version]

Parameter Number 01Parameter Type SourceDisplay Units xxxDrive Units Display units x 100Factory Default 101Minimum Value 000Maximum Value 999

Power Structure Type[Drive Type]

Parameter Number 05Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65635

This parameter stores the present softwarerevision for the firmware productThe firmware value represents the soft-ware version in the range 000 to 999

This number is a unique code that identi-fies the driversquos current and voltage ratingsThis number originates from a serial EEmemory located on the Driversquos Base DriveBoard

Motor Control Counter[MCB Counter]

Parameter Number 08Parameter Type SourceDisplay Units xx secDrive Units NoneFactory Default x 10 secMinimum Value 00 secMaximum Value 655355 sec

This parameter contains a counter thatincrements by 1 every 01 seconds It isintended to be a monitor parameter toindicate that the Motor Control BoardVelocity Processor firmware is executing

Drive Link Task Interval[D2D Tsk Interval]

Parameter Number 09Parameter Type SinkDisplay Units x msDrive Units x2Factory Default 2Minimum Value 1Maximum Value 10

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

Drive Link Transmit Address[D2D Xmit Addr]

Parameter Number 11Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the interval at which drive to drive data will be transmittedand received The intervals are 2 ms intervals up to 20 ms

1 = 2 ms scan2 = 4 ms scan 5 = 10 ms scan 8 = 16 ms scan3 = 6 ms scan 6 = 12 ms scan 9 = 18 ms scan4 = 8 ms scan 7 = 14 ms scan 10 = 20 ms scan

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

This parameter specifies the node addressat which two words of data will be trans-mitted A value of zero disables the trans-mit function

Drive Link Receive 1 Address[D2D Rcv 1 Addr]

Parameter Number 12Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the node addressat which two words of data will be received A value of zero disables the receive function

Chapter 5Programming Parameters

5ndash32

Drive Link Receive 2 Address[D2D Rcv 2 Addr]

Parameter Number 13Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

Drive Link Transmit Indirect 1[D2D Xmit Ind 1]

Drive Link Transmit Indirect 2[D2D Xmit Ind 2]

Parameter Number 15Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 21Minimum Value 1Maximum Value 219

Parameter Number 14Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 20Minimum Value 1Maximum Value 219

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the firstword location of the transmitted message

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the 2ndword location of the transmitted message

This parameter specifies the node addressat which two words of data will bereceived A value of zero disables thereceive function

Drive Link Receive 1 Indirect 1[D2D Rcv 1 Ind 1]

Parameter Number 16Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 22Minimum Value 1Maximum Value 219

Drive Link Receive 1 Indirect 2[D2D Rcv 1 Ind 2]

Parameter Number 17Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 23Minimum Value 1Maximum Value 219

Drive Link Receive 2 Indirect 1[D2D Rcv 2 Ind 1]

Drive Link Receive 2 Indirect 2[D2D Rcv 2 Ind 2]

Parameter Number 19Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 25Minimum Value 1Maximum Value 219

Parameter Number 18Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 24Minimum Value 1Maximum Value 219

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

Chapter 5Programming Parameters

5ndash33

Drive Link Transmit Data 1[D2D Xmit Data1]

Parameter Number 20Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Drive Link Transmit Data 2[D2D Xmit Data2]

Drive Link Receive 1 Data 1[D2D Rcv 1 Data1]

Parameter Number 22Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Parameter Number 21Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the first word of data for transmit

This parameter is the default data locationof the second word of data for transmit

This parameter is the default data locationof the first word of data for receive 1

Drive Link Receive 1 Data 2[D2D Rcv 1 Data 2]

Parameter Number 23Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 1[D2D Rcv 2 Data 1]

Parameter Number 24Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 2[D2D Rcv 2 Data 2]

Parameter Number 25Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the second word of data for receive 1

This parameter is the default data locationof the first word of data for receive 2

This parameter is the default data locationof the second word of data for receive 2

Process Trim Output[Proc Trim Output]

Parameter Number 26Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter represents the scaled andlimited output of the process trimfunction Process Trim consists of a general purpose PI regulator that uses unspecified reference and feedback inputs

Chapter 5Programming Parameters

5ndash34

Process Trim Reference[Proc Trim Ref]

Process Trim Feedback[Proc Trim Fdbk]

Process Trim Select[Proc Trim Sel]

Parameter Number 29Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 1111Enums

Parameter Number 28Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

Process Trim Filter Bandwidth[Proc Trim Fltr W]

Parameter Number 30Parameter Type SinkDisplay Units x radianssecDrive Units 1 = radianssecFactory Default 0 radianssecMinimum Value 0 radianssecMaximum Value 240 radianssec

Parameter Number 31Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 preloadFactory Default +00Minimum Value ndash8000Maximum Value +8000

Parameter Number 27Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default +00Minimum Value ndash8000Maximum Value +8000

Process Trim Data[Proc Trim Data]

This is the reference input value for pro-cess trim The Process Trim Output is up-dated based on the value of this input

This is the feedback input value for pro-cess trim The Process Trim Output pa-rameter is updated based on the value ofthis input

This is a bit coded word of data containingseveral selection options for the processtrim regulator as follows

Bit 0 Trim the Velocity ReferenceBit 1 Trim the Torque ReferenceBit 2 Select Velocity InputsBit 3 Set Output OptionBit 4 Preset Integrator OptionBit 5 Force ON Trim Limit option

This parameter is used to preset the outputof the process trim regulator when eitherthe ldquoSet Output Optionrdquo or ldquoPreset Integra-tor Optionrdquo is selected in parameter 29

This parameter determines the bandwidthof a single pole filter used with the errorinput for process trim The output of thisfilter is used as the input to the processtrim regulator

Process Trim KI Gain[Proc Trim Ki]

Parameter Number 32Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 1000 Ki gainFactory Default 1000Minimum Value 0000Maximum Value 16000

This parameter controls the integral gain ofthe process trim regulator If process trimequals 10 then the process trim PI regula-tor output will equal 1 pu in 1 second for 1pu process trim error

Chapter 5Programming Parameters

5ndash35

Process Trim KP Gain[Proc Trim Kp ]

Process Trim Low Limit[Proc Trim Lo Lmt]

Process Trim High Limit[Proc Trim Hi Lmt]

Parameter Number 35Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash 100Minimum Value ndash 800Maximum Value + 800

Parameter Number 34Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash1000Minimum Value ndash8000Maximum Value +8000

Process Trim Output Gain[Proc Trim Out K]

Parameter Number 36Parameter Type SinkDisplay Units +ndash xxxDrive Units 2048 = +100 gainFactory Default + 100Minimum Value ndash 1600Maximum Value + 1600

Parameter Number 37Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Parameter Number 33Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 10000 Kp gainFactory Default 1000Minimum Value 0000Maximum Value 16000

Process Trim Testpoint[Proc Trim TP]

This parameter controls the proportionalgain of the process trim regulator If theKP process trim is equal to 10 then theprocess trim PI regulator output will equal 1pu for 1 pu process trim error

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the low limit of theprocess trim output value

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the high limit ofthe process trim output value

This parameter selects which location ofthe Process Trim Controller will becomethe testpoint value as followsValue Process Trim Access Point 0 Zero 1 Process Trim Error 2 Process Trim Filter Output 3 Process Trim Control Word

The output of the process trim regulator isscaled by a gain factor This occurs justbefore the upper and lower limit This pa-rameter specifies the gain value to use

Process Trim Testpoint Select[Proc Trim TP Sel]

This parameter indicates the value of theinternal location selected by the ProcessTrim Testpoint Select parameter

Parameter Number 38Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3Enums

Auto Tune Torque Limit[Auto Tune Torque]

Parameter Number 40Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 500 Minimum Value 250 Maximum Value 1000

This parameter specifies the motor torquethat is applied to the motor during theVelocity motor test and the Velocity systemtest 4096 = 100 rated motor torque

Chapter 5Programming Parameters

5ndash36

Auto Tune Speed[Auto Tune Speed]

Parameter Number 41Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default 085 x Base Motor SpeedMinimum Value 03 x Base Motor SpeedMaximum Value Base Motor Speed

This parameter is the speed of the motorduring an auto tune velocity motor testsystem test and system ID measure4096 is base speed

VP Desired Bandwidth[Vel Desired BW]

Parameter Number 43Parameter Type SinkDisplay Units xxx radsecDrive Units Display units x 100Factory Default 500 radsecMinimum Value 001 radsecMaximum Value 10000 radsec

Autotune Status[Auto Tune Status]

Parameter Number 44Parameter Type SourceDisplay Units bitsDrive Units value (of bits)Factory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 00110000011111111Enums

This parameter specifies the velocity loopbandwidth requested by the User anddetermines the dynamic behavior of thevelocity loop The maximum value for thisparameter is changed by the drive when arequest is made to update the the velocityloop gains The vel loop becomes moreresponsive and is able to track a fasterchanging vel ref as bandwidth is increasedSystem and noise limitations will establisha practical upper limit however

This parameter indicates the status of certain conditions related to the autotunefunction This is a bitndashcoded parameterthat is not changeable by the user

VP Damping Factor[Vel Damp Factor]

Parameter Number 45Parameter Type SinkDisplay Units xxDrive Units 2048 = 10 dampingFactory Default 10Minimum Value 05Maximum Value 30

Total Inertia[Total Inertia]

Parameter Number 46Parameter Type SinkDisplay Units xxx secDrive Units Display units x 100Factory Default 200 secMinimum Value 001 secMaximum Value 65500 sec

This parameter determines the dynamicbehavior of the velocity loop The dampingfactor influences the amount of overshootthe velocity loop will exhibit during a tran-sient

This parameter represents the time in se-conds for a motor coupled to a load to ac-celerate from zero to base speed at ratedmotor torque This parameter is calculatedby the Autotune System Inverter Test

Bit 8 ndash 11 = Not UsedBit 12 = TimeoutBit 13 = No Trq Lim

Bit 0 = ExecutingBit 1 = CompleteBit 2 = FailBit 3 = AbortBit 4 = Flux ActiveBit 5 = Not ReadyBit 6 = Not Zero SpdBit 7 = Running

Autotune Testpoint Data[Auto Tune TP]

Parameter Number 47Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates the value of theinternal location selected by the AutotuneTP Sel parameter 48

Chapter 5Programming Parameters

5ndash37

Auto Tune Testpoint Select[Auto Tune TP Sel]

This parameter selects what internal loca-tion of the Velocity Auto Tune Controllerwill become the testpoint value shown inP47 The internal locations available are

Select Value Autotune Access Point

Parameter Number 48Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 10Enums

01234

ZeroAutotune Status BitsAutotune Inhibit Word (all zero = OK)Autotune Error Word (all zero = OK)Calculated Friction (4096 1 pu)

Torque Limit for autotuneAutotune State Word 1Autotune State Word 2Autotune Control BitsMinimum Limit for didt to acheive requested bandwidthMinimum error filter bandwidth

Select Value Autotune Access Point5678910

Logic Command Word[Logic Command]

Parameter Number 52Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This word parameter contains data used toControl Drive logic operation If a bit is setthe function is enabled otherwise it is disabled (inactive)

C B A00001111

00110011

01010101

ndash Zerondash External Ref ndash Preset Speed 1ndash Preset Speed 2ndash Preset Speed 3ndash Preset Speed 4ndash Preset Speed 5ndash External Ref 2

BITS

0123456789101112131415

ndash Ramp Stopndash Start ndash Jog 1ndash Clear Faultndash Forwardndash Reversendash Jog 2ndash Current Limit Stopndash Coast Stopndash Ramp Disablendash Flux Enablendash Process Trim Enablendash Velocity Ref Select Andash Velocity Ref Select Bndash Velocity Ref Select Cndash Reset Drive

Torque Mode Select[Torque Mode Sel]

This is a word parameter used to select thesource for the drive torque reference Theoperation of this parameter functions as aselector switch The position of theselector determines the torque referenceselection as follows

Value Description 0 Zero Torque 1 Velocity Regulate 2 External Torque

Parameter Number 53Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 0Maximum Value 5

Value Description 3 Min Select SpeedTorque (Selects the smallest value when the torque

reference and the torque generated from the speed are compared) 4 Max Select SpeedTorque (Selects the largest value when the torque

reference and the torque generated from the speed are compared 5 Sum Speed and Torque (selects the sum of the torque reference and the

torque generated from the speed)

Chapter 5Programming Parameters

5ndash38

Local Input Status[Local In Status]

Parameter Number 54Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean input sta-tus conditions for the Velocity ProcessorWhen a bit is set to 1 the correspondinginput signal is true

Local Output Status[Local Out Status]

Parameter Number 55Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean outputstatus conditions for the Velocity Proces-sor When a bit is set to 1 the correspond-ing input signal is true

Value Description 0 Brake Request 1 Drive Enable 2 Motor Overtemp Thermoguard 3 Discrete Stop

Value Description 4 External Fault 5 RMS Fault 6 0 = Parall Inv 7 Single Lang

Value Description 8 Test Diag 9 Inverter Status10 Contactor Verify11 Not Used

Value Description12 Not Used13 Not Used14 Not Used15 Not Used

Value Description 0 Brake Enable 1 Turn On Delay Select 2 Not Used 3 Not Used

Value Description 4 Not Used 5 Not Used 6 Not Used 7 Not Used

Value Description 8 Not Used 9 VP Enable10 Pilot Relay11 Not Used

Value Description12 VP Green LED13 VP Red LED14 Not Used15 Not Used

Logic Status Low[Logic Status Low]

Parameter Number 56Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter is the Low part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Logic Status Hi[Logic Status Hi]

Parameter Number 57Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 11111 1111 Enums

This parameter is the Hi part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Value Description 0 Ready to Run 1 Drive Running 2 Cmd Direction (1=FWD 0=Rev) 3 Rotation Direction (1=FWD 0=Rev)

Value Description 4 Accelerating (1=Accel) 5 Decelerating (1=Decel) 6 Warning 7 Faulted

Value Description 8 At Set Speed 9 Local A10 Local B11 Local C

Value Description12 At Zero Speed13 Reference A14 Reference B15 Reference C

Value Description 0 Flux Ready 1 Flux Up 2 Not Used 3 Not Used

Value Description 4 Bus Ridethru 5 Jogging 6 Not Used 7 Not Used

Value Description 8 At Limit 9 Not Used10 At Setpoint 111 At Setpoint 2

Value Description12 Over Setpoint 113 Over Setpoint 214 Over Setpoint 315 Over Setpoint 4

C B A0 0 0 No Change0 0 1 Ref 10 1 0 Ref 20 1 1 Ref 31 0 0 Ref 41 0 1 Ref 51 1 0 Ref 61 1 1 Ref 7

Chapter 5Programming Parameters

5ndash39

Torque Stop Configuration[Torq Stop Config]

Parameter Number 58Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2Enums

This parameter selects how the drive willreact to a stop command when it occurs ina nonndashspeed mode (ex torque mode)Possible selections are0 = Normal Mode ndash Switch to speed modethen perform a controlled stop1 = Stay in selected torque mode until zerospeed is reached2 = Stay in selected torque mode until zerotorque is reached

At Setpoint 1[At Setpoint 1]

Parameter Number 60Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

At Setpoint 2[At Setpoint 2]

Parameter Number 61Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the At Setpoint 1 bit in Logic Status Hi

This parameter is used to specify the setpoint threshold for the At Setpoint2 bit in Logic Status Hi

Logic Options[Logic Options]

Parameter Number 59Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 0010Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter selects the options for logicoperation of the drive as follows

bit Option 0 Start Type A 1 Start Type B 2 Jog Ramp Enable 3 = 1 Jog Coast

= 0 Regen Stop 4 STOP Input Type A 5 STOP Input Type B 6 Do Power Up Diag 7 Do Flux Up Diag

8 Do Start Diag 9 Not Used 10 Not Used 11 = 1 AC Motor Contactor Present 12 = 1 Bipolar Ref +ref value = Forward Dir

ndash ref value = Reverse Dir= 0 Unipolar Bit 4 of P52 = 1 Forward Direction Bit 5 of P52 = 1 Reverse Direction

Over Setpoint 2[Over Setpoint 2]

Parameter Number 63Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the set-point threshold for the Over Setpoint 2 bitin Logic Status Hi

Over Setpoint 1[Over Setpoint 1]

Parameter Number 62Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default +0Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the Over Setpoint 1bit in Logic Status Hi

Start TypeB A0 0 Maint Start Rgen Stop0 1 Maint Start Coast Stop1 0 Momentary Start1 1 Maint Start Rgen Stop

Stop TypeB A0 0 Coast0 1 Normal (RampndashRegen)1 0 I - Limit1 1 Coast

This parameter has no effect if the drive isalready in speed mode when a stop com-mand occurs Coast stop1 commands arealso unaffected by this parameter

1NOTE Coast indicates that the Inverter power has been disabled but actual rotationalstoppage of the motor is dependent on the friction of the connected load

Chapter 5Programming Parameters

5ndash40

Over Setpoint 3[Over Setpoint 3]

Parameter Number 64Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00 Minimum Value ndash8000Maximum Value +8000

Over Setpoint 4[Over Setpoint 4]

Parameter Number 65Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 setpointFactory Default +00 Minimum Value ndash800Maximum Value +800

This parameter is used to specify the set-point threshold for the Over Setpoint 3 bitin Logic Status Hi

This parameter is used to specify the set-point threshold for the Over Setpoint 4 bitin Logic Status Hi

Current Setpoint Tolerance[Cur Setpoint Tol]

Parameter Number 68Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 IqFactory Default 20Minimum Value 00Maximum Value 200

This parameter establishes a hysteresisband around the Setpoints It will be usedto determine when to update the SetpointBits in Logic Status Hi (P57) when config-ured for commanded current option

Speed Setpoint Tolerance[Speed Setpnt Tol]

Parameter Number 67Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = base speedFactory Default base sp 100Minimum Value 00 rpmMaximum Value base speed 10

This parameter establishes a hysteresisband around the At Setpoints It will beused to determine when to update the Set-point Bits in the Logic Status Hi (P57)when configured for actual speed option

Zero Speed Tolerance[Zero Speed Tol]

Parameter Number 69Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = base speedFactory Default base speed 100Minimum Value 00 rpmMaximum Value 8 x base speed

This parameter establishes a band aroundzero speed that will be used to determinewhen to update the At Zero Speed bit inthe Logic Status Low (P56)

Setpoint Select[Setpoint Select]

Parameter Number 66Parameter Type SinkDisplay Units BitsDrive Units bit clear = speed set = currentFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 1111 1111Enums

This parameter makes a selection betweenactual speed or internal Iq current refer-ence for the AtOver Setpoint parametersEach Setpoint Status bit can be set for ei-ther option ( 0 = Actual Speed 1 = Iq Ref-erence)

Bit 0 = At Setpoint 1Bit 1 = At Setpoint 2Bit 2 = Over Setpoint 1Bit 3 = Over Setpoint 2

Bit 4 = Over Setpoint 3Bit 5 = Over Setpoint 4

Logic Testpoint Data[Logic Tstpt Data]

This parameter contains the logic controltestpoint data that has been selected bythe Logic Tstpt Sel parameter P71

Parameter Number 70Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Chapter 5Programming Parameters

5ndash41

Logic Testpoint Select[Logic Tstpt Sel]

Parameter Number 71Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 30Enums

This parameter selects which internal loca-tion in the logic control software will be-come the testpoint value shown in P70The value based upon the select will bestored in the Logic Tstpnt Data parameterThe internal locations of the logic controlsoftware accessible based on the selectvalue are

Select Value Logic Access Point 0 Zero 1 Logic State 2 Edge Filtered Logic Command 3 Logic Control Word 4 Flux Inhibit Conditions 5 Run Inhibit Conditions 6 Current Processor Command Word 7 Current Processor Status Word 8 Diagnostic Request Flag 9 Requested Torque Mode 10 Contactor Fault Flag 11 Monitor Sample 12 Sys Status 13 Loss of CP Enable Acknowledge 14 Last Stop 15 Stop Event

Select Value Logic Access Point 16 Diagnostic Inhibit bits 17 Common Bus Precharge States 18 Contactor Trip Condition 19 Adapter handshake counter 20 Longest handshake count 21 Stop event ndash LED state 22 Stop event ndash System mode register 23 Stop event ndash Fault stop command 24 Stop event ndash Powerup diagnostic status 25 Stop event ndash Nonconfigurable fault status 26 Stop event ndash Current Processor Config Fault Status 27 Stop event ndash Velocity Processor Config Fault Status 28 Stop event ndash Adapter fault status 29 Stop event ndash Logic Command (parameter 52) 30 Stop event ndash Local Inputs (parameter 54)

Stop Dwell[Stop Dwell]

Parameter Number 72Parameter Type SinkDisplay Units xx secDrive Units Display units x 10Factory Default 00 secMinimum Value 00 secMaximum Value 100 sec

This sets an adjustable dwell time beforethe drive disables speed and torque regu-lators when a stop has occurred

Maximum Dynamic Brake Power[Max DB Power]

Parameter Number 77Parameter Type SinkDisplay Units x WattsDrive Units NoneFactory Default 0 WattsMinimum Value 0 WattsMaximum Value 30000 Watts

Maximum Dynamic Brake Temperature[Max DB Temp]

Parameter Number 78Parameter Type SinkDisplay Units x degDrive Units NoneFactory Default 50 deg Minimum Value 50 deg Maximum Value 700 deg

Dynamic Brake Time Constant[DB Time Const]

Parameter Number 79Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 10 secMinimum Value 10 secMaximum Value 600 sec

This parameter defines the power ratingfor the optional Dynamic Brake resistorThis value is used to calculate the per unitR theta for the resistor

This parameter defines the Maximum Tem-perature Rating for the optional DynamicBrake resistor This value is used to estab-lish setpoints for setting and clearing aBrake Overtemperature fault condition

This parameter defines the thermal timeconstant for the Optional Dynamic Brakeresistor This value is used in the brakeresistor thermal model to predict braketemperature as a function of regenerativepower

NOTE Caution should be usedwhen changing the dwell timefrom the factory settingExtended dwell times may not bedesirable from a safety standpointin some applications

Chapter 5Programming Parameters

5ndash42

PowerupDiagnostic Fault Status[PwrUp Flt Status]

Parameter Number 80Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates a faultcondition which has been detected duringpower up or reset of the drive When a bitis ldquo1rdquo the condition is true otherwise thecondition is false

Bit Condition 0 CP PROM Failure 1 CP Internal RAM Failure 2 CP External RAM Failure 3 CP Stack RAM Failure 4 VP Dualport RAM Failure detected by CP 5 Not Used 6 Not Used 7 Not Used 8 VP EPROM Failure

Bit Condition 9 VP Internal RAM Failure 10 VP External RAM Failure 11 VP Stack RAM Failure 12 CP Dualport RAM Failure detected by VP 13 AP Dualport Ram Failure detected by VP 14 Base Drive EE Failure 15 Reserved Leave Zero

CP Configurable Fault Status[CP Flt Status]

Parameter Number 82Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Current Processor (CP)that has been configured to report as aDrive fault condition Each configurationbit matches the bit definitions of Parameter84 86 and 87 When a bit is ldquo1rdquo thecondition is true otherwise the condition isfalse

Nonndashconfigurable Fault Status[Ncfg Flt Status]

Parameter Number 81Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates fault condi-tions in the drive that Cannot be configuredas warnings When a bit is ldquo1rdquo the condi-tion is true otherwise the condition is falseBits 0 ndash 3 are detected by hardware Bits4ndash15 are detected by software

Bit Condition 0 DC Bus Overvoltage Trip 1 Transistor Desaturation 2 Ground Fault 3 Instantaneous Overcurrent 4 Adapter Comm Loss detected by CP 5 MasterSlave Cable Loss

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts)

Bit Condition 10 Analog Power Supply Tolerance 11 Autocommisioning or Transistor Diagnostic Failure 12 Inverter Temperature Trip 13 Software Malfunction detected by VP 14 Not Used 15 Reserved Leave Zero

Bit Condition 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Fluxup Current lt 50

Bit Condition 6 MasterSlave Enable Timeout 7 Not Used 8 Handshake Timeout VP 9 Absolute Overspeed

VP Configurable Fault Status[VP Flt Status]

Parameter Number 83Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as faultconditions Each configuration bit matchesthe definitions of Parameter 85 88 and 89When a bit is ldquo1rdquo the condition is trueotherwise the condition is false

Bit Condition 0 Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending 4 Motor Overload Trip

Bit Condition 10 Math Limit 11 Dynamic Brake Overtemperature 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Trip (IT)

Bit Condition 5 Motor stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit

Chapter 5Programming Parameters

5ndash43

CP Configurable Warning Status[CP Warn Status]

Parameter Number 84Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

VP Configurable Warning Status (bits)[VP Warn Status]

Parameter Number 85Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the current processor (CP) thathave been configured to report as a DriveWarning condition Each configuration bitmatches the bit definitions of parameters82 86 and 87 When a bit is set to ldquo1rdquo thecorresponding condition in the Drive istrue otherwise it is false

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as aDrive warning condition Each configura-tion bit matches the bit definitions ofparameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition inthe Drive is true otherwise it is false

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit 10 Math Limit

Bit Condition 11 Dynamic Brake Resistor Overtemperature 12 Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Foldback

CP FaultWarning Configuration Select[CP Fault Select]

Parameter Number 86Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0010 0011Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definitions ofparameters 82 84 and 87 When a bit isset to rdquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise it will be reported as a WARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Chapter 5Programming Parameters

5ndash44

CP WarningNone Configuration Select[CP Warn Select]

Parameter Number 87Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definition of Pa-rameter 82 84 and 86 When a bit is set toldquo1rdquo the corresponding condition in theDrive will be reported as a FAULT other-wise the condition is reported as aWARNING

VP FaultWarning Configuration Select[VP Fault Select]

Parameter Number 88Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Velocity Processor (VP)that will be reported as either a driveFAULT or drive WARNING condition Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 89 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise the condition is reported as aWARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts) 3 Bus Undervoltage 4 Bus Drop Cycles 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Reserved Leave Zero

Bit Condition 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Trip (IT)

VP WarningNone Configuration Select[VP Warn Select]

Parameter Number 89Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enum

This parameter determines conditions de-tected by the Velocity Processor (VP) thatwill be reported as either a drive FAULT orWARNING or not reported (ignored) Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 88 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as configured byparameter 88 If the bit is set to ldquo0rdquo thecondition is not reported Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault

Bit Condition 8 Not Used 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Foldback (IT)

Chapter 5Programming Parameters

5ndash45

Absolute Overspeed Threshold[Absolute Overspd]

Parameter Number 90Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = 1000 overspeedFactory Default 01 x base speedMinimum Value 00 rpmMaximum Value base speed

This parameter indicates the incrementalspeed above Forward Speed Limit or be-low Reverse Speed Limit that is allowablebefore an Absolute Overspeed Fault isindicated

Stall Delay[Stall Delay]

Parameter Number 91Parameter Type SinkDisplay Units xx secDrive Units sec x 100Factory Default 10 secMinimum Value 01 secMaximum Value 32767 sec

This parameter specifies the amount oftime that the Drive must be in current limitand at zero speed before a Stall Fault willbe indicated

Motor Overload Limit[Mtr Overload Lim]

Parameter Number 92Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Iq for 60 secFactory Default 2000Minimum Value 1100Maximum Value 4000

This parameter specifies the level of Iq current that will cause a Motor OverloadTrip after 60 seconds

Service Factor[Service Factor]

Parameter Number 94Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100Factory Default 100Minimum Value 100Maximum Value 200

This parameter specifies the minimum lev-el of Iq current that will cause a motor over-load (IIT) trip under continuous operationCurrent levels below this value will neverresult in an overload tripExample ndash a service factor of 115 impliescontinuous operation up to 115 of name-plate motor current

Overload Speed 1[Mtr Overld Spd 1]

Parameter Number 95Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use the MinOverload Lmt (parameter 97) as its mini-mum current trip level

Motor Overload Speed 2[Mtr Overld Spd 2]

Parameter Number 96Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use 100 as itsminimum current trip level

Minimum Overload Limit[Min Overload Lmt]

Parameter Number 97Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 currentFactory Default 1000Minimum Value 00 Maximum Value 1000

This is the minimum motor overload triplevel that will be in effect when the motorspeed is at or below Mtr Overld Spd 2(P96)

Chapter 5Programming Parameters

5ndash46

Fault Testpoint Data [Fault TP]

Parameter Number 98Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This parameter contains the fault controltestpoint data that has been selected bythe Fault TP Sel parameter(P99) See thedescription for the Fault TP Sel parameter99 for a list of possible testpoints

Select Value Velocity Reference Access Point 0 Zero 1 Adapter Processor Faulted 2 Actual Velocity when Overspeed occurred 3 Motor Overload Calibration Constant (K) 4 Heatsink NTC Analog Input Voltage 5 Heatsink NTC Foldback Current Limit 6 Negative Analog Supply andor input voltage 7 Positive Analog Supply andor input Voltage 8 Zero 9 Motor Overload Integrator(I2T) level 10 Dynamic Brake Resistor Temperature Degrees C 11 Parameter Limit Status Word 1 12 Parameter Limit Status Word 2 13 Velocity Reference Math Overflow Status 14 Velocity Feedback Math Overflow Status 15 Velocity Regulator Math Overflow Status 16 Torque Reference Math Overflow Status 17 Process Trim Math Overflow Status

VELOCITY Feedback Error Conditions 18 Acceleration Error 19 Illegal State Edge Samples 20 Illegal State Level 21 Encoder Loss Edge Samples

Fault Testpoint Select[Fault TP Sel]

Parameter Number 99Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 32Enums

This parameter selects which internal loca-tion in the fault control software will be-come the testpoint value The value basedupon the selection will be stored in theFault TP parameter 98 The internal loca-tions of the logic control software that areaccessible based on the selected value arelisted below

Select Value Velocity Ref Access Point 22 Encoder Loss Level 23 Iq Reference in per unit Inverter Units 24 Motor Overload Integrator Output Level (IT) 25 Motor Temperature Degrees C 26 Drive to Drive fault status 27 Base Drive EE fault status 28 Base Drive EE drive type address 29 Base Drive EE drive type data 30 Heatsink Warn Temp deg C 31 Heatsink Trip Temp deg C 32 Zero

Velocity Reference 1 LOW (Fraction)[Vel Ref 1 Low]

Parameter Number 100Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This word supplies the fractional part of theexternal velocity reference 1 when external velocity control has been selectedin Logic Command (P52)

Velocity Reference 1 HI (Whole 32 bit)[Velocity Ref 1 Hi]

Parameter Number 101Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

Velocity Scale Factor 1[Vel Scale Fctr 1]

Parameter Number 102Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 10000 gainFactory Default + 10000Minimum Value ndash 40000Maximum Value + 40000

This word supplies the whole number partof external velocity reference 1 when theexternal velocity control has been selectedin Logic Command (P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 1

Chapter 5Programming Parameters

5ndash47

Velocity Reference 2 LOW (Fraction)[Vel Ref 2 Low]

Parameter Number 103Parameter Type SinkDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference 2 HI (Whole 32 bit)[Vel Ref 2 Hi]

Parameter Number 104Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

Velocity Scale Factor 2[Vel Scale Fctr 2]

Velocity Trim LOW[Vel Trim Low]

Parameter Number 106Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Parameter Number 105Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 1000 gainFactory Default +10000Minimum Value ndash40000Maximum Value +40000

This word supplies the fractional part of theexternal velocity reference 2 when the ex-ternal velocity control has been selected inLogic Command (P52)

This word supplies the whole number refer-ence 2 when the external velocity controlhas been selected in Logic Command(P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 2

This word supplies the fractional numberpart of a 32 bit velocity reference trim

Velocity Trim Hi (32 bit)[Vel Trim Hi]

Parameter Number 107Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This word supplies the whole number partof a 32 bit velocity reference trim

Velocity Reference Testpoint Data LOW[Vel Ref TP Low]

Parameter Number 108Parameter Type SourceDisplay Units xDrive Units 1 = 2 128 Base Motor SpeedFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Testpoint Data HI(32 bit)[Vel Ref TP Hi]

This parameter indicates the LOW of the32 bit value of the internal location selectedby the Vel Ref TP Sel (P110)

Parameter Number 109Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base Speed Maximum Value +8 x Base Speed

This parameter indicates the HI 32 bit value of the internal location selected bythe Vel Ref TP Sel (P110)

Chapter 5Programming Parameters

5ndash48

Parameter Number 110Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 12Enums

This parameter selects which internallocation of the velocity reference will be-come the testpoint value shown in P108and 109 The following are the internallocations based upon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Limit Status (HI) Reference Selection (LOW) 2 Selected Reference (HI LOW) 3 Limited Reference (HI LOW) 4 Direction Selected Ref (HI LOW) 5 Fwd Speed Limit (HI)

Rev Speed Limit (LOW) 6 Ramp Input (HI LOW) 7 Ramp Output (HI LOW) 8 Velocity Trim Sum (HI LOW)

Select Value Velocity Reference Access Point 9 Internal Velocity Trim (HI LOW) 10 Trimmed Velocity Reference (HI LOW) 11 Maximum Frequency Limit (HI) Zero (LOW) 12 Reference after Trim Limit (HI LOW) 13 Deadband In (HI LOW) 14 Encoderless On Freq (Low)

Encoderless Off Freq (High) 15 Encoderless Status (Low) 16 Zero

Velocity Reference Testpoint Select[Vel Ref TP Sel]

Jog Speed 1[Jog Speed 1]

Parameter Number 117Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 1 has been selected inthe Logic Command (P52)

Jog Speed 2[Jog Speed 2]

Parameter Number 118Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 2 has been selected inthe Logic Command (P52)

Preset Speed 1[Preset Speed 1]

Parameter Number 119Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Preset Speed 2[Preset Speed 2]

Parameter Number 120Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 1 has been selectedin Logic Command (P52)

This will be the velocity reference used bythe Drive when preset 2 has been selectedin Logic Command (P52)

Preset Speed 3[Preset Speed 3]

Parameter Number 121Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 3 has been selectedin Logic Command (P52)

Chapter 5Programming Parameters

5ndash49

Preset Speed 4[Preset Speed 4]

Parameter Number 122Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 4 has been selectedin the Logic Command (P52)

Preset Speed 5[Preset Speed 5]

This will be the velocity reference used bythe Drive when preset 5 has been selectedin Logic Command (P52)

Parameter Number 123Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Reverse Motor Speed Limit[Rev Speed Limit]

Parameter Number 127Parameter Type SinkDisplay Units ndash xx rpmDrive Units ndash 4096 Base Motor SpeedFactory Default ndash Base Motor SpeedMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 00 rpm

This parameter sets a limit on velocity inthe negative direction The value enteredmust be Negative or Zero The numericrange of this parameter is 0 to ndash 6 timesbase motor speed

Accel Time[Accel Time]

Parameter Number 125Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the ramp rate timefor the velocity reference ramp Time isseconds from zero to base motor speedZero will disable accel ramp See Param389 amp 390 to set this rate Note This parameter not used with a Standard Adapter Board Equipped Drive

Decel Time[Decel Time]

Parameter Number 126Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the decelerationramp time Similar to the parameterabove zero will disable the decel rampSee param 391 amp 392 to set this rateNote This parameter not used with a Standard Adapter Board Equipped Drive

Forward Motor Speed Limit[Fwd Speed Limit]

Parameter Number 128Parameter Type SinkDisplay Units xx rpmDrive Units + 4096 Base Motor SpeedFactory Default Base Motor SpeedMinimum Value + 00 rpmMaximum Value 8 x Base Motor Speed

This parameter sets a limit on velocity inthe positive direction The value enteredmust be Positive or Zero The numericrange of this parameter is +6 x base speedrpm

Maximum Reverse Speed Trim[Max Rev Spd Trim]

Parameter Number 129Parameter Type SinkDisplay Units +ndash xx rpmDrive Units ndash4096 = Base Motor SpeedFactory Default ndash Base SpeedMinimum Value ndash 6 x Base SpeedMaximum Value + 6 x Base Speed

This parameter limits the minimum value ofthe velocity reference after the process trimoutput and the external velocity trim hasbeen added

Chapter 5Programming Parameters

5ndash50

Maximum Forward Speed Trim[Max Fwd Spd Trim]

Parameter Number 130Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + Base SpeedMinimum Value + 00 rpmMaximum Value + 6 x Base Speed

This parameter limits the maximum valueof the velocity reference after the processtrim

Droop Percent[Droop Percent]

Parameter Number 131Parameter Type SinkDisplay Units xxDrive Units Display units x 10Factory Default 0Minimum Value 0Maximum Value 255

This parameter specifies the percent ofbase speed that the velocity reference willbe reduced when at full load torque Thisfeature can be used to cause motor veloc-ity to droop with an increase in load

Velocity Reference Output LOW[Vel Ref Out Low]

Parameter Number 132Parameter Type SourceDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Output HI (32 bit)[Vel Ref Out High]

Parameter Number 133Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This is the low word portion of a 32 bit velocity reference quantity It is the inputterm for the Velocity PI Regulator

This is the high word portion of a 32 bit ve-locity reference quantity It is the inputterm for the Velocity PI Regulator

Velocity Regulator Output[Vel Reg Output]

Parameter Number 134Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = 1000 Iq motorFactory Default + 00 Minimum Value ndash 3000Maximum Value +3000

This parameter represents the torque refer-ence value that appears at the output ofthe Velocity PI Regulator It is the input tothe torque mode selector and is used asthe driversquos torque reference value when intorque mode 1

Velocity Regulator Testpoint DataLOW[Vel Reg TP Low]

Parameter Number 135Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Regulator Testpoint Data HI(32 bit)[Vel Reg TP Hi]

Parameter Number 136Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter indicates the value of theinternal location selected by the VelocityRegulator Testpoint Select parameterP137 The select allows this parameter tobe used as a testpoint for the velocity regulator

This parameter indicates the value of theinternal location selected by the Vel RegTP Sel parameter P137 The select allowsthis parameter to be used as a testpoint forthe velocityregulator

Chapter 5Programming Parameters

5ndash51

Velocity Regulator Testpoint Select[Vel Reg TP Sel]

Velocity Error [Velocity Error]

Parameter Number 138Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Speed rpmMaximum Value +8 x Base Speed rpm

Parameter Number 137Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 15

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in Vel Reg TPLow P135 amp Vel Reg TP Hi P136 The fol-lowing are the internal locations basedupon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Droop Speed Offset (32bit) 2 Drooped Velocity Reference (32 bit) 3 Kf Term (Low) Kf Err (High) 4 Kf Error Filter Output 1 (Low) Kf Error Filter Output 2 (High) 5 Kp Term (32 bit) 6 Or ndash 1st 16 bit (Low) 2nd 16 bit (High) 7 Or ndash 3rd 16 bit (Low) 4th 16 bit (High) 8 Of ndash 1st 16 bit (Low) 2nd 16 bit (High) 9 Of ndash 3rd 16 bit (Low) 4th 16 bit (High) 10 Oe ndash 1st 16 bit (Low) 2nd 16 bit (High) 11 Oe ndash 3rd 16 bit (Low) Not Used (High) 12 Oec1 ndash 1st 16 bit (Low) 2nd 16 bit (High) 13 Oec1 ndash 3rd 16 bit (Low) 4th 16 bit (High) 14 Ki Term (32 bit) 15 Logic Control Word (LOW) Integrator Enable Flag (HIGH)

This parameter contains a value that is thedifference between the whole number por-tion of the velocity regulatorrsquos referenceinput and the velocity feedback

KI ndash Velocity Loop[Ki ndash Velocity Loop]

Parameter Number 139Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 320Minimum Value 00Maximum Value 40960

KP ndash Velocity Loop[Kp ndash Velocity Loop]

Parameter Number 140Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 80Minimum Value 00Maximum Value 2000

This parameter controls the integral errorgain of the velocity regulator Gain has aresolution of 18 therefore a Ki gain of 10is converted to internal drive units as a val-ue of 8

This parameter controls the proportionalerror gain of the velocity regulator Gainhas a resolution of 18 therefore a gain of10 is converted to internal drive units as avalue of 8

KF ndash Velocity Loop[Kf ndash Velocity Loop]

Parameter Number 141Parameter Type SinkDisplay Units xxxDrive Units Display units x 65535Factory Default 100Minimum Value 050Maximum Value 100

This parameter controls the feed forwardgain of the velocity regulator Setting theKf gain to less than one reduces velocityfeedback overshoot in response to a stepchange in velocity reference

KF Error Filter Bandwidth[Error Filter BW]

Parameter Number 142Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 500 RadianSecondsMinimum Value 0Maximum Value 1500 RadianSeconds

This parameter sets the bandwidths of twocascaded low pass filters in the Kf errorpath of the Velocity PI Regulator Band-width is entered in units of radians per second

Chapter 5Programming Parameters

5ndash52

Velocity Feedback Testpoint Data LOW[Vel Fdbk TP Low)

Parameter Number 143Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0uMinimum Value 0uMaximum Value 65535u

Parameter Number 144Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Velocity Feedback Testpoint Data HI(32 bit)[Vel Fdbk TP Hi]

This parameter contains the LOW part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter P145

This parameter contains the HIGH part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parame-ter P145

Velocity Feedback Testpoint Select[Vel Fdbk TP Sel]

Parameter Number 145Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 16Enums

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in P143 amp P144The value based upon the select will bestored in the Vel Fdbk TP Low amp Vel FdbkTP Hi parameter

Select Value Feedback Access Point 0 Zero 1 Encoder Velocity edge (Hi) Diff (Low) 2 Selected Velocity (Low) Difference Velocity (High) 3 2 msec Scan Interval (Low) Zero (High) 4 Edge Pulse Count (Low) Zero (High) 5 Acceleration (Low) Acceleration Error (High) 6 Edges Moved Count (Low) Zero (High) 7 Delta Theta (32 bit) 8 Count Direction (Low) Status Bits (High) 9 Edge to Edge Time (Low) Zero (High) 10 Equal Area Intervals (Low) Zero (High) 11 Empty Intervals (Low) Zero (High) 12 Active Feedback Device 13 Limit Status (Low) Zero (High) 14 Qf ndash 1st 16 bit (Low) 2nd 16 bit (High) 15 Qf ndash 3rd 16 bit (Low) Not Used (High) 16 Zero

Velocity Feedback[Vel Feedback]

Parameter Number 146Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 8 x Base Motor Speed

This parameter indicates the latestmeasured motor velocity information froma feedback device (Tach encoder etc)The value is taken at the output of the selectable feedback filters

Scaled Velocity Feedback[Scaled Vel Fdbk]

Parameter Number 147Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter is a rescaled version of ve-locity feedback from parameter 146 Theinverse of either Velocity Scale Factor 1 or2 is used

Chapter 5Programming Parameters

5ndash53

Feedback Device Type[Fdbk Device Type]

Parameter Number 150Parameter Type SinkDisplay Units xDrive Units NoneFactory Default EncoderMinimum Value 0Maximum Value 7

This parameter selects the source for motor velocity feedback0 ndash Encoder Feedback1 ndash Encoder Feedback2 ndash Encoder Feedback wtracker filter3 ndash Motor Simulator4 ndash External Feedback5 ndash Encoderless velocity estimate with deadband6 ndash Encoderless velocity estimate without deadband7 ndash Encoderless without deadband and low bandwidth

Feedback Tracker Gain[Fdbk Track Gain]

Parameter Number 151Parameter Type SinkDisplay Units xxxxDrive Units 1024 1000 gainFactory Default 1000Minimum Value 0043Maximum Value 1000

Affects gain of the alphandashbeta tracker filterused when Fdbk Device Type = 2Smaller gains result in increased filteringTypical Value = 015 to 07Use 10 to disable

Feedback Filter Select[Fdbk Filt Sel]

Parameter Number 152Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 4

0 = No Filter1 = ldquolightrdquo 3549 radian feedback filter2 = ldquoheavyrdquo 2040 radian feedback filter3 = Single pole Lead Lag feedback filter4 = Notch

Encoder Position Feedback LOW[Enc Pos Fdbk Low]

Parameter Number 148Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the LOW word portion of a 32 bitencoder pulse accumulator Each encoderquadrature edge will be counted resultingin a 4X multiplication As a result this pa-rameter will be scaled such that the posi-tion change per motor revolution is equal to4 times the encoder PPR

Encoder Position Feedback HI[Enc Pos Fdbk HI]

Parameter Number 149Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the HI word portion of a 32 bit en-coder pulse accumulator that was de-scribed for the previous parameter Thisword will change by 1 count for everychange in low count of 65536 4X encoderpulses

Kn ndash Feedback Filter Gain[Fdbk Filt Gain]

Parameter Number 153Parameter Type SinkDisplay Units plusmnxxxDrive Units 256 = 100 gainFactory Default + 100Minimum Value ndash 500Maximum Value +500

Wn ndash Feedback Filter Bandwidth[Fdbk Filt BW]

Parameter Number 154Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 100 RadianSecondsMinimum Value 1 RadianSecondsMaximum Value 900 RadianSeconds

This is the Kn term of the single pole leadlag feedback filter Kn greater than 10 willproduce a lead filter and less than 10 alag filter Kn equal to 10 will disable thefeedback filter

This parameter establishes the breakpointradian frequency for the velocity feedbacklead-lag filter

Chapter 5Programming Parameters

5ndash54

Tach Velocity[Tach Velocity]

Parameter Number 155Parameter Type SinkDisplay Units +ndash xxx rpmDrive Units 4096 = Base Motor SpeedFactory Default 0000 rpmMinimum Value ndash 8 x base speedMaximum Value + 8 x base speed

This word supplies a motor velocity feed-back signal when a source other than anencoder is used This input will typically belinked to an analog input parameter fromthe adapter board

Notch Filter Frequency[Notch Filt Freq]

Parameter Number 156Parameter Type SinkDisplay Units xx HzDrive Units 8 = 10HzFactory Default 135 HzMinimum Value 5 HzMaximum Value 135 Hz

Notch Filter Q[Notch Filter Q]

Parameter Number 157Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 50Minimum Value 2Maximum Value 500

External Iq Reference[External Iq Ref]

Parameter Number 161Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 Iq motorFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

External Torque Reference 1[External Torque Ref 1]

Parameter Number 162Parameter Type SinkDisplay Units xDrive Units NoneFactory Default + 00Minimum Value ndash 800Maximum Value + 800

Slave Torque Percent 1[Slave Torque 1]

Parameter Number 163Parameter Type SinkDisplay Units +ndash xxxDrive Units 4096 = 10 gainFactory Default + 100Minimum Value ndash 200Maximum Value + 200

This parameter supplies an external Iq ref-erence to the Drive The external Iq refer-ence is summed with the internal Iq refer-ence just prior to the current limiter

This word supplies an external motortorque reference to the Drive The externaltorque reference can be selected by settingthe Torque Mode Select parameter (Parm53) to a value of ldquo2rdquo

Ext Torq Ref 1 (P162) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

This parameter sets the center frequencyfor an optional 2ndashpole notch filter The-notch filter is enabled by selecting a valueof lsquo4rsquo in parameter 152

This parameter sets the Quality Factor orQ for the 2ndashpole notch filter described inparameter 156

External Torque Reference 2[Ext Torq Ref 2]

Parameter Number 164Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This word supplies an external motortorque reference to the Drive The Exter-nal Torque Reference can be selected bysetting the Torque Mode Select parameter(Parm 53) to a value of ldquo2rdquo

Slave Torque Percent 2[Slave Torque 2]

Parameter Number 165Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 10 gainFactory Default +100Minimum Value ndash 2000Maximum Value + 2000

Ext Torq Ref 2 (P164) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

Chapter 5Programming Parameters

5ndash55

External Torque Step[Ext Torque Step]

Parameter Number 166Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 00Minimum Value ndash 8000Maximum Value + 8000

This parameter supplies an external torqueoffset to the Drive The Ext Torque Step issummed with the Torque Mode Sel (P53)output prior to the Torque Limiter

Internal Torque Reference[Int Torque Ref]

Parameter Number 167Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash8000Maximum Value +8000

This parameter shows the value of torquereference that is present at the output ofthe torque limiter

Internal Iq Reference[Internal Iq Ref]

Parameter Number 168Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash 8000Maximum Value + 8000

This parameter shows the value of the Iqreference that is present at the output ofthe Iq rate limiter 4096 is 100 Iq motorcurrent

Torque Reference Testpoint Data[Torque Ref TP]

Parameter Number 172Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 (10 pu)Factory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter indicates the value of theinternal location selected by the Torq RefTP Sel parameter P173 The select willallow this parameter to be used as a test-point for the torquereference input

Torque Reference Testpoint Select[Torq Ref TP Sel]

Parameter Number 173Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 31Enums

This parameter selects which internal loca-tion of the torque reference will become thetestpoint value The value based on theselect will be stored in the Torque Ref TP(P172)

Select Value Torque Reference Access Point Select Value Torque Reference Access Point 0 Zero 17 Torque Reference Status 1 NTC Limit 18 Torque Reference Math Overflow Status 2 Inverter Current Limit 19 Active Torque Mode 3 Overload Current Limit 20 Positive Torque Power Limit 4 Positive IQ Limit 21 Negative Torque Power Limit 5 Negative Iq Limit 22 Rated Inverter Current 6 Zero (Not Used) 23 Averaged Motor Flux 7 Torque Limit (Low) 24 lq Current Reference Adjusted for Motor Range 8 Torque Limit (High) 25 lq Sum 9 Scaled External Torque Reference 1 26 Torque Mode Select lq Ref 10 Scaled External Torque Reference 2 27 Inverter Gain 11 Torque Sum 28 Motor Range 12 Torque Command 29 Motor to Inverter Current Ratio 13 Filtered Torque Reference 30 DC Bus Ride-Thru Latch 14 Unlimited Iq Reference 31 Current Processor Regulation Active Flag 15 Current Limited Iq Reference 16 Filtered Iq Reference

Chapter 5Programming Parameters

5ndash56

Minimum Flux Level[Min Flux Level]

Parameter Number 174Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 FluxFactory Default 1000Minimum Value 125Maximum Value 1000

This parameter sets the smallest level offlux that will be used to convert a torque toa current reference Setting the parameterto 4096 will prevent flux reduction and by-pass the torque to current conversion

Pos Torque Reference Limit[Pos Mtr Tor Lmt]

Parameter Number 175Parameter Type SinkDisplay Units xxDrive Units 4096 rated motor torqueFactory Default 2000Minimum Value 00Maximum Value 8000

This parameter provides a user settabletorque limit for positive torque referencevalues Positive motor torque referencewill not be allowed to exceed this value

Neg Torque Reference Limit[Neg Mtr Tor Lmt]

Parameter Number 176Parameter Type SinkDisplay Units ndash xxDrive Units ndash 4096 rated motor torqueFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

Motoring Power Limit[Motoring Power Lmt]

Parameter Number 177Parameter Type SinkDisplay Units xxDrive Units 4096 rated motoring powerFactory Default 2000Minimum Value 00 Maximum Value 8000

This parameter provides for a user entry ofthe maximum power level that will be sup-plied to the motor from the DC bus Themotoring power limit is used in a calcula-tion that results in an internal torque limit

This parameter provides a user settabletorque limit for negative torque referencevalues Negative motor torque referencewill not be allowed to exceed this value

Regen Power Limit[Regen Power Lmt]

Parameter Number 178Parameter Type SinkDisplay Units ndash xxDrive Units 4096 rated regen powerFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

This parameter provides a user entry forthe maximum power level that will be transferred from the motor to the DC bus

Positive Motor Current Reference Limit[Pos Mtr Cur Lmt]

Parameter Number 179Parameter Type SinkDisplay Units xx Drive Units 4096 100 Motor Current (I2)Factory Default 1000Minimum Value 00 Maximum Value 2000

Negative Motor Current ReferenceLimit[Neg Mtr Cur Lmt]

Parameter Number 180Parameter Type SinkDisplay Units ndash xx Drive Units 4096 100 Motor Current (I2)Factory Default ndash 1000Minimum Value ndash 2000Maximum Value + 00

This parameter specifies the largest allow-able positive motor Iq axis current that willbe commanded Bit 0 in Parm 183 indi-cates when this parameter is activelyrestricting Iq current

This parameter determines the largestallowable negative motor Iq axis currentthat will be commanded Bit 8 in Parm 183indicates when this parameter is activelyrestricting Iq current

Chapter 5Programming Parameters

5ndash57

DiDT Limit[DiDt Limit]This parameter determines the largest al-lowable rate of change for the Iq referencesignal This number is scaled in units ofmaximum per unit Iq every 2 msec

Parameter Number 181Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Iq per 2msecFactory Default 200Minimum Value 00Maximum Value 300

Torque Limit Status[Torq Lmt Stat]

Parameter Number 183Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded sum-mary of any condition that may be limitingeither the IQ current or torque reference

0 = Positive Motor IQ Limit1 = Positive NTC Inverter Foldback2 = Positive IT Inverter Foldback3 = Positive Maximum Inverter Current4 = Positive Torque Limit5 = Positive Torque Power Limit6 = Positive Autotune Torque7 = Not Used8 = Negative Motor Iq Limit

9 = Negative NTC Inverter Protection Foldback10 = Negative IT Inverter Protection Foldback11 = Negative Maximum Inverter Current12 = Negative Torque Limit13 = Negative Torque Power Limit14 = Negative Autotune Torque Limit15 = Reserved Leave Zero

Computed Power[Computed Power]Calculated product of Torque Referencetime motor velocity feedback A 125 msecfilter is applied to this result Positive values indicate motoring power negative regenerative power

Parameter Number 182Parameter Type SourceDisplay Units +ndashxxDrive Units 4096 1000 powerFactory Default +00Minimum Value ndash8000Maximum Value +8000

Torque Mode Status[Torq Mode Stat]

Parameter Number 184Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded indica-tion of the currently active torque mode Ifthe drive is running this parameter reflectsthe Torque Mode selected in Torque ModeSel (P 53) If the drive is coasting orstopped this parameter will indicate the ac-tive torque mode is zero If in min or maxmode then the corresponding minmax bitwill be set along with the appropriate speedor torque mode bit as determined by theoutcome of the minmax selectorBits are defined as

Bit 0 ndash Zero Torque (Iq = 0)Bit 1 ndash Speed ModeBit 2 ndash Torque ModeBit 3 ndash Minimum SpeedTorqueBit 4 ndash Maximum SpeedTorqueBit 5 ndash Sum Speed + TorqueBit 6 to Bit 15 ndash Reserved Leave Zero

Perunit Motor Current[Motor Cur Fdbk]

Parameter Number 185Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 motor currentFactory Default 00Minimum Value 00Maximum Value 8000

Displays the perunit value of motor currentas determined from the LEM current sen-sors This data is scaled to read 10 pu atrated motor current This is a version ofparameter 264 that has been scaled to becompatible with analog outputs This datais averaged and updated on a 50 millisec-ond basis

Chapter 5Programming Parameters

5ndash58

Perunit Motor Voltage[Motor Volt Fdbk]Displays the perunit value of motor voltageas determined from an analogndashtondashdigitalconverter input This data is scaled to read10 pu at rated motor voltage This is aversion of parameter 265 that has beenscaled to perunit to be compatible withanalog outputs This data is averaged andupdated on a 50 millisecond basis

Parameter Number 186Parameter Type SourceDisplay Units xxDrive Units 4096 = 1000 motor voltageFactory Default 00Minimum Value 00Maximum Value 8000

Rated Inverter Output Amps[Base Drive Curr]

Parameter Number 220Parameter Type SourceDisplay Units xx ampsDrive Units Display units x 10Factory Default 200 ampsMinimum Value 01 ampsMaximum Value 32767 amps

Current rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type Used forcurrent ref scaling and current processorfeedback scaling

Rated Inverter Input Voltage[Base Line Volt]

Parameter Number 221Parameter Type SourceDisplay Units x voltDrive Units NonFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Drive Nameplate Voltage rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type

Inverter Carrier Frequency[PWM Frequency]

Parameter Number 222Parameter Type SinkDisplay Units x HzDrive Units NoneFactory Default 4000 HzMinimum Value 1000 HzMaximum Value 12000 Hz

This parameter defines the drive carrierfrequency in Hz

Chapter 5Programming Parameters

5ndash59

PrechargeRidethru Selection[PrechRdethru Sel]

Parameter Number 223Filegroup ApplicationBus RegControlParameter Type linkable destinationDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111 Conversion 1 = 1

Parameter 223 lets you choose options forthe bus filter reference prechargeride-through conditions and brakingUse bits 0 through 4 to set the slew rate forthe bus voltage tracker The bus voltagetracker slowly tracks changes in the actualbus voltage If none of the bits (0 through4) are set the slew rate is 005Vsecond

The precharge function of the drive limitsthe current to the bus capacitors whenpower is initially applied to the drive Theprecharge function is completed after aminimum 300 millisecond time delay andbus voltage at least 30 volts greater thanthe undervoltage setpoint and a stable busvoltage Ridethrough provides extendedlogic operating time if the power lines dropout while the drive is running If the pre-charge function is enabled ridethroughalso provides inrush current protection bystarting a precharge in case the incomingpower returns

The bits are defined as follows

Bit Description0 Slew Rate 1

Set to choose a slew rate of 10Vsecond Bit1 Slew Rate 2

Set to choose a slew rate of 5Vsecond2 Slew Rate 3

Set to choose a slew rate of 05Vsecond3 Slew Rate 4

Set to choose a slew rate of 005Vsecond4 Slew Rate 5

Set to choose a slew rate of 0005Vsecond5 Reserved

Leave 0

Undervoltage Setpoint[Under Volt Stpnt]

Parameter Number 224Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 615Minimum Value 100Maximum Value 900

Bus Precharge Timeout[Prechrg Timeout]

Parameter Number 225Parameter Type SinkDisplay Units xx SecDrive Units Display units x 10Factory Default 300 SecMinimum Value 100 SecMaximum Value 65535 Sec

This sets the minimum threshold voltageas a percent of line voltage that will becompared with the DC Bus Voltage as acheck for a Bus Undervoltage condition

This parameter establishes a time delayperiod for DC Bus Precharge If the Drivefails to finish a DC Bus Precharge in thistime a Precharge Timeout will occur

Bus Ridethru Timeout[Ridethru Timeout]

Parameter Number 226Parameter Type SinkDisplay Units xxxx SecDrive Units Display units x 1000Factory Default 2000 SecMinimum Value 0000 SecMaximum Value 65535 Sec

This parameter establishes a time delayperiod for DC Bus Ridethrough If the busremains in a low bus ridethru conditionlonger than this time a Bus ridethru timeout condition will occur

For additional information about PrechargeRidethrough Selectionrefer to Chapter 12 Troubleshooting

Bit Description6 Reserved

Leave 07 Reserved

Leave 08 Fast Fluxup

Set to enable fast flux up9 Reserved

Leave 010 Reserved

Leave 011 Prech Exit

Set to force an exit from precharge after the precharge timeout12 En Comm Bus

Set to enable common bus precharge External fault input is used as precharge enable

13 Dis Prech TmSet to disable bus precharge and undervoltage faults while the drive is disabled

14 Dis Mult PreSet to disable all precharges after the first power up

15 Dis RidethruSet to disable all ridethroughs

Chapter 5Programming Parameters

5ndash60

CP Operating Options[CP Options]

Parameter Number 227Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 0000

For proper operation bits 0 to 6 must beleft at zeroIf bit 7 = 0 this allows the motor to coast toa stop after the flux test is completedIf bit 7 = 1 this brings the motor to a con-trolled stop after the flux test is completed

Parameter Number 228Parameter Type SinkDisplay Units xx HPDrive Units Display units x 10Factory Default 300 HPMinimum Value 10 HPMaximum Value HP

Base Motor Speed[Base Motor Speed]

Motor Nameplate Horsepower[Base Motor HP]

Parameter Number 229Parameter Type SinkDisplay Units x RPMDrive Units xFactory Default 1750 RPMMinimum Value 1 RPMMaximum Value 15000 RPM

Motor Nameplate AMPS[Base Motor Curr]

Parameter Number 230Parameter Type SinkDisplay Units xx ampsDrive Units Display units x 10Factory Default 02 ampsMinimum Value 01 ampsMaximum Value Based on parameter 220

Drive nameplate current rating of themotor Used for current reference scalingand current processor feedback scaling

User entered value of nameplate motorhorsepower The drive uses this informa-tion in the Dynamic Brake Resistortemperature calculation

User entered value of nameplate motorspeed in RPM The drive uses thisinformation to convert motor velocity RPMtofrom drive per unit

Motor Nameplate VOLTS[Base Motor Volt]

Parameter Number 231Parameter Type SinkDisplay Units x VoltDrive Units NoneFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Motor Nameplate Frequency[Base Motor Freq]

Parameter Number 232Parameter Type SinkDisplay Units xx HzDrive Units display units x 10Factory Default 60 HzMinimum Value 1 HzMaximum Value 250 Hz

Drive nameplate voltage rating of themotor

Total number of motor poles in motor

Motor Nameplate Poles[Motor Poles]

Parameter Number 233Parameter Type SinkDisplay Units x polesDrive Units NoneFactory Default 4 polesMinimum Value 2 polesMaximum Value 40 poles

Motor Inertia[Motor Inertia]

Parameter Number 234Parameter Type SinkDisplay Units xxx SecDrive Units Display units x 100Factory Default 060 SecMinimum Value 001 SecMaximum Value 655 Sec

Time taken to acceleratean uncoupled motor from zero to basespeed at rated torque

Drive nameplate frequency rating of themotor

Chapter 5Programming Parameters

5ndash61

Encoder PPR[Encoder PPR]

Parameter Number 235Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024 pprMinimum Value 500 pprMaximum Value 20000 ppr

User entered pulse per revolution rating ofthe feedback device when using anencoder to determine motor velocity

RS Tune[Stator Res]

Parameter Number 236Parameter Type SinkDisplay Units xxx Drive Units 4096 = 10000 Stator ResFactory Default 150Minimum Value 000Maximum Value 10000

Lsigma Tune [Leakage Inductance][Leakage Ind]

Parameter Number 237Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Leakage IndFactory Default 1800Minimum Value 000Maximum Value 10000

Id Tune [Base Flux Current][Base Flux Cur]

Parameter Number 238Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 motor ampsFactory Default 300Minimum Value 00Maximum Value 750

Sum of the stator and cable resistances ofthe motor in a per unit (percent representa-tion) This parameter is determined by theautocommissioning routine

Sum of the motor stator and rotor leakageinductances and the motor cable induc-tance in a per unit base impedance Thisparameter is determined by the autocom-missioning routine

Magnetizing current which produces ratedflux in the motor in a per unit (percent)representation This parameter is deter-mined by the autocommissioning routinebut can be entered manually

Iq Tune (Rated Torque Current)[Base Torque Cur]

Parameter Number 240Parameter Type SinkDisplay Units xxxDrive Units 1024 = 10000 Iq MotorFactory Default 9540 Minimum Value 000Maximum Value 10000

Current which produces rated torque in themotor in a per unit (percent) representa-tion This parameter is determined by theautocommissioning routine but can be en-tered manually

Vde Tune (Base Torque Voltage)[Base Torque Volt]

Parameter Number 241Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default ndash750 voltsMinimum Value ndash4680 voltsMaximum Value 00 volts

D axis voltage command to the motor atrated speed and rated current Parametercalculated by autocommissioning routineand MUST NOT BE CHANGED Datarepresented as XX volts

Vde Maximum (Peak HP)[Vde Max]

Parameter Number 243Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt line to neutral peakFactory Default 1125 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Maximum D axis voltage allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as XXvolts

Vqe Tune (Rated Flux Voltage)[Base Flux Volt]

Parameter Number 242Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Q axis voltage command to the motor atrated speed and rated current if motor isnot in field weakening Parameter calcu-lated by autocommissioning routine andMUST NOT BE CHANGED Data repre-sented as XX volts

Chapter 5Programming Parameters

5ndash62

Vqe Maximum (Constant HP)[Vqe Max]

Parameter Number 244Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4688 volts

Vde Minimum (Constant HP)[Vde Min]

Parameter Number 245Parameter Type SinkDisplay Units xx VoltsDrive Units 16 = 1 volt line to neutral peakFactory Default 30 voltsMinimum Value 00 voltsMaximum Value 500 volts

Kslip (Base Slip Frequency)[Base Slip Freq]

Parameter Number 246Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 0832 HzMinimum Value 0000 HzMaximum Value 10000 Hz

Q axis voltage at which the motor entersfield weakening Parameter calculated byautocommissioning routine and MUSTNOT BE CHANGED Data represented asxx volts

D axis voltage below which the adaption tomotor changes in the torque control is dis-abled Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx volts

Base slip frequency of the motor Parameter calculated by autocommission-ing routine Data represented as xx Hz

Kslip Maximum [Base Slip Fr Max]

Parameter Number 247Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 200 HzMinimum Value 000 HzMaximum Value 3000 Hz

Maximum slip frequency allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx Hz

Kslip Minimum[Base Slip Fr Min]

Parameter Number 248Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hz unit torqueFactory Default 050 HzMinimum Value 000 HzMaximum Value 1000 Hz

Minimum slip frequency allowed on themotor Calculated by autocommissioningroutine and MUST NOT BE CHANGEDData represented as xx Hz

Ki ndash Slip Regulator [Ki Slip]

Kp ndash Flux Regulator[Kp Flux]

Kp ndash Slip Regulator [Kp Slip]

Parameter Number 251Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Parameter Number 250Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 306Minimum Value 0Maximum Value 32767

Parameter Number 249Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 153Minimum Value 0Maximum Value 32767

Proportional Gain of the slip regulatorThis parameter MUST NOT BECHANGEDData represented as x

Integral Gain of the slip regulator Thisparameter MUST NOT BE CHANGEDData represented as x

Proportional Gain of the Flux regulatorThis parameter MUST NOT BECHANGEDData represented as x

Chapter 5Programming Parameters

5ndash63

Ki ndash Regulator[Ki Flux]

Parameter Number 252Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 125Minimum Value 0Maximum Value 32767

Integral gain of the slip regulator This pa-rameter MUST NOT BE CHANGEDData represented as x

AutotuneDiagnostics Selection[Autotun Diag Sel]

Parameter Number 256Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 1111 1111Enums

This parameter allows selection of drivediagnostic and commisioning tests by set-ting individual bits in this parameter

Bit 0 = Inverter transistor DiagnosticsBit 1 = Motor Phase Rotation TestBit 2 = Lsigma Measure TestBit 3 = Rs Measure TestBit 4 = Id Measure TestBit 5 = Torque Block Calc TestBit 6 = Motor Inertia TestBit 7 = System Inertia TestBit 8 = Velocity Loop Gain

Transistor Diagnostics Configuration[Tran Diag Disabl]

Parameter Number 257Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a means of disab-ling certain transistor diagnostic tests bysetting the following bits

Bit 9 = Disable Power Trans V Lower for all testsBit 10 = Disable Power Trans W Upper for all testsBit 11 = Disable Power Trans W Lower for all testsBit 12 = High InductBit 13 = Reserved (Always leave 0)Bit 14 = Reserved (Always leave 0)Bit 15 = Reserved (Always leave 0)High Inductance motors may need extended test time to de-termine opens Setting bit 12 increases the test time

Inverter Diagnostics Result 1[Inverter Diag 1]

Parameter Number 258Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameter 258 amp259

Bit 0 = Software FaultBit 1 = No motor connected or open bus fuse Bit 2 = Phase U and W ShortedBit 3 = Phase U and V shortedBit 4 = Phase V and W shortedBit 5 = Shorted modulesBit 6 = Ground faultBit 7 = Fault before shorted module ranBit 8 = Hardware overvoltage fault occurred

Bit 9 = Hardware desaturation fault occurredBit 10 = Hardware ground fault occurredBit 11 = Hardware phase overcurrent fault occurredBit 12 = Open power transistor(s) See bit 12 in parameter 257Bit 13 = Current feedback fault(s)Bit 14 = Reserved Leave ZeroBit 15 = Reserved Leave Zero

Bit 0 = Disable I feedback phase U offsetBit 1 = Disable I feedback phase W offsetBit 2 = Disable Shorted Transistor TestsBit 3 = Disable Ground Fault TestsBit 4 = Disable Open device testsBit 5 = Not UsedBit 6 = Disable Power Trans U Upper for all testsBit 7 = Disable Power Trans U Lower for all testsBit 8 = Disable Power Trans V Upper for all tests

Chapter 5Programming Parameters

5ndash64

Inverter Diagnostics Result 2[Inverter Diag 2]

Parameter Number 259Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameters 258 amp 259If any of the bits shown below are set thena problem with the associated test isindicated

0 = Transistor U upper shorted 1 = Transistor U lower shorted2 = Transistor V upper shorted3 = Transistor V lower shorted4 = Transistor W upper shorted5 = Transistor W lower shorted

6 = Current fdbk ph U offset too big7 = Current fdbk ph W offset too big8 = Transistor U upper open9 = Transistor U lower open10 = Transistor V upper openSee Parameter 257 bit 12

11 = Transistor V lower open12 = Transistor W upper open13 = Transistor W lower open14 = Current feedback phase U open15 = Current feedback phase W open

Id OFFSET[Id Offset]

Parameter Number 261Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Parameter Number 260Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Iq OFFSET[Iq Offset]

This parameter contains the LEM U offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

This parameter contains the LEM W offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

Phase Rotation Current Reference[Ph Rot Curr Ref]

Parameter Number 262Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Motor CurrentFactory Default 500Minimum Value 00Maximum Value 1000

This parameter sets the current referencethat will be used when the Phase Rotationtest is run (Parm 256 bit 1)

Phase Rotation Frequency Reference[Phase Rot Freq Ref]

Parameter Number 263Parameter Type SinkDisplay Units xx HzDrive Units 128 1 HzFactory Default 30 HzMinimum Value ndash 300 HzMaximum Value +300 Hz

This parameter sets the frequency refer-ence that will be used when the PhaseRotation test is run (Parm 256 bit 1)

Motor Current Magnitude Feedback[Motor Cur Fdbk]

Parameter Number 264Parameter Type SourceDisplay Units xx AmpDrive Units Display units x 10Factory Default 00 ampsMinimum Value 00 ampsMaximum Value 65535 amps

Displays the actual RMS value of the motorcurrent as determined from the LEM cur-rent sensors This data is averaged andupdated on a 50 millisecond basis

Motor Voltage Magnitude[Motor Volt Fdbk]

Parameter Number 265Parameter Type SourceDisplay Units x VoltDrive Units NoneFactory Default + 0 VoltMinimum Value ndash 3000 VoltMaximum Value +3000 Volt

Displays the actual LinendashtondashLine RMS val-ue of motor voltage This data is averagedand updated on a 50 millisecondbasis

Chapter 5Programming Parameters

5ndash65

Stator Frequency[Freq Command]

Parameter Number 266Parameter Type SourceDisplay Units x xxx HzDrive Units 128 1HzFactory Default 0 000 HzMinimum Value ndash255992 HzMaximum Value +255922 Hz

Displays the actual value of motor statorfrequency Units are in Hz times 128 (128 1 Hz)

Parameter Number 268Parameter Type SourceDisplay Units x VltDrive Units NoneFactory Default 0 voltsMinimum Value 0 voltsMaximum Value 1000 volts

DC Bus Voltage[DC Bus Voltage]

Inverter Temperature Feedback[Inv Temp Fdbk]

Parameter Number 270Parameter Type SourceDisplay Units +ndash x degDrive Units NoneFactory Default 0 deg Minimum Value ndash 50 deg Maximum Value +255 deg

This is the actual Bus Voltage as read bythe software from an analog input portUnits are in volts

Inverter temperature determined by NTCdevice on heatsink power structureCan be configured to generate either awarning or fault when heatsink reaches 80degrees C

Filtered Velocity Feedback[Filt Vel Fdbk]

Parameter Number 269Parameter Type SourceDisplay Units xx rpmDrive Units 4096 = base motor speedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

This parameter contains a filtered versionof velocity feedback The value containedin this parameter is not meant to be usedfor control only for display and monitoringpurposes

Limited Motor Flux[Lim Motor Flux]

Parameter Number 271Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 fluxFactory Default 100Minimum Value 125Maximum Value 100

This parameter displays the level of motorfield flux calculated by the current proces-sor and limited by the Min Flux Levelparameter (Param 174)

Parameter Number 267Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 1000 Factory Default 00Minimum Value ndash8000Maximum Value +8000

Calculated Torque[Calc Torque]

This parameter will display the calculatedvalue of motor torque as determined by theVelocity Processor The actual value ofmotor torque will be within 5 of this valueScaling is 4096 at rated motor torque Thisdata is updated on a 2 millisecond basis

Testpoint Selection 1[Torq TP Sel 1]

Parameter Number 273Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

This parameter selects a torque block testpoint The value of that test point can beread from Torq TP Data 1 (Parm 274)

Chapter 5Programming Parameters

5ndash66

Testpoint Data 1[Torq TP Sel 1]

Parameter Number 274Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 2[Torq TP Sel 2]

Parameter Number 275Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 2[Torq TP Data 2]

Parameter Number 276Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 3[Torq TP Sel 3]

Parameter Number 277Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 3[Torq TP Data 3]

Parameter Number 278Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 4[Torq TP Select 4]

Parameter Number 279Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 4[Torq TP Data 4]

Parameter Number 280Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter contains the data selectedby Testpoint Selection 1 (param 273)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 2 (Parm 276)

This parameter contains the data selectedby Testpoint Selection 1 (param 275)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 3 (Parm 278)

This parameter contains the data selectedby Testpoint Selection 3 (param 277)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 4 (Parm 280)

This parameter contains the data selectedby Testpoint Selection 4 (param 279)

Chapter 5Programming Parameters

5ndash67

Testpoint Selection 5[Torq TP Sel 5]

Parameter Number 281Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 5[Torq TP Data 5]

Parameter Number 282Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 6[Torq TP Sel 6]

Parameter Number 283Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 6[Torq TP Data 6]

Parameter Number 284Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Selection for Test DAC 1[Test DAC1 Sel]

Parameter Number 285Parameter TypeDisplay UnitsDrive UnitsFactory Default 1Minimum Value 0Maximum Value 256

Selection for Test DAC 2[Test DAC2 Sel]

Parameter Number 286Parameter TypeDisplay UnitsDrive UnitsFactory Default 4Minimum Value 0Maximum Value 256

This parameter is for factory use only DONOT ATTEMPT TO USE

Ki Frequency Regulator[Ki Freq Reg]

Parameter Number 287Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Integral gain of the frequency regulator insensorless mode This parameter mustnot be changed

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 5 (Parm 282)

This parameter contains the data selectedby Testpoint Selection 5 (param 281)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 6 (Parm 284)

This parameter contains the data selectedby Testpoint Selection 6 (param 283)

This parameter is for factory use only DONOT ATTEMPT TO USE

Chapter 5Programming Parameters

5ndash68

Kp Frequency Regulator[Kp Freq Reg]

Parameter Number 288Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 800Minimum Value 0Maximum Value 32767

Proportional gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Kff Freq Regulator[Kff Freq Reg]

Parameter Number 289Parameter Type SinkDisplay Units xDrive Units 1 = 256Factory Default 1Minimum Value 0Maximum Value 128

Ksel Freq Regulator[Ksel Freq Reg]

Feedforward gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Parameter Number 290Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 67Minimum Value 00Maximum Value 32767

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Frequency Tracker Filter[Freq Track Filt]

Parameter Number 291Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Rotor frequency regulator filter in sensor-less mode This parameter must not bechanged

Tracking Filter Type[Track Filt Type]

Parameter Number 292Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1 (Self Adjust)Minimum Value 0 (Fixed)Maximum Value 128

Frequency Trim Filter[Freq Trim Filt]

Low frequency filter select of the frequencyregulator in sensorless mode This param-eter must not be changed by nonndashfactorypersonnel

Parameter Number 293Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Slip frequency regulator filter in sensorlessmode This parameter must not bechanged

Motor Phase Rotation Errors[Phs Test Rot Err]

Parameter Number 294Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates an error conditiondetected during the motor phase rotationtest1 = Drive condition true0 = Drive condition false

Bits are defined asBit Condition0 1 to 15

Enable Drop OutReserved

Chapter 5Programming Parameters

5ndash69

Motor Inductance Test Errors[Lo Test Error]

Parameter Number 295Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor inductance test1 = Drive condition true0 = Drive condition false

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Zero Current3 AD Overflow at min gain4 Enable drop out5 Sign errorOverflow6 to 15 Reserved

Motor Stator Resistance Test Errors[Rs Test Error]

Parameter Number 296Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Not Used3 Zero Current4 Not Used5 Software Error6 Not Used7 Enable Drop Out8ndash15 Reserved

Motor Flux (Id) Test Errors[Id Test Error]

Parameter Number 297Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor flux (Id) test If abit is set to ldquo1rdquo the Drive condition is trueotherwise the condition is false

Torque Block Calculation Errors[Torq Calc Error]

Parameter Number 298Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates an errorcondition which has been detected duringthe torque block calculations If a bit is setto ldquo1rdquo the Drive condition is true otherwisethe condition is false

Bits are defined as

Bit Condition0 1 to 15

Negative or Zero SlipReserved

Bits are defined as followsBit Condition0 Autotune Speed Low (30 min)1 Identified Id lt zero2 Identified Id gt 100 motor current3 Enable drop out4ndash15 Reserved

Chapter 5Programming Parameters

5ndash70

Adapter Identification Number[Adapter ID]

Parameter Number 300Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 2Minimum Value 2Maximum Value 2

Adapter Software Version[Adapter Version]

Parameter Number 301Parameter Type SourceDisplay Units xxxDrive Units NoneFactory Default xxxMinimum Value 000Maximum Value 999

This parameter displays the StandardAdapter ID

This parameter displays the softwareversion number

Adapter Config[Adapter Config]

Parameter Number 302Parameter Type SourceDisplay UnitsDrive UnitsFactory DefaultMinimum ValueMaximum Value

(Not Used In Present Release)

Language Select[Language Select]

Parameter Number 304Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 1

This parameter makes the selectionbetween two languages0 ndash Primary Language1 ndash Alternate Language

Parameter Number 310Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In A1[Data In A1]

Data In A2[Data In A2]

Data In B1[Data In B1]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 311Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 312Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

NOTE The Parameters shown here in the range from 300 to 500 are Standard Adapter Parameters OnlyParameter descriptions for PLC Comm Adapter Parameters are covered in the PLC Comm Adapter User Manual

Chapter 5Programming Parameters

5ndash71

Data In B2[Data In B2]

Data In C1[Data In C1]

Data In C2[Data In C2]

Data In D1[Data In D2]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 313Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 314Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 315Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 316Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 317Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In D2[Data In D2]

Data Out A1[Data Out A1]

Data Out A2[Data Out A2]

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 321Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 320Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out B1[Data Out B1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 322Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Chapter 5Programming Parameters

5ndash72

Data Out C1[Data Out C1]

Data Out B2[Data Out B2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 323Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 324Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D1[Data Out D1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 326Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out C2[Data Out C2]

Parameter Number 325Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D2[Data Out D2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 327Parameter Type SinkDisplay Units ndashndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

SCANport Port Enable Mask[Port Enable Mask]

Parameter Number 330Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can control the Drive1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash73

SCANport Start Mask[Start Mask]

Parameter Number 332Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a start command1 = Permit Control0 = Deny Control

SCANport Jog Mask[Jog Mask]

Parameter Number 333Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Jog command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Clear Fault Mask[Clear Fault Mask]

Parameter Number 335Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Clear Faults command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Reference Mask[Reference Mask]

Parameter Number 334Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevice can issue a reference command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Direction Mask[Direction Mask]

Parameter Number 331Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a forwardreversecommand1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash74

SCANport Reset Drive Mask[Reset Drive Mask]

Parameter Number 336Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Reset Drive command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Local Control Mask[Local Mask]

Parameter Number 337Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can take local control1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Stop Owner[Stop Owner]

Parameter Number 340Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid stopcommand1 = Stop Input Present0 = Stop Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Direction Owner[Direction Owner]

Parameter Number 341Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofdirection changes1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Start Owner[Start Owner]

Parameter Number 342Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid startcommand1 ndash Start Input Present0 ndash Start Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash75

SCANport Jog 1 Owner[Jog 1 Owner]

Parameter Number 343Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 1command1 = Jog 1 Input present0 = Jog 1 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Reference Owner[Reference Owner]

Parameter Number 345Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe reference changes1 = Current Owner0 = Non Owner

SCANport Jog 2 Owner[Jog 2 Owner]

Parameter Number 344Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 2command1 = Jog 2 Input Present0 = Jog 2 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leavc Zero

SCANport Local Control Owner[Local Owner]

Parameter Number 346Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe drive1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Flux Owner[Flux Owner]

Parameter Number 347Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid fluxcommand1 = Flux Input Present0 = Flux Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash76

SCANport Ramp Owner[Ramp Owner]

Parameter Number 349Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid rampcommand1 = Ramp Input Present0 = Ramp Input Not Present

SCANport Clear Fault Owner[Clr Fault Owner]

Parameter Number 350Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid ClearFault Command1 = Clear Fault Input Present0 = Clear Fault Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Process Trim Owner[Trim Owner]

Parameter Number 348Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are currently issuing a valid process trim command1 = Process Trim Input Present0 = Process Trim Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

10 Volt In Filtr[10 Volt In Filtr]

Parameter Number 352Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequency for the 10 Volt Input

Pot In Filtr[Pot In Filter]

Parameter Number 353Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequecy for the Pot Input

mA In Filtr[mA In Filter]

Parameter Number 354Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointfor the mA Input

Chapter 5Programming Parameters

5ndash77

10 Volt Input[10 Volt Input]

Parameter Number 355Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the +ndash 10 volt input

10 Volt Offset[10 Volt Offset]

Parameter Number 356Parameter Type SinkDisplay Units +ndash xxx voltDrive Units 205 = 1 voltFactory Default +000 voltMinimum Value ndash2000 voltMaximum Value +2000 volt

This parameter determines the offset ap-plied to the raw analog value of the +ndash 10volt input before the scale factor is appliedThis allows the user to shift the range ofthe analog input

10 Volt Scale[10 Volt Scale]

Parameter Number 357Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the +ndash 10 volt input The +ndash 10volt input is converted to +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

Pot Input[Pot Input]

Parameter Number 358Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the pot input

Pot Offset[Pot Offset]

Parameter Number 359Parameter Type SinkDisplay Units +ndash xxx voltsDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog value of the potinput before the scale factor is appliedThis allows the user to shift the range ofthe of the analog input

Pot Scale[Pot Scale]

Parameter Number 360Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +1000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the pot input The pot input isconverted to a +ndash 2048 and then the scaleis applied allowing an effective digital rangeof +ndash 32767

Milli Amp Input[mA Input]

Parameter Number 361Parameter Type SourceDisplay Units xDrive Units NoneFactory Default +0Minimum Value 0Maximum Value +32767

This parameter displays the convertedanalog value of the milli amp input

Chapter 5Programming Parameters

5ndash78

Milli Amp Input Offset[mA Input Offset]

Parameter Number 362Parameter Type SinkDisplay Units + xxxx mADrive Units 128 = 1mAFactory Default +0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw analog value of the milliamp input before the scale factor is ap-plied This allows the user to shift therange of the analog input

Milli Amp Input Scale[mA Input Scale]

Parameter Number 363Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the milli amp input The milliamp input is converted to a +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

SCANport Analog1 Select[SB Analog Sel]

Parameter Number 364Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 365lsquoSP Analog Inrsquo

1 SCANport 12 SCANport 23 SCANport 3

4 SCANport 45 SCANport 56 SCANport 6

SCANport Analog1 In[SB Analog1 In]

Parameter Number 365Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 364 lsquoSP Analog Selrsquo

SP Analog1 Scale[SB Analog1 Scale]

Parameter Number 366Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 365

Chapter 5Programming Parameters

5ndash79

SCANport Analog2 Select[SB Analog2 Sel]

Parameter Number 367Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 368lsquoSB Analog In 2rsquo

1 Scanport 12 Scanport 23 Scanport 3

4 Scanport 45 Scanport 56 Scanport 6

SCANport Analog2 In[SB Analog2 In]

Parameter Number 368Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 367 lsquoSP Analog2 Selrsquo

SP Analog2 Scale[SB Analog2 Scale]

Parameter Number 369Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 368

Analog Output 1[Analog Out 1]

Parameter Number 370Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 1 Offset [An Out 1 Offset]

Parameter Number 371Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog output 1 Theoffset is applied after the scale factor

Chapter 5Programming Parameters

5ndash80

Analog Output 1 Scale[An Out 1 Scale]

Parameter Number 372Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 1 A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Analog Output 2[Analog Out 2]

Parameter Number 373Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 2 Offset[An Out 2 Offset]

Parameter Number 374Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000Minimum Value ndash20000Maximum Value +20000

This parameter determines the offset ap-plied to the raw analog output 2 The offsetis applied after the scale factor

Analog Output 2 Scale[An Out 2 Scale]

Parameter Number 375Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 2 A +ndash 32767digital value is converted by the scale fac-tor which allows abn effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Milli Amp Output[mA Output]

Parameter Number 376Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value +32767

This parameter converts a +ndash 32767digital value to a 4ndash20 mA output

Milli Amp Output Offset[mA Output Offset]

Parameter Number 377Parameter Type SinkDisplay Units +ndash xxxx mADrive Units 128 = 1mAFactory Default 0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw milli amp output The off-set is applied after the scale factor

Chapter 5Programming Parameters

5ndash81

Milli Amp Output Scale[mA Output Scale]

Parameter Number 378Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value 1000

This parameter determines the scale factoror gain for milli amp output A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 20 mA range

SCANport Analog Output[SP Analog Out]

Parameter Number 379Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valuethat is sent to all SCANports

Programmable Output Select[Output Select]

Parameter Number 384Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 8Minimum Value 0Maximum Value 63

This parameter selects the function ofTB7ndash1 Output The NOT column in thefollowing table indicates the value for theinverse condition For example Enteringa value of 0 will result in a Run Readycondition while a value of 32 results in a NOT Run Ready condition

NOT EN 32 0 RUN READY 33 1 RUNNING 34 2 COMMAND DIRECTION 35 3 ROTATING DIRECTION 36 4 ACCELERATING 37 5 DECELERATING 38 6 WARNING 39 7 FAULTED 40 8 AT SET SPEED 41 9 LOCAL A 42 10 LOCAL B 43 11 LOCAL C 44 12 AT ZERO SPEED 45 13 REF A 46 14 REF B 47 15 REF C

NOT EN 48 16 FLUX READY 49 17 FLUX UP 50 18 DIAGNOSTIC COMPLETED 51 19 DIAGNOSTIC ABORTED 52 20 BUS RIDETHRU 53 21 JOGGING 54 22 AUTOTUNE STAT A 55 23 AUTOTUNE STAT B 56 24 AT LIMIT 57 25 NOT USED 58 26 AT SETPOINT 1 59 27 AT SETPOINT 2 60 28 OVER SETPOINT 1 61 29 OVER SETPOINT 2 62 30 OVER SETPOINT 3 63 31 OVER SETPOINT 4

Set P66 to the type of Set Point desiredCurrent or SpeedThen set the appropriate parameter (P60 ndashP65) to monitor your desired SetPoint

Chapter 5Programming Parameters

5ndash82

IO Stop Select 1[Stop Select 1]

Parameter Number 387Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 5 2 = Current limit stop1 = Ramp Stop0 = Coast Stop

Input Status[Input Status]

Parameter Number 386Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 1111 1111Enums

This parameter displays the onoff status ofinputs 1-8 at TB31 = ON0 = Off

Bit Condition0 12

Input 1Input 2Input 3

Bit Condition345

Input 4Input 5Input 6

Bit Condition67

Input 7Input 8

Input Mode[Input Mode]

Parameter Number 385Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 30Enums

This parameter selects the functions of theinputs 1-9 at TB3

Mode 1 2 3 4 5 27 6 7 8 9 2810 291112131415 301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2StopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevPot UpRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3RevSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type12 AccPot UpJogFwdFwdPot OnFwd2nd AccLocRemStop Type12 AccPot upLocRemProc TrimFlux EnSpdTrq2SpdTrq2FwdSpdTrq2Proc TrimFlux EnProc TrimJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd 3Spd 312 DecPot DnLocRemJogSpd 3Spd 3Pot Up1st DecSpd 3Spd 312 DecPot DnStop TypeRampResetSpdTrq1SpdTrq2RampSpdTrq1ResetResetRampSpd 3

Input 7StatusSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Pot Dn2nd DecSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Proc TrimFlux EnResetSpd 2Spd 2Spd 2Spd 2Spd 2

Input 8StatusSpd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1

Chapter 5Programming Parameters

5ndash83

MOP Value[Mop Value]

Parameter Number 394Parameter Type SourceDisplay Units x RPMDrive Units 4096 = Base SpeedFactory Default 00Minimum Value Negative Speed LimitMaximum Value Positive Speed Limit

This parameter displays the MOP value

IO Deceleration Rate 2[Decel Rate 2]

Parameter Number 392Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

Mop Increment[Mop Increment]

Parameter Number 393Parameter Type SinkDisplay Units xx RPM (RPM per sec)Drive Units 4096= Base SpeedFactory Default 10 of base speedMinimum Value 00 RPMMaximum Value Base Speed

This parameter determines the rate ofincrease or decrease to the MOP valueper time

IO Deceleration Rate 1[Decel Rate 1]

Parameter Number 391Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

IO Acceleration Rate 2[Accel Rate 2]

Parameter Number 390Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the 0 rpm tobase speed ramp rate

IO Stop Select 2[Stop Select 2]

Parameter Number 388Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 52 = Current limit stop1 = Ramp Stop0 = Coast Stop

IO Acceleration Rate 1[Accel Rate 1]

This parameter determines the 0 rpm tobase speed ramp rate

Parameter Number 389Parameter Type SinkDisplay Units xx SecDrive Units 10 = 1 secFactory Default 10 secMinimum Value 00 secMaximum Value 65535 sec

Chapter 5Programming Parameters

5ndash84

Pulse Value[Pulse Value]

Parameter Number 399Parameter Type SourceDisplay Units xx RPMDrive Units 4096 = Pulse ScaleFactory Default 00Minimum Value ndash8 x Pulse ScaleMaximum Value +8 x Pulse Scale

This parameter displays the pulse inputvalue

Pulse Offset[Pulse Offset]

Parameter Number 398Parameter Type SinkDisplay Units xx RPMDrive Units NoneFactory Default 00Minimum Value ndash Pulse ScaleMaximum Value + Pulse Scale

This parameter determines the minimumspeed the pulse input will go to

This parameter determines the pulse inputspeed that is equal to 4096 drive units

Pulse Scale[Pulse Scale]

Parameter Number 397Parameter Type SinkDisplay Units x RPMDrive Units 4096Factory Default 1750Minimum Value ndash6000Maximum Value +6000

SP Comm Retries[SP Comm Retries]

Parameter Number 404Parameter Type SourceDisplay Units xDrive UnitsFactory Default 00Minimum Value 0Maximum Value 65535

This parameter monitors the amount ofSCANport communications errorsthat have occurred since power up

Pulse PPR[Pulse PPR]

Parameter Number 395Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024Minimum Value 500Maximum Value 20000

This parameter determines the pulse inputpulses per revolution

Pulse Single or Double Edge[Pulse Edge]

Parameter Number 396Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 2Enums1 = 1 Edge2 = 2 Edges

This parameter determines if rising (single)or rising and falling (double) edges arecounted for the pulse input

Chapter 5Programming Parameters

5ndash85

Fault Status[SA Fault Status]

Parameter Number 407Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1110 0001 0111 1111Enums

This parameter displays the fault status ofthe SCANport device1 = Fault0 = No Fault

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4 ndash 20 mA LossBit 9 ndash Not UsedBit 10 ndash Not UsedBit 11 ndash Not Used

Bit 12 ndash Not UsedBit 13 ndash Illegal Drive Type (Not Configurable)Bit 14 ndash Diff Drive Type (Not Configurable)Bit 15 ndash SCANport error (Not configurable)

Warning Status[SA Warn Status]This parameter displays the warning statusof the SCANport device timeouts1 = Warning0 = No Warning

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6

Parameter Number 408Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

Bit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Fault Select[SA Fault Select]

Parameter Number 405Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter chooses whether a SCAN-port device causes a drive fault a warningbased on lsquoSA Warn Selrsquo (P406) or doesnothing1 = Fault0 = WarningNothing

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Warning Select[SA Warn Select]

Parameter Number 406Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter selects whether a SCAN-port device timeout causes a warning ordoes nothing1 = Warning0 = Does Nothing

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Chapter 5Programming Parameters

5ndash86

This Page Intentionally Blank

Chapter 6

6ndash1

Troubleshooting

General Chapter 6 provides information to guide you in troubleshooting The 1336FORCE Drive employs extensive diagnostics to aid in correcting manymalfunctions that may occur in the system This guide is designed to helpyou interpret the diagnostic response of the Drive when a malfunctionoccurs Possible corrective measures will be explained to help you get theDrive repaired or functional as quickly as possible for most types ofmalfunctions

ATTENTION Only qualified personnel familiar with the1336 FORCE drive system and the associated machinery shouldperform troubleshooting or maintenance functions on the DriveFailure to comply may result in personal injury andorequipment damage

During Start-up you should have recorded board jumper settings for eachboard board software version numbers and the drive and motor nameplate data in Table 4A If it was not record it at this time before beginningany troubleshooting sequences

Required Equipment For initial troubleshooting a programming device is required to read faultcodes In addition to a programming device the following should beavailable before initiating any troubleshooting procedures

Digital Multimeter (DMM) capable of 1000V DC750VAC with one megohm minimum input impedance

Clamp on Ammeter (ACDC) with current ratings to 2X rated current output of 1336 FORCE AC Drive

Dual trace oscilliscope with differential capability digital storage two X10 and one X100 calibrated probes (optional but recommended)

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

Hand tachometer used to monitor motor velocities Programming Device Instruction Manual and Adapter Board

Reference Manuals

Chapter 6Troubleshooting

6ndash2

Fault Descriptions Fault Display ndash Faults are indicated by showing a decimal number of up to5 characters relating to the fault (Figure 61) or by flashing LED sequenceson the Main Control Board The fault will be displayed until a Drive resetor Clear Faults is initiated A Drive Reset will clear all faults but a ClearFaults Command will only clear soft and warning faults Refer to Tables6A amp 6B for a listing and description of the various faults Whenapplicable a possible solution will also be provided

Figure 61Typical Fault Description Display

5500 2

Fault Code Definition ndash The fault code is a 5 character decimal numberthat is defined as follows

SAXXX S = Source DesignatorA = Area DesignatorXXX = Internal Fault Code (0 thru 999)

The Source Designator (S) is the 1st digit of the number0 = Main Board Velocity Processor (VP)1 = Main Board Current Processor (CP)2 = Adapter Processor (PLC Comm Standard Adapter etc)3 = Domino Processor (DP)4 = Reserved

Area Designator (A) is the 2nd digit of a number0 = General1 = Motor2 = Inverter3 = Mtr Control4 = Adapter5 = External Device6 = Communications7 = Reserved8 = Reserved9 = ConverterBrake

Internal Fault Code (XXX)The internal fault codes (last three digits of number) are identified in Table6A thru 6C

Chapter 6Troubleshooting

6ndash3

Table 6A1336 FORCE Main Control Fault Descriptions

Fault Fault Text Parameter

1300013001130021300313004

03008030090301003011030120301302014

12016120171201812019140201602116022

040240302503026120270202803029

120321203312034120351203612037

050480204901050010510105201053050540205503057030580905902060020610606202063

CP EPROM FltCP Int RAM FltCP Ext RAM FltCP Stack RAM FltVP MBI Failure (Dual Port)

VP EPROM FltVP Int RAM FltVP Ext RAM FltVP Stack RAM FltCP MBI Failure AP MBI Failure Power EEPROM Flt

Bus OvervoltageTransistor DesatGround FaultIOC FaultSW Malfunction MS Cable LossMS Ena Timeout

AP Handshake ErrorAbsolute OverspdAnalog Spply TolAtuneDiag FailInv Temperature VP ndash SW Error

Ridethrough TimePrecharge TimeBus DropBus UndervoltBus Drop Cycles gt5Open Circuit

Vel FB LossInv Overtemp PndMtr TemperatureMotor Overld PndMotor Overld TrpMotor StalledExternal Flt InRMS FaultParameter LimitMath LimitDB OvertempAC Contactor Inv Overld PndDrv to Drv ErrorInverter Overload

Bit

8080808080

80808080808080

81818181818181

818181818181

828282828282

838383838383838383838383838383

0001020304

08091011121314

00010203040506

080910111213

000102030405

000102030405060709101112131415

LED

CP Red 1 blinkCP Red 2 blinkCP Red 3 blinkCP Red 4 blinkCP Red 5 blink

VP Red 1 blinkVP Red 2 blinkVP Red 3 blinkVP Red 4 blinkVP Red 5 blinkVP Red 6 blinkVP Red Flashing

CP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid Red

VP Solid RedVP Flashing RedVP Flashing RedCP VP Flash RedVP Solid RedVP Solid Red

CP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing Red

VP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Solid RedVP Flashing RedVP Flashing RedVP Flashing Red

Fault Type

SoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftHard

HardHardHardHardHardHardHard

HardSoftSoftSoftHardHard

SoftSoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftSoftSoftSoftSoftSoftHardSoftSoftSoft

Chapter 6Troubleshooting

6ndash4

The first digit in the 5 character fault number for Standard Adapter Boardfaults is always 2 indicating the source is an Adapter Processor

0 = Velocity Processor (VP)1 = Current Processor (CP)2 = Adapter Processor (Standard Adapter or PLC Comm)3 = Domino Processor (DP)

The Area Designator (2nd digit) and internal fault codes (last three digits)remain the same as described under the Fault Code Definition on page 6ndash2Listed below are the fault codes for the Standard Adapter Board For aPLC Comm Adapter fault codes refer to the PLC Comm Adapter manual

Table 6B1336 FORCE Standard Adapter Fault Descriptions

Fault Description Type24001240022400324004240052400624007

24017240182401924020240212402224024

240292403024031

MBI FailureBRAM FailureVP Handshake FailureCP Handshake FailureVP Mode FailureCP Mode FailureSA Language Failure

SP Port 1 FailureSP Port 2 FailureSP Port 3 FailureSP Port 4 FailureSP Port 5 FailureSP Port 6 Failure4 ndash 20Ma Loss

Drive Type DifferenceIllegal Drive TypeSP Internal Failure

Hard FaultHard FaultHard FaultHard FaultHard FaultHard FaultHard Fault

FaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNone

Soft FaultHard FaultSoft Fault

Fault TextHW MalfunctionHW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionHW Malfunction

SP PT1 TimeoutSP PT2 TimeoutSP PT3 TimeoutSP PT4 TimeoutSP PT5 TimeoutSP PT6 Timeout4 ndash 20Ma Loss

Diff Drv TypeIllegal Drv TypeSW Malfunction

Chapter 6Troubleshooting

6ndash5

FaultWarning Handling The lights on the motor control board indicate the status of the Current andVelocity processors Both the Current and Velocity processors have bothGreen and Red LEDrsquos associated with their status Table 6C explains themeaning of the CP and VP status lights

Table 6CCP and VP Status

Status Meaning

Solid GreenFlashing GreenFlashing RedSolid Red

No FaultDrive WarningDrive Soft FaultDrive Hard Fault

VP LED CP LED

D2D2D3D3

D4D4D5D5

Hard Fault ndash A Drive hard fault is a fault that trips the Drive causing it tocome to a stop This type of fault requires the user to perform a DriveReset to remove the fault

Soft Fault ndash A Drive soft fault will also cause the drive to trip and cometo a stop This type of fault can be removed by doing a Clear Faultscommand after the condition that caused the Drive to trip has beenremoved

Drive Warning ndash A Drive Warning is simply an undesirable conditionthat exists within the Drive It will not cause the Drive to trip A ClearFaults command after the warning condition has been alleviated willremove the warningEverytime the Drive has any of the faults or warnings decribed above afaultwarning message is logged in either the fault or warning queue Thisis designed to aid in troubleshooting

Motor Control Board Faults amp Warnings ndash There are two types of faultand warning queues for the Main Control Board configurable andnonconfigurable

Configurable Faults amp Warnings ndash The configurable fault queuecontains faults that can be set up to either trip the drive or provide only avisual warning while the drive continues to operate

Nonconfigurable Faults amp Warnings ndash The nonconfigurable fault queuecontains faults that you canrsquot disable These faults are the result of acondition that could damage the Drive if allowed to persist The non ndashconfigurable fault queue faults can be viewed in parameter 81 (Fig 62)

In addition to configurable amp nonndashconfigurable faults there are theldquopowerup faultsrdquo

Powerup Faults ndash The powerup faults appear in parameter 80 (Fig 63)These faults primarily consist of problems that could occur with powerupof both the current and velocity processors

Adapter Board Faults ndash Adapter board faults are setup and displayed inseparate parameters from the Main Control Board

Chapter 6Troubleshooting

6ndash6

Figure 62Parameter 81 (Nonndashconfigurable Fault Status)

DC Bus Overvoltage Trip

Transistor Desaturation Trip

Groundfault Trip

Instantaneous Overcurrent Trip

Adapter Comm Loss detected by CP

MasterSlave Cable Loss

MasterSlave Enable Timeout

Not Used

Adapter Comm Loss detected by VP

Absolute Overspeed

Analog Power Supply Tolerance

Autocommission or Transistor Diagnostic Fail

Inverter Temperature Trip

Software Malfunction detected by VP (Task Overrun)

Software Malfunction detected by VP (Illegal Interrupt)

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 63Parameter 80 (PowerupDiagnostic Fault Status)

CP PROM Failure

CP Internal RAM Failure

CP External RAM Failure

CP Stack RAM Failure

CPVP Dualport RAM Failure

NOT USED

NOT USED

NOT USED

VP Prom Failure

VP Internal RAM Failure

VP External RAM Failure

VP Stack RAM Failure

VPCP Dualport RAM Failure

VPAP Dualport RAM Failure

Base Drive EE Failure

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates fault conditions in the Drive that CANNOT be configured as warnings When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false Bit 0ndash3 are detected by hardwareand 4ndash15 are detected by software

This word parameter indicates a fault condition which has been detected during power up or reset of the drive Wherethe bit is set to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash7

Current Processor Faults amp Warnings ndash Both the fault and warningqueues are configurable for either the Current or the Velocity processorYou can configure which Current processor faults you want to trip theDrive by setting Parameter 86 When the Drive trips on one of the faultsset in parameter 86 the CP light on the Main Control board will turn redWhen the drive trips it will coast the motor to a stop Parameter 87 hasthe same bit definitions as parameter 86 but instead of tripping the Drivewill display a warning fault which in turn causes the CP light to flashgreen indicating a warning The Drive will continue to run when there is aCP warning Parameter 82 displays which CP fault caused the Drive totrip while parameter 84 displays any CP warnings that have occurred

Most of the setup for the current processor FaultWarning configurationdeals with DC Bus conditions These Bus conditions deal with the Busprecharge and any type of ride through conditions

Configuring CP Faults and Warnings ndash You can configure which of thefollowing faults you want to trip the drive by using CP FaultWarningConfiguration Select (parameter 86) and CP WarningNone ConfigurationSelect (parameter 87) Parameters 86 and 87 both have the following bitdefinitions

Thisbit

With this text Is defined as

0 RidethruTime A bus ridethrough timeout occurred

1 Prechrg Time A precharge timeout occurred

2 Bus DropA bus voltage drop of 150V below the bus trackervoltage This is covered in detail later in thischapter

3 Bus UndervltA bus voltage drop to a level below the value setin Undervoltage Setpoint (parameter 224)

4 Bus Cyclesgt5More than 5 ridethroughs occurred within a 20second period

5 Open CircuitThe fast flux up current is less than 50 ofcommanded

6ndash15 RESERVED Always leave zero

For each condition that you want the drive to fault on set thecorresponding bit in Fault Select 1 When the drive trips on a conditionthat you set to fault the drive how the drive reacts depends on whichcondition occurred

For bits 0 through 5

bull The red CP light turns on

bull The motor coasts to a stop

Chapter 6Troubleshooting

6ndash8

For each condition that you want the drive to display a warning fault onyou need to

1 Set the corresponding bit in CP Warning None Configuration Select

2 Make sure the corresponding bit in CP Fault Warning ConfigurationSelect is set to 0

When the drive trips on a condition that you set to display a warning

bull The CP light flashes green

bull The drive continues to run

If a particular bit is not set in either CP Fault Warning ConfigurationSelect or CP Warning None Configuration Select the drive ignores thecondition when it occurs

Most of the faultwarning configuration options deal with DC busconditions These bus conditions deal with the bus precharge and anytype of ridethrough conditions The bus precharge and ridethroughconditions are covered later in this chapter

bit = 1

bit = 0

Trips Drive

Fault

Fault Select

Reports as Warning

bit = 1

bit = 0

Reports as Warning

Warning Select

No Report Ignored

Chapter 6Troubleshooting

6ndash9

To understand the precharge and ridethrough faults you need a basicunderstanding of how these functions work as well as the options thatyou can use to alter the way precharge and ridethrough operate in the1336 FORCE drive

Understanding Precharge

The precharge of the drive has different circuits depending on drive sizeFor the precharge operation for large horsepower (40 hp and larger)standalone drives the precharge starts the SCR phase advance andcompletes precharge when the bus is stable For all other drive typesprecharge is completed after a stable bus voltage is achieved and theprecharge device (SCR or relay) byndashpasses the precharge resistor Forcommon bus operation set bit 12 in Precharge Ridethrough Selection(parameter 223) The drive current and voltage ratings stored in EEPromdetermine the standalone operation

With the default configuration the following conditions are needed tocomplete precharge

bull a stable bus voltage for a minimum of 300 milliseconds

bull a bus voltage greater than the value set in Undervoltage Setpoint (parameter 224)

bull a valid control status from the precharge board if present

You can modify the default configuration for common bus drives byusing the external fault (input) and the precharge exit option

bull You can use the external fault input with a cabinet disconnect switchto force precharge when the disconnect is opened and the drive is dis-abled This may reduce current stress when the disconnect is closedagain

bull You can use the exit precharge option to let the precharge completeafter the precharge timeout period (30 seconds) when the bus voltageis not stable All other conditions must be met This is often used inthe case of common or shared bus configurations where other drive(s)may be causing bus voltage variations Only use this option whereneeded otherwise excessive inrush current could open or weaken theline fusesNOTE The precharge timeout fault (Parameter 86) must be disabledto use this option

Before you can enable the inverter all drive types must complete a firsttime precharge This is required even if you have set the disableprecharge function by setting bit 14 of PrechargeRidethrough Selection(parameter 223)

Understanding Prechargeand Ridethrough Faults

Chapter 6Troubleshooting

6ndash10

A filtered or slow average of the bus voltage is developed as areference or bus voltage tracker to determine if a line drop out hasoccurred If a 150 volt (or greater) drop in present bus voltage comparedto the filtered bus voltage occurs the drive can start a ridethrough Theridethrough function

bull disables the drive

bull restarts a precharge

bull waits for the bus to return to within 75 volts of the bus voltage track-errsquos voltage value before starting again

You can use bits 0ndash4 of BusBrake Opts to control the slew rate of thebus voltage tracker Refer to the section on the bus voltage tracker laterin this chapter for additional information

Understanding Ridethrough

Ridethrough provides current inrush protection and extended logicoperating time if the power lines drop out while the drive is runningThe drive is immediately disabled when it senses that the incomingpower lines dropped out (bus capacitor voltage drop) The energy storedin the bus capacitors keeps the logic supplies running for an extendedtime If the power lines return before the logic power supplies losepower you can configure the drive to resume operation without systemintervention (default) The ridethrough timeout is set for two secondsThis means that the drive is configured to fault (default setting) and notautondashrestart if the dropout lasts more than two seconds

ATTENTION You must determine safe autondashrestart andfault configurations at the system and user level Incorrectselection(s) may result in safety concerns andor drivedamage

CP Fault Warning Configuration Select 1 (parameter 86) and CPWarning None Configuration Select (parameter 87) let you specify howyou want the drive to report specific precharge and ridethroughinformation

Ridethrough also protects the drive from excessive inrush current whenthe power returns by entering a precharge mode when ridethrough isinitiated After precharge has finished the drive can completeridethrough and resume normal drive operation The drive is enabledagain after the bus rises to within 75 volts of the bus voltage trackervalue

Chapter 6Troubleshooting

6ndash11

ATTENTION If you are using an external logic powersupply the drive may be able to stay in an indefiniteridethrough state If the power returns to the drive (muchlater) the drive automatically restarts You must thereforehandle the control of enable faults timendashouts driveconfiguration and safety issues at the system level

Use the following parameters to configure the precharge and ridethroughfunctions

bull CP Fault Warning Configuration Select (parameter 86)

bull CP Warning None Configuration Select (parameter 87)

bull Precharge Ridethrough Selection (parameter 223)

bull Undervoltage Setpoint (parameter 224)

In addition Test Select 1 (parameter 93) and Test Data 1 (parameter 92)contain software testpoints that provide additional precharge information

Configuring the Faults and Warnings for Precharge

You can use CP Fault Warning Configuration Select and CP Warning None Configuration Select to enable faultwarning conditions when theappropriate bit is set (1) If a bit is clear (0) in CP Fault WarningConfiguration Select you can choose to have the condition reported as awarning by setting the bit in CP Warning None Configuration SelectThe following are the bits that pertain to precharge

Thisbit

With this text When set generates a fault when

0 RidethruTimeThe ridethrough time exceeds 2 seconds(default see P226)

1 Prechrg TimeThe precharge time exceeds 30 seconds(default see P225)

2 Bus DropThe bus voltage drops 150 volts below thebus tracker voltage This is the level wherethe drive would normally enter ridethrough

3 Bus Undervlt

The bus voltage drops below the level set inUndervoltage Setpoint (parameter 224) Thisis the level where the drive would enterridethrough if it occurs before a 150 volt dropin bus voltage

4 Bus Cyclesgt5

At least 5 ridethrough cycles have occurredwithin a 20 second period This indicates aconverter problem or a problem withincoming power Consider checking theincoming power for a phase loss

Chapter 6Troubleshooting

6ndash12

Using Precharge Ridethrough Selection to ChangePrechargeRidethrough Options

You can use Precharge Ridethrough Selection (parameter 223) tochange how precharge and ridethrough work Precharge RidethroughSelection is a bit encoded word that disables the following functionswhen the appropriate bit is set (1)

Thisbit

Has this definition

0 Sets the bus voltage tracker slew rate to 10 voltssecond

1 Sets the bus voltage tracker slew rate to 5 voltssecond

2 Sets the bus voltage tracker slew rate to 05 voltssecond

3 Sets the bus voltage tracker slew rate to 005 voltssecond

4 Sets the bus voltage tracker slew rate to 0005 voltssecond

5 Reserved Leave zero

6 Reserved Leave zero

7Setting this bit selects the slave drive of a MasterndashSlavecombination to use the master drive analog frequency referencein place of the slave encoder input

8Enables fast flux up This is covered in more detail later in thischapter

9 Reserved Leave zero

10 Reserved Leave zero

11 Forces an exit from precharge after the precharge timeout

12 Identifies the drive as a common bus converter

13

Disables faults or warnings while the drive is disabled Thisallows power up and down the bus for a common bus systemwithout faulting even if the faults or warnings are enabled Forexample faults or warnings only occur if the drive is runningThis may be desirable when external power supplies are used

14

Disables the precharge function after initial power up Any busdrop or undervoltage will not result in precharge This maydestroy the drive if power returns to the system This should beused where you control the input impedance or with a front endconverter that is current limited

15

Disables the ridethrough and precharge functions If the powerlines drop out the drive attempts to continue operation as longas any power is available This may destroy the drive if powerreturns to the system This should be used only where youcontrol the systemrsquos incoming power

Chapter 6Troubleshooting

6ndash13

Using Undervoltage Setpoint

You can use Undervoltage Setpoint (parameter 224) to set the level ofbus voltage that must be present to complete precharge and a level whereridethrough can be initiated If configured as a faultwarningUndervoltage Setpoint sets the bus voltage level that faultswarns thedrive The bus voltage level that is used is determined as follows

Undervoltage Setpoint Rated Inverter Input Voltage (parameter 221) sqrt(2) = bus voltage level for ridethroughs faults or warnings

Using Testpoint Select 1 and Testpoint Data 1 to View SoftwareTestpoints

Additional information concerning precharges and ridethroughs isavailable through Testpoint Select 1 (parameter 273) and Testpoint Data1 (parameter 274)

Viewing the Calculated Undervoltage Value of Bus Voltage

To view the value of the calculated undervoltage

1 Enter a value of 24 into Testpoint Select 1

2 Monitor Testpoint Data 1

You can use this to check the actual bus voltage that causes anundervoltage condition

Checking the Status of the Precharge

To view the precharge status enter a value of 12 into Testpoint Select 1and then monitor Test Data 1 for the precharge status The prechargestatus is bit encoded as follows

Thisbit

When set indicates that

0The precharge function has been completed and the prechargedevice should be on The drive can be enabled only after thisbit is set

1The drive is in ridethrough Precharge must be completed andthe bus must return to within 75 volts of the bus voltage trackerbefore normal drive operation can resume

2 A prechargendashinitiated condition is in ridethrough

3A precharge has been requested due to an external fault (input)Common Bus Configuration only

4The converter is ready for precharge and the controller maystart its precharge function The external precharge board is okif present

Chapter 6Troubleshooting

6ndash14

5The measured bus voltage is not stable (there is a variation ofgreater than plusmn25 volts) and the precharge cannot finish

6 The DC bus voltage is less than line undervolts

7The precharge function cannot complete because the measuredbus voltage is less than 75 volts below the bus voltage trackerThis only applies to precharging after a ridethrough

8 The precharge device has been commanded ON

9 Not used

10 An exit from precharge was requested

11 Precharge was skipped due to an enable dropout

12 An initial (first) precharge is executed

13 A high horsepower drive type is being used

Enabling Fast Flux Up

You can use fast flux up to achieve rated flux conditions andconsequently high torque as fast as possible after an enable Underdefault conditions (no fast flux up) the drive brings the motor to ratedflux conditions in a time proportional to the rotor time constant of themotor These times range from 50 milliseconds for small motors toseveral seconds for large motors If a high load is attempting to bestarted no acceleration occurs until that time has elapsed Enabling fastflux up can decrease that time by a factor of 5 to 10

You can enable the fast flux up function of the drive by setting bit 8 ofPrecharge Ridethrough Selection (parameter 223) In this case

Use Testpoint Select 1 (parameter 273) to check the approximatefluxing time Enter a value of 86 into Testpoint Select 1 to display thefluxing time in Testpoint Data 1 (parameter 274) The time delay isgiven in seconds x 0000977 If the flux time is 0 no fast flux up occursand the drive starts normally If at least 50 of the commanded currentis not measured you can configure the drive to fault at this time usingCP Fault Warning Configuration Select (P86)

Chapter 6Troubleshooting

6ndash15

Forcing the Drive to Complete a Precharge

In some cases the precharge may not complete due to external busdisturbances Setting bit 11 in BusBrake Opts forces the precharge tocomplete at the precharge interval (default 30 seconds) This may causeprecharge damage and should only be used when large inrush currentscannot occur

PrechargeRidethrough Selection (parameter 223) also lets you select arate called a slew rate for the bus voltage tracker The bus voltagetracker slowly tracks changes in the actual bus voltage If the actual busvoltage drops 150 volts or greater below the current value of the busvoltage tracker the drive automatically disables modulation and entersprecharge

Important You should only use the bus voltage tracker if you arehaving ridethrough problems The bus voltage trackeradjusts the bus sensitivity to ridethrough for cases wherethere is an unstable bus

By changing the rate used for the bus voltage tracker you can make yoursystem more or less sensitive to changes in the actual bus voltage Forexample if your drive currently enters precharge after the motor exitsregeneration you may need to change your slew rate

Figure 64 shows an example of the filtered bus voltage reference

Figure 64 Example Bus Voltage Line

Volts

Time

150V

Bus voltage tracker

A

B

CActual bus voltage

At point A the motor was in regeneration so the value of the bus voltagetracker slowly increased

Understanding the BusVoltage Tracker

Chapter 6Troubleshooting

6ndash16

At point B the motor was no longer in regeneration and the bus voltagehad dipped below the nominal range If the drive compared point B withpoint A the drive would have seen a bus drop of 150V and enteredprecharge However because the drive compared point B with the busvoltage tracker the bus drop was less than 150V and the drive continuedoperating

At point C the bus voltage had dropped 150V and the drive entered aprecharge state

Precharge Ridethrough Selection provides the following options forchanging the slew rate

Thisbit

With thistext

Sets the slew rate to

0 Slew Rate 110Vsecond This option is the most sensitive tochanges in the actual bus voltage

1 Slew Rate 2 5Vsecond

2 Slew Rate 3 05Vsecond

3 Slew Rate 4 005Vsecond

4 Slew Rate 50005Vsecond This option is the leastsensitive to changes in the actual bus voltage

If all bits are clear (0) the slew rate is 005Vsecond If more than onebit is set the first bit that is set is used for the slew rate For mostapplications the default slew rate of 005Vsecond which is 1 volt in 20seconds should be appropriate

Chapter 6Troubleshooting

6ndash17

Velocity Processor Faults amp Warnings ndash You can configure whichvelocity processor faults you want to trip the drive by setting Parameter 88(Figure 65) When there is a velocity processor fault the VP light on theMain Control board will blink red (soft fault) for configurable VP faultsWhen this happens the drive will shut off and coast the motor to a stopVP faults can be viewed in parameter 83 (Figure 66) Configurable VPwarnings can be setup in Parameter 89 (Figure 67) and viewed inparameter 85 When a configurable VP warning exists the VP light willbe flashing green but the drive will continue to run Velocity processorwarning faults can be viewed in parameter 85 (Figure 68)

Figure 65 Parameter 88 (VP FaultWarning Configuration Select (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 85 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive will be reported as a FAULT otherwise the condition is reported as aWARNING

Chapter 6Troubleshooting

6ndash18

Figure 66Parameter 83 (VP Configurable Fault Status)

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 67Parameter 89 (VP WarningNone Configuration Select (bits))

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive fault condition Each configuration bit matches the bit definitions of Parameters 85 88 and 89 When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Foldback (IT)This word parameter indicates conditions detected by the Velocity Processor (VP) that will be reported as either a drivefault or warning or not reported at all (ignored) Each configuration bit matches the bit definitions of Parameters 83 85and 88 When a bit is set to ldquo1rdquo the corresponding condition in the Drive will be reported as configured by parameter 88When the bit is set to ldquo0rdquo the condition is not reported

Chapter 6Troubleshooting

6ndash19

Figure 68Parameter 85 (VP Configurable Warning Status (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Foldback (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash20

AutondashTuning Test Procedure AutondashTuning is a procedure which involves the running of a group of testson the motordrive combination Some of these tests check the Drivehardware and others configure Drive parameters for torque control with theattached motorNOTE The Quickstart procedure in Chapter 4 will take you stepndashbyndashstepthrought the Autotuning Procedure The information presented hereexplains how to manually tune specific areas

ATTENTION Power must be applied to the Drive and themotor must be connected for some of the following tests Someof the voltages present are at incoming line potential To avoidelectrical shock hazard or damage to equipment only qualifiedservice personnel should perform the following procedures

Test Overview AutondashTuning includes 6 tests all of which can beperformed on a motor which is either coupled or decoupled from loadThese tests include

The power structure and transistor diagnostics routines let you determine ifany problems exist in the power structure of the drive and determine theprobable cause of these problems

The diagnostic software determines hardware problems through a series ofsystem tests These tests are parameter dependent The test results dependon drive size motor size system wiring and other factors that affectsystem voltage and load impedance

In most cases the software can properly determine if faults exist howeverthere may be some installations where some faults cannot be properlychecked In general test results are listed as failed if a questionable case isfound You must review test results with respect to the whole drive systemto properly interpret whether a real problem exists

You can run the transistor diagnostics before a start by setting bits 6ndash8 ofLogic Options (parameter 59) Transistor diagnostics require motor currentso a userndashstart transition is required to run the tests

To run the transistor diagnostics independently

1 In AutotuneDgn Sel (parameter 256) set bit 0 to 1

2 Enable the drive

The green enable light (D1) turns on very briefly (approximately 300 ms)and then turns off This runs only the transistor diagnostics and leaves thedrive disabled after the diagnostics are complete AutotuneDiagnosticsSelection is automatically cleared to zero after the diagnostics have run

Power Structure andTransistor DiagnosticsTests

Chapter 6Troubleshooting

6ndash21

Because the test results depend on your particular system you candisable tests that may give questionable or nuisance faults UseTransistor Diagnostics Configuration (parameter 257) to disableindividual tests

If you want to disableThen setthis bit

Current feedback phase U offset tests 0

Current feedback phase W offset tests 1

Shorted power transistor tests 2

Ground fault tests 3

Open transistor open motor open current feedbackopen gate drive and open bus fuse tests

4

Power transistor U upper for all tests 6

Power transistor U lower for all tests 7

Power transistor V upper for all tests 8

Power transistor V lower for all tests 9

Power transistor W upper for all tests 10

Power transistor W lower for all tests 11

Bits 5 and 13 through 15 are reserved You must leave these bits 0

Even though you set bits 6 through 11 to disable the individual tests youwill still get a fault with the other tests if there is an open in an individualsection

To test specific modules within the power structure you can disable anytransistor or any combination of transistors You must leave alltransistors enabled under most conditions Use sound judgement toverify that power transistor fault conditions do not exist before disablingtests

Chapter 6Troubleshooting

6ndash22

Inverter Diagnostics Result 1 (parameter 258) and Inverter DiagnosticsResult 2 (parameter 259) contain the results of the transistor diagnostictests

Important Serious component failures may occur if unverified powertransistor fault conditions are ignored or tests are disabledbefore you proceed to run the drive under load

Inverter Diagnostics Result 1 (parameter 258) is defined as follows

When thisbit is set (1)

Then

0 A software fault occurred

1 No motor is connected or a bus fuse is open

2 Phase U and W shorted

3 Phase U and V shorted

4 Phase V and W shorted

5 There are shorted modules

6 A ground fault occurred

7 A fault occurred before the short module ran

8 A hardware overvoltage fault occurred

9 A hardware desat fault occurred

10 A hardware ground fault occurred

11 A hardware phase overcurrent fault occurred

12 There are open power transistor(s)

13 There are current feedback faults

Bits 14 and 15 are reserved

Chapter 6Troubleshooting

6ndash23

Inverter Diagnostics Result 2 (parameter 259) is defined as follows

When thisbit is set (1)

Then

0 Transistor U upper shorted

1 Transistor U lower shorted

2 Transistor V upper shorted

3 Transistor V lower shorted

4 Transistor W upper shorted

5 Transistor W lower shorted

6 The current feedback phase U offset is too large

7 The current feedback phase W offset is too large

8 Transistor U upper open

9 Transistor U lower open

10 Transistor V upper open

11 Transistor V lower open

12 Transistor W upper open

13 Transistor W lower open

14 Current feedback phase U open

15 Current feedback phase W open

If any hardware fault occurs during the open transistor testing then thefollowing occur

bull The hardware fault is saved

bull A phasendashtondashphase fault is set

bull All subsequent testing is stopped

bull Some untested devices may be set as open

Typically you should fix the hardware faults and run open tests again todetermine if any opens exist

What Do Open Transistor Faults Indicate

Open transistor faults could indicate an open anywhere in the control orpower section that turns on a given transistor You should check thepower transistor gate drive signal from the control board through thecabling to the optondashisolators continuing through the gate drives andfinally through the cabling to the power transistor This includes thepower wiring to the motor terminals and the motor If the bus voltage istoo low opens could occur bus voltage should be greater than 85 ofnominal line

Chapter 6Troubleshooting

6ndash24

For proper drive operation it is necessary to have

A A specific phase sequence of the motor leads (M1 M2 M3 M1 M3 M2 etc)

B A specific sequence of encoder leads (pulse A leads B etc)These sequences determine the direction of rotation of the motor shaft on application of torque An improper sequence can result in either the motor rotating the wrong direction or no production of torque This test is used to ensure the above conditions by applying a positive torque and manually checking motor rotation and velocity feedback

Set parameter 256 (Autotune Diagnostics Selection) Bit 3 to a value of 1

Running the Inductance Test

A measurement of the motor inductance is required to determine thereferences for the regulators that control torque This test measures themotor inductance and displays it in Lsigma Tune [Leakage Inductance](parameter 237)

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the inductance test make sure that you have entered thecorrect motor nameplate information

To run the inductance test

1 Set bit 2 in AutotuneDiagnostics Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete Theinductance test runs for approximately 1 minute When a reading isobtained in Lsigma Tune perform the resistance test

Typical values for per unit inductance are in the range of 15 to 25motor impedance The value shown in Lsigma Tune is a percent valueIf you are using long wiring runs the typical value for per unitinductance should increase by the ratio of wiring inductance to motorinductance

Phase Rotation Tests

Sequential Torque BlockTuning

Chapter 6Troubleshooting

6ndash25

The motor inductance measuring routine contains several special faultsIf the drive trips during the inductance test check bits 0 through 5 ofMotor Inductance Test Errors (parameter 295)

If this bitis set (1)

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error you need to1 Run the test again2 Consider replacing the circuit boards

2

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

3

AD Overflow at Min gainThe motor terminal voltage measuring circuit is not working properlyYou need to1 Determine if the motor is connected2 Check cable connections between the gate drive and control boards3 Consider replacing the circuit boards4 Investigate any noise problems

4

Enable Dropout The drive enable was lost during the inductance test Consider runningthe test again and monitor the drive enable (bit 9 of Inverter Status(parameter 54) andor the Inv En LED on the main control board

5

Sign error Overflow The calculated inductance is negative1 Run the test again2 Consider replacing the circuit boards

Chapter 6Troubleshooting

6ndash26

The drive requires a motor resistance measurement to determine thereferences for the regulators that control torque The motor resistancetest measures the motor resistance and displays it in Rs Tune (parameter236) The test runs for approximately 10 ndash 30 seconds

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the resistance test make sure that you have entered thecorrect motor nameplate information

To run the motor resistance test

1 Set bit 3 in AutotuneDiagnostic Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete When areading is obtained in RS Tune perform the flux test

Typical values for per unit motor resistance are in the range of 1 to 3as displayed in RS Tune The value in RS Tune increases as the length ofwiring runs increase

Running the ResistanceTest

Chapter 6Troubleshooting

6ndash27

Several faults have been included to identify some problems that canoccur in the resistance measuring routine If the drive trips during theresistance test check bits 0 through 7 of Motor Stator Resistance TestErrors (parameter 296)

If this bitis set

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error run the test again because the value returned is notreliable

2Not Used

4Not Used

6Not Used

8

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

9Software ErrorA software fault is generated when an improper sequence of events hasoccurred Consider running the test again

10

Enable DropoutThe drive enable was lost during the resistance test Consider running thetest again and monitor the drive enable (bit 9 of Inverter Status (parameter54) andor the Inv En LED on the main control board)

Chapter 6Troubleshooting

6ndash28

What Happens If Multiple Opens OccurIf multiple opens occur several additional faults may be indicated Forexample if transistor U upper and U lower are open the test alsoindicates that current feedback U phase is open Because current cannotrun through phase U the current feedback device cannot be checked andtherefore is listed as a malfunction The type of installation oftendetermines which parts of the transistor diagnostics may or may notwork As a result treat the software only as an aid for testing the powerstructure

What Do I Do If I Get a Software Fault

If bit 0 of Inverter Diagnostics Result 1 (P 258) is set to 1 an impropersequence of events has occurred Either the software cannot distinguishwhat is occurring or there is noise in the system If a fault occursrepeatedly the problem may be a fault that the software cannot directlyidentify (for example a voltage breakdown in a snubber) If this is thecase you need to determine through external measurements if theproblem is real or if there is a noise problem In cases where a specifictest continually results in nuisance faults use Transistor DiagnosticsConfiguration (parameter 257) to disable that test

Chapter 6Troubleshooting

6ndash29

Rated motor flux is required in order to produce rated torque at ratedcurrent

Set Parameter 256 Bit 4 to a value of 1 This selects the Motor FluxTest This test measures the amount of current required to produce ratedmotor flux and displays it in Parameter 238 The motor will accelerateto approximately twondashthirds base speed and then coast for severalseconds This cycle may repeat several times The motor will thendecelerate to a low speed before disabling If the motor will notaccelerate increase parameter 40 (Torque Limit) until the motoraccelerates Parameter 41 (Speed Limit) will change the speed the motoraccelerates to

The Transistor Diagnostics Phase Rotation Inductance and Resistance Tests MUST be run before this test can be performed

Toggle the start bit in the logic command to start the test The Driveenable light will go out when the test is complete When a reading isobtained in Parameter 238 record it and then update the torque blockgains If the test still faults refer to the flux test faults

Flux Test Faults Typical values for rated motor flux range from 20 to 50 Several faults have been added to identify some problemsthat can occur in the flux test Should the drive trip while the flux test isbeing performed the cause can be found using parameter 297 Thepossible faults are detailed in Table 6D

Table 6DFlux Test Fault Descriptions

Bit Fault

0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set

Parameter 41 set to less than 33 speedParm 238 lt 0 CurrentParm 238 gt 100 Drive currentMaster_Slave enable dropout faultNot UsedNot UsedNot UsedNot Used

Responses for faultsParm 41 set to less than 33 speed The Autotune speed must be set higher in order to get a meaningful result out of the flux test

Parm 238 lt 0 Current This indicates that either 1 or some of the parameters are incorrectly set electrical noise iswas present motor phasing could be incorrect or other problems exist

Parm 238 gt 100 Drive Current This identifies flux current greater than the drive rated current This may be due to incorrect parameter settings an undersized drive for the motor or a problem motor

MasterndashSlave Enable Dropout This cable interlock between the Master and Slave drive was opened during the test

Running the Flux Test

Chapter 6Troubleshooting

6ndash30

If you experience problems while running the Flux Test it may be necessary to verify that parameters are set properly The parameters listed in Table 6E are the parameters that directly effect the Flux Test

Table 6EFlux Test Parameters

Parameter Number Description

4041

Autotune Torque LimitAutotune Speed

Reverse Speed Limit

Forward Speed Limit

Positive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitCp Operating Options

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high you may trip out on a BusOvervolts (see note)Set this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet to 0 to allow the motor to coast to stoponce the flux test is completed Set to 128to regen to stop even without a brake oncethe flux test is completed

Note The option to regenerate to stop following identification of flux producing current shouldfunction properly with or without a brake or regeneration unit However if a bus overvoltagefault occurs during the regen to stop the identified value of flux producing current can be retrievedand placed in P238 without rendashrunning the flux identification test with the regen to stopdisabled The identified value of flux can be found by using Software Testpoint Parameter 273 andplacing 67 into it The value of flux can be read by the user in the corresponding testpoint dataparameter 274 The value of 274 is the identified flux current and must then be entered intoparameter 238

127

128

175

176

177

178

179

180

227

100 allows 1 pu torque during accel+ndash 68 is the max for the flux test limitedinternally by the software

Chapter 6Troubleshooting

6ndash31

To update the Torque Block gains bit 5 in Parameter 256 must be set to1 and then a Start command must be given to the drive Bit 5 ofparameter 256 will automatically be set back to zero The values inparameters 240 thru 248 will now to be updated

Calculations This procedure takes the motor parameter information from Parameters 236 237 and 238 along with the inverter and motor nameplate data and calculates the proper regulator references for torque control (Fig 69)

Inductance Test Parameter 237

Calculations

Parameter 240

Parameter 241

Parameter 247

Parameter 248

Resistance Test Parameter 236

Flux Test Parameter 238

MOTOR NP DATA

Figure 69Calculations Test

(Parm 228ndash235)

INVERTER DATA(Parm 220ndash227)

Torque Block Update

Chapter 6Troubleshooting

6ndash32

Velocity Loop Autotune The Velocity Loop Autotune procedure for the 1336 FORCE is designed tolet you determine the maximum bandwidth for a particular system Youcan select operation at any bandwidth at or below the maximum bandwidththat has been calculated

The velocity regulator is a PI regulator with a Velocity Feed Forward term(KF Parm 141) The KF term is user chosen and describes the systemresponse to a change in velocity reference only By decreasing the value ofKF the overshoot of the system will be reduced When KF is 10 thevelocity loop behaves like a normal PI loop with the overshoot equalingapproximately 10 If KF is reduced to 07 (the recommended operatingpoint) then the overshoot is typically less than 1 if KF is reduced evenfurther to 05 (the lowest recommended value) the response becomesunderdamped with no overshoot

The velocity loop KI term (parm 139) is the integral term of the PIregulator The KI term is adjusted to remove any steady state instabilities

The velocity loop KP term (Parm 140) is the proportional term of the PIregulator The KP term is adjusted to determine how the drive responds toa step change in load

IMPORTANT If the velocity regulator is tuned too responsive the motorand load could potentially chatter If tuned nonndashresponsive the regulatorwill seem sluggish The value for Kp will increase as the system inertiaincreases For High inertia systems Kp may be greater than for KI Forlow inertia systems (systems with inertias under 1 Sec) KI will typicallybe larger than KP

Figure 610Velocity Regulator Functional Diagram

Veloc-ity

Time

0

50

KP

KFKI

The list of parameters that must be set to achieve proper velocity looptuning is detailed in Table 6F

Chapter 6Troubleshooting

6ndash33

Table 6FVelocity Loop Parameters

Parameter Number Description

4041

53

Autotune Torque LimitAutotune Speed

Torq Mode Select

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet to Value of 1 for encoder fdbkSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high may trip on a Bus OvervoltagefaultSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not acceleratePulses Per Revolution

127

128

150175

176

177

178

179

180

235

75 allows 75 rated torque during accel75 allows Autotune velocity to go to 75Percent base motor velocitySet to Value of 1 for encoder fdbk

Reverse Speed Limit

Forward Speed Limit

Feedback Device TypePositive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitEncoder PPR

Chapter 6Troubleshooting

6ndash34

Hardware Testpoints The Hardware Testpoints on the Series B 1336 FORCE Control Board areillustrated in Figure 611 The accompanying table details the expectedoutput from each testpoint

Figure 611Main Control Board Test Points

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

Adapter Board Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

TP1TP2TP3TP4TP5TP6TP7TP8TP9

TP10TP11TP12TP13

TP14TP15

DGND+5V+15VAGNDndash15Vndash25 to 25 V0 to 25V+5V when faultedCHA Encoder Fdbk 0 to 5 Square Wave with respect to TP1 or TP25 DGNDTest DAC2 (Development Use Only)Square Wave (Follows Carrier Frequency)Test DAC1 (Development Use Only)CHB Encoder Fdbk 0 to 5V Square Wave with respect to TP1 or TP25 DGNDBus Voltage FDBK (4V = 650 vdc)Feed Forward Voltage (0 to +ndash 75V sine wave)

Flt Trp

1 2 3

1 2 3

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Testpoint Application

TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

Ia FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIc FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIqs Command (0 to +ndash 10V sine wave)Ids Command (0 to +ndash 10V sine wave)Master Reset (5V = Reset)Id FDBK (0 to +ndash 5V sine wave)Feed Forward Voltage (0 to +ndash75V sine wave)ISO 12V for TachometerEncoderISO RTN for TachometerEncoderDGND

Application

Chapter 6Troubleshooting

6ndash35

The Hardware Testpoints on the PLC Comm Adapter Board are illustrated inFigure 612 The accompanying table details the expected output from eachtestpoint

Figure 612PLC Comm Board Test Points

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

TP9 TP10 TP11 TP12 TP13 TP14

TP19

TP20 TP21 TP22 TP23 TP15 TP16 TP17 TP18

TP1TP2TP3TP4TP5TP9TP10TP11TP12TP13TP14

TestpointDGND+5V+15VAGNDndash15VNot UsedNot UsedISO +12 VDCISO ndash5VISO GNDIGND

Application

TP15TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

AIN ndash 1AIN ndash 2AIN ndash 3AIN ndash 4+12VAOUT ndash 1AOUT ndash 2AOUT ndash 3AOUT ndash 4+10V Refndash10V Ref

Application

Chapter 6Troubleshooting

6ndash36

This Page Intentionally Blank

AppendixA

Andash1

Appendix

Motor Cables A variety of cable types are acceptable for 1336 FORCE driveinstallations For many installations unshielded cable is adequateprovided it can be separated from sensitive circuits As an approximateguide allow a spacing of 1 meter (33 feet) for every 10 meters (33 feet)of length In all cases long parallel runs must be avoided

The cable should be 4ndashconductor with the ground lead being connecteddirectly to the drive ground terminal (PE) and the motor frame groundterminal

Shielded Cable ndash Shielded cable is recommended if sensitive circuitsor devices are connected or mounted to the machinery driven by themotor The shield must be connected to the drive ground terminal (PE)and the motor frame ground terminal It is important that the connectionbe made at both ends to minimize the external magnetic field

If cable trays or large conduits are used to distribute the motor leads formultiple drives shielded cable is recommended to reduce or capture thenoise from the motor leads and minimize ldquocross couplingrdquo of noisebetween the leads of different drives The shield should be connected tothe ground (PE) connections at both the motor and drive end

Armored cable also provides effective shielding Ideally it should begrounded only at the the drive (PE) and motor frame Some armoredcable has a PVC coating over the armor to prevent incidental contactwith grounded structure If due to the type of connector the armor mustbe grounded at the cabinet entrance shielded cable should be used withinthe cabinet to continue as far as possible to the coaxial arrangement ofpower cable and ground

In some hazardous environments it is not permissible to ground bothends of the cable armor This is because of the possibility of high currentcirculating at the input frequency if the ground loop is cut by a strongmagnetic field This only applies in the proximity of powerful electricalmachines In this case the ground connection at one end may be madethrough a capacitance which will block the frequency current but presenta low impedance to RF Because of the highly pulsed nature of thecirculating current the capacitor type used must be rated forACndashtondashground voltage Consult factory for specific guidelines

Conduit ndash If metal conduit is preferred for cable distribution thefollowing guidelines must be followed

1 Drives are normally mounted in cabinets and ground connections are made at a common ground point in the cabinet If the conduit is connected to the motor junction box and the drive end no further conduit connections are necessary

Appendix A

Andash2

2 No more than three sets of motor leads can be routed through a single conduit This will minimize ldquocross talkrdquo that could reduce the effectiveness of the noise reduction methods described If more than three drivemotor connections per conduit are required shielded cableas described above must be used If practical each conduit should contain only one set of motor leads

ATTENTION To avoid a possible shock hazard caused byinduced voltages unused wires in the conduit must be grounded atboth ends For the same reason if a drive sharing a conduit isbeing serviced or installed all drives using this conduit should bedisabled This will eliminate the possible shock hazard fromldquocross coupledrdquo drive motor leads

Motor Lead Length ndash Installations with long cables to the motor mayrequire the addition of output reactors or cable terminators to limitvoltage reflections at the motor Refer to the following tables for themaximum length cable allowed for various installation techniques

Appendix A

Andash3

Table A1Maximum Motor Cable Length Restrictions in meters (feet) ndash 380V-480V Drives 1

No External Devices w 1204-TFB2 Term w 1204-TFA1 Terminator Reactor at Drive2

Motor Motor Motor Motor

r e W Motor WA B 1329 1329R HR L A or B 1329 A B 1329 A B or 1329

r e rameDrive kW Motor kW Any

ableAny

ableAny

ableAny

ableCable Type Any

ableCable Type Cable Type Any

ableAny

ableAny

ableDrive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable Shld 3 Unshld

AnyCable Shld3 Unshld Shld3 Unshld

AnyCable

AnyCable

AnyCable

A1 037 (05) 037 (05) 122(40)

335(110)

1143(375)

305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 075 (1) 122(40)

335(110)

1143(375)

305(100)

305(100)

305(100)

305(100)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

Use 1204-TFA1 305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

A2 12 (15) 12 (15) 122(40)

335(110)

1143(375) Unlimited 305

(100)305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 122(40)

335(110)

1143(375)

Applies tonew installa-

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

new installa-tions usingnew motors

d e

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

15 (2) 15 (2) 76(25)

122(40)

1143(375)

e rsand newdrives

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

12 (15) 76(25)

122(40)

1143(375)

For retrofits u s

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

situationscheck withthe motor

u ur

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

the motormanufactur-er for insula-

r

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

22 (3) 22 (3) 76(25)

122(40)

1143(375)

er r sution rating 1829

(600)1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

A3 37 (5) 37 (5) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

22 (3) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 12 4 T 2

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 1204-TFB2229(75)

1829(600)

A4 55-75(75-10)

55-75(75-10)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

B 55-22(75-30)

55-22(75-30)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

C 30-45(X40-X60)

30-45(40-60)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

762(250)

1829(600)

D 45-112(60-X150)

45-112(60-150)

122(40)

305(100)

1143(375)

1829(600)

1829(600)

1829(600)

610(200)

914(300)

E 112-187(150-250)

112-224(150-300)

122(40)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

G 187-448(X250-600)

187-448(250-600)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

Type A Motor Characteristics No phase paper or misplaced phase paper lower quality insulation systems corona inception voltages between 850 and 1000 voltsType B Motor Characteristics Properly placed phase paper medium quality insulation systems corona inception voltages between 1000 and 1200 volts1329R Motors These AC Variable Speed motors are ldquoPower Matchedrdquo for use with Allen-Bradley Drives Each motor is energy efficient and designed to

meet or exceed the requirements of the Federal Energy Act of 1992 All 1329R motors are optimized for variable speed operation andinclude premium inverter grade insulation systems which meet or exceed NEMA MG1 Part 314042

Appendix A

Andash4

Table A2Maximum Motor Cable Length Restrictions in meters (feet) ndash 500V-600V Drives 4

No External Devices w 1204-TFB2 Terminator w 1204-TFA1 Terminator Reactor at Drive 2

Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6

Drive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

A4 075 (1) 075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) 15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

12 (15) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) 22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

NotRecommended

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

Recommended

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

37 (5) 37 (5) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

B 55-15(75-20)

55-15(75-20)

NR 91(30)

152(50)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

C 185-45(25-60)

185-45(25-60)

NR 91(30)

122(40)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

D 56-93(75-125)

56-93(75-125)

NR 91(30)

335(110)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

610(200)

914(300)

1829(600)

E 112-224(150-X300)

112-224(150-X300)

NR 91(30)

213(70)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

G 224-448(300-600)

224-448(300-600)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

H 522-597(700-800)

522-597(700-800)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

NR = Not Recommended1 Values shown are for 480V nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply

values by 085 for high line conditions For input voltages of 380 400 or 415V AC multiply the table values by 125 120 or 115 respectively2 A 3 reactor reduces motor and cable stress but may cause a degradation of motor waveform quality Reactors must have a turnndashturn insulation rating of 2100 volts or

higher3 Includes wire in conduit4 Values shown are for nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply values

by 085 for high line conditions5 Information not available at time of printing6 1329R only

Appendix A

Andash5

Cable Termination Optional Cable Terminator

Voltage doubling at motor terminals known as reflected wavephenomenon standing wave or transmission line effect can occur whenusing drives with long motor cables

Inverter duty motors with phasendashtondashphase insulation ratings of 1600 voltsor higher should be used to minimize effects of reflected wave on motorinsulation life

Applications with nonndashinverter duty motors or any motor withexceptionally long leads may require an output inductor or cableterminator An inductor or terminator will help limit reflection to themotor to levels which are less than the motor insulation value

Tables 2A amp 2B list the maximum recommended cable length forunterminated cables since the voltage doubling phenomenon occurs atdifferent lengths for different drive ratings If your installation requireslonger motor cable lengths a reactor or cable terminator is recommended

Optional Output Reactor

The reactors listed in the 1336 FORCE price list can be used for drive inputand output These reactors are specifically constructed to accomodateIGBT inverter applications with switching frequencies up to 20 KHz Theyhave a UL approved dielectric strength of 4000 volts opposed to a normalrating of 2500 volts The first two and last two turns of each coil are tripleinsulated to guard against insulation breakdown resulting from high dvdtWhen using motor line reactors it is recommended that the drive PWMfrequency be set to its lowest value to minimize losses in the reactorsImportant By using an output reactor the effective motor voltage will belower because of the voltage drop across the reactors ndash this may also meana reduction of the motor torque

Common Mode Cores ndash Common Mode cores will help reduce thecommon mode noise at the drive output and guard against tripping of thedrive caused by capacitive leakage effects The capacitive currents arelarger at higher PWM frequencies

Enclosures Customer Supplied Enclosure Requirements ndash 1336 FORCE drivesinstalled in customer supplied enclosures may be mounted within anenclosure or may be mounted to allow the heatsink to extend outside theenclosure Use the information in Table A3 in combination with theenclosure manufacturerrsquos guidelines for sizing

Appendix A

Andash6

Table A3 ndash Enclosure Requirements

380 ndash 460 VDrives

200 ndash240 VDrives

Catalog NoBase DerateAmps1

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

B001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200B250B300BP300B350BP350B400BP400B450BP450B500B600

500 ndash 600 VDrives

C001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C3005

C3505

C4005

C4505

C5005

C6005

C6505

4512273448657880120149180240291327

256142127344248596578789712015018018024029132740640645945950548157053259967325610121924303545576286109138160252284298354406460505600673

DerateCurve23

NoneNoneNoneFig 1Fig 2Fig 3Fig 44

Fig 5Fig 6Fig 7Fig 8Fig 9Fig 16

NoneNoneNoneNoneFig 10 Fig 1Fig 11Fig 2Fig 12Fig 3Fig 4Fig 44

Fig 13Fig 14Fig 15Fig 15Fig 8Fig 9Fig 16NoneFig 33NoneFig 34NoneFig 35NoneFig 36Fig 17Fig1844444444444

Fig 19Fig 20Fig 21Fig 22Fig 23Fig 24NoneNoneFig 25Fig 26Fig 27Fig 28Fig 29

Heat DissipationDrive Watts 234

1733156200205210215220361426522606755902

152391103117140141141175175193193361361426522606606755902100561910557331295793133593113951485

44

911031171401411411751931933614265224

755890926100014301465150016101700

HeatsinkWatts 2

327248672181993311101110170819442664276937004100

205427039448662872082093393311101110170817081944266427692769370041004805534254556039617563296875700078008767

44

2172513604674925266788999811553197821624

30653625501559357120802089251076712000

TotalWatts 2

491056429211024114313251330206923703186337544555002

35773614976037688619611108110813031303206920692370318633753375445550025810596165106772747071228210793192001025244

308354477607633667853109211741894250426834

38204515594169358550948510425123771400

Base Derate Amps are based onnominal voltage (240 480 or 600V)If input voltage exceeds Drive Rat-ing Drive Output must be derated Refer to Figure 31

1

2Drive Ambient Temperature Rating is40degC If ambient exceeds 40degC thedrive must be derated Refer to Fig-ures 1ndash29

3DriveRating is based on altitudes of1000m (3000 ft) or less If installedat a higher altitude Drive must bederatedRefer to Figure 30

4

Important Two (2) 725 CFM fansare required if an open type drive ismounted in a user supplied enclo-sure

5

Not available at time of publication

Appendix A

Andash7

Derating Guidelines

Drive ratings can be affected by a number of factors If more than onefactor exists consult AllenndashBradley Co

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 21336TndashA015 and B030

75

80

70

85

90

of DriveRated Amps 95

100

65

60

50

55

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 31336TndashA020 and B040

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 41336TndashA025 B050 and BX060

75

80

70

85

90 of Drive

Rated Amps

95

100

65

60

55

45

50

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 11336TndashA010 and B020

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Appendix A

Andash8

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 51336TndashA040

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 61336TndashA050

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 71336TndashA060

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 81336TndashA075 and B150

Carrier Frequency in kHz2 43 5 6

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Appendix A

Andash9

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

65

75

80

70

85

90

of DriveRated Amps 95

100Figure 101336TndashB015

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 91336TndashA100 and B200

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 111336TndashB025

75

80

70

85

90

of DriveRated Amps 95

100

55

65

60

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 121336TndashBX040

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 131336TndashB075

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Appendix A

Andash10

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 141336TndashB100

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 151336TndashB125 and BX150

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 161336TndashB250

70

85

75

65

80

90

95

100 of DriveRated Amps

60

Carrier Frequency in kHz1 4 532 6

Figure 171336TndashB500

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 181336TndashB600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz1 432

Appendix A

Andash11

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 191336TndashC075

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 201336TndashC100

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Figure 211336TndashC125

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

60

1 42 53 6

Figure 221336TndashC150

70

85

75

65

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz1 432 65

Figure 231336TndashC200

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

45

60

Carrier Frequency in kHz1 4 532 6

Appendix A

Andash12

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 241336TndashC250

Carrier Frequency in kHz2

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

60

45

40

1 4 53 6

Figure 251336TndashC400

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 261336TndashC450

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 271336TndashC500

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Appendix A

Andash13

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 281336TndashC600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 291336TndashC650

70

85

75

80

90

95

100 of DriveRated Amps

65

60

55

Carrier Frequency in kHz

50

1 432

of DriveRated Amps

Altitude

m(ft)

100

80

90

0 4000(13200)

3000(9900)

2000(6600)

1000(3300)

Figure 30All Drive Ratings

of DriveRated Amps

Input Voltage

100

80

90

240 480 or 600V Nominal +6+4+2 +10+8

Figure 31Required Only for the following drives1336TndashABCndash025 185 kW (25 HP) at 8 kHz1336TndashABC 22 kW (30 HP) at 6ndash8 kHz1336TndashABC 45 kW (60 HP) at 6 kHz

Appendix A

Andash14

of DriveRated Amps

Figure D-321336E-BP250

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 32BP 250

of DriveRated Amps

Figure D-331336E-BP300

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 33BP 300

Figure 34BP 350

of DriveRated Amps

Figure D-341336E-BP350

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

of DriveRated Amps

Figure D-351336E-BP400

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 35BP 400

Appendix A

Andash15

Figure 36BP 450

of DriveRated Amps

Figure D-361336E-BP450

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 37B700C ampB800C

of DriveRated Amps

Figure D-361336E-B700C and B800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

of DriveRated Amps

Figure D-371336E-C700C and C800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

Figure 38C700C ampC800C

Appendix A

Andash16

Drive Hardware Overview ndash The following illustrations are functionalblock diagrams of the 1336 FORCE Drive detailing the difference inhardware between the various ratings These are basic overviews of the1336 FORCE hardware and should be used as reference material only

Appendix A

Andash17

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

C1

CAPBANK

MOV

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

141312

111098

Schematic Diagram ndash 3 ndash 15 HP 230V 3 ndash 15 HP 460V 3 ndash 20 HP 575V

S

R

TB1

T

CTL

+GND

FAULT

DET

P1P2

UP

P7P8

UN

E2

C1

P3P4

VP

P9P10

VN

E2

E1C2

C1

P5P6

WP

P12

P11

WN

E2

E1C2

U

W

V

E1C2

13

13

GATE DRIVERS

+

ndash

+24V

BRIDGE FAN

BRIDGETERMINALSENSOR (NTC)

To Main Control J1

E1

F3F1

Appendix A

Andash18

Schematic Diagram ndash 20ndash30 HP 230 VAC40ndash60 HP 460 VAC25ndash60 HP 575 VAC

L1

SEETABLE 1

FR

RndashL1

SndashL2

TndashL3FS

FT

TB1ndash5

TB1ndash6

TB1ndash7

PMC1CONV+

DC+

TB1ndash3

DCndash

TB1ndash4

3

2

1

CONVndash

BC

A

SCR4

SCR1SCR3 SCR5

SCR6 SCR5

C1 C2 C2

R1 R2 R321 22 23

SCR5

C4 C5 C6

R4 R5 R611 12 13

E14 E13 E12 E15

STANDARD PRECHARGE BOARD

F1 F2 F3

A

PCB SNUBBER STD

Appendix A

Andash19

Schematic Diagram ndash 20ndash30 HP 230 VAC 40ndash60 HP 460VAC25ndash60 HP 575 VAC

Q1

B1

PMI3

E1B2

E2

C3

B1

PMI2

C1B1

E2

C5

B1

PMI1

C1B1

E2

CAP+

E12CAPPCB

E13CAPPCB

SEETABLE 1

F1

Q4 Q6 Q2

C1

E1

C2

E2

C1

E1

C2

E2

C1

E1

C2

E2

U V W

C7 C8 C9 C11

C10

TB1ndash8 TB1ndash9 TB1ndash10

UndashM1 VndashM2 WndashM3

E5 E9E7

E11

INV+

INVndash

PCB SNUBBER STD74101ndash101ndashXXndashASSrsquoY

74101ndash099ndashSCH

TO CONTROL BOARDINTERFACE

NTC1

PCB MOUNT COMPONENTPCB ARTWORK

ndasht

J11 2 3 4 5 6

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1

TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1VP

3

2

7

6

5

4

1

11

10

9

8

1

ndash12V

1

2

4

1

3

2

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOMRTN

ENCA

ENCA

ENCB

ENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+

SHUNTndash

SHD

TE

PWR

RTN

HILO

1413

12

Y

VELOCITYPROC

R G

CPINVEN

IQS

IDS

VCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1

RTD SEN

RTD2

SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

CAPBANK

F1 F3

A

Appendix A

Andash20

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

CUSTOMERFUSING

CF2

CF3

PE

PE

MOV1

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

DC+

DCndash

CFI

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE TABLE 1SHEET 2

M1

M2

M3

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

To Precharge Board A10

Schematic Diagram ndash 75 amp 100 HP 230 VAC

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash21

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

MOV1

ACOUTPUTPOWER

DC+

DCndash

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

TE

PE

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE SHEET 2

PE

UndashM1

VndashM2

WndashM3

CUSTOMERFUSING

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

13 13 13 13 13 13

1313

Schematic Diagram ndash 150ndash250 HP 380460V 150 ndash 300 HP 575V

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash22

Schematic Diagram ndash X250 ndash 650 HP

CONVSNUBBER

A11

DC+

DCndash

CONVSNUBBER

A12

CONVSNUBBER

A13

ACINPUT

CUSTOMERFUSING

CF1

CF2

CF3

PE

SEETABLE 1SHEET 2

RndashL1

SndashL2

TndashL3

PE

MOV1

PM1

CNVndash

CNV+

K1

G1

TO BLOWERCIRCUIT

SEE SHEET 2

SCR1

SCR4

SCR3

SCR6

SCR5

SCR2

PM2 PM3

(1) (2)

(4) (3)

L1

DC+

DCndash

K1

G1

K1

G1

K2

G2

K2

G2

K2

G2

STANDARD PRECHARGE BOARD

F1 F2 F3

A

Appendix A

Andash23

Schematic Diagram ndash X250ndash650 HP

A

THS1

PE PE PE

INV+

INVndash

C40

C41

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1

VP 3276541

111098

1

ndash12V

12

4132

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOM RTNENCAENCAENCBENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+SHUNTndash

SHD

TE

PWRRTNHILO

141312

Y

VELOCITYPROC

R G

CPINVEN

IQSIDSVCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1RTD SEN

RTD2SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

CAPBANK

F1 F3

Appendix A

Andash24

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

ACOUTPUTPOWER

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

PE

UndashM1

VndashM2

WndashM3

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

Schematic Diagram ndash 300ndash400 HP

To Precharge Board A10

GATE DRIVERS F3STD PRECHARGEBD

F1 F2 F3

F1

Appendix A

Andash25

Schematic Diagram ndash 700ndash800 HP

PE PE PE

CT3

PS+V

CUSTOMER

THS1

F410001

3

CAP BANK

INV+

X

INVndash

CNV+

R10 R12 R11 R13105061

+DC

ndashDC

FUSING

PS+V

3

1

1

PSOMPSndashVPSndashVRL1ndash5RL1ndash9

A10PrechargeCommon BusBoard

J2 J1

TB1

1 4 7 10 1 4

IN POS BUS

IN NEGndashBUS

GATE

CATHODE

1

3

OUT POS BUS

OUT NEG BUS

J3

1

4

7 8 9101112

+SMP

ndashSMP

+15V

ndash15V

COMMON

5VCHARGEAC LINE

UserSupplied120 VACor24 VDC

W1

W1

24VDC120VAC

1ndash2

2ndash3

1 2 3

Appendix A

Andash26

Schematic Diagram ndash 700 ndash 800 HP cont

3

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

21

CT1 40001+15

ndash15U_AMPS 3

21

+15

ndash15W_Amps CT2 40001

PE

PS+V

PS+VPSCOMPSndashVPSndashVRL1ndash5RL1ndash9

GATEDRIVERBOARD

TB5

J13

A1

J6

J9

TB4 J1

+SMP

ndashSMP

+15V

ndash15V

COMMON

+5VCHARGEAC LINE

TO Main Control Board

TB71 2

12

9

654321

6

U_AMPS

W_Amps

J5

ContactorInterface

J2 J10

1 4 7 245

ndash BUS

+BUS

ACT2

ACT1

1 2

TE

24V AUX+

24V AUXndash

J7 J8

A23ndashA28Interface

A23ndashA28Interface

Appendix A

Andash27

Gate Driver Board Connections The connections on 1336 FORCE Gate Driver Boards vary by frame sizeas indicated in the following illustrations

1

J1

1

10

+ BUS

E25

MainControlBoardInterface

TB1

E26 E1

E6 E5

PE

GND

PE

GND

DC +

DC ndash

R (L1)

S (L2)

T (L3)

U (T1)

V(T2)

W(T3)

E20 E19 E21

E29 E22

50

E8

E27

E13 E15 E11

LEM2

LEM1

E16 E12 E14

E10 E9 E17

J4

E18

F1

ndash BUS Motor

To Motor

AC Input Line

RequiredInput Fusing

Required BranchCircuit Disconnect

FAN

PrechargeResistor

BusSwitcherFuse

Frame Size B Gate Driver Board Connections

Appendix A

Andash28

Frame Size C Gate Driver Board Connections

1

J1

MainControlBoardInterface

50

F1

TB4

Main Switcher(Bus Volts gt 24Vdc)

BusSwitcherFuse

J8

Connection to Upper IGBTrsquos

J7

Connection to Lower IGBTrsquos

F3

J9

Standalone or CommonbusPrecharge Board Interface

J10

J2

J6CurrentFeedbackInterface

BusDischargeFuse

Ext 24VSupplyInput

Ground Fault CT

Bus Input

Appendix A

Andash29

Frame Size D Gate Driver Board Connections

1

J1MainControlBoardInterface

50

F1

Logic Level Supply

TB4

Main Switcher(Bus Volts gt 24Vdc)

MainSwitcherBusFuse

J8 Connection to Upper IGBTrsquos

J7Connection to Lower IGBTrsquos

F3

J9

Standalone or Common BusPrecharge Board Interface

J10

J2

J6

BusInput

CurrentFeedbackInterface

GroundFaultCT

BusDischargeFuse

Ext 24VSupplyInput

Appendix A

Andash30

Sensorless Application Notes Sensorless vs Encoder Application Guidelinesndashndash Sensorless is applicable when Speed Regulation requirements are

greater than +ndash 10 of base speed Sensorless may be applicable for regulation requirements between 02 and 10 with manual adjustments Encoder operation is recommended below 02

ndash Sensorless is applicable when the minimum speed is greater than 140 of base speed (ie 45 RPM on a 60 Hz 4 pole motor) Sensorless may be applicable down to speeds of 160 of base speed (30 RPM) if high bandwidth responses are not required Encoder operation is recommended for speeds lt 160 of base speed (30 RPM)

ndash Maximum Speed is the same for sensorless and encoder operation

ndash The maximum velocity bandwidth achievable with sensorless is approximately twice the default bandwidth value Bandwidths higher than this may require an encoder because the velocity ripple may be intolerable or there may be stability problems The maximum bandwidth achievable with sensorless is half the bandwidth achievable with an encoder Note that the maximum achievable bandwidths decrease with increasing inertia for both sensorless and encoder

ndash The starting torque available is the same with sensorless or encoder Available starting torque is at least 150 motor torque and could be as high as 200 if the inverter can supply the current

ndash Minimum (current limit) acceleration and deceleration times are comparable with sensorless and encoder

ndash Torque regulation (+ndash5) is comparable with sensorless and encoder at velocities greater than approximately 25 of base speed At lower speeds sensorless torque regulation may degrade with changing motor temperature

ndash Torque response is comparable with sensorless and encoder (400Hz)

Sensorless Mode Selection ndashndash Param 150 = 5

Minimum preset speed is 160 of base speed When preset speed and actual speed are both lt160 of base speed torque is set to zero When preset speed is gt 160 of base speed torque will be developed to accelerate the motor through the min speed to the preset speed

When a motor is accelerated from a preset speed of 0 to a preset speed gt 160 of base speed the motor will accelerate at the accel rate set by the drive But if the accel rate in the drive is set to 0 or some low value and the acceleration is controlled by ramping the preset speed parameter with a PLC the motor will not accelerate until the preset speed is gt 160 base speed This will result in an accel delay until that speed is reached followed by an acceleration at the speed set by the PLC If this is a problem Mode 7 should be used

ndash Param 150 = 6Minimum preset speed is 11000 of base speed Preset speeds down to zero are permitted although it is very likely that the motor will not operate smoothly at these low speeds This mode will eliminate the problems associated with controlling the acceleration rate by ramping preset speeds from a PLC described in Mode 5 (Param 150 = 5)

ndash Param 150 = 7 (Available in 301 version)Minimum present speed is 11000 of base speed This mode is similar to mode 6 except that the motor can be expected to operate more smoothly and develop higher continuous torque at speeds lt 160 of base speed This mode will also allow operation with lower

Appendix A

Andash31

velocity bandwidths than Mode 5 and allow smoother acceleration

The disadvantage of this mode is that the response to load changes at low speeds is not as fast as mode 5 Also fast speed reversals may not work when the preset speed is ramped from a PLC and the drives acceldecel rate is set to 0

Sensorless Troubleshooting Procedures ndash

ndash Problem Motor wonrsquot accelerate or doesnrsquot start smoothlyndash Possible Solutions

Increase the bandwidth If the bandwidth is too low there is a chance the motor wonrsquot accelerate although the current will increase to current limitIf the regen power limit is 0 increase it to at least ndash5Decrease the acceleration time (faster acceleration)Change Param 150 to mode 7

ndash Problem Motor oscillates after it is up to speed

ndash Possible SolutionsDecrease the bandwidth if the process will allow If this doesnrsquot help set Param 142 to 1500If unstable in field weakening change Param 174 to 100

ndash Problem Inverter trips on absolute overspeed during starting

Increase the bandwidthIf the overspeed occurs during a reversal increase the deceleration time (slower deceleration)

Sensorless FinendashTuning Procedures ndashndash Improving Speed Regulation

Typically the speed regulation (as a function of load) in sensorless mode can be improved by adjusting Param 246 (Base Slip Frequency) after the drive has been completely autondashtuned This parameter is originally calculated during the torque calculation section of autondashtune and is dependent on the nameplate speed of the motor

Ideally this adjustment is made while the motor is fully loaded and at its normal operating temperature Adjust Param 246 until the actual speed as measured by an independent source (ie hand tach) is equal to the desired speed This should result in a minimum steady state speed deviation as load changes The proper slip for good speed regulation is also motor temperature dependent thus if the motor operating temperature normally varies between cold and hot a compromise slip must be selected

ndash Minimizing Acceleration Time from 0 Speed

After a start command is issued there is a 05 sec flux up delay before the motor will start accelerating with sensorless control This delay can be eliminated in subsequent accelerations from 0 speed by configuring the drive to decel down to a preset speed of 0 rather than decelerating to stop

ndash Increasing Speed Range

Speeds down to zero speed may be commanded when Param 150 is set to 7 As operation nears 0 speed cogging may result

Appendix A

Andash32

Software Block Diagram ndash Standard Adapter

SCANport Image In

Data In A1 (310)

SCANports1

2

3

4

5

6

SCANport Analog 1 Select (364)

1

2

3

4

5

6

Data In A2 (311)

Data In B1 (312)Data In B2 (313)Data In C1 (314)

Data In C2 (315)Data In D1 (316)

Data In D2 (317)

Fault Select (405)Warning Select (406) Fault Status (407)

Warning Status (408)Bit1 ndash SCANport 1 Timeout2 ndash SCANport 2 Timeout3 ndash SCANport 3 Timeout4 ndash SCANport 4 Timeout5 ndash SCANport 5 Timeout8 ndash 4ndash20mA Loss13 ndash Illegal Drive Type (Not Configurable) 14 ndash Different Drive Type (Not Configurable)15 ndash SCANport Error (Not Configurable)

SCANport Image Out

Data Out A1 (320)

1

2

3

4

5

6

Data Out A2 (321)Data Out B1 (322)Data Out B2 (323)

Data Out A1 (324)Data Out A2 (325)Data Out D1 (326)

Data Out D2 (327)

SCANport1

2

3

4

5

6

SCANport Analog Out (379)

Discrete IO

Input Mode (385)Input Status (386)

Mode1234

527678

9281029

11121314

15301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2NotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr Flt

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevMOP IncRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3ReverseSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type1st2nd AccMOP IncJogFwdRwdMOP DecFwd2nd AccLocRemStop Type1st2nd AccMOP IncLocRemPTrim EnFlux EnableSpdTrq2SpdTrq2ForwardSpdTrq2PTrim EnFlux EnablePTrim EnJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd Sel 3Spd Sel 31st2nd DecMOP DecLocRemJogSpd Sel 3Spd Sel 3MOP Inc1st DecSpd Sel 3Spd Sel 31st2nd DecMOP DecStop TypeRamp DisResetSpdTrq 1SpdTrq 1Ramp DisSpdTrq 1ResetResetRamp DisSpd Sel 3

Input 7StatusSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2MOP Dec2nd DecSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Ptrim EnFlux EnableResetSpd Set 2Spd Set 2Spd Set 2Spd Set 2Spd Set 2

Input 8StatusSpd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1

Input 9EnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnable

Stop Select 1 (387)Stop Select 2 (388)Accel Rate 1 (389)Accel Rate 2 (390)Decel Rate 1 (391)Decel Rate 2 (392)

SCANport Analog 1 In (365)

TB3ndash19 TB3ndash20 TB3ndash22 TB3ndash23 TB3ndash24 TB3ndash26 TB3ndash27 TB3ndash28 TB3ndash30 TB3ndash21 TB3ndash25 TB3ndash29COMMON

Power Cycle or Reset required to take effect

A

1

2

3

4

5

6

SCANport Analog 2 Select (367)

SCANport Analog 1 Scale (366)

SCANport Analog 2 Scale (368) SCANport Analog 2 In (369)

Appendix A

Andash33

Software Block Diagram ndash Standard Adapter

0123456

MOP Inc (393) MOP Value (394)

Port Enable Mask (330)

1

2

3

4

5

6

C B A0 0 0 ndash No Change0 0 1 ndash External Ref 10 1 0 ndash Preset Speed 10 1 1 ndash Preset Speed 21 0 0 ndash Preset Speed 31 0 1 ndash Preset Speed 41 1 0 ndash Preset Speed 51 1 1 ndash External Ref 2

Local Mask (337)

Start Mask (332)Jog Mask (333)Clear Fault Mask (335)Direction Mask (331)

Reference Mask (334)

Reset Drive Mask (336)

Stop Owner (340)Direction Owner (341)Start Owner (342)Jog 1 Owner (343)Jog 2 Owner (344)Reference Owner (345)Local Owner (346)Flux Owner (347)Trim Owner (348)Ramp Owner (349)Clear Fault Owner (350)

Logic Status (56)

Bit 0 ndash Run ReadyBit 1 ndash RunningBit 2 ndash Command Direction 1 = FWD 0 = REV)Bit 3 ndash Rotating Direction (1 = FWD 0 = REV)Bit 4 ndash AcceleratingBit 5 ndash DeceleratingBit 6 ndash WarningBit 7 ndash FaultedBit 8 ndash AT Set SpeedBit 9 ndash Local ABit 10 ndash Local BBit 11 ndash Local CBit 12 ndash AT Zero SpeedBit 13 ndash Ref ABit 14 ndash Ref BBit 15 ndash Ref C

Logic Status (57)

Bit 0 ndash Flux ReadyBit 1 ndash Flux UpBit 2 ndash Diagnostic CompletedBit 3 ndash Diagnostic CompletedBit 4 ndash Bus RidethruBit 5 ndash JoggingBit 6 ndash Autotune Stat ABit 7 ndash Autotune Stat BBit 8 ndash At LimitBit 9 ndash Not UsedBit 10 ndash At Setpoint 1Bit 11 ndash At Setpoint 2Bit 12 ndash Over Setpoint 1Bit 13 ndash Over Setpoint 2Bit 14 ndash Over Setpoint 3Bit 15 ndash Over Setpoint 4

Fault

Warning

Logic Command (52) (Permanent Link)

Bit 0 ndash Ramp StopBit 1 ndash StartBit 2 ndash Jog 1Bit 3 ndash Clear FaultBit 4 ndash ForwardBit 5 ndash ReverseBit 6 ndash Jog 2Bit 7 ndash Current Limit StopBit 8 ndash Coast StopBit 9 ndash Velocity Ramp AvailableBit 10 ndash Flux EnableBit 11 ndash Process Trim EnableBit 12 ndash Vel Reference Select ABit 13 ndash Vel Reference Select BBit 14 ndash Vel Reference Select CBit 15 ndash Reset Drive

Output Select (384)

TB7ndash6

TB7ndash5

TB7ndash4

TB7ndash9

TB7ndash8

TB7ndash7

Enable (55 Bit 9)

TB7ndash1

TB7ndash2

TB7ndash3

10 Volt Offset (356) 10 Volt Scale (357)10 Volt Input+ TB5 ndash 4ndash TB5 ndash 5

10 Volt Input (355) Analog Out 1 Scale (372) 10 Volt Scale (371)AnalogOutput 1 (370)

Analog Output 1 + TB6 ndash 1 ndash TB6 ndash 2

Pot Offset (359) Pot Scale (360)Pot Input+ TB5 ndash 7ndash TB5 ndash 8

Pot Input (358) Analog Out 1 Scale (375) 10 Volt Scale (374)AnalogOutput 2 (373)

Analog Output 2+TB6 ndash 4 ndash TB6 ndash 5

mA Input Offset (362) mA Input Scale (363)mA Input+ TB5 ndash 10ndash TB5 ndash 11

mA Input (361) mA Output Scale (378) mA Output Offset (377)mA Output 3 (376)

mA Output + TB6 ndash 7 ndash TB6 ndash 8

Pulse PPR (395)Pulse Edge (396)Pulse Scale (397)

Pulse Offset (398) Pulse Value (399)+10V RefCom Refndash10V Ref

TB5ndash1TB5ndash2TB5ndash3

+TB5ndash13ndashTB5ndash14

A

Filter

Filter

354

353

Filter

352

Appendix A

Andash34

36T Firmware Function (Motor Control Board Overview)

PROCESS TRIM

VELOCITYREFERENCE CONTROL

L

B TRIMCONTROL

LC

VR

Tq

DRIVE LOGICCONTROL

VELOCITY PIREGULATOR

GAINS

LC

VELOCITY LOOPAUTOTUNE

3 LOGIC COMMANDS

2 JOGS

2 LOGIC STATUS WORDS

FLUX INHIBIT RUN INHIBIT COND

Tpt

TORQUE TRIM

TL TH

PI

TORQUE LIMIT

VELOCITYFEEDBACK CONTROL

Q

S

VF

φf

TqTORQUE COMMAND

Sheet Connection Symbols

B VELOCITY RAMP OUTPUT

C CURRENT PROCESSOR COMMAND

I f FILTERED Iq REFERENCE

Iq

VELOCITY TRIM

Iq REFERENCE

LC LOGIC CONTROL WORD

M ACTIVE TORQUE MODE

VELOCITY PI REGULATOR OUTPUT

Q

S FILTERED Iq REFERENCE

TL TORQUE LIMIT LOW

TORQUE LIMIT HIGH

TORQUE COMMAND

VELOCITY FEEDBACK

φf

PI

TH

Tq

VELOCITY REFERENCE

TORQUE TRIM

VR

Tpt

5 PRESETS

2 JOGS

2 EXTERNALVELOCITY

REFERENCES

ENCODERLESS

VF

VT

Appendix A

Andash35

36T Firmware Function (Motor Control Board Overview)

2 EXTERNALTORQUEREFERENCES

TORQUE REFERENCECONTROL

M

C

DRIVE FAULTDETECTION

TORQUE BLOCK(DC TO ACCONVERTER)

ANALOG CURRENTREGULATOR

Iq REF (AC)

LOCAL INPUTS

4 FAULT STATUS WORDS

ACMOTORIq

If

1 EXTERNAL Iq Ref

Id REF (AC)

fe

DIGITALENCODER

ENCODERLESS

Appendix A

Andash36

36T Firmware Function (Velocity Reference Overview)

PARAM 52 LOGIC COMMAND WORD

ExternalVelocity Ref 1

SCALE

AUTO TUNEREFERENCE

SELECT

DIRECTIONSELECT

AUTOTUNE

ACTIVE

A

JOGREFERENCE

SELECT

0

JOG 2SPEED

PARM52

102

100101

ExternalVelocity Ref 2

SCALE

105

103104

119

120

121

122

0

123

121314

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2 6

27

118

PROCESS TRIMREFERENCE

REFERENCECONTROL SELECT

41

STOPCOMMAND

078

P54 DISCRETESTOP INPUT

45

PARM52 128

FORWARDSPEED LIMIT

127

REVERSESPEED LIMIT

56

LINEARACCELDECEL

RAMP

LOGICSTATUSPARM

DECEL TIME

125

126

ACCEL TIME

RAMPBYPASS

2679

PARM52

B

PROCESSTRIM VEL INPUT

SELECT

+

ndashC

117JOG 1SPEED

28PROCESS TRIMFEEDBACK

146VELFBK

RAMP OUTPUT

PARM52

PARM52

3

MAXSELECT

2

Parm 59

UNIPOLAR 0

ndash32767BIPOLAR

X (ndash1)

0 0 0Scale8192

Scale8192

2

59

LOGIC OPTION

Vel Ref Type12

Appendix A

Andash37

36T Firmware Function (Trim Control Overview)

PROCESS TRIM

TRIM LIMIT OPTION

STOP

OUTPUT GAIN2048

DATA

PROCESS TRIM PIREGULATOR

RAMP OUTPUT

109HIGH

B

C

108

LOW PASSFILTER

KI4096

KP4096

31

32

33

36

35

HIGH LIMIT

232

LOW LIMIT

LOW

LIMIT

VELOCITYTRIM

29

0

+

+

SELECT VELOCITYOUTPUT

0

+

+

106

10732 Bit ExternalVelocity Trim

ZEROREFERENCE

0

VELOCITY TRIM

LIMIT

TRIMLIMIT

29 0

FREQLIMIT

VR

TO VELOCITYPI REGULATOR

TORQUETRIM

0

Tpt

TO TORQUEREFERENCE

29 1

SELECT TORQUE

29 3

34

29 4

Lc 11FROMDRIVELOGIC

P52

SET OUTPUT OPTION

PRESET INTEG OPTION

130

FWD LIMIT

129

REV LIMIT

Appendix A

Andash38

36T Firmware Function (Velocity Feedback Overview)

DIGITALENCODER

ENCODER SIGNALPROCESSING

SUM

emptyt

DIVIDE

CHAN A

CHAN B

ENCODER FEEDBACK SCALING

PULSE To PER UNIT CONVERSION

LOW SPEEDALGORITHM

A

B

Appendix A

Andash39

36T Firmware Function (Velocity Feedback Overview)

FEEDBACKDEVICESELECT

8192

0

1

3

35492

567

152

0

FILTER

FEEDBACKDEVICE

TYPE

Kn

4

34567

012

1

4

150

FILTERSELECT

3

2 2040FILTER

LeadLag

FILTER

153 154

Wn NotchFilter

2143SCALE

147102 105

Scale 1 Scale 2

VF

155

ENCODERLESSINTERNALFEEDBACK

EXTERNALFEEDBACK

VEL REFSELECT

125 msFILTER

146

VELOCITYFEEDBACK

FV

143 16

TO MOTOROVERLOADFUNCTION

I2TABSOLUTE

OVERSPEED

SELECTEDVELOCITY

TO VELOCITY PI REGULATOR

Scaled VelFeedback

SUM

Q TO VELOCITY PI REGULATOR

Alt Encoder

Motor Sim

A

B

Appendix A

Andash40

36T Firmware Function (Velocity PI Regulator Overview)

VELOCITY PI REGULATOR

INTEGRATOR

VR

SELECT

65535

Kf TERM

I

3

FEEDFORWARD

Kf Velocity Loop

133

HOLD

Q

141

VELOCITY REFERENCE

132

A

65535

Kf

LOWPASS

FILTER

135

+

ndash

14241364135

Wn

Gain

Auto Tune Active

SELECT

50

Kp Velocity Loop 140

A

Gain

Auto Tune Active

Kf ERROR

3136

FAULT TESTPOINT

1596 9

HOLD

S

+

ndash

FROM TRIMCONTROL

DROOPEDVELOCITY

REFERENCE

2136135

9815

3

MATHLIMIT

+

ndash

DROOPGAIN

VF

146

DROOPPERCENT

XX

1298

FROMFEEDBACKCONTROL

FROMFEEDBACKCONTROL

15

131

PARAMETERLIMIT

VELOCITYFEEDBACK

+ ndash

138

VELOCITY ERROR

1598 8

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

Appendix A

Andash41

36T Firmware Function (Velocity PI Regulator Overview)

INTEGRALGAIN

I

PROPORTIONALGAIN

REGULATORENABLE

8

K

SELECT

8

Kp VELOCITY LOOP 139

A

Gain

+ 300

K

8

AUTO TUNEACTIVE

+

TORQUELIMITER183

LIMIT STATUS

1598 1

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

OR

+

2

ndash 300

0

8

PI

134

LC

TOTORQUE

REFERENCECONTROL

LOGICCONTROL

WORD

VELOCITYREGULATOR

OUTPUT

13136

OUTPUTLIMITED

p

= 0

Appendix A

Andash42

36T Firmware Function (Torque Reference Overview)

Limit Selection

TORQUE TRIM

Tpt

FromTrim Control

MINIMUM SELECTOR FOR + LIMIT

NTC LIMIT

A

AUTOTUNEACTIVE

SCALETORQSTEP

ACTIVE TORQUEMODE

M

11172

Torque Sum4096

163

EXTERNALTORQUE

REF 1

162

SLAVETORQUE 1

SCALE

4096

165

164

SLAVETORQUE 2

EXTERNALTORQUE

REF 2

+

PI

SPEED

TORQUE

134

Torque Selection

MIN

MAX

2 1 0

19172

2 1 0C B A

TORQUESELECT

LOGIC BITS

0 0 0 0

0 0 1

TORQUE LIMIT

0 1 0

+ +

+0 1 1

172

1 0 0

18172 13

TORQUE MODE SELECT

NOTCHFILTER

152 = 4 Notch

166

183

0+

1

2

3

4

5

6

0TORQUE

COMMAND

MAXIMUM SELECTOR FOR ndash LIMIT

1172

160NEGATIVE

MOTORCURRENT

LIMIT

179POSITIVEMOTOR

CURRENTLIMIT

( ndash 1)

3172

( ndash 1)

CURRENT TO TORQUE

271

LIMITEDFLUX

POSITIVEIq LIMIT

FLUX

CURRENT TO TORQUE

271

LIMITEDFLUX

FLUX

NEGATIVEIq LIMIT

FROMINVERTEROVERLOAD

PROTECTION

1 0 1

From VelocityPI Regulator

LIMITS

SUM

26

Appendix A

Andash43

36T Firmware Function (Torque Reference Overview)

Power Limits

MIN SELECT AUTOTUNE

TORQUELIMIT

LIMITEDFLUX

TORQUELIMITS

40

+

INTERNAL TORQUEREFERENCE

271

TORQUE TO CURRENT

FLUX+

167

174

8ndash

9

10

12

13

14

MIN FLUX

FULL WAVERECTIFY

Computed Power

XMultiply

Torque Ref

PositiveTorque Limit

MAX SELECT

175

172 20

NegativeTorque Limit

176 7172

Torque Limit Low

8172

Torque Limit High

21172

NEGATIVE TORQUEPOWER LIMIT

POSITIVE TORQUEPOWER LIMIT

1

Vf

1

Vf

+ndash

ndash+

177

146+

VELOCITYFEEDBACK

ndash

167

182

ComputedPower

MOTORINGPOWER

LIMIT

178REGENPOWER

LIMIT

( ndash 1)40

Autotune TorqueLimit

11

LIMIT STATUS

Iq LIMIT PARAM

NTC LIMIT

INVERTER (IT) LIMIT

INVERTER MAXIMUM

TORQUE LIM PARAM

POWER LIM PARAM

AUTOTUNE LIM PARAM

CURRENTLIMITS

MAX SELECT

CURRENTLIMIT

25172

Iq SUM

Iq RATELIMITER

I

Iq

MOTORFLUX

REFERENCETO TORQUEREFERENCE

161EXTERNALIQ

0

Appendix A

Andash44

36T Firmware Function (Torque Block Overview)

SYNCHRONOUS

TO

STATIONARY

TRANSFORMATION

CURRENT COMMAND CONDITIONING

FROMTORQUE

REF

168

Iq

172

MAX MOTORCURRENT

RANGE

172

MIN = ndash8192

MAX = 3072

MIN = 0

DRIVEENABLE

(lq)

RATED FLUX (Id)

238

LIMITER

4096^2ndash[238]^24096

MAX = 8192

DRIVEENABLE

LIMITER

Iq_CMD

Id_CMD

MOTORPOLES

233

THETA e

THETA s

2

HARDWARE

COUNTERS

1024[235]

[233]

4

ENCODERPPR

235

COUNTER 2

COUNTER 1

CHAN A

CHAN B

DIGITALENCODER

Iq_CMD1024

+

+

SLIPREGULATOR

DDT

+

+

THETA r

KSLIP

DELTA_COUNTS

fs(fslip)

fe

(eletrical or stator freq)(rotor)

41

41

R8192

R

ENCODER FEEDBACK CONDITIONING

+

ndash

fr

Appendix A

Andash45

36T Firmware Function (Torque Block Overview)

ANALOG CURRENT REGULATOR

BRIDGE GAIN IN TORQUEndash TESTPOINT 27 WHEN PAR 173=27

INVERTER GAIN

COMMAND

FEEDBACK

172

Iqs

TP18FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

VOLTAGE TP16=25V WITH PEAK RATED-MOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP1 amp TP2=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TP19

TP21

Ids

VOLTAGE TP21=5V WITH PEAK RATEDMOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP3 amp TP4=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TOTAL CURRENT

MOTORCURRENT

MAGNITUDE

XX AMP

264

DAC

260

TP16

+

ndash TP1

TP2

INVERTER GAIN

COMMAND

FEEDBACK

172

FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

DAC

261

+

ndash TP3

TP4

DAC

ADC

++

++

IdOFFSET

IqOFFSET

2048[GAIN]

2048[GAIN]

MAX

MULT

UWV

220INVERTER

AMPSPERUNITMOTOR

CURRENT

XX

185

Appendix A

Andash46

36T Firmware Function (Drive Fault Detection)

lf

91

4

98 18 ACCEL ERROR

98 19 QUAD LOSS EDGE

98 20 QUAD LOSS LEVEL

98 21 PHASE LOSS EDGE

98 22 PHASE LOSS LEVEL

54

857

1256

VELOCITY FEEDBACKTESTPOINTS

98 11 PARAM LIMIT 1

98 12 PARAM LIMIT 2

98 13 MATH LIMIT ndash VEL REF

98 14 MATH LIMIT ndash VEL FBK

98 15 MATH LIMIT ndash VEL REGULATOR

FAULT TESTPOINTS(BIT FIELDS)

FV

95

96

97

92

LC5

98 16 MATH LIMIT ndash TORQUE REF

98 17 MATH LIMIT ndash PROCESS TRIM

QUAD LOSS HSI0

PHASE LOSS HSI1

EXT FAULT

LOGIC STATUS

ENCODER

AT LIMIT

ZERO SPEED

XXX SECSTALL

STOPPED

MOTOR STALLED

BIT 6ndashFAULT CODE 5054

BIT 5ndashFAULT CODE 1053

LOGIC CONTROL WORD

150FEEDBACK DEVICE= ENCODER (1) BIT 0

FAULT CODE 5048

FILTERED

FILTERED

SPEED 1

SPEED 2

MIN

OVERLOAD

BREAKPOINT

ABS

21

ndash05

Y2lq

lq2

MAX

INTG

CALC

LIMIT

0

200

4096

A

B

A

B3891K

AgtB

AgtB

I2T TRIPBIT 4

ndashCODE 1052

I2T PENDINGBIT 3

ndashCODE 1051

MOTOR

CP CONFIGURABLE FAULTWARNING

BIT DESCRIPTION

0 BUS RIDETHROUGH TIMEOUT

1 PRECHARGE TIMEOUT

2 BUS DROP

3 BUS UNDERVOLTAGE

4 BUS DROP CYCLES gt5

5 OPEN CIRCUIT

6 RESERVED

7 RESERVED

8ndash15 NOT USED

PARAMETERS 828486 and 87

CONFIGURABLE FAULTS

lq

LIMIT

OVERLOAD

MOTOR OVERLOAD FUNCTION ldquoI2Trdquo

EDGE

DELAYAND

DELAY

LEVELDETECT

THRESH

(100)

(95)

VEL

LIMIT

94SERVICEFACTOR

Appendix A

Andash47

36T Firmware Function (Drive Fault Overview)

270

128

98 4

87

89

82

83

84

85TC

90

127

FV

LC 5

80

81

WARN

SEL

VP CONFIGURABLE FAULTWARNING

CONFIGFAULTSTATUS

CP

VP

CONFIG WARNSTATUS BITS

CP

VP

XX VOLTS

PARAMETERS 838588 and 89

BIT DESCRIPTION

0 ENCODER FEEDBACK LOSS

1 INVERTER OVERTEMPERATURE PEND

2 MOTOR OVERTEMPERATURE TRIP

3 MOTOR OVERLOAD PENDING ndash IIT

4 MOTOR OVERLOAD TRIP ndash IIT

5 STALLED

6 EXTERNAL FAULT

7 RMS FAULT

POWERTRANSISTOR

HEATSINKTEMPERATURE

(NTC) NTCLOOKndashUP gt

80C05 SEC

INVERTER OVERTEMP PENDING

BIT 1

ltndash20COR

gt100C

05 SECDELAY

INVERTER TEMPERATURE CHECK

LOGICCONTROL

WORD

NOT

RF

LIMIT CHECK

100 msec

HOLD

ABSOLUTE OVERSPEED

BIT 9FAULT CODE

3025

CODE2028

FILTEREDVELOCITYFEEDBACK

ABSOLUTEOVERSPEED

FWD MOTORSPEED LIMIT

REV MOTORSPEED LIMIT

NONndashCONFIGURABE FAULTS

0 BUS OVERVOLTAGE TRIP

1 TRANSISTOR DESATURATION

2 GROUND FAULT

3 INSTANTANEOUS OVERCURRENT

4 SOFTWARE MALFUNCTION ndash (CP)

5 MASTERSLAVE CABLE LOSS

6 MASTERSLAVE ENABLE TIMEOUT

7 RESERVED

8 ADAPTER HANDSHAKE LOSS (VP)

9 ABSOLUTE OVERSPEED

10 ANALOG SUPPLY FAILURE 13 ndash 18V RGE

11 AUTOTUNEDIAG FAIL

0ndash3 ARE HARDWARE FAULTS

12 INVERTER TEMPERATURE TRIP

13 SOFTWARE MALFUNCTION ndash (VP)

14 ILLEGAL INTERRUPT

15 RESERVED

POWERUP FAULTS

STATUSBITS

STATUSBITS

0 CP PROM FAILURE

1 CP INT RAM FAILURE

2 CP EXT RAM FAILURE

3 CP STACK RAM FAILURE

4 VP MBI FAILURE

5

6

7

8 VP PROM FAILURE

9 VP INT RAM FAILURE

10 VP EXT RAM FAILURE

11 VP STACK RAM FAILURE

12 CP MBI FAILURE

13 AP MBI FAILURE

14 EEPROM FAILURE (BASE DRIVE BRD)

15

CP

PO

WE

RU

PV

P P

OW

ER

UP

NONE POWER TRANSISTORHEAT

TEMPERATURE C

DELAY

DRIVE STOPPED

INPUTTABLE

DELAY

BIT DESCRIPTION

8

9 PARAMETER LIMIT

10 MATH LIMIT

11 DYNAMIC BRAKE OVERTEMP

12 AC MOTOR CONTACTOR

13 INVERTER OVERLOAD PENDING ndash IT

14 DRIVEndashTOndashDRIVE FAULT

15 INVERTER OVERLOAD TRIPndashIT or NTC

SELECT

86

88FAULT CP

VPCONFIGSELECT

FAULTCODE2049

BITS

98 2

Actual VelocityAt Overspeed

Appendix A

Andash48

36T Firmware Function (Inverter Overload)

98168

230

220

6172

23

2172

22172

[Iq] x MI

CONVERT MOTOR TOINVERTER UNITS

100 x IM

CONVERT INVERTERTO MOTOR UNITS

Iq x IM

MOTORNAMEPLATEAMPS

RATEDINVERTEROUTPUT AMPS

MAXIMUMINVERTERIq(6144 150)

INTERNALIq REFERENCE

M M

I

I I

M

I

M

TRANSISTORRJC

C RISE

MULT

CONVERT INVERTERTO MOTOR UNITS

30degC

Appendix A

Andash49

36T Firmware Function (Inverter Overload)

1

270

98 25

INVERTER HEATSINKTEMPERATURE C

98

120C

ERROR

ndash100S

INTEGRATOR

LIMITER

300 9

172 1LIMIT STATUS

NTCLIMIT

NTC LIMIT

TO MOTORCURRENTLIMITSELECTION

CONFIGURABLEFAULT

WARNING

83 15

172 3

183 2 10

83 13

IT

PROTECTION

A

B

A

B

LIMIT STATUS

OVERLOAD CURRENT LIMIT

(LIMITING)

(NOT PENDING)

SELECT

TOMOTOR

CURRENTLIMIT

SELECTION

CONFIGURABLEFAULTWARNING

RATED INVERTER Iq IN MOTOR PER UNIT

NTC FOLDBACK PROTECTION

DEVICE JUNCTIONTEMPERATURE C

rsquoIT INVERTER PROTECTION

INVERTER

Appendix A

Andash50

0

1

2

3

4

5

6

7

8

INVERTER TRANSISTOR DIAG

MOTOR PHASE ROTATION TEST

LO MEASURE

RS MEASURE

ID MEASURE

UPDATE TORQUE BLOCK CALC

MEASURE MOTOR INERTIA

MEASURE SYSTEM INERTIA

UPDATE VELOCITY LOOP GAINS

VELOCITY KI 139

VELOCITY KP 140

VELOCITY KF 141

DESIRED XXX RADSEC BANDWIDTH

DAMPING XX FACTOR

LC

43

45

AUTOTUNEDIAGNOSTICSELECTION

0WAIT

1START

3STOP

2MEASURE

256

AUTOTUNETORQUE

40

AUTOTUNESPEED

41

AUTOTUNE PROCEDURE

1 RUN TRANSISTOR DIAGNOSTICS ndash SET BIT 0 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

2 RUN PHASE ROTATION TEST ndash SET BIT 1 IN PARM 256 AND SET START BIT IN LOGIC COMMANDCHECK SIGN OF VELOCITY FEEDBACK (PARM 146) AGAINST FREQ REF (PARM 263)STOP DRIVE AND CLEAR PARAMETER 256SWAP ENCODER PHASES IF NECESSARY TO GET SIGNS TO MATCH

3 RUN TORQUE AUTOTUNE ndash SET BITS 2 THROUGH 5 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

4 RUN VELOCITY AUTOTUNE ndash ENTER DESIRED BANDWIDTH IN PARM 43 SET BITS 6 THROUGH 8 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND CHECK DIDT LIMIT IN PARM 181

181

AUTOTUNESTATUS

AUTOTUNEINHIBIT

ERROR

TORQUELIMIT

XXX SEC 234

XXX SEC

47

47

AUTOTUNE STATES

MOTOR INERTIA

TOTAL INERTIA

I LOOPDIDT LIMIT

V LOOPERROR FILTER BW

142

46

4

5

VELOCITY

LOOP

GAIN

CALCULATIONS

FRICTION

VELOCITY LOOP AUTOTUNE

LOGIC CONTROLDRIVE STOPPED

Appendix A

Andash51

1

2

3

4

DRIVE ENABLE (NO)

MTR THERMO GUARD (NC)

STOP (NC)

EXTERNAL FAULT

VPLED

ADAPTERTERMINALS

J8

LOCALINPUT

STATUS

54

UMCIEPLD

9

TORQUE MODE SELECT

0 ndash ZERO TORQUE1 ndash SPEED REGULATOR2 ndash TORQUE REGULATOR3 ndash MIN TORQUE OR SPEED4 ndash MAX TORQUE OR SPEED5 ndash SUM SPEED amp TORQUE6 ndash ZERO TORQUE7 ndash ZERO TORQUE

50 MSEC SCAN INTERVAL

HIGH BYTE = HANDSHAKE ENABLELOW BYTE = SYSTEM MODE

53

36T Firmware Function (Logic Control)

PSIBOARD

DISCONNECT (NC)16 msec

0

1

2

3

4

5

6

7

8

9

10

BRAKE REQ

DRIVE ENABLE

MOTOR OVERTEMP

DISCRETE STOP

EXTERNAL STOP

RMS FAULT P02

0 = MASTERSLAVE DRIVE

P03

TEST DIG P05

INVERTER STATUS

CONTACTOR VERIFYP26

P24

55

0

1

8

9

10

11

12

13

14

15

LOCALOUTPUTSTATUS

P27

P13

C B A

00001111

00110011

0 ndash ZERO TORQUE1 ndash EXTERNAL REF 10 ndash PRESET SPEED 11 ndash PRESET SPEED REF 20 ndash PRESET SPEED REF 31 ndash PRESET SPEED REF 40 ndash PRESET SPEED REF 51 ndash EXTERNAL REF 2

VELOCITY REF SELECT

BUS VOLTS

52

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NORMAL STOP

START

JOG 1

CLEAR FAULT

FORWARD

REVERSE

JOG 2

CURRENT LIMIT STOP

COAST STOP

VEL RAMP DISABLE

FLUX ENABLE

PROCESS TRIM ENABLE

VEL REF SELECT A

VEL REF SELECT B

VEL REF SELECT C

RESET DRIVE

EDGE

EDGE

EDGE

EDGE

EDGE

70

258 259INVERTERDIAGRESULTS

DISCRETEINPUT

DEBOUNCE

70 12

70 11

J1750 VOLTS

BRAKEINTERFACE

P25

58

0 = NORMAL STOP1 = TORQUE TO 0 SPEED2 = TORQUE TO 0 TORQUE

TORQUE STOP CONFIGURATION

BRAKE ENABLE

TURN ON DELAY P14

ndash ndash ndash ndash ndash ndash ndash ndash ndash

VP ENABLE

PILOT RELAY

GREEN LED

RED LED

INVERTERENABLE

LED

A

B

C

P12

LOGICCOMMAND

WORD

LOCAL DRIVE IO

RequestedTorqueMode

SYMBOL

PARAMETER XXX DATA SINK

PARAMETER YYY DATA SOURCE

BIT

TESTPOINT

OFF SHEETCONNECTION

Appendix A

Andash52

0

1

2

3

FLUX ENABLED

RUN INHIBIT

MOTOR SPINNING

16

STOP EVENT

36T Firmware Function (Logic Control)

NOTUSED

DISCRETE STOP

0

1

2

3

4

5

6

7

AT SETPOINT 1

DRIVE LOGIC STATES

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

54 55

STOP DWELL

70

60

0

59 B A

LAST STOPTYPE

AUTOTUNE COAST

BUS PRECHARGE

COAST STOP (HWSW)

COMMON BUS DISCONNECT (EXT FAULT)

COAST FAULT

NO DRIVE ENABLE J8ndash1

LOSS OF FLUX UP

AC CONTACTOR FAULT

A

B

C

LOGIC OPTION BITS

LOGIC COMMAND PROCESSING

FLUXINHIBIT

BITS

70

70 70 5RUN

INHIBITBITS

START TYPE A

START TYPE B

JOG RAMP ENABLE

JOG COAST(REGEN STOP = 0)

STOP INPUT TYPE A

STOP INPUT TYPE B

DO POWERndashUP DIAG

DO FLUXndashUP DIAG

DO START DIAG

AC CONTACTOR PRESENT = 1

1 = BIPOLAR VEL REF 0 = UNIPOLAR

0011

0101

MAINT START REGEN STOPMAINT START COAST STOPMOMENTARY STARTMAINT START REGEN STOP

B A

0011

0101

COASTNORMALIndashLIMITCOAST

FLUXINHIBIT

FLUX

STOP

1

START

4

DIAG

3

STOPPING

2

RUN

START JOG RESET

8

9

10

11

12

13

14

15

SAVE

4

70 5

RUN INHIBIT

= 0

70 15

70 5

61AT SETPOINT 2

OVER SETPOINT 1 62

63OVER SETPOINT 2

OVER SETPOINT 3 64

65OVER SETPOINT 4

66

67

SETPOINT SELECT

SPD SETPOINT TOL

68

69

Iq SETPOINT TOL

ZERO SPEED TOL

71

72

14

70

D

0 = NONE1 = COAST2 = NORMAL3 = I ndash LIMIT

LOGIC TESTPOINTS

TESTPOINT SELECT

RUNINHIBIT

BITS

E

70 1

LOGIC STATE (0 ndash 4)

F

G

J

KM ACTIVE TORQUE MODE

TO TORQUE REF CONTROL

H

Appendix A

Andash53

36T Firmware Function (Logic Control)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

56

H

LOGIC OPTION BITS

LOGIC CONTROL WORDBITS TO FAULT

CONTROL

70

RUN READY

RUNNING

COMMAND DIRECTION 1= FWD 0 = REV

ROTATING DIRECTION 1 = FWD 0 = REV

ACCELERATING

DECELERATING

WARNING

FAULTED

AT SET SPEED

LOCAL A

LOCAL B

LOCAL C

AT ZERO SPEED

REF A

REF B

REF C

C B A

00001

STOPSTARTRUNSTOPPINGDIAG

STATUS

VP to CP BITS

3

0 11415

D

0 = OKNOT 0 = LOSSOF CP FLUXndashUP

7013

FG

J

LC

E

00110

01010

LOGIC STATE

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

57

FLUX READY

FLUX UP

BUS RIDETHRU

JOGGING

AT LIMIT lt183gt Not = to 0

NOT USED

AT SETPOINT 1

AT SETPOINT 2

OVER SETPOINT 1

OVER SETPOINT 2

OVER SETPOINT 3

OVER SETPOINT 4

LOGIC OPTION BITS

CP to VP BITS

VEL REF CONTROL A

VEL REF CONTROL B

VEL REF CONTROL C

VEL REF CONTROL D

1 = STOPPING

STOPPED

PRECHARGE REQUEST

RAMP CONTROL (1 = RAMP)

SPEED REGULATOR ENABLE

MOTOR SIMULATOR ENABLE

FLUX ENABLE

DIAGNOSTIC ENABLE

VP GAIN CALC

RESET DRIVE

CLEAR FAULT

PROCESS TRIM ENABLECP FLUX LOSS

K

70 6

0 1 2 4 515

70 7

FLUX UPDIAGNOSTIC ACKNOWLEDGEDIAGNOSTIC ERRORMASTER INVERTERSLAVE INVERTER

0 = NO REQNOT 0 = DO DIAG

DIAGNOSTIC REQUEST FLAG

708

FLUX ENABLEDIAGNOSTIC ENABLEENCODERLESS DISABLERIDETHRU ACK

C TO CURRENT PROCESSOR

FROM CURRENT PROCESSOR

LOGIC STATUS

TORQUE BLOCK INTERFACE

See VelRef Testpoint 1

Appendix A

Andash54

Battery Disposal When it becomes necessary to replace the battery that supports the realtime clock on the 1336 FORCE precautions must be taken whendisposing of the old battery The following procedure must be followedwhen disposing of lithium batteries

ATTENTION Do not incinerate or dispose of lithium batteries ingeneral trash collection Explosion or violent rupture is possibleBatteries should be collected for disposal in a manner to preventagainst short circuiting compacting or destruction of caseintegrity and hermetic seal

For disposal batteries must be packaged and shipped in accordance withFederal state local or provincial laws to an appropriate Transfer Storageand Disposal facility

The person disposing of the material is responsible for any hazardscreated in doing so as the material may be considered toxic reactive orcorrosive

AppendixB

Bndash1

CE Conformity

EMC Directive This apparatus is tested to meet Council Directive 89336Electromagnetic Compatibility (EMC) using a technical construction fileand the following standards

bull EN 50081ndash1 ndash2 ndash Generic Emission Standard

bull EN 50082ndash1 ndash2 ndash Generic Immunity Standard

Marked for all applicable directives 1

Emissions EN 50081-1EN 50081-2EN 55011 Class AEN 55011 Class B

Immunity EN 50082-1EN 50082-2IEC 801-1 2 3 4 6 8 per EN50082-1 2

Important The conformity of the drive and filter to any standard doesnot guarantee that the entire installation will conform Manyother factors can influence the total installation and onlydirect measurements can verify total conformity

The following seven items are required for CE conformance

1 Standard 1336 FORCE Drive 037-45 kW (1-60 HP) CE compatible(Series D or higher)

2 Factory installed EMC enclosure (-AE option) or field installed EMCEnclosure Kit (1336x-AEx ndash see page Bndash2)

3 Filter as called out on the following page

4 Grounding as shown on page Bndash2

5 Maximum cable length (drive to motor) of 75 meters (250 feet)

6 Input power (source to filter) and output power (filter to drive amp driveto motor) wiring must be braided shielded cable with a coverage of75 or better metal conduit or other with equivalent or better attenu-ation mounted with appropriate connectors For shielded cable it isrecommended to use a compact strain relief connector with doublesaddle clamp for filter and drive input and compact strain reliefconnector with EMI protection for motor output

7 Control (IO) and signal wiring must be in conduit or have shieldingwith equivalent attenuation

Requirements forConforming Installation

Appendix BCE Conformity

Bndash2

Filter Selection

Filter CatalogNumber

Three-PhaseVolts Used with

FrameReference

1336-RFB-30-A 200-240V 1336T-A001 - A003 A

380-480V 1336T-B001 - B003 B

1336-RFB-27-B 200-240V 1336T-A007 B

380-480V 1336T-B007 - B015 B

1336-RFB-48-B 200-240V 1336T-A010 - A015 B

380-480V 1336T-B020 - B030 B

1336-RFB-80-C 200-240V 1336T-A020 - A030 C

380-480V 1336T-BX040 - BX060 C

1336-RFB-150-D 200-240V 1336T-A040 - A050 D

380-480V 1336T-B060 - B100 D

1336-RFB-180-D 200-240V 1336T-A060 D

380-480V 1336T-B125 - BX150 D

1336-RFB-340-E 200-240V 1336T-A075 - A125 E

380-480V 1336T-B150 - B250 E

1336-RFB-475-G 380-480V 1336T-BX250 - B350 G

1336-RFB-590-G 380-480V 1336T-B400 - B450 G

1336-RFB-670-G 380-480V 1336T-B500 - B600 G

Not Available 380-480V 1336T-B700 - B800 H

EMC Enclosure Kit Selection

Frame Enclosure Kit Catalog NumberFrameReference 200-240V Rating 380-480V Rating 500-600V RatingB 1336-AE4 1336-AE4 1336-AE4C 1336-AE5 1336-AE5 1336-AE5D 1336-AE6 1336-AE6 1336-AE6E 1336-AE7 1336-AE7 1336-AE7FndashH Not Available

RFI Filter Installation

ATTENTION To prevent electrical shock disconnect thepower source before installing or servicing

Important Refer to the instructions supplied with the filter for details

The RFI filter must be connected between the incoming AC supply lineand the drive input terminals

RFI Filter Leakage Current

The RFI filter may cause ground leakage currents Therefore a solidground connection must be provided as shown in the electricalconfiguration scheme shown on the following page

Filter

Appendix BCE Conformity

Bndash3

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some installationsthree-phase supplies are occasionally connected in a 3-wireconfiguration with one phase grounded (Grounded Delta) Thefilter must not be used in Grounded Delta supplies or in anungrounded wye configuration

JOG

ESC SEL

R (L1)

S (L2)

Ground RodGridor Building Structure Steel

T (L3)

PE

Conduit4ndashWire Cable

RFIFilter

Shield Terminated in CableClamp on A Frame Drives

Grounding RFI Filter Grounding

Important Using the RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated intothe filter Therefore the filter must be permanently installed and solidlygrounded (bonded) to the building power distribution ground Ensurethat the incoming supply neutral is solidly connected (bonded) to thesame building power distribution ground

Grounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnectionSome local codes may require redundant ground connections Theintegrity of all connections should be periodically checked

Electrical Configuration

Appendix BCE Conformity

Bndash4

Mechanical Configuration

1 Input power (source to filter) and output power (filter to drive amp drive to motor)wiring must be in conduit or have shieldingarmor with equivalent attenuationSee requirements on page B1

NOTE 1336 FORCE 40ndash60 HP 230V and 60HP 460V mounted in D Frames are NOT CE approved and cannot be used with the RFBndash80ndashC filter

37 ndash 45 kW (1 ndash 60 HP)Frames B amp C

Conduit 1 To Motor 1

ThreendashPhase Input 1

AccessPanel

Flat Washer

Star Washers

Bolt

Important A positive electrical bond must be maintained between drive and filter at all 4 corners Star washers can be eliminated if a positive electrical bond is assured

1336 FORCE

Appendix BCE Conformity

Bndash5

1336 FORCEThrough-the-Wall Mounting)

Frames D amp E 2

1336 FORCE (Conventional Mounting)

Frames D amp E 2

Conduit Box 1

To Motor 1

Access Panel and Input Terminal Block

Lower Access Panel

Filter MountingBracket

Filter MountingBracket

Important Drive and filter must be mounted to a common back plane with a positive electrical bond Spacing is determined by Conduit Box

Three-PhaseInput 1

To Motor 1

Three-PhaseInput 1

Conduit Box 1

NippleFitting

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash6

Filter Mounting (continued)

1336 FORCE (Typical Mounting)

Frame G 2

750(295)

Mounting Brackets

Typical Connectionto Drive

AC Input Terminals

Typical Bracketfor Stability

8310(3272)

Important This information represents the method used to mount 1336-RFB-475 590 amp 670 filters in an Allen-Bradley supplied EMC enclosure User supplied EMC enclosures must follow all of the guidelines shown Illustrations are only intended to identify structural mounting points and hardware shapes You must design and fabricate steel components based on the actual mounting configuration calculated loads and enclosure specifications Refer to Chapter 2 for drive mounting requirements

Important A positive electrical bond must be maintained between the enclosure and filter (including brackets) fans and drive To assure a positive electrical bond any paint near all mounting points must be removed

Important Cooling fans are required for proper drive operation Refer to the User-Supplied Enclosures section in Chapter 2 for CFM recommendations

All Dimensions in Millimeters and (Inches)

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash7

Required Knockout Assignments

Frames B and CFrames A1 through A4

Frame EFrame D

Control IO

Control IO

Control IOFilter Input Filter Input

Filter Input Filter Input

SCANport

Motor Output

Motor Output Motor Output

Motor Output

SCANport

SCANport

SCANport(Side of Drive)Control IO

286349 (113138) - 3 Plcs 222 (088) - 1 Plc 222 (088) - 1 Plc 222286 (088113) - 3 Plcs

8891048 (350413)2 Plcs

127 (050)3 Plcs

349 (138) - 3 Plcs 349500 (138197) - 1 Plc

627762 (247300) - 2 Plcs

Appendix BCE Conformity

Bndash8

This Page Intentionally Blank

AppendixC

Cndash1

User Parameter Values

Use the tables on the following pages to record your particular parametervalue setting for the current application

No Name Default Value No Name Default Value

1 Drive Software Ver 101 47 Autotune TP Data 0000 0000 0000 0000

5 Power Struct Type 0 48 Autotune TP Select 0

8 Motor Cntrl Counter 00 sec 52 Logic Cmd Word 0000 0000 0000 0000

9 Drv Comm Tsk Intrvl 1 53 Torque Mode Sel 1

10 Drv Comm Baud Rate 0 54 Local Input Status 0000 0000 0000 0000

11 Drv Comm Trans Addr 0 55 Local Output Status 0000 0000 0000 0000

12 Drv Comm Rcv 1 Addr 0 56 Logic Status Low 0000 0000 0000 0000

13 Drv Comm Rcv 2 Addr 0 57 Logic Status Hi 0000 0000 0000 0000

14 Dr Comm Xmit Ind 1 20 58 Torq Stop Config 0

15 Dr Comm Xmit Ind 2 21 59 Logic Options 0000 0001 1000 0010

16 Dr Comm Rcv 1 Ind 1 22 60 At Setpoint 1 +00

17 Dr Comm Rcv 1 Ind 2 23 61 At Setpoint 2 +00

18 Dr Comm Rcv 2 Ind 1 24 62 Over Setpoint 1 +00

19 Dr Comm Rcv 2 Ind 2 25 63 Over Setpoint 2 +00

20 Dr Comm Xmit Data 1 0 64 Over Setpoint 3 +00

21 Dr Comm Xmit Data 2 0 65 Over Setpoint 4 +00

22 Dr Comm Rcv1 Data 1 0 66 Setpoint Select 0000 0000 0000 0000

23 Dr Comm Rcv1 Data 2 0 67 Spd Setpoint Tol base speed100

24 Dr Comm Rcv2 Data 1 0 68 Cur Setpoint Tol 20

25 Dr Comm Rcv2 Data 2 0 69 Zero Spd Tolerance base speed100

26 Process Trim Output +000 70 Logic Testpoint Data 0000 0000 0000 0000

27 Process Trim Ref +000 71 Logic Testpoint Sel 0

28 Process Trim Fdbk +000 72 Stop Dwell 10 sec

29 Process Trim Select 0000 0000 0000 0000 77 Max Dyn Brake Pwr 0 Watts

30 Proc Trim Fltr Bdwth 0 radianseconds 78 Max Dyn Brake Tmp 50 deg

31 Proc Trim Data +00 79 Dyn Brk Time Const 10 sec

32 Proc Trim KI Gain 1000 80 Pwr Up Diag Flt Sts 0000 0000 0000 0000

33 Proc Trim KP Gain 1000 81 Non Config Flt Sts 0000 0000 0000 0000

34 Proc Trim Lo Lmt ndash1000 82 CP Config Flt Sts 0000 0000 0000 0000

35 Proc Trim Hi Lmt ndash1000 83 VP Config Flt Sts 0000 0000 0000 0000

36 Proc Trim Out Gain +100 84 CP Config Warn Sts 0000 0000 0000 0000

37 Process Trim Tstpnt +0 85 VP Config Warn Sts 0000 0000 0000 0000

38 Proc Trim TP Sel 0 86 CP FltWarn Sel 0000 0000 0000 0000

40 Auto Tune Trq Lmt 500 87 CP Warn Config Sel 0000 0000 0000 0000

41 Auto Tune Speed 085 x Base Motor Spd 88 VP Fault Select 1111 1111 1111 1111

43 VP Desired BW 500 radianseconds 89 VP Warn Config Sel 0000 0000 0000 0000

44 Autotune Status 5000 radian seconds 90 Abslte Ovrspd Thrsh 01 x base speed

45 VP Damping Factor 10 91 Stall Delay 10 sec

46 Total Inertia 200 sec 92 Mtr Overload Limit 2000

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

94 Service Factor 100 144 Vel Fdbk TP HI +0

95 Mtr Ovrld Speed 1 08 x Base Speed 145 Vel Fdbk TP Select 0

96 Motor Ovrld Speed 2 08 x Base Speed 146 Vel Fdbk +0 0 rpm

97 Min Ovrld Lim 1000 147 Scaled Vel Fdbk 0

98 Fault Tstpt Data 0 148 Enc Pos Fdbk LOW 0

99 Fault Tstpt Sel 0 149 Enc Pos Fdbk HI 0

100 Vel Ref 1 LOW 0 150 Fdbk Device Type None

101 Vel Ref 1 HI 00 rpm 151 Fdbk Tracker Gain 1000

102 Vel Scl Fctr 1 +1000 152 Fdbk Filter Sel 0

103 Vel Ref 2 LOW 0 153 Kn Fdbk Filter Gain +100

104 Vel Ref 2 HI 00 rpm 154 Wn Fdbk Filter BW 100 radianseconds

105 Vel Scl Fctr 2 +1000 155 Tach Velocity +000 rpm

106 Vel Trim LOW 0 156 Notch Filter Freq 135 Hz

107 Vel Trim HI 00 rpm 157 Notch Filter Q None

108 Vel Ref TP LOW 0 161 External Iq Ref +00

109 Vel Ref TP HI 0 162 Ext Trq Ref 1 +00

110 Vel Ref TP Sel 0 163 Slave Torque 1 +100

117 Jog Spd 1 +00 rpm 164 Ext Torq Ref 2 +00

118 Jog Spd 2 +00 rpm 165 Ext Torque 2 +00

119 Preset Speed 1 +00 rpm 166 Ext Torq Step 00

120 Preset Speed 2 +00 rpm 167 Int Torq Ref +00

121 Preset Speed 3 +000 rpm 168 Internal Iq Ref +00

122 Preset Speed 4 +00 rpm 172 Torq Ref TP Data +00

123 Preset Speed 5 +00 rpm 173 Torq Ref TP Sel 0

125 Accel Time 100 seconds 174 Min Flux Level 100

126 Decel Time 100 seconds 175 Pos Mtr Cur Ref Lmt 200

127 Rev Motor Spd Lim ndash Base Motor Speed 176 Neg Mtr Cur Ref Lmt ndash200

128 Fwd Motor Spd Lim Base Motor Speed 177 Motor Power Lmt 200

129 Max Rev Spd Trim ndash base speed 178 Regen Power Lmt ndash200

130 Max Fwd Spd Trim + Base Speed 179 Pos Mtr Cur Ref Lim 100

131 Droop Percent 0 180 Neg Mtr Cur Ref Lim ndash100

132 Vel Ref Out LOW 0 181 DiDt Limit 40

133 Vel Ref Out HI +00 rpm 182 Computed Power +00

134 Vel Reg Out 0 183 Torque Limit Status 0000 0000 0000 0000

135 Vel Reg TP LOW 0 184 Torque Mode Status 0000 0000 0000 0000

136 Vel Reg TP HI 0 185 Perunit Motor Curr 00

137 Vel Reg TP Sel 0 186 Perunit Motor Volt 00

138 Velocity Error +00 rpm 220 Rtd Inv Out Amps 200 amps

139 KI Velocity Loop 320 221 Rtd Inv Input Volts 460 volt

140 KP Velocity Loop 80 222 Inverter Carrier Freq 4000 Hz

141 KF Velocity Loop 100 223 PrechRdthru Sel 0000 0000 0000 0000

143 Vel Fdbk TP LOW 0 224 Undervolt Setpoint 400 volt

Appendix CUser Parameter Values

Cndash1

No Name Default Value No Name Default Value

225 Bus Prech Timeout 300 Sec 271 Lim Motor Flux 100

226 Bus Ridethru Timout 1750 RPM 273 TP Sel 1 0

227 CP Operat Options 0000 0000 0000 0000 274 TP Data 1 0

228 Base Motor HP 300 HP 275 TP Select 2 0

229 Base Motor Speed 1750 RPM 273 TP Sel 1 0

230 Base Motor Current 02 Amps 274 TP Data 1 0

231 Base Motor Volts 460 Volts 275 TP Select 2 0

232 Base Motor Freq 60 Hz 276 TP Data 2 0

233 Motor Poles 4 poles 277 TP Select 3 0

234 Mtr Inertia 060 sec 278 TP Data 3 0

235 Encoder PPR 1024 PPR 279 TP Select 4 0

236 RS Tune 150 280 TP Data 4 100

237 Lsigma Tune 1800 281 TP Select 5 0

238 Id Tune 300 282 TP Data 5 0

240 Iq Tune 9540 283 TP Select 6 0

241 Vde Tune ndash750 volts 284 TP Data 6 0

242 Vqe Tune 3670 volts 285 Select for Tst DAC1 0

243 Vde Maximum 3560 volts 286 Select for Tst DAC2 0

244 Vque Maximum 3670 volts 287 Ki Freq Reg 0

245 Vde Minimum 30 volts 288 Kp Freq Reg 0

246 Base Slip Freq 0469 Hz 289 Kff Freq Reg 0

247 Base Slip Freq Max 200 Hz 290 Ksel Freq Reg 0

248 Base Slip Freq Min 050 Hz 291 Freq Track Filt 0

260 Iq Offset +0 292 Track Filt Type 3

261 Id Offset +0 293 Freq Trim Filt 5000

262 Ph Rot Cur Ref 50 294 Mtr Phs Rot Err 0000 0000 0000 0000

263 Ph Rot Freq Ref 30 Hz 295 Mtr InducTest Error 0000 0000 0000 0000

264 Mtr Cur Mag Fdbk 00 Amps 296 Stator RS Test Error 0000 0000 0000 0000

265 Mtr Volt Fdbk +0 Volts 297 Id Test Errors 0000 0000 0000 0000

266 Stator Freq 0000 Hz 298 Torque Blk Calc 0000 0000 0000 0000

267 Calc Torque 00 300 Adapter ID 2

268 DC Bus Voltage 0 volts 301 Adapter Version xxx

269 Filter Mtr Vel Fdbk 00 rpm 302 Adapter Config

270 Inv Temp Fdbk 0 deg 304 Language Select 0

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

310 Data In A1 0 359 Pot Offset +0000

311 Data In A2 0 360 Pot Scale +1000

312 Data In B1 0 361 Milli Amp Input +0

313 Data In B2 0 362 Milli Amp In Offset +0000 mA

314 Data In C1 0 363 Milli Amp In Scale +2000

315 Data In C2 0 364 SP Analog Sel 1

316 Data In D1 0 365 Sp Analog In 0

317 Data In D2 0 366 Sp An1 Scale 1 (32767)

320 Data Out A1 0 367 Sp Analog Select 1

321 Data Out A2 0 368 Sp Analog2 In 0

322 Data Out B1 0 369 SP An2 Scale 1 (32767)

323 Data Out B2 0 370 Analog Output 1 0

324 Data Out C1 0 371 Analog Out 1 Offset +0000 volt

325 Data Out C2 0 372 An Out 1 Scale +0500

326 Data Out D1 0 373 An Out 2 Scale 0

327 Data Out D2 0 374 Analog Out 2 Offset +0000

330 SP Port Enable Msk 0111 1111 375 An Out 2 Scale +0500

331 SP Direction Mask 0111 1111 376 mA Output 0

332 SP Start Mask 0111 1111 377 mA Output Offset 0000 mA

333 SP Jog Mask 0111 1111 378 Regen Power Lmt +0500

334 SP Ref Mask 0111 1111 379 Pos Mtr Cur Lim 0

335 SP Clr Flt Mask 0111 1111 384 Select for Tst DAC2 8

336 SP Reset Drv Mask 0111 1111 385 Input Mode 1

337 SP Local Cntrl Mask 0111 1111 386 Input Status 0000 0000

340 SP Stop Owner 0000 0000 387 Stop Select 1 0

341 SP Dir Owner 0000 0000 388 Stop Select 2 0

342 SP Start Owner 0000 0000 389 Accel Rate 1 10 sec

343 SP Jog 1 Owner 0000 0000 390 Accel Rate 2 3

344 SP Jog 2 Owner 0000 0000 391 Decel Rate 1 5000

345 SP Ref Owner 0000 0000 392 Decel Rate 2 0000 0000 0000 0000

346 SP Local Owner 0000 0000 393 Mop Increment 0000 0000 0000 0000

347 SP Flux Owner 0000 0000 394 Mop Value 0000 0000 0000 0000

348 SP Trim Owner 0000 0000 395 Pulse PPR 0000 0000 0000 0000

349 SP Ramp Owner 0000 0000 396 Pulse Edge 0000 0000 0000 0000

350 SP Clr Fault Owner 0000 0000 397 Pulse Scale 1750

352 10 Volt In Filtr 00 rs 398 Pulse Offset 00

353 Pot In Fltr 00 rs 399 Pulse Value 00

354 mA In Filtr 00 rs 404 SP Comm Retries 00

355 10 Volt Input 0 405 Fault Select 0000 0000 0111 1111

356 10 Volt Offset 000 Volt 406 Warning Select 0000 0000 0111 1111

357 10 Volt Scale +2000 407 Fault Status 0000 0000 0000 0000

358 Pot Input 0 408 Warning Status 0000 0000 0000 0000

AppendixD

Dndash3

Spare Parts Information

Current 1336 FORCE spare parts information including recommendedparts catalog numbers and pricing can be obtained from the followingsources

AllenndashBradley home page on the World Wide Web athttpwwwabcom

then select ldquoDrives and Motorsrdquo followed by ldquo1336 FORCErdquo from the Product Directory and ldquo Technical Supportrdquo

Select Parts List

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Appendix DSpare Parts

Dndash3

This Page Intentionally Blank

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Index

I-1

AAC Supply Source 2ndash8AC Input Line Fuse Ratings 2ndash12Analog IO ParameterConfiguration 4ndash22Analog Inputs 2ndash30Analog Outputs 2ndash31Analog IO Links 4ndash22AutondashTuning Test Procedure6ndash20

BBattery Disposal Andash54BindashDirectional Operation 2ndash30Bit Enums 3ndash8Bus Voltage Tracker 6ndash15

CCable Termination Andash5Cable and WiringRecommendations 2ndash20CE Filter Bndash2CE Mechanical ConfigurationBndash4CE Requirements Bndash1Configuration (Standard Adapter)2ndash32Configuration (PLC CommAdapter) 2ndash46Communication Configuration4ndash17Control Link Configuration 4ndash20ControlNet Parameters 5ndash24Control Interface Option 2ndash35Control amp Signal Wiring(Standard Adapter) 2ndash28Control amp Signal Wiring (PLCComm Adapter) 2ndash42Control Specifications 1ndash2Control Status Mode 3ndash13Control Wiring 2ndash25Current Processor Faults 6ndash7

DDiscrete Inputs 2ndash44Discrete Outputs 2ndash44 2ndash31Display Mode 3ndash7Derating Guidelines Andash7Drive to Drive Communication2ndash26Drive to Drive HardwareConnection 2ndash27Drive to Drive HardwareConnection 2ndash27Drive Disconnection 2ndash11Drive Features 1ndash12Drive Hardware Overview Andash16

EEnclosure Requirements Andash6Encoder Connections 2ndash26Encoderless Speed Regulation1ndash5EMC Directive Bndash1EEPROM Mode 3ndash10EMIRFI Emission 2ndash13EMIRFI Emission 2ndash13Emmisions 2ndash13Environmental Specifications 1ndash4External Control LinkConfiguration 4ndash21

FFault Descriptions 6ndash2FaultWarning Handling 6ndash5FaultsampWarnings ndash CurrentProcessor 6ndash7Flex IO Module 4ndash34Frame D Drive Connections 2ndash45FaultsampWarnings ndash VelocityProcessor 6ndash17Feedback Devices 1ndash5Flux Test 6ndash29Frame Dimensions 2ndash2Firmware Function OverviewAndash34

Index

I-2

GGate Driver Board ConnectionsAndash27Graphic Programming Terminal3-20Graphic Programming TerminalOperation 3-22Graphic Programming TerminalKeypad Description 3ndash21Grounding Discrete Control andSignal Wiring 2ndash15Grounding Encoder Connections2ndash15Grounding Motor Cables 2ndash15Grounding Sensitive Circuits2ndash15

HHardware Testpoints 6ndash34HIM Control Panel 3ndash1HIM Key Descriptions 3ndash2HIM Module Removal 3ndash4HIM Operation 3ndash4HIM Programming Steps 3ndash6

IInput Devices 2ndash10Input Fusing 2ndash11Input Power Conditioning 2ndash11IO CommunicationConfiguration 4ndash19IO Ratings 2ndash8Immunity 2ndash13Interface Board Installation 2ndash29

LLink Option 3ndash8Lug Selection 2ndash18Lug Kits 2ndash18L4L4E Option 2ndash39L5L5E Option 2ndash40L6L6E Option 2ndash41

MMasterSlave Drive to DriveCommunication 4ndash19Motor Cables 2ndash17 amp A1Mounting Clearances 2ndash1Mounting 2ndash1Multiple Opens 6ndash28

NNuisance Faults 6ndash23

OOptions 1ndash3Option L4L4E Wiring 2ndash39Option L5L5E Wiring 2ndash40Option L6L6E Wiring 2ndash41Output Relay Configuration 4ndash27Open Transistor Faults 6ndash23

PPassword Mode 3ndash16Parameter Descriptions 5ndash24Parameter Table 5ndash3PE Safety Ground 2ndash16Performance Specs 1ndash2PLC Comm Adapter BoardControl Scheme 2ndash45PLC Comm Adapter BoardParameters 5ndash23Phase Rotation Test 6ndash24PLC Comm Adapter BoardControl amp Signal Wiring 2ndash42PLC Comm Switch Settings 2ndash43PLC Comm Adapter BoardConnections 2ndash43PrendashPower Checks 4ndash4Protective Features 1ndash3Process Mode 3ndash9Power Application 4ndash5Power Cabling 2ndash17Power Wiring 2ndash21Power Structure Tests 6ndash20Power Conditioning 2ndash11Precharge Faults 6ndash9

Pulse Input 2ndash31Program Mode 3ndash6

QQuick Start Procedure 4ndash7

RRemote IO Comm Module 4ndash34Repeated ApplicationRemoval ofInput Power 2ndash10Resistance Test 6ndash26RFI Filter 2ndash14 2ndash16 Bndash2RFI Filter Installation Bndash2 2ndash14RFI Filter Leakage Current Bndash22ndash14RFI Filter Grounding Bndash3Reference Signal Connections(PLC Comm) 2ndash43Ridethrough 6ndash10Ridethrough Faults 6ndash9

SSafety Precautions 4ndash1Safety Ground ndash PE 2ndash16SCANport Control Configuration4ndash29Schematic Diagrams Andash17Search Mode 3ndash12Serial Communication Module4ndash33Sequential Torque Block Tuning6ndash24Sensorless Application NotesAndash30Signal Ground ndash TE 2ndash16SLC to SCANport Module 4ndash32Software Block Diagram Andash32Spare Parts Dndash1Speed Regulation with EncoderFeedback 1ndash5Standard Adapter BoardConnections 2ndash28Standard Adapter Parameters5ndash16Startup Configuration 4ndash6

Index

I-3

Startup Mode 3ndash18Startup Safety Precautions 4ndash1Starting and Stopping the Motor2ndash10 2ndash45 2ndash34Switch Settings (PLC Comm)2ndash43

TTE Signal Ground 2ndash16Terminal Block Locations (MainControl Board 2ndash25Terminal Block TBWiring 2ndash21Terminology 1ndash1Test Points 6ndash34TBndash3 Control Interface Option2ndash35TBndash3 Terminal Designations2ndash36Torque Block Tuning 6ndash24Torque Block Update 6ndash31Troubleshooting 6ndash1

UUnbalanced Distribution Systems2ndash9Undervoltage Setpoint 6ndash13Ungrounded Distribution System2ndash9Unindashdirectional Operation 2ndash30

VVelocity Loop Autotune 6ndash32Velocity Processor Faults 6ndash17

WWire Types 2ndash20

Index

I-4

This Page Intentionally Blank

Index

Publication 1336 FORCE-512 September 1998 PN 74002-113-01 (02)Supersedes Publication 1336 FORCEndash512 mdash February 1997 Copyright 1995 Allen-Bradley Company Inc Printed in USA

  • Front Cover
  • Important User Information
  • Document Update
    • HIM UploadDownload Errors
    • Motor Control Board (v6xx)
      • Summary of Changes
      • Table of Contents
      • Introduction
        • Manual Objectives
        • Who Should Use This Manual
        • Terminology
        • Standard Drive Features
        • Performance Specifications
        • Control Specifications
        • Options
        • Protective Features
        • Environmental Specifications
        • Electrical Specifications
        • Feedback Devices
        • Software Compatibility
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v2xx
        • PLC COMM ADAPTER v3xx BOARD
        • v5xx
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v3xx
        • STADARD ADAPTER BOARD
        • v4xx
        • v5xx
        • This Page Intentionally Blank
          • InstallationWiring
            • Chapter Objectives
            • Mounting
            • InputOutput Ratings
            • AC Supply Source
            • Unbalanced Distribution Systems
            • Ungrounded Distribution Systems
            • Input Devices Starting and Stopping the Motor
            • Repeated ApplicationRemoval of Input Power
            • Bypass Contactors
            • Drive Output Disconnection
            • Input Power Conditioning
            • Input Fusing
            • Electrical Interference uacute EMIRFI Immunity
            • Emission
            • RFI Filtering
            • RFI Filter Installation
            • RFI Filter Leakage Current
            • Grounding
            • Sensitive Circuits
            • Motor Cable
            • Encoder Connections
            • Discrete Control and Signal Wiring
            • Signal Ground uacute TE
            • Safety Ground uacute PE
            • RFI Filter
            • Power Cabling
            • Motor Cables
            • Wire Size and Type
            • Lug Kits
            • Power Wiring
            • Control Wiring
            • Encoder Connections
            • Drive to Drive Communication
            • Drive to Drive Setup
            • Figure 214 Drive to Drive Hardware Connection
            • Standard Adapter Board
            • Discrete Outputs
            • Pulse Input
            • Configuration
            • Starting amp Stopping the Motor
            • Control Interface Option uacute TB3
            • Start Enable Stop Clear Fault Ext Flt Reverse 2 Stop Mode Selects Digital Potentiometer (MOP) Run Forward 2 Accel Decel Rates Run Reverse 3 Speed Selects Local Control
            • Option L4L4E uacute Contact Closure Interface Board Requirements
            • Option L5L5E uacute 24V ACDC Interface Board Requirements
            • Option L6L6E uacute 115V AC Interface Board Requirements
            • PLC Communication Adapter Board
            • Switch Settings uacute
            • Discrete Outputs
            • Discrete Inputs
            • Computer Connections to Frame D drives
            • ControlNet Fiber Optic Cable Connections to Frame D drives
            • Configuration
              • Programming Terminals
                • Chapter Objectives
                • HIM Description
                • Key Descriptions
                • Module Removal
                • To remove the module
                • HIM Operation
                • Important
                • GPT Description
                • Keypad Description
                • GPT Operation
                • This Page Intentionally Blank
                  • Start Up
                    • Introduction
                    • Safety Precautions
                    • Required Tools and Equipment
                    • Drive Information
                    • General
                    • PreuacutePower Checks
                    • Power On
                    • Startup Configuration Procedures
                    • Table 4B Sensorless Setup Values
                    • Communication Configuration
                    • Figure 43 D2D Communication
                    • Figure 44 Node Address Transmittal
                    • Figure 45 Master Slave Communication Example
                    • Standard Adapter Board Equipped Drives
                    • PLC Comm Adapter Board Equipped Drives
                    • This Page Intentionally Blank
                      • Programming Parameters
                        • Introduction
                        • Terminology
                        • Parameter Table Structure
                        • Parameter Table (Standard Adapter Equipped Drives)
                        • Standard Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • PLC Comm Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • Figure 54 1336 FORCE equipped with a ControlNet Adapter Board
                        • Parameter Descriptions
                        • This Page Intentionally Blank
                          • Troubleshooting
                            • General
                            • Required Equipment
                            • Fault Descriptions
                            • Table 6A 1336 FORCE Main Control Fault Descriptions
                            • FaultWarning Handling
                            • Hardware Testpoints
                              • Appendix A
                                • Motor Cables
                                • Cable Termination
                                • Enclosures
                                • Derating Guidelines
                                • Gate Driver Board Connections
                                • Sensorless Application Notes
                                • Software Block Diagram - Standard Adapter
                                  • Motor Control Board Overview
                                  • Velocity Reference Overview
                                  • Trim Control Overview
                                  • Velocity Feedback Overview
                                  • Velocity PI Regulator Overview
                                  • Torque Reference Overview
                                  • Torque Block Overview
                                  • Drive Fault Detection
                                  • Drive Fault Overview
                                  • Inverter Overload
                                  • Velocity Loop Autotune
                                  • Logic Control
                                    • Battery Disposal
                                      • CE Conformity
                                        • EMC Directive
                                        • Requirements for Conforming Installation
                                        • Filter
                                        • Electrical Configuration
                                        • Grounding
                                        • Mechanical Configuration
                                        • Required Knockout Assignments
                                          • User Parameter Values
                                          • Spare Parts Information
                                          • Index
                                          • Back Cover
                                            • PDF Job Options

                                              Offset Print Specs

                                              POD Print Specs

                                              1. Refer to Document Update on Page 5
                                              Print On Demand Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 20 bond
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 90 Bristol Index
                                              Ink - Cover Black (1-1-0-1)
                                              Binding Perfect bind (above 220 pages110 sheets)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Per vendor standard method
                                              Delivery Specified by Buyer
                                              Offset Print Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 50 smooth white offset (house stock)
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 8-10 pt coated 1S (house weight amp stock)
                                              Ink - Cover Black and PMS 187 red aqueous coated (2-1-0-1)
                                              Binding Perfect bind (120 pages minimum)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Specified by Buyer
                                              Delivery Specified by Buyer
                                              PDF Job Options
                                              Tab Description
                                              General File Options
                                              Compatibility Acrobat 40
                                              3 Optimized PDF
                                              Resolution 1200 dpi
                                              Binding Left
                                              Compression Color Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Grayscale Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Monochrome Bitmap Images
                                              3 Bicubic Downsampling at 300 dpi
                                              3 Compression CCITT Group 4
                                              3 Compress Text and Line Art
                                              Fonts 3 Embed All Fonts
                                              3 Subset All Embedded Fonts Below 100
                                              When Embedding Fails Warn and Continue
                                              Embedding Base 14 Fonts
                                              Color Conversion
                                              3 Leave Color Unchanged
                                              Options
                                              3 Preserve Overprint Settings
                                              3 Preserve Under Color Removal amd Black Generation
                                              3 Preserve Transfer Functions
                                              Advanced Options
                                              3 Preserve Level 2 copypage Semantics
                                              Document Structuring Convensions (DSC)
                                              3 Process DSC
                                              3 Preserve EPS Info from DSC
                                              3 Preserve OPI Comments
                                              3 Preserve Document Info from DSC
                                              Default Page Size
                                              3 Letter
Page 3: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx

Document Update

1336 FORCE AC Drive User Manual

This document provides new and updated material for the 1336 FORCE Adjustable Frequency AC Drive User Manual publication 1336 FORCE-512 dated September 1998 Please place this document with your manual for future reference

HIM UploadDownload Errors

The following information describes the possible errors that can be encountered during a HIM UploadDownload procedure

HIM UploadDownload Errors

Motor Control Board (v6xx)

The following changes should be noted if a v6xx Motor Control Board is being used

Fault Name Error Displayed Probable Cause ActionHIM -gt Drive ERROR 1 The HIM calculated a checksum for the file to be

downloaded then checked the EEPROM checksum of the download The checksums did not match indicating the file stored in the HIM is invalid and the download was not successful

Upload a valid uncorrupted file from the source drive and then repeat the download

ERROR 2 The number of parameters in the HIM file is different than the number of parameters in the drive file The smaller of the two numbers is the number of parameters downloaded The last downloaded parameter number is displayed

Verify that the correct file is being downloaded to the correct drive then press the Enter key

Manually reprogram parameters with numbers higher than the last number downloaded or whose values were incorrect

ERROR 3 The file in the HIM is for a different type of drive than the drive to which it is connected (ie 1336 FORCE file to 1336 IMPACT drive) Downloads can only occur between like drive types

None - Download not allowed

ERROR 4 The value just transferred to the drive is an illegal value (out of range too high or too low) for the parameter

Record the parameter number displayed and then press Enter to continue the download Manually reprogram all recorded parameters after the download is complete

ERROR 5 The download was attempted while the drive was running Stop the drive and repeat the download attemptERROR 6 The file in the HIM is for a different HP or voltage drive than

the drive to which it is connected (ie 1336 FORCE 10 HP file to 1336 FORCE 15 HP drive)

If the download is desired press the Enter key If not desired press the ESCape key to end the download

Drive -gt HIM ERROR 1 The HIM calculated a checksum as the file was uploaded and compared it to the HIM file checksum stored after the upload The checksums did not match indicating the upload was not successful and the HIM file is now corrupted

Repeat the Upload

2 1336 FORCE AC Drive User Manual

Page 1ndash6

The table has been updated to include v6xx of the Motor Control Board

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxv6xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

1336 FORCE AC Drive User Manual 3

Page 1ndash7

The table has been updated to include v6xx of the Motor Control Board A note was added to v5xx of the Standard Adapter Board

MOTOR CONTROL BOARD

STANDARDADAPTERBOARD

v1xxv1xx

v2xx v3xx v5xx6xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

v5xx - Compatiblev6xx - Drive to drive communicationsonly compatible at 125k baudNot Compatible at 250k or 500k

4 1336 FORCE AC Drive User Manual

Pages 3ndash20 through 3ndash24

GPT information does not apply

Page 5ndash31

Important note added to ldquoDrive Link Baud Raterdquo description

Important If a v6xx drive is added to the drive link that has v5xx or less it will only operate at 125k baud If all drives on the drive link are v6xx it can operate at 250k and 500k baud

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

wwwrockwellautomationcom

Americas Rockwell Automation 1201 South Second Street Milwaukee WI 53204-2496 USA Tel (1) 4143822000 Fax (1) 4143824444EuropeMiddle EastAfrica Rockwell Automation VorstlaanBoulevard du Souverain 36 1170 Brussels Belgium Tel (32) 2 663 0600 Fax (32) 2 663 0640Asia Pacific Rockwell Automation Level 14 Core F Cyberport 3 100 Cyberport Road Hong Kong Tel (852) 2887 4788 Fax (852) 2508 1846

Power Control and Information Solutions Headquarters

Publication 1336 FORCE-512DU2 ndash February 2007 PN 74002-113-01 (03)Supersedes 1336 FORCE-512DU2 dated February 2006 Copyright copy 2007 Rockwell Automation Inc All rights reserved Printed in USA

US Allen-Bradley Drives Technical Support - Tel (1) 2625128176 Fax (1) 2625122222 Email supportdrivesrarockwellcom Online wwwabcomsupportabdrives

Summary of Changes

Summary of Changes

Summary of Manual Changes The 501 release of the 1336 FORCE 512 User Manual contains some newand updated information The new and updated information is summarizedin the table below For further information refer to the page numbersprovided

Description of New or Updated Information Page Type

H frame dimensions added 2-7 NewLine fuse ratings updated 2-7 ClarificationMotor Cable requirements added 2-16 NewH frame terminal block added 2-22 NewFigure 2ndash17 upgraded 2-29 ClarificationH Frame Terminal Block Location added 2-34 NewFrame D ControlNet connection info added 2-43 NewControlNet Parameter Table added 5-24 NewParameter 71 updated 5-35 ClarificationParameter 92 updated 5-39 ClarificationParameter 185 added 5-51 NewParameter 186 added 5-52 NewParameter 223 updated 5-53 ClarificationParameter 224 updated 5-53 ClarificationParameter 229 updated 5-54 ClarificationParameter 233 updated 5-54 ClarificationParameter 257 updated 5-57 ClarificationParameter 258 updated 5-57 ClarificationParameter 259 updated 5-57 ClarificationParameter 294 updated 5-62 ClarificationParameter 385 updated 5-76 ClarificationUnderstanding Precharge and Ridethru Faults 6ndash9 NewUnderstanding the Bus Voltage Tracker 6ndash15 NewPower structure and transistor Diag tests 6ndash20 NewSequential Torque Block Tuning 6ndash24 NewH Frame Motor cable restrictions added A-4 NewBC 700 amp BC 800 Derating Guidelines added Andash15 New700 ndash 800 HP Schematic added Andash25 NewSoftware Block Diagram updated Andash32 ClarificationTorque Block Firmware Diagram updated Andash45 ClarificationLithium Battery Disposal information added Andash54 NewCE mechanical configuration diagram added Bndash5 Bndash6 Bndash7 NewSpare Part Appendix added D-1 New

This Page Intentionally Blank

Table of Contents

i

Introduction Chapter 1Manual Objectives 1-1

Who Should Use This Manual 1-1

Terminology 1-1

Standard Drive Features 1-2

Performance Specifications 1-2

Control Specifications 1-2

Options 1-3

Protective Features 1-3

Environmental Specifications 1-4

Electrical Specifications 1-4

Feedback Devices 1-5

Software Compatibility 1-6

InstallationWiring Chapter 2Chapter Objectives 2-1

Mounting 2-1

Dimensions 2-2

InputOutput Ratings 2-7

AC Supply Source 2ndash7

Input Devices 2ndash9

Drive Output Disconnection 2ndash10

Input Power Conditioning 2ndash10

Input Fusing 2ndash10

Electrical Interference ndash EMIRFI 2ndash12

RFI Filtering 2ndash13

Grounding 2ndash14

Power Cabling 2ndash16

Wire Size and Type 2ndash16

Lug Kits 2ndash17

Power Wiring 2ndash20

Control Wiring 2ndash23

Encoder Connections 2ndash24

Drive to Drive Communication 2ndash24

Standard Adapter Board 2ndash26

Control amp Signal Wiring (Standard Adapter Board) 2ndash26

Interface Board Installation amp Removal 2ndash27

Standard Adapter Analog Inputs 2ndash28

Standard Adapter Analog Outputs 2ndash29

Standard Adapter Discrete Outputs 2ndash29

Pulse Input (Standard Adapter Equipped Drives) 2ndash29

Starting amp Stopping the Motor (Standard Adapter Equipped Drives) 2ndash32

Control Interface Option ndash TB3 2ndash33

Table of Contents

ii

Control amp Signal Wiring (PLC Comm Adapter Board) 2ndash40

Switch Settings (PLC Comm Board) 2ndash41

Discrete Outputs (PLC Comm Adapter) 2ndash42

Discrete Inputs (PLC Comm Adapter) 2ndash42

Control Scheme 2ndash45

Computer Connections (Frame D Drives) 2ndash45

ControlNet Connections (Frame D Drives) 2ndash45

Configuration (PLC Comm Adapter) 2ndash46

Programming Terminals Chapter 3Chapter Objectives 3-1

HIM Description 3-1

HIM Module Removal 3-4

HIM Operation 3-4

HIM Programming Steps 3-19

GPT Description 3-20

Keypad Description 3-21

GPT Operation 3-22

GPT Programming Options 3-24

StartndashUp Chapter 4Introduction 4-1

Safety Precautions 4-1

Required Tools and Equipment 4-2

Drive Information 4-3

General 4-4

PrendashPower Checks 4-4

Power On 4-5

Startup Configuration Procedures 4-6

Quick Startup Procedure 4-7

Manual Startup Mode 4-10

Communication Configuration 4-17

Drive to Drive Communication 4-17

IO Communication Configuration 4-20

External Control Link Configuration 4-21

Analog IO Parameter Configuration 4-23

SCANport Analog IO Parameter Configuration 4-27

Output Relay Configuration 4-27

Pulse Input Configuration 4-28

MOP Configuration 4-28

SCANport Image Configuration 4-28

SCANport Control Configuration 4-29

Table of Contents

iii

Control Interface Option 4-29

Using the SCANport Image 4-30

IO Image Table 4-31

SLC to SCANport Module 4-32

Serial Communications Module 4-33

Remote IO Communications Module 4-34

Programming Parameters Chapter 5Introduction 5-1

Terminology 5-1

Parameter Table Structure 5-2

Parameter Table (Numerical) 5-3

Parameter Table (Alphabetical) 5-11

Standard Adapter Parameters 5-16

PLC Comm Adapter Parameters 5-20

Parameter Descriptions 5-24

ControlNet Parameters 5-80

Troubleshooting Chapter 6General 6-1

Required Equipment 6-1

Fault Descriptions 6-2

Fault Code Definition 6-2

Main Control Board Fault Descriptions 6-3

Standard Adapter Board Fault Descriptions 6-4

FaultWarning Handling 6-5

Current Processor Faults amp Warnings 6-7

Understanding Precharge and Ridethrough Faults 6-9

Understanding the Bus Voltage Tracker 6-15

Auto-Tuning Test Procedure 6-20

Power Structure and Transistor Diagnostics Tests 6-20

Phase Rotation Tests 6-24

Sequential Torque Block Tuning 6-24

Running the Resistance Test 6-26

Running the Flux Test 6-29

Torque Block Update 6-31

Velocity Loop Autotune 6-32

Hardware Testpoints 6-34

Table of Contents

iv

Appendix Appendix AMotor Cables A-1

Cable Termination A-5

Enclosures A-5

Derating Guidelines A-7

Drive Hardware Overview A-16

Schematic Diagrams A-17

Gate Driver Board Connections A-27

Sensorless Application Notes A-30

Software Block Diagram ndash Standard Adapter A-32

Firmware Function Overview Diagrams A-34

Battery Disposal A-54

CE Conformity Appendix BEMC Directive B-1

Requirements for Conforming Installation B-1

Filter B-2

Electrical Configuration B-3

Grounding B-3

Mechanical Configuration B-4

Required Knockout Assignments B-7

User Parameter Values Appendix CValue Table C-1

Spare Parts Information Appendix DInformation Location D-1

Chapter 1

1ndash1

Introduction

Manual Objectives The purpose of this manual is to provide the user with the necessaryinformation to install program start up and maintain the 1336 FORCEDigital AC Drive This manual should be read in its entirety beforeoperating servicing or initializing the 1336 FORCE Drive

Who Should Use This Manual This manual is intended for qualified service personnel responsible forsetting up and servicing the 1336 FORCE AC Drive You must haveprevious experience with and a basic understanding of electricalterminology programming procedures required equipment and safetyprecautions before attempting any service on the 1336 FORCE Drive

ATTENTION Only personnel familiar with the 1336FORCE Drive and the associated machinery should plan orimplement the installation startndashup and subsequentmaintenance of the Drive Failure to comply may result inpersonal injury andor equipment damage

ATTENTION An incorrectly applied or installed Drivecan result in component damage or a reduction in productlife Wiring or application errors such as undersizing themotor incorrect or inadequate AC supply or excessiveambient temperatures may result in damage to the Drive ormotor

ATTENTION This Drive contains ESD (ElectrostaticDischarge sensitive parts and assemblies Static controlprecautions are required when installing testing servicingor repairing this assembly Component damage may resultif ESD control procedures are not followed If you are notfamiliar with static control procedures referenceAllenndashBradley Publication 8000ndash452 Guarding againstElectrostatic Damage or any other applicable ESDprotection handbook

Terminology Detailed definitions of industrial automation and technical terms usedthroughout this manual may be found in the INDUSTRIALAUTOMATION GLOSSARY ndash a guide to AllenndashBradley technicalterms Publication AGndash71

Chapter 1Introduction

1ndash2

Standard Drive Features The Bulletin1336 FORCE Field Oriented AC Drive is a microprocessorcontrolled Digital AC Drive with the following features

bull 1 to 650 HP at 0 ndash 250 HZ constant torquebull Four Quadrant operation availablebull High Performance Digital Velocity Loopbull Microprocessor controlled field oriented current loopbull Simplified programming through the use of a Parameter Table that

features data entries in engineering units with English descriptionsbull Nonvolatile Parameter Storagebull Extensive diagnostics including both logic board and power

structure testsbull Time stamped nonvolatile FaultWarning Queuebull Real Time Clockbull Reference Time Stampbull Run Time Accumulatorbull Enclosed Constructionbull Multiple Communication Interfacesbull Complete Encoder Interfacebull Drive to Drive Linkbull SCANportTM Peripheral Interface

Performance Specificationsbull Speed Regulation to 0001 of top speedbull Torque Regulation to plusmn 5 of rated motor torquebull Power Loss RidendashThru capability of two secondsbull Flying Start Capability of starting into a spinning motorbull Torque Linearity 1bull Overload Capability 150 for 1 minute 200 of motor rating for

10 seconds up to inverter limitbull Programmable AccelDecel rates from 0 to 6553 secondsbull Current limit programmable from 200 of rated output current

Control Specificationsbull Indirect SelfndashOrganized FieldndashOriented Control

Currentndashregulated sine coded PWM with programmable carrier frequencyHP Drive Rating Carrier Frequency1ndash3 HP 4 kHz 1ndash12 kHz75ndash30 HP 4 kHz 1ndash12 kHz40ndash60 HP 4 kHz 1ndash12 kHz75ndash125 HP 2 kHz 1ndash6 kHz150ndash250 2 kHz 1ndash6 kHz300ndash500 2 kHz 1ndash4 kHz600ndash650 15 kHz 1ndash4 kHz700ndash800 1 kHz 1ndash4 kHzRefer to Derating Guidelines in the Appendix of this manual

bull Output Voltage Range ndash 0 to rated voltagebull Output Frequency Range ndash 0 to 250 Hzbull Speed Regulation with Encoder Feedback ndash 0001 of Top Speed

over a 1001 Speed Range

Chapter 1Introduction

1ndash3

bull Encoderless Speed Regulation ndash 1 of Top Speed over a 401 Speed Range

bull AccelDecel ndash Independently programmable accel and decel times Program from 0 to 6553 seconds in 01 second increments

bull Current Limit ndash Independent Motoring and Regenerative Limitbull Inverse Time Overload Capability ndash Class 20 protection with

speedndashsensitive response Adjustable from 0ndash200 of rated output current in 3 speed ranges ndash 21 41 amp 101 UL Certified ndash Meets NEC Article 430

Optionsbull Standard Adapter Board which provides

ndash 2 Analog Inputs +ndash10Vndash 2 Analog Outputs +ndash 10Vndash One 4ndash20mA inputndash One 4ndash20mA outputndash 5 or 12 vdc pulse inputndash +ndash 10V reference voltagesndash At Speed Run Fault and Alarm contacts

bull PLC Communication Adapter Board which providesndash 4 Analog Inputs +ndash10Vndash 4 Analog Outputs +ndash 10Vndash +ndash 10V Reference voltagesndash RIODHTM+ Communications (2 channels selectable)ndash Function Blocks

bull DriveToolsTM PC Windows TM based programming software compatible with the 1336 FORCE Drive and also other AllenndashBradley 1336 and 1395 products

bull Dynamic Braking

bull AC Motor Contactor

Protective Features The 1336 FORCE Drive incorporates the following protective measures

bull Programmable Motor Overload Protection (I2T) investigated by UL to comply with NEC Article 430

bull Programmable Inverter Overload Protection (IT)bull Overspeed Detection even when operating as a torque followerbull Programmable Stall Detectionbull Peak output current monitoring to protect against excessive current

at the output due to a phase to ground or phase to phase shortbull Ground fault monitoringbull DC Bus Voltage monitoring to protect against underover voltage

conditionsbull Power Structure Heatsink Temperature Monitoring

Chapter 1Introduction

1ndash4

Environmental Specifications The following environmental guidelines apply to both the 1336 FORCEDrive and all devices and accessories connected to the Drivebull Ambient Operating Temperature

IP00 Open 0 to 50 degrees C (32 to 122 degrees F) IP20 NEMA Type 1 Enclosed 0 to 40 degrees C (32 to 104 degrees F) IP65 NEMA Type 4 Enclosed 0 to 40 degrees C (32 to 104 degrees F)

bull Storage Temperature (all constructions) ndash40 to 70 degrees C (ndash40 to 158 degrees F)

bull Relative Humidity 5 ndash 95 nonndashcondensingbull Altitude 1000m (3300 ft) without derating bull Shock 15g peak for 11ms duration (+ 10 ms)bull Vibration 0006 inches (0152 mm) displacement 1G peak

Electrical Specificationsbull Input Voltage Rating

200 ndash 240VAC Standalone 3 Phase +10 ndash15 nominal 380 ndash 480VAC Standalone 3 Phase +10 ndash15 nominal 500 ndash 600VAC Standalone 3 Phase +10 ndash15 nominal 513 ndash 621 VDC Common Bus +10 ndash15 nominal 776 VDC Common Bus +10 ndash15 nominal

bull Input Power Rating 2 ndash 134 KVA (230V) 2 ndash 437 KVA (380V)

2 ndash 555 KVA (460V) 23 ndash 578694 KVA (500600V)

bull Input Frequency 5060HZ (plusmn3HZ)

bull Standard Output Voltage Four frame sizes are available Each frame size is line dependent and can power a motor between the following voltages200 ndash 240 Vac (line dependent)380 ndash 480 Vac (line dependent)500 ndash 600 Vac (line dependent)If voltage required for your application is not shown contact AllenndashBradley for specific application

bull Output Current 25 ndash 673A

bull Output Power 2 ndash 116 KVA (230V)2 ndash 190 KVA (380V)2 ndash 208 KVA (415V)2 ndash 537 KVA (460V)2 ndash 671 KVA (575V)

Note For information on factors that could effect the power output of the drive please refer to the Enclosure and Derating Guidelines in the Appendix of this manual

bull Output Horsepower (Continuous) 75 ndash 650HP

bull Overload CapabilityContinuous ndash 100 Fundamental current1 minute ndash 150

Chapter 1Introduction

1ndash5

bull Output Frequency Range 0 ndash 250 HZ

bull Output Waveform Sinusoidal (PWM)

bull Max Short Circuit Current Rating 200000A rms symmetrical 600 volts (when used with specified AC input line fuses as detailed in Table 2A)

bull Ride Through 2 seconds minimum

bull Efficiency 975 at rated amps nominal line volts

Feedback Devices

bull Encoder Incremental dual channel 12 volts 500mA Supply 512 Volt 10ma Min Inputs isolated with differential transmitter 1025 KHz max Quadrature 90deg plusmn27deg 25degC Duty Cycle 50 + 10

bull Speed Regulation with Encoder Feedback 0001 of Top Speed over a 1001 Speed RangeEncoderless Speed Regulation 05 of Top Speed over a 401 SpeedRange

Chapter 1Introduction

1ndash6

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

Chapter 1Introduction

1ndash7

MOTOR CONTROL BOARD

STADARDADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible

Chapter 1Introduction

1ndash8

This Page Intentionally Blank

Chapter 2

2ndash1

InstallationWiring

Chapter Objectives Chapter 2 provides the information needed to properly mount and wire the1336 FORCE Drive Since most startndashup difficulties are the result ofincorrect wiring every precaution must be taken to assure that the wiring iscompleted as instructed All items must be read and understood before theactual installation begins

IMPORTANT The end user is responsible for completing theinstallation wiring and grounding of the 1336 FORCE drive and forcomplying with all National and Local Electrical Codes

ATTENTION The following information is merely a guide forproper installation The National Electrical Code and any othergoverning regional or local code will overrule this informationThe Allen-Bradley Company cannot assume responsibility forthe compliance or the noncompliance to any code national localor otherwise for the proper installation of this drive or associatedequipment A hazard of personal injury andor equipmentdamage exists if codes are ignored during installation

Mounting When the 1336 FORCE drive is delivered in a NEMA Type 1 enclosure itmust be mounted so that there is sufficient space at the top sides and frontof the cabinet to allow for heat dissipation as shown in Figure 21

Figure 21Mounting Requirements

Attention Care must be taken toprevent debris (metal shavingsconduit knockouts etc) fromfalling into the drive whileperforming any installation workon or around the drive A hazardof personal injury andorequipment damage exists if foreignmaterial lodges inside the drive

JOG

ESC SEL

1016 mm (40 in)

JOG

ESC SEL

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

UP

Chapter 2InstallationWiring

2ndash2

Figure 22 IP20 (NEMA Type 1) Dimensions ndash Frames B and C

C MaxD

A

Y

CC

E B

Z

BB

AA

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 1ndashFixed

286349 222(11251375 0875)

286349 222(11251375 0875)

ShippingWeight

227 kg(50 lbs) 386 kg(85 lbs)

CC

719(283)

719(283)

Frame 1

Reference

B1 B2

C

A

2764(1088)

3018(1188)

B

4763(1875)

7010(2760)

C Max

2250(886)

2250(886)

D

2126(837)

2380(937)

E

4610(1815)

6858(2700)

Y

3200(126)

3200(126)

Z

76(030)

76(030)

AA

1311(516)

1311(516)

BB

1808(712)

3747(1475)

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts(Location Will Vary with HP)

Chapter 2InstallationWiring

2ndash3

Figure 23IP 20 (NEMA Type 1) Dimensions ndash Frame D

DA

Y

CC

E B

Z

BB

AA

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 3ndashFixed627762 349500 349(247300 138197 138)

ShippingWeight1089 kg(240 lbs)

CC719(283)

Frame 1ReferenceD

A3815(1502)

B12400(4882)

C Max2708(1066)

D3259(1283)

E12162(4788)

Y2794(110)

Z1194(047)

AA1311(516)

BB6886(2711)

C Max

Chapter 2InstallationWiring

2ndash4

Figure 24IP 20 (NEMA Type 1) Dimensions ndash Frame E

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

D

AY

E B

Z

BB

CC

C Max

KNOCKOUTS3ndashDUAL SIZE 6ndashFIXED

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 6ndashFixed

8891016 127(350400 050)

ShippingWeight

186 kg(410 lbs)

163 kg(360 lbs)

CC

1519(598)

1263(497)

Frame 1

ReferenceEndashEnclosed

EndashOpen

A

5110(2012)

5110(2012)

B

14986(5900)

14986(5900)

C Max

4244(1671)

3726(1467)

D

4775(1880)

4775(1880)

E

14478(5700)

14478(5700)

Y

168(066)

168(066)

Z

401(161)

401(161)

AA

1950(768)

1384(545)

BB

9014(3549)

6800(2677)

Chapter 2InstallationWiring

2ndash5

Figure 25IP 20 (NEMA Type 1) Dimensions ndash Frame F

22860(9000)

7620(3000)

2527(995)

6350(2500)

379(149)

2748(1082)

1930(760)

12192(4800)

All Dimensions in Millimeters and (Inches)

ConduitAccess Area

Bottom View

315(124)

6985(2750)

2985(1175)

508(200)

Shipping Weight4150 kg(915 lbs)

Chapter 2InstallationWiring

2ndash6

Figure 26IP 20 (NEMA Type 1) Dimensions ndash Frame G

23241(9150)

Removable Lifting Angle

7620(3000)

635 (250)

6350(2500)

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

290(114)

159 (063) Diandash 2 Mtg Holes ndash

4318(1700)

3810(1500)

2985(1175)

429(169)

2540(1000)

5476(2156)

Conduit Access Area

6604(2600)

508(200)

4318(1700)

(Top)

ConduitAccess Area

(Bottom)

Shipping Weight4536 kg(1000 lb)

Chapter 2InstallationWiring

2ndash7

Figure 27IP 20 (NEMA Type 1) Dimensions ndash Frame H

Removable Lifting Angle

23241(9150)

All Dimensions in Millimeters and (Inches)

6350(25)

5080(20)

7620(30)

Conduit AccessArea

Conduit AccessArea

Top ViewBottom View

Top Mounted Fan

6350(2500)

12700(50)

12700(50)

6350(25)

Manufacturer-dependentmay be shorter

Chapter 2InstallationWiring

2ndash8

InputOutput Ratings The input and output current ratings grouped by drive voltage rating areprovided in the following table

200ndash240V

Cat No

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

InputkVA

InputAmps

24ndash510ndash1212ndash1417ndash2023ndash2825ndash3027ndash3043ndash5153ndash6460ndash7282ndash99100ndash120111ndash134

512283549677379123154174238289322

OutputkVA2511141926313248607296116130

OutputAmps45122723374826457828012031492180424029143274

380ndash480V

Cat NoB001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200BX250B250B300B350B400B450B500B600BP250BP300BP350BP400BP450B700CB800C12B700C12B800C

InputkVA

InputAmps

24ndash59ndash1214ndash1818ndash2323ndash2923ndash2632ndash4140ndash5041ndash5248ndash606261ndash7778ndash9998ndash124117ndash148148157ndash198191ndash241231ndash291212ndash268265ndash335300ndash379330ndash416372ndash470391ndash494439ndash555230ndash291265ndash334300ndash378313ndash396346ndash437517ndash625647ndash817517ndash625647ndash817

361422283543496263757593119149178178238290350322403455501565594668350402455476526835965835965

OutputkVA25111722273338475261617696120143143191233282259324366402454477537282324366383424677783677783

OutputAmps25601392092723374184825876457827829691203149218041804240029143536327440644592505157025992673435364064459248105317850983850983

575V

Cat NoC001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C300C350C400C450C500C600C650C700C80012C700C12C800C

InputkVA

InputAmps

2ndash35ndash69ndash1111ndash1317ndash2021ndash2627ndash3231ndash3740ndash4848ndash5752ndash6273ndash8894ndash112118ndash142136ndash163217ndash261244ndash293256ndash307304ndash364349ndash419394ndash473434ndash520514ndash617578ndash694616ndash739639ndash767616ndash739639ndash767

3610121925313646556084108137157251282296351403455501594668756786756786

OutputkVA2610121924303545576285109137157251283297352405457503597671767797767797

OutputAmps25699121892363034645157261685810911386159725252836298353640644592505159926734770800770800

AC Supply Source 11ndash485 kW (75ndash650HP) drives are suitable for use on a circuit capable ofdelivering up to a maximum of 200000 rms symmetrical amperes 600volts maximum when used with the AC input line fuses specified in Table2A The 1336 FORCE does not contain input power short circuit fusingSpecifications for the recommended size and type to provide drive inputpower protection against short circuits are on the following pages

ATTENTION To guard against personal injury andor equipmentdamage caused by improper fusing use only the recommendedline fuses specified in Table 2A Branch circuit breakers ordisconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash9

Unbalanced Distribution Systems

The drive is designed for use with conventional threendashphase supplies whichare symmetrical with respect to ground Surge suppression devices areincluded to protect the drive from lightningndashinduced overvoltages betweenline and ground For this reason the drive must not be used directly withsupplies where one phase is grounded (Grounded Delta) In such cases anisolation transformer must be used to provide a supply balanced withrespect to ground

Ungrounded Distribution Systems

All 1336 FORCE drives are equipped with an MOV (Metal Oxide Varistor)that provides voltage surge protection and phasendashtondashphase plusphasendashtondashground protection which is designed to meet IEEE 587 TheMOV circuit is designed for surge suppression only (transient lineprotection) not continuous operation

With ungrounded distribution systems the phasendashtondashphase MOVconnection could become a continuous current path to ground MOVlinendashtondashline and linendashtondashground voltages should not exceed the valueslisted below Exceeding these values may cause physical damage to theMOV

1 2 3 4

Joules = (B)Ground

Three-PhaseAC Input T

SR

Joules = (A)Joules = (A)

Joules = (A)

Line-to-Line MOV RatingEnergy Rating = 2 x Line-Line Rating (A)

Line-to-Ground MOV RatingEnergy Rating = Line-Line (A) + Line-Ground (B)

Frame ReferenceDevice Rating (V)Line-Line (A)Line-Ground (B)

B - C 240 480 600160 160 160220 220 220

A 240 480 600160 140 NA220 220 NA

D - G 240 480 600140 140 150220 220 220

LinendashtondashLine MOV RatingEnergy Rating = 320 JoulesTurn On Voltage = 1020V (nominal)

LinendashtondashGround MOV RatingEnergy Rating = 380 JoulesTurn On Voltage = 1330V (nominal)Input Devices Starting and Stopping the Motor

Chapter 2InstallationWiring

2ndash10

Input Devices Starting and Stopping the Motor

ATTENTION The drive startstop control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC power is removed therewill be a loss of inherent regenerative braking effect amp the motorwill coast to a stop An auxiliary braking method may berequired

Repeated ApplicationRemoval of Input Power

ATTENTION The drive is intended to be controlled by controlinput signals that will start and stop the motor A device thatroutinely disconnects then reapplies line power to the drive forthe purpose of starting and stopping the motor is not recom-mended If this type of circuit is used a maximum of 3 stopstartcycles in any 5 minute period (with a minimum 1 minute restbetween each cycle) is required These 5 minute periods must beseparated by 10 minute rest cycles to allow the drive prechargeresistors to cool Refer to codes and standards applicable to yourparticular system for specific requirements and additionalinformation

Bypass Contactors

ATTENTION An incorrectly applied or installed system canresult in component damage or reduction in product life Themost common causes are

bull Wiring AC line to drive output or control terminals

bull Improper bypass or output circuits not approved by AllenndashBradley

bull Output circuits which do not connect directly to the motor

bull Incorrect or inadequate AC supply

bull Excessive ambient temperature

Contact AllenndashBradley for assistance with application or wiring

Chapter 2InstallationWiring

2ndash11

Drive Output Disconnection Any disconnecting means wired to Drive output terminals M1 M2 and M3must be capable of disabling the Drive if opened during Drive operationIf opened during Drive operation the Drive will fault It is recommendedthat the Drive Enable be removed before the contactor is opened Whenthe Drive Enable is removed the Drive will stop modulating

Input Power Conditioning Typically the 1336 FORCE is suitable for direct connection to athreendashphase AC power line There are however certain power lineconditions which may introduce the possibility of drive input powercomponent malfunction To reduce the possibility of these malfunctions aline reactor or isolation type transformer may be required

The basic rules for determining if a line reactor or isolation typetransformer is required are as follows

1 If the AC line supplying the drive has power factor correction capacitorsconnected an AC line reactor or isolation type transformer must beconnected between the capacitor bank and the input to the drive

2 If the AC line frequently experiences transient power interruptions orsignificant voltage spikes an AC line reactor or isolation typetransformer may be required

Refer to ldquoUnbalanced Distribution Systemsrdquo

Input Fusing

ATTENTION The 1336 FORCE does not provide input powershort circuit fusing Specifications for the recommended fusesize and type to provide drive input power protection againstshort circuits are provided in Table 2A Branch circuit breakersor disconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash12

Table 2AMaximum Recommended AC Input Line Fuse Ratings (fuses are user supplied)

Drive CatalogNumber

kW (HP) Rating 200ndash240VRating

380ndash480VRating

500ndash600VRating

UL Class CC T J1 ndash BS88 (non-UL installations)

1336Tndash _ _ F10 075 (1) 10A 6A ndash

1336Tndash _ _ F30 22 (3) 25A 15A ndash

1336Tndash _ _ F50 37 (5) 40A 20A ndash

1336Tndash _ _ 001 075 (1) 10A 6A 6A

1336Tndash _ _ 003 22 (3) 15A 10A 10A

1336Tndash _ _ 007 55 (75) 40A 20A 15A

1336Tndash _ _ 010 75 (10) 50A 30A 20A

1336Tndash _ _ 015 11 (15) 70A 35A 25A

1336Tndash _ _ 020 15 (20) 100A 45A 35A

1336Tndash _ _ 025 185 (25) 100A 60A 40A

1336Tndash _ _ 030 22 (30) 125A 70A 50A

1336Tndash _ _ 040 30 (40) 150A 80A 60A

1336Tndash _ _ 050 37 (50) 200A 100A 80A

1336Tndash _ _ X060 45 (60) ndash 100A ndash

1336Tndash _ _ 060 45 (60) 250A 125A 90A

1336Tndash _ _ 075 56 (75) ndash 150A 110A

1336Tndash _ _ 100 75 (100) ndash 200A 150A

1336Tndash _ _ 125 93 (125) ndash 250A 175A

1336Tndash _ _ X150 112 (150) ndash 250A ndash

1336Tndash _ _ 150 112 (150) ndash 300A 225A

1336Tndash _ _ 200 149 (200) ndash 400A 350A

1336Tndash _ _ 250 187 (250) ndash 450A 400A

1336Tndash _ _ X300 224 (300) ndash ndash 400A

Bussmann FWPGould Shawmut Andash70C Semindashconductor Type

1336Tndash _ _ X250 187 (250) ndash 450A ndash

1336Endash _ _ P2502 187 (250) ndash 450A2 ndash

1336Tndash _ _ 300T 224 (300) ndash 450A 400A

1336Endash _ _ 3002 224 (300) ndash 500A2 450A

1336Tndash _ _ 350 261 (350) ndash 500A 450A

1336Endash _ _ 3502 261 (350) ndash 600A2

1336Tndash _ _ 400 298 (400) ndash 600A 500A

1336Endash _ _ 4002 298 (400) ndash 600A2

1336Tndash _ _ 450 336 (450) ndash 800A 600A

1336Endash _ _ 4502 336 (450) ndash 700A2 600A

1336Tndash _ _ 500 373 (500) ndash 800A 800A

1336Tndash _ _ 600 448 (600) ndash 900A 800A

1336Tndash _ _ 650 485 (650) ndash ndash 800A

1336Tndash _ _ 700C2 522 (700) ndash 600A3 700A3

1336Tndash _ _ 800C2 597 (800) ndash 700A3 700A3

1 Both fast acting and slow blow are acceptable

2 Fuses are supplied with F and H Frame drives

3 Two fuses in parallel are required

Chapter 2InstallationWiring

2ndash13

Electrical Interference ndash EMIRFI Immunity

The immunity of 1336 FORCE drives to externally generated interferenceis good Usually no special precautions are required beyond the installationpractices provided in this publication

It is recommended that the coils of DC energized contactors associatedwith drives be suppressed with a diode or similar device since they cangenerate severe electrical transients

In areas subject to frequent lightning strikes additional surge suppressionis advisable Suitable MOVs connected between each line and groundshould be used (see Figure 2ndash8)

Emission

Careful attention must be given to the arrangement of power and groundconnections to the drive to avoid interference with nearby sensitiveequipment Refer to ldquoMotor Cablesrdquo Appendix A The cable to the motorcarries switched voltages and should be routed well away from sensitiveequipment

The ground conductor of the motor cable should be connected to the driveground (PE) terminal directly Connecting this ground conductor to acabinet ground point or ground bus bar may cause high frequency currentto circulate in the ground system of the enclosure The motor end of thisground conductor must be solidly connected to the motor case ground

Shielded or armored cable may be used to guard against radiated emissionsfrom the motor cable The shield or armor should be connected to the driveground terminal (PE) and the motor ground as outlined above

Common mode chokes are recommended at the drive output to reduce thecommon mode noise

An RFI filter can be used and in most situations provides an effectivereduction of RFI emissions that may be conducted into the main supplylines

If the installation combines a drive with sensitive devices or circuits it isrecommended that the lowest possible drive PWM frequency beprogrammed

Chapter 2InstallationWiring

2ndash14

RFI Filtering 1336 FORCE drives can be installed with an RFI filter which controlsradiondashfrequency conducted emissions into the main supply lines andground wiring

If the cabling and installation recommendation precautions described inthis manual are adhered to it is unlikely that interference problems willoccur when the drive is used with conventional industrial electronic circuitsand systems Also refer to ldquoMotor Cablesrdquo in the Appendix of this manual

However a filter is recommended if there is a likelihood of sensitivedevices or circuits being installed on the same AC supply or if the motorcable exceeds 50 meters (164 feet) Beyond this length capacitance toground will increase the supply emissions

Where it is essential that very low emission levels must be achieved or ifconformity with standards is required (EN 55011 VDE0875 BSA FCC)the optional RFI filter should be used

Important The conformity of the drive and filter to any standard does notassure that the entire installation will conform Many other factors caninfluence the total installation and only direct measurements can verifytotal conformity

RFI Filter Installation

The RFI filter must be connected between the incoming AC supply lineand the drive power input terminals

In general it is best to install the filter on the same mounting platephysically close (and with short connections) to the drive

Important To assure that the RFI filter is effective the motor cable mustbe shielded or armored and the guidelines given in this manual must befollowed Refer to ldquoMotor Cablesrdquo in the Appendix

RFI Filter Leakage Current

The optional RFI filter may cause ground leakage currents Therefore anappropriate ground connection must be provided (refer to groundinginstructions on the following page)

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some countries threendashphasesupplies are occasionally connected in a 3ndashwire configurationwith one phase grounded (Grounded Delta) The filter must notbe used in Ground Delta supplies

Chapter 2InstallationWiring

2ndash15

Grounding Refer to the grounding diagram on the following page The drive must beconnected to the system ground at the power ground (PE) terminalprovided on the power terminal block (TB1) Ground impedance mustconform to the requirements of national and local industrial safetyregulations (NEC VDE 0160 BSI etc) and should be inspected and testedat appropriate and regular intervals

In any cabinet a single lowndashimpedance ground point or ground bus barshould be used All circuits should be grounded independently and directlyThe AC supply ground conductor should also be connected directly to thisground point or bus bar

Sensitive Circuits

It is essential to define the paths through which the high frequency groundcurrents flow This will assure that sensitive circuits do not share a pathwith such current and to minimize the area enclosed by these pathsCurrent carrying ground conductors must be separated Control and signalground conductors should not run near or parallel to a power groundconductor

Motor Cable

The ground conductor of the motor cable (drive end) must be connecteddirectly to the drive ground terminal (PE) not to the enclosure bus barGrounding directly to the drive (and filter if installed) provides a directroute for high frequency current returning from the motor frame andground conductor At the motor end the ground conductor should also beconnected to the motor case ground

If shielded or armored cables are used the same grounding methods shouldbe used for the shieldarmor as well

Encoder Connections

If encoder connections are required they must be routed in grounded steelconduit The conduit must be grounded at both ends Ground the cableshield at the drive only

Discrete Control and Signal Wiring

The control and signal wiring must be grounded at a single point in thesystem remote from the drive This means the 0V or ground terminalshould be grounded at the equipment end not the drive end If shieldedcontrol and signal wires are used the shield must also be grounded at thispoint

Chapter 2InstallationWiring

2ndash16

Signal Ground ndash TE

The TE terminal block is used for all control signal shields internal to thedrive It must be connected to an earth ground by a separate continuouslead

Any PLC IO communication link must be run in grounded steel conduitThe conduit should be bonded to ground at both ends Ground the cableshield at the drive end only

The maximum and minimum wire size accepted by this block is 21 and030 mm2 (14 and 22 AWG) Maximum torque is 136 Nndashm (12 lbndashin)Use Copper wire Only

Safety Ground ndash PE

This is the safety ground required by code The ground bus can beconnected to adjacent building steel (girder joist) or a floor ground loopprovided grounding points comply with NEC regulations

RFI Filter

Important Using an optional RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated in thefilter to clamp line surges to a limited voltage above ground potentialTherefore the filter must be permanently installed and solidly groundedGrounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnection Theintegrity of this connection should be periodically checked

Figure 28Recommended 1336 FORCE Grounding

JOG

ESC SEL

R (L1)

S (L2)

PE

Ground Rod

T (L3)

PE

U (T1)

Shield

RIODH+

Shield

CommonModeCore

CommonMode Core

Conduit4ndashWire Cable

To ComputerTE Ground

+ CommonMode

ChokesThese are options that can

be installed as needed

Ground perLocal Codes

Motor Frame

MotorTerminator

PE

V (T2)

W (T3)

PEGnd

+DC

DC

Chapter 2InstallationWiring

2ndash17

Power Cabling Input and output power connections are performed through terminal blockTB1 on the Gate Driver Board for Frame Size B (1ndash15 HP 240V 1ndash30 HP380V 1ndash20 HP 600V) drives For larger horsepower drives (frame sizesCDEG and H) TB1 terminal blocks are located on the bottom of thedrive where both the input and output power connections are to be made

Important For maintenance and setup procedures the drive may beoperated without a motor connected

Table 2BTB1 Signals

Terminal Description

PE Power Earth Ground

R (L1) S (L2) T (L3) AC Line Input Terminals

+DC ndashDC DC Bus Terminals

U (T1) V (T2) W (T3) Motor Connection

ATTENTION The National Codes and standards (NEC VDEBSA etc) and local codes outline provisions for safely installingelectrical equipment Installation must comply with specifica-tions regarding wire types conductor sizes branch circuitprotection and disconnect devices Failure to do so may result inpersonal injury andor equipment damage

Motor CablesA variety of cable types are acceptable for use with the 1336 FORCEThe choice of cable type is important to a successful application Motorcables must have an insulation thickness in excess of 15 mils The THHNtype wire or any wire with a nylon coating is not recommended forinstallations where there is a reasonable risk of wire damage (includingsmall nicks in coating or insulation) due to pulling through conduit orwhere moisture is present If wire integrity can be assured and no moistureis present THHN wire must have a minimum insulation thickness greaterthan 15 mils if conduit is used Refer to page 2ndash18 under Conduit forrecommendations on the number of cables per conduit

Refer to the Cable recommendations section in the Appendix of thismanual for additional information on specific cables

Wire Size and Type Wire sizes must be selected individually observing all applicable safetyand NEC and local regulations Due to the drive overload capacity theconductors for the transformer primary and secondary must be sized (at aminimum) for 125 of the maximum motor current The motorconductors must also be rated for 125 of the full load motor current Thedistance between the drive and motor may affect the size of the conductorsused

Chapter 2InstallationWiring

2ndash18

Shielded type wire is recommended in control circuits for protectionagainst interference A shielded wire is required for all signal wires Therecommended conductor size must be a minimum of 16 AWG The bestinterference suppression is obtained with a wire having an individual shieldfor every twisted pair Figure 29 shows recommended cable shielding

Figure 29Cable Shielding Recommendations

12411242

3682368382718281

82918301

83118321

2 ConductorShielded Cable

2 Conductor Shielded Cable

Multi-Conductor ShieldedCable with IndividualShielded twisted Pairs

Shield

Shield

Shield

TE

TE

TE

Shield Connection

Lug Kits DEF and G frame drives have stud type terminals andor bus barsboltsthat require standard crimpndashtype connectors for cable terminationConnectors such as TampB COLORndashKEYED Connectors or equivalent arerecommended Table 2C shows the lug selection for one possible cablechoice Choose connectors for each installation based on the desired cablesizes the application requirements and all applicable national state andlocal codes

Chapter 2InstallationWiring

2ndash19

Table 2C Lug Selection

r e atalo

AC Input R S TOutput U V W and PE

DC+DCndash 2 TE

Drive CatalogNumber

Cable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty Number1336EndashA040 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA050 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA060 (1) 1072 (40) (8) 54168 1 (1) 133 (6) (2) 54135 1 (1) 212 (4) (1) 54139 1

1336EndashA075 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54109 (1) 212 (4) (1) 54139 1

1336EndashA100 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 336 (2) (1) 54142 1

1336EndashA125 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashB060 (1) 424 (1) (8) 54147 1 (1) 84 (8) (2) 54131 1 (1) 133 (6) (1) 54135 1

1336EndashB075 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB100 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB125 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashBX150 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashB150 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54110 (1) 212 (4) (1) 54139 1

1336EndashB200 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashB250 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashBX250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashBP250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashB300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashBP300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashB350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashBP350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashB400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashBP400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashB450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashBP450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashB500 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashB600 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashC075 (1) 336 (2) (8) 54142 1 (1) 133 (6) (2) 54135 1 (1) 84 (8) (1) 54131 1

1336EndashC100 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashC125 (1) 674 (20) (8) 54158 1 (1) 267 (3) (2) 54147 1 (1) 133 (6) (1) 54135 1

1336EndashC150 (1) 1072 (40) (8) 54111 (1) 424 (1) (2) 54148 (1) 133 (6) (1) 54135 1

1336EndashC200 (2) 674 (20) (8) 54110T(8) 54110B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashC250 (2) 850 (30) (8) 54111T(8) 54111B

(1) 674 (20) (2) 54110 (1) 267 (3) (1) 54142 1

1336EndashCX300 (3) 850 (30) (16) 54111 NA NA1336EndashC300 (3) 850 (30) (16) 54111 NA NA1336EndashC350 (3) 535 (10) (24) 54109 NA NA1336EndashC400 (3) 674 (20) (24) 54110 Consult Factory NA NA1336EndashC450 (3) 850 (30) (24) 54111

Consult FactoryNA NA

1336EndashC500 (3) 1072 (40) (24) 54112 NA NA1336EndashC600 (3) 1270 (250 MCM) (24) 54174 NA NA1336EndashC700C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 541101336EndashC800C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 54110

1 516rdquo Stud All other studs are 38rdquo2 Lugs shown for DC+ndash are based on dynamic brake sizing of 50 of (motor rating X 125) Select proper lugs based on required braking torque3 T amp B COLOR-KEYED Connectors require T amp B WT117 or TBMndash6 Crimper tool or equivalent Lugs should be crimped according to manufacturerrsquos tool instructions

Chapter 2InstallationWiring

2ndash20

Table 2DCable and Wiring Recommendations

Category

Power

Control

Signal

(Process)

Signal(Comm)

WiringClass

1

2

3

5

Signal Definition

AC Power (600V or greater)

AC Power (less than 600V)

AC Power

115V ACDC Logic

115V AC Power

24V ACDC Logic

Analog Signals DC Supplies

Digital (low speed)

Digital (high speed)

SerialCommunication

Serial Communication (greaterthan 20k baud)

Signal Examples

23kV 3Ph AC Lines

460V 3Ph AC Lines

AC Motor

Relay LogicPLC IOMotor Thermostat

Power SuppliesInstruments

PLC IO

ReferenceFeedbackSignal 5 to 24V DC

TTL

IO Encoder CounterPulse Tach

RS-232 422 to TerminalsPrinters

PLC Remote IO PLC Data Highway

Cable Type

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

Shielded Cable ndash Belden 87358737 8404

Shielded Cable ndash Belden 97289730

Shielded Cable ndash BeldenRS-232 ndash 8735 8737RS-422 ndash 9729 9730

Twinaxial Cable ndash A-B1770-CD

1

0

39

39

318

234

39

0

36

312

56

39

36

0

39

78

318

312

39

0

91011

Note 6

Note 6

Note 6

13

SpacingNotes

125

125

125

Minimum Spacing in Inches between Classes ndashSteel ConduitTray

Example Spacing relationship between 480V AC incoming power leads and 24V DC logic leads

ndash 480V AC leads are Class 2 24V DC leads are Class 6ndash For separate steel conduits the conduits must be 3 inches (76 mm) apartndash In a cable tray the two groups of leads are to be 6 inches (152 mm) apart

Spacing Notes

1 Both outgoing and return current carrying conductors are to be pulled in sameconduit or laid adjacent in tray

2 Cables of the following classes can be grouped togetherA Class 1 Equal to or above 601 voltsB Classes 23 and 4 may have their respective circuits pulled in the

same conduit or layered in the same trayC Classes 5 and 6 may have their respective circuits pulled in the

same conduit or layered in the same trayNote Bundle may not exceed conditions of NEC 310

D Classes7 and 8 may have their respective circuits pulled in the same conduit or layered in the same trayNote Encoder cables run in a bundle may experience some amount of EMI coupling The circuit application may dictate separate spacing

E Classes 9 10 and 11may have their respective circuits pulled in the same conduit or layered in the same trayCommunication cables run in a bundle may experience some amount of EMI coupling and corresponding communication faults The application may dictate separate spacing

3 All wires of class 7 thru 11 MUST be shielded per the recommendations

4 In cable trays steel separators are advisable between the classgroupings

5 If conduit is used it must be continuous and composed of magneticsteel

6 Spacing of communication cables classes 2 thru 6 isCONDUIT SPACING THRU AIR115 Volts ndash 1 inch 115 Volts ndash 2 inches230 Volts ndash 15 inches 230 Volts ndash 4 inches460575 Volts ndash 3 inches 460575 Volts ndash 8 inches575 volts ndash proportional to 6rdquo 575 volts proportional to 12rdquoper 1000 volts per 1000 volts

General Notes

1 Steel conduit is recommended for all wiring classes (Classes 7-11)

2 Spacing shown between classes is the minimum required for parallel runsless than 400 feet Greater spacing should be used where possible

3 Shields for shielded cables must be connected at one end only The otherend should be cut back and insulated Shields for cables from a cabinet to anexternal device must be connected at cabinet end Shields for cables fromone cabinet to another must be connected at the source end cabinetSplicing of shielded cables if absolutely necessary should be done so thatshields remain continuous and insulated from ground

4 Power wire is selected by load 16AWG is the minimum recommended sizefor control wiring

6

7

8

9

11

2345

Note 6 13 0

Chapter 2InstallationWiring

2ndash21

Power Wiring On 1 to 30 HP drives input and output power connections are performedthrough a 10 position terminal block TB1 located on the Gate DriverBoard On drives larger than 30 HP input and output power connectionsare made at seperate terminal strips located at the bottom of the drive Thedrive connections are illustrated in Figure 210 The C thru Gconfigurations of TB1 are stud terminations and require the use of lug typeconnectors to terminate the field installed conductors Cat No1336ndashLUGndashXXXX Lug Kits are available for use with theseconfigurations of TB1 The wire size used is determined by selecting theproper lug kit based on the Cat No of the drive Refer to Table 2C todetermine the correct lug kit for your application

Figure 210Terminal Block TB1

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

Required 1Input Fusing

AC Input Line

To Motor

200ndash240V 75ndash11 kW (10ndash15 HP) Terminal Designations380ndash480V 15ndash22 kW (20ndash30 HP) Terminal Designations

500ndash600V 15 kW (20 HP) Terminal Designations

Dynamic Brake

To Motor1 Required Branch

Circuit Disconnect

B1 Frame

B2 Frame

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

AC Input Line

To Motor

To Motor

200ndash240V 075ndash55 kW (1ndash75 HP) Terminal Designations380ndash480500ndash600V 075ndash11 kW (1ndash15 HP) Terminal Designations

Dynamic Brake

Required 1Input Fusing

1 Required Branch

Circuit Disconnect

Chapter 2InstallationWiring

2ndash22

Figure 210Terminal Block TB1 cont

PEGRD

PEGRD

DC+

Dynamic Brake

Required 1Input Fusing

DCndash

R(L1)

S(L2)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 15ndash22 kW (20ndash30 HP) Terminal Designations380ndash480V 30ndash45 kW (40ndash60 HP) Terminal Designations

500ndash600V 185ndash45 kW (25ndash60 HP) Terminal Designations

1 Required Branch

Circuit Disconnect

C Frame

To Motor

PE PEDC +Brake

1 RequiredInput Fusing

DC ndashBrake

R(L1)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 30ndash45 kW (40ndash60 HP) Terminal Designations380ndash480V 45ndash112 kW (60ndash150 HP) Terminal Designations500ndash600V 56ndash112 kW (75ndash150 HP) Terminal Designations

1 Required BranchCircuit Disconnect

TE

S(L2)

To Motor

DC +Brake

380ndash480V 224ndash448 kW (300ndash600 HP) Terminal Designations500ndash600V 187ndash485 kW (250ndash650 HP) Terminal Designations

To Motor

DC ndashBrakeRequired 1

Input Fusing

AC Input Line

W(M3)

U(M1)

V(M2)

Brake terminals are locatedbehind the ldquoUrdquo terminal

Access terminalsfrom side of chassis

(located at bottom of drive) W

UV

1 Required BranchCircuit Disconnect

R(L1)

S(L2)

T(L3)

typical terminal layout(located at top of drive)

RS

T

D Frame G Frame

Chapter 2InstallationWiring

2ndash23

Figure 210 contTerminal Block TB1

200ndash240V 56ndash75 kW (75ndash100 HP) Terminal Designations380ndash480V 112ndash187 kW (150ndash250 HP) Terminal Designations500ndash600V 112ndash149 kW (150ndash200 HP) Terminal Designations

TEBUS INPUT OUTPUT

ndash DC

+DC

PE PE RndashL1 SndashL2 TndashL3 UndashM1 VndashM2 WndashM3

Required 1Input Fusing

To Motor

AC Input Line

1 Required BranchCircuit Disconnect

To Motor

E Frame

typical terminal

380-480V 187-336 kW (250-450 HP) Terminal Designations

To Motor

T-L3R-L1 S-L2 W-M3U-M1PE V-M2F Frame

Input Fusing(Supplied)

AC Input Line

1 Required BranchCircuit Disconnect

DC ndashBrake

DC +Brake

Chapter 2InstallationWiring

2ndash24

Figure 210 contTerminal Block TB1

DC +Brake

R(L1)

S(L2)

T(L3)

380-480V 522-597 kW (700-800 HP) Terminal Designations500-600V 522-597 kW (700-800 HP) Terminal Designations

To Motor

DC ndashBrakeRequired

Input Fusing1

AC Input Line

(located at bottom of drive)

W(M3)

U(M1)

V(M2)

W

UV

H Frame

1 Required BranchCircuit Disconnect

1 User supplied

Chapter 2InstallationWiring

2ndash25

Control Wiring

ATTENTION When user installed control and signal wiringwith an insulation rating of less than 600V is used this wiringmust be routed inside the drive enclosure so that it is separatedfrom any other wiring and uninsulated live parts Failure to do socould result in equipment damage or unsatisfactory Drive performance

Encoder Brake and Drive to Drive interface connections are performed onthe Main Control Board (Fig 211) The maximum and minimum wiresize accepted by TB10 and TB11 on the Main Control Board is 33 and006 mm2 (12 and 30 AWG) Maximum torque for both terminal blocks is079 Nndashm (7 lbndashin) Use copper wire only

Figure 211Terminal Block Locations Main Control Board

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

AdapterBoard Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

D1D2D3D4D5D43D47

GreenGreenRedGreenRedAmberGreen

Drive EnableVP IndicatorVP IndicatorCP IndicatorCP Indicator Drive to Drive StatusDrive to Drive Power

ON ndash Drive Running OFF ndash Drive Not RunningON ndash No Faults OFF ndash See D3Refer to Fault Codes in Table 4AON ndash No Faults OFF ndash See D5Refer to Fault Codes in Table 4ASolid ndash OK Blinking ndash FaultON ndash Power OFF ndash No Power

Flt Trp

1 2 3

1 2 3

Jumper +5VDC

J3

J4

1ndash2

1ndash2

+12VDC Purpose

2ndash3

2ndash3

Encoder Voltage SelectionEncoder Voltage Selection

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Chapter 2InstallationWiring

2ndash26

Encoder Connections The Encoder connections are made at terminal block TB10 on the MainControl Board as detailed in Figure 212

Figure 212Encoder Connections

Encoder

Shield

Common

+12 Volts

Encoder B

Encoder B

Encoder A

Encoder A

6

7

5

4

3

1

2

TB10

Drive to Drive Communication The TB11 connector on the Main Control Board (Figure 213) is used toconnect the Drive to Drive Communication Interface

Figure 213Drive to Drive Connections

4

3

5

(SHD)

(C_L)

(V+)

2

RTN (Vndash)

TB11

1

(C_H)

Drive to Drive Setup ndash The hardware setup for Drive to Drive (D2D)consists of a shielded cable going from CN+ and CNndash between the drivesThe shields are to be tied together and grounded at one point (TE)TB11ndash3 SHD is an open connection and is used to tie ground wire togetherA wire must go from TB11ndash3 to TE Bus Place a 120Ω terminatingresistor on both ends of the cable You must supply the 8 ndash18 VDC thatpowers the D2D Figure 214 shows a typical D2D connection using therequired AllenndashBradley Isolation Board Recommended cable is Drive toDrive cable (AndashB 1485ndashCndashPIndashC) which is available in 50 150 300 and600 meter lengths

Chapter 2InstallationWiring

2ndash27

Figure 214 Drive to Drive Hardware Connection

DRIVE 1

RTN +15V

(Customer Supplied)

120Ω

Isolator Board

OutputV+CHShdCLVndash

J2

InputV+CHShdCLVndash

J1

24V 1A Max(PN 1336T ndash D2DIS)

1 2 3 4V +

5

CndashH

C1 C2

Shd

8ndash18 VDCPower Supply

PE

CndashL V ndash

DRIVE 2

1 2 3 4V +

5CndashH Shd CndashL V ndash

DRIVE 3

120Ω

1 2 3 4V +

5CndashH Shd CndashL V ndash

ToTEBus

Chapter 2InstallationWiring

2ndash28

Standard Adapter Board When installing and wiring the Standard Adapter board you need to dealwith the following issuesbull Control and Signal Wiringbull Interface Board Installation and Removal

Control amp Signal Wiring ndash If your 1336 FORCE Drive is equipped witha Standard Adapter Board terminal blocks TB5 TB6 and TB7 located atthe bottom center of the board (Figure 215) are used for control and signalwiring (Drive Permissives) The Standard Adapter Board is connected tothe Main Control Board through J1 the Main Control Interface

The maximum and minimum wire size accepted by TB5 TB6 and TB7 is33 and 006 mm2 (12 and 30 AWG) Maximum torque for these terminalblocks is 079 Nndashm (7 lb ndash in) Recommended control signal wire isbull Belden 8760 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shieldedbull Belden 8770 or equiv ndash 0750 mm2 (18 AWG) 3 ndash Conductor Shieldedbull Belden 9460 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shielded

Figure 215Standard Adapter Board Connections

LANGUAGE MODULE

1

J11

TP1

Port 1

TB5

J9

D1

TE

Port 2

TP3

J1Main Control InterfaceJ5

BRAM

AgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgrave

TP2

TP6

TP5

+5V

DGND

+15V

AGND

ndash15VEN DIS

D2

1

L OPTION BOARD

TB6 TB7

TP7 TP8

12V ISO ISO COM

Jumper

J13

J1331

+5V DC

1 to 2

+12V DC

2 to 3

Purpose Jumper

J5

Position

1 to 22 to 3

Purpose

BRAM Write EnableBRAM Write Disabled

14 121 8

Stat

us

LED STATE DESCRIPTION

D1 (Green) OFF

Flashing

Solid ON

D2 On or No Power

Adapter Warning Fault

Adapter OK

D2 (RED) OFF

Flashing

Solid ON

D1 On or No Power

Adapter Soft Fault

Adapter Hard Fault

TE

1

20

J10 J12

20

1

Refer to Fault Codes in Table 6B

Pulse Input Voltage Selection

Chapter 2InstallationWiring

2ndash29

Interface Board Installation and Removal ndashIMPORTANT If the L Option Board is being installed Standard AdapterBoard jumpers at pins 3 amp 4 and 17 amp 18 of J10 must be removed and theproper Input Mode selected (Figure 216) If the L Option board isremoved these jumpers must be reinstalled and the Input Mode parametermust be programmed to ldquo1rdquo

Figure 216Interface Board Jumper Locations

JOG

ESC

SEL

Figure 217Reference Signal Connections (Standard Adapter Board)

TB51 2 3 4 5 6 7 8 9 10 11 12

TB613 14

TB7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12

+10V ndash10VCom

+ ndash SH + ndash + ndash

4 to 20ma0 to plusmn10V

SH SH + ndash

PulseSource

0 to plusmn10V

+ ndash SH + ndash

0 to plusmn10V 4 ndash 20 ma

SH + ndash

AnalogOutputs

Run FaultRelay

AlarmRelay

TE TE

Programmable Run Fault Alarm

Terminal

TB5

Signal

SH Shield Ground

123 DC Power Supply

4567 Input Impedance = 20K Ohms

1011

Pulse Input forFrequency Ref

+5V DC ndash Jumper xx Set to xx+12V DC ndash Jumper xx Set to xx

Scale Factor (Pulse PPR) must be set

TB6 SH

1245

Shield Ground

0 to +ndash 10 VDC Output

Output Impedance = 100 Ohms

78 4 ndash 20 ma DC Output

Input Impedance = 130 Ohms

1314

4 ndash 20ma Input

Output Impedance = 100 Ohms

TB7 TE

456

Logic Earth Ground Shield Ground

Fault Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

789 Alarm Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

ProgrammableSupply

Note This output is programmable through P384

If using a potentiometer reference 25K Ω minimum

External to Drive

DC Power Supply

+ndash 10VDC 50 mA per voltage

Output Impedance = 20 Ohms

User Supplied Analog Device

0 to +ndash 10V DC Input

Terminal Block

Chapter 2InstallationWiring

2ndash30

Analog Inputs ndash There are (2) analog inputs to the Standard AdapterBoard (Figure 218) that have a range of plusmn10V (1) 4ndash20 mA analog inputand (1) pulse source input with a digital resolution of 12 bits These inputsare differential inputs with noise rejection filtering

Each input has a gain and offset adjustment The AD converter is a 12 bitdevice where an input value of +10V will result in a digital value of 2048Likewise an input value of ndash10V will result in a digital output value ofndash2048

NOTE Analog input parameters must be linked to a velocity referenceparameter as well as a scaling and offset parameter for an analog input tofunction

NOTE Refer to Chapter 4 Startup for Analog IO configurationinformation

Figure 218Analog Input Connections

Typical Connections for Unidirectional Operation

Typical Connections for Bidirectional Operation

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

REFERENCE POT25 kΩ MINIMUM

TB5

1

ndash 10V DC (POWER SUPPLY) 3

ADC

REVERSE

FORWARD

R

Reverse

ReverseRelay

Forward

6

0 to+ndash10V

7

8

2

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

2

6

REFERENCE POT25 kΩ MINIMUM

TB5

Connect toEither 1 or 3(ONLY ONE)

1

ndash 10V DC (POWER SUPPLY) 3

ADC7

8

0 to+ndash10V

Chapter 2InstallationWiring

2ndash31

Analog Outputs ndash There are (2) analog outputs from the StandardAdapter Board that have a range of + 10V and (1) 4ndash20 mA output with adigital resolution of 12 bits

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB7 onthe Standard Adapter Board Fault outputs provide warning or fault signalsbased on Drive ProgrammingFault NC Fault ComFault NO ndash A form C NONC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 219Typical Digital Output (Standard Adapter)

Fault Com (Digital Out)

Fault NC (Digital Out)

6

5

4

TB7

Fault NO (Digital Out)

Pulse InputThe pulse input lets an external source provide the drive with a digitalreference or trim signal Pulse input is a differential input with a maximumfrequency of 100 kHz

Figure 220Pulse Input Connection

5 ndash 12V Pulse Input 100 kHz max

12

13

14

TB5

TE

Unidirectional

The pulse input can be useful if you have a system with multiple drives andyou want encoder magnetic pickup or other drives that provide a pulse tosupply the reference for additional drives You could use this reference toensure that all drives run at the same speed or to ensure that the speed ofthe other drives is related to the speed of the reference

Chapter 2InstallationWiring

2ndash32

ConfigurationThe 1336 FORCE Drive is shipped prendashconfigured meaning that some ofthe inputs and outputs are linked to a predefined signal Figure 221 showsthe 1336 FORCE standard configuration when equipped with a StandardAdapter Board The user has the flexibility to configure the Drive for aparticular application

Chapter 2InstallationWiring

2ndash33

Figure 221Standard Adapter Links

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select 1 (Par 364)

365

SP Analog In 1 (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)

1 2 3 4 5

366

Scale

369

Scale

Chapter 2InstallationWiring

2ndash34

Starting amp Stopping the Motor

ATTENTION The 1336 FORCE Drive control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC input power is removedthere will be a loss of inherent regenerative braking effect and themotor will coast to a stop An auxiliary braking method may berequired

Figure 222 illustrates the location of the terminal blocks that are used forinterfacing control signals to a 1336 FORCE equipped with a StandardAdapter Board

Figure 222Terminal Block Locations

TB1TB11TB3

TB4TB6

Power Terminal BlockControl amp Signal WiringControl Interface Option24V DC Auxiliary InputHigh Voltage DC Auxiliary Input480V Output (F Frame Only)Shield Terminals

TB1TB10 11TB3TB4TB6TB9TE

Frames B C Frames D E

TB1

TB11

TB3Control Interface

Option

Control InterfaceOption

TB1

TB1Location

TB1 LocationTB4

TB6TE

TB1

Frame G

Frame F

U V Wamp BrakeTerminals

TB10 11

TB3

BrakeTerminals

R S T

TE

TE

PEGround

TB10 11

TB3

TB9

TB1Location

TB10

TB10

Frame H

U V Wamp BrakeTerminals

TB10 11

TB3

+ -

TE

PE Ground

TB1Location

TB1 Power Terminal BlockTB10 11 Control amp Signal WiringTB3 Control Interface OptionTB4 (For Factory Use Only)TB6 (For Factory Use Only)TB9 480V Output (F Frame Only)TE Shield Terminals

Chapter 2InstallationWiring

2ndash35

Control Interface Option ndash TB3The Control Interface Option provides a means of interfacing varioussignals and commands to the 1336 FORCE by using contact closures

Six different versions of the option are available

L4 Contact Closure Interface L4E Contact Closure Interface with Encoder Feedback Inputs1

L5 +24V ACDC InterfaceL5E +24V ACDC Interface with Encoder Feedback Inputs1

L6 115V AC InterfaceL6E 115V AC Interface with Encoder Feedback Inputs1

1 Encoder feedback inputs are connected to TB10 on the FORCE Drive Do Not connect Encoder Feedback inputs to the Control Interface Option card

The user inputs are connected to the option board through TB3 The L4 L5and L6 options each have nine control inputs The function of each inputmust be selected through programming as explained later in this sectionThe L4E L5E and L6E options are similar to L4 L5 and L6 with theaddition of encoder feedback inputs which are not used with the 1336FORCE

Available InputsA variety of combinations made up of the following inputs are available

Start EnableStopClear Fault Ext FltReverse 2 Stop Mode SelectsDigital Potentiometer (MOP) Run Forward2 AccelDecel Rates Run Reverse3 Speed Selects Local Control

The available combinations are shown in Figure 224 Programming the[Input Mode] parameter to one of the Input Mode numbers listed willselect that combination of input functions

Important The [Input Mode] parameter can be changed at any time butthe change will not affect drive operation until power to the drive has beenremoved and bus voltage has decayed completely When changing the[Input Mode] parameter the functions of the TB3 inputs will change whenpower is reapplied to the drive

Important If a Control Interface Option is not installed the [Input Mode]parameter must be set to 1 (default) and jumpers must be installed If thedrive was shipped from the factory without the option these jumpers willhave been installed

The programming options of the Control Interface Option allow the user toselect an input combination to meet the needs of a specific installationAppropriate selection of a combination may be done by using Figure 224First determine the type of startstopdirection control desired Then selectthe remaining control functions available Record the selected modenumber below

Selected Mode Number _____________________

Chapter 2InstallationWiring

2ndash36

Figure 223 provides the terminal designations for TB3 The maximum andminimum wire size accepted by TB3 is 21 and 030 mm2 (14 and 22AWG) Maximum torque for all terminals is 136 Nndashm (12 lbndashin) UseCopper wire only

Figure 223TB3 Terminal Designations

NOTE Terminals 31 thru 36 are not used with 1336 FORCE applications

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Included on L4E L5E amp L6E OnlyNOT USED

Inpu

t 1

Inpu

t 2 (S

top)

Com

mon

Inpu

t 3

Inpu

t 4

Inpu

t 5

Com

mon

Inpu

t 6

Inpu

t 7

Inpu

t 8

Com

mon

Enab

le

Enco

der B

Enco

der N

OT

A

Enco

der N

OT

B

Enco

der A

+12V

(200

mA

max

)

Enco

der C

omm

on

The following table defines the input state of the Speed Select inputs for adesired frequency source

Table 2ESpeed Select Input State vs Frequency Source

Speed Select 3 Speed Select 2 Speed Select 1 Velocity Reference Source

TB3 Terminal 26 Terminal 27 Terminal 28 Interface Option (MOD L4L5L6)

O O O Ext Ref 1 Para 101

O O X Preset Speed Ref 1 (P 119)

O X O Preset Speed Ref 2 (P 120)

O X X Preset Speed Ref 3 (P 121)

X O O Preset Speed Ref 4 (P 122)

X O X Preset Speed Ref 5 (P 123)

X X O External Reference 2 (P 104)

X X X Last State

Equivalent truth table implemented in Parameter 52 Logic Command Word

Para 52 Bit 14 Bit 13 Bit 12 Velocity Reference Source Bits

O O X Ext Ref 1 (P 101)

O X O Preset Speed Ref 1 (P 119)

O X X Preset Speed Ref 2 (P 120)

X O O Preset Speed Ref 3 (P 121)

X O X Preset Speed Ref 4 (P 122)

X X O Preset Speed Ref 5 (P 123)

X X X External Reference 2 (P 104)

O O O No Reference or Last State

0 = Open ndash input removed X = Closed ndash input present

Unless otherwise configured this will default to the HIM speed reference input

Chapter 2InstallationWiring

2ndash37

Figure 224Input Mode Selection amp Typical TB3 Connections

19

20

21

22

23

24

25

26

27

28

29

30

Status

Not StopClear Fault 3

Common

Status

Status

Status

Common

Status

Status

Status

Common

Enable 3

[Input Mode] 1Factory Default

19

20

21

22

23

24

25

26

27

28

29

30

Start

Not StopClear Fault 378

Common

RevFwd5

Auxiliary 3

Common

Speed Select 2 1

Speed Select 1 1

Common

Enable 3

Jog StopType

2nd1stAccel

DigitalPot Up

SpeedSelect 31

SpeedSelect 31

2nd1stDecel

DigitalPot Dn

2 3 4 5279 6Mode

[Input Mode] 2ndash6 17 18ThreendashWire Control with SinglendashSource Reversing

1 See Speed Select Table on previous page2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 5 For Common Bus ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for Reverse Direction Control7 Soft Fault Reset Only Must Cycle Power to Drive to Clear Hard Fault Hard Fault = See Troubleshooting Section

8 Soft Fault Refer to Para 59 to Configure Start amp Stop Type9 Digital Pot Value Zeroed When Stop Asserted

ProcTrim

LocalControl2

Jog Flux EnJog

Ramp Reset

17 18

Chapter 2InstallationWiring

2ndash38

Figure 225Input Mode Selection amp Typical TB3 Connections

Run Forward 4 6

Not StopClear Fault 378

Common

Run Reverse 4 6

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

LocalControl 2

StopType

2nd1stAccel

DigitalPot Up

LocalControl 2

SpeedSelect 3 1

SpeedSelect 3 1

2nd1stDecel

DigitalPot Dn

StopType

12 13 14 15 309 16

Mode

[Input Mode] 12ndash16TwondashWire Control SinglendashSource Control

19

20

21

22

23

24

25

26

27

28

29

30

Start 6

Not StopClear Fault 378

Common

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

Forward 6

Forward 6

DigitalPot Dn

Forward 6

2ndAccel

Jog SpeedSelect 3 1

SpeedSelect 3 1

DigitalPot Up

1stDecel

[Input Mode] 7ndash11ThreendashWire Control with MultindashSource Reversing

Reverse 4 6

Reverse 46

DigitalPot Up

Reverse 4 6

1st

Accel

7 8 9 289 10 299 11

Mode

SpeedSelect 2 1

SpeedSelect 2 1

SpeedSelect 2 1

DigitalPot Dn

2ndDecel

19

20

21

22

23

24

25

26

27

28

29

30

1 See Table 2E2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 to allow operation5 For Common ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for reverse direction control7 Soft Fault Reset Only Must recycle power to drive to clear Hard fault ndash see Troubleshooting8 Refer to Para 59 to configure Start amp Stop type9 Digital Pot Value Zeroed When Stop Asserted

Speed Select 2 1

SpdTq2

SpdTq3

Proc Trim

19

SpdTq1

SpdTq2

SpdTq3

Flux En

20

SpdTq1

Fwd

Rev

Reset

21

Ramp Dis

SpdTq2

SpdTq3

Spd Sel 2

SpdTq1

22

23 24 25 26

ProcTrim

Reset

Flux En Proc Trim

Reset Ramp Dis

Jog

Spd Sel 3

Parameter 53 (SpdTrq Mode Sel) becomes read only

Chapter 2InstallationWiring

2ndash39

Figure 226Option L4L4E Wiring

19 20 21 22 23 24 25 26 27 28 29 30 31 32A A

ENCRET

ENC12V

33 34 35 36

Typical of Each Input

Typical

L4 L4E Options

Isolated+5V

IsolatedGround

01microf 01microf

01microf

107k

470 470 12V

681

100

909

5VJP4

IGND

107k

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

TB3

NOTUSED

Option L4L4E ndash Contact Closure Interface Board Requirements

Circuits used with Option L4L4E must be capable of operating with low =true logic Reed type input devices are recommended

In the low state external circuits must be capable of a sinking current ofapproximately 10mA to pull the terminal voltage low to 30V DC or less

In the high state external circuits must allow the terminal voltage to rise toa voltage of 40ndash50V DC

The L4L4E option is compatible with the following AllenndashBradley PLCmodulesbull 1771ndashOYLbull 1771ndashOZL

Chapter 2InstallationWiring

2ndash40

Figure 227Option L5L5E Wiring

Typical

TB3

L5 L5E Options

A AENCRET

ENC12V

Common

+24V

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

022microf

1k

20k

510

510 510

User Supplied24V ACDC

Contacts shown are general refer to Figures 224 amp 225 forInput Mode selection and recommended contact types

NOTUSED

Option L5L5E ndash 24V ACDC Interface Board Requirements

Circuits used with Option L5L5E must be capable of operating with high= true logic

DC external circuits in the low state must generate a voltage of no morethan 8V DC Leakage current must be less than 15 mA into a 25k ohmload

AC external circuits in the low state must generate a voltage of no morethan 10V AC Leakage current must be less than 25 mA into a 25k ohmload

Both AC and DC external circuits in the high state must generate a voltageof +20 to +26 volts and source a current of approximately 10 mA for eachinput

The L5L5E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOB bull 1771ndashOQ16bull 1771ndashOB16bull 1771ndashOBD bull 1771ndashOYLbull 1771ndashOBN bull 1771ndashOZLbull 1771ndashOQ bull 1771ndashOBB

Chapter 2InstallationWiring

2ndash41

Figure 228Option L6L6E Wiring

Typical of Each Input

L6 L6E Options

A AENCRET

ENC12V

115V AC Fuse

Common

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

015microf033f

022microf

49

499k

20k

100 100

User Supplied115V AC

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

Fuse

TB3

NOTUSED

Option L6L6E ndash 115V AC Interface Board Requirements

Circuits used with Option L6L6E must be capable of operating with high= true logic In the low state circuits must generate a voltage of no morethan 30V AC Leakage current must be less than 10 mA into a 65k ohmload In the high state circuits must generate a voltage of 90ndash115V AC+ndash10 and source a current of approximately 20 mA for each inputThe L6L6E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOW bull 1771ndashOAbull 1771ndashOWN bull 1771ndashOAD (contact factory for recommended series rev level)

Chapter 2InstallationWiring

2ndash42

PLC Communication Adapter Board Control and Signal Wiring ndash When installing and wiring the PLCCommunication Adapter Board you need to deal with the following issuesbull Control and Signal Wiringbull Jumper Settings for IO CircuitsIf your 1336 FORCE Drive is equipped with a PLC Comm Adapter Boardterminal blocks TB20 amp TB21 located at the bottom center of the PLCComm Board (Figure 229) are used for control and signal wiring (DrivePermissives) Connector TB21 provides the interface for Analog Input andOutput reference signals as detailed in Figure 230

Figure 229PLC Comm Board Connections

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

NOTE For more information on the PLC Communication Board including LEDs and Jumpers refer to the PLC Communication UserManual 1336 FORCE 513

CHANNEL A

SHIELD

CHANNEL B

2

1

SHIELD2

1

The maximum and minimum wire size accepted by TB20 TB21 ChannelA and Channel B is 33 and 006 mm2 (12 and 30 AWG) Maximumtorque for these terminal blocks is 079 Nndashm (7 lb ndash in) Only copperwire may be used

Chapter 2InstallationWiring

2ndash43

Figure 230Reference Signal Connections (PLC Comm Adapter)

TB20

1 2 3 4 5 6 7 8 9 10

TB21

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Common

Terminal Block

TerminalNumber(s)

TB20

Signal

1 Drive Enable (NO)

2 Motor Thermoguard (NC)

3 Normal Stop (NC)

Analog Out 1

Analog Out 2

Analog Out 3

Analog Out 4

4

5

6

External Fault (NC)

Input Common

7

8

9

Fault Output (NC)

Fault Output (COM)

10 Fault Output (NO)

TB21 1 OUT 1

2 COM 1

3

COM 24

5

6

7

8

9

10

OUT 2

OUT 3

COM 3

OUT 4

COM 4

IN 1+

IN 1ndash

11

12

13

14

15

16

IN 2+

IN 2ndash

IN 3 +

IN 3ndash

IN 4+

IN 4 ndash

17

18

19

+10V

COM

ndash10V

DriveEnable

MotorThermo

Norm Stop

ExtFault

Fault Relay

Analog In 1

Analog In 2

Analog In 3

Analog In 4

+10 ndash10Comm

Note If using a pot as an input 25KΩ min

Refer to Parameter 58 description for explanation of modes

Pin jumper J3 on the PLC Communication Adapter Board Enables orDisables the BRAM (Battery Backup RAM) Write function as follows

Jumpered 1 ndash 2 = EnabledJumpered 2 ndash 3 = Disabled

The PLC Communication Adapter Board 120V24V jumper settings for I0circuits (J8 ndash J11) are detailed in the 1336 FORCE PLC CommunicationsAdapter User Manual Publication 1336 FORCEndash 513

Switch Settings ndash There are DIP switches and jumpers located on the PLCCommunications Adapter Board that have been preset at the factoryCommunication is received through Channels A and B Thiscommunication protocol is defined through SW U2 ndash U5 If you need toreconfigure the switches or jumpers consult the 1336 FORCE PLCCommunications Adapter User Manual

Chapter 2InstallationWiring

2ndash44

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB20on the PLC Communication Adapter Board Fault outputs provide warningor fault signals based on drive programmingFault NCFault ComFault NO ndash A form C NO NC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 231Typical Digital Output

Fault Com (Digital Out)

Fault NC (Digital Out)

10

9

8

TB20

Fault NO (Digital Out)

Discrete InputsDiscrete Inputs to the 1336 FORCE are only supplied when a PLCCommunication Adapter Board is used These inputs are supplied atterminal block TB20Discrete inputs serve to enable and stop the Drive as well as providechecks on drive and motor operation

Figure 232Typical Digital Output

EXT FAULT (Digital Out)

INPUT COM (Digital Common)

NORM STOP (Digital In)

6

4

3

TB20

2

1

(Common)

MOTOR THERMO (Digital In)

DRIVE ENABLE (Digital In)

115V AC+24V DC (HIGH)

EXTERNAL FAULT

STOP

MOTOR THERMO

ENABLE

Chapter 2InstallationWiring

2ndash45

Figure 2ndash33 illustrates a typical stop control scheme that might be usedwhen the 1336 FORCE is equipped with a PLC Communication AdapterBoard For further information on PLC Communication Adapter boardoperation and configuration refer to the PLC Communication AdapterBoard User Manual 1336 FORCE 513

Figure 233Control Scheme

TB20

Drive Enable 12024V

Motor Thermo 12024V

Stop 12024V

Ext Fault 12024V

Input Common

Fault NC

Fault Com

Fault NO

120V24V

Input Common

Note Terminal Blocks TB20 amp TB21 are pull apart terminal blocks to aid in making cable connections Bothterminal blocks will accept wire sizes from 30ndash12 AWG (006 ndash 33 mm2)

This is a configurable stop see parameter 59 under the Drive Logic group for Start and Stop options Input must be jumpered if not used

Computer Connections to Frame D drivesIn some cases it will be necessary to use a DH+ port connection kit whenconnecting some computers to a 1336 FORCE drive in FRAME D ONLY

Refer to the Installation instructions included with Frame D drives formore information on the use and installation of this kit

ControlNet Fiber Optic Cable Connections to Frame D drivesIf you are installing the fiber optic cable for ControlNet on a Frame Ddrive special note should be taken of the following

ndash The strain relieflatching cover assembly must be removed from the cable connectors due to space constraints The cable connectors must then be separately plugged into the ControlNet board connectors on Frame D drives ONLY

ndash Correct orientation of the loose cables is determined by the color of the connectors The blue connector must be plugged into the dark grey connection on the board The black connector plugs into the light grey connection on the board The cable with the black connector is the transmit cable (TX) and the cable with the blue connector is the receive (RX) cable Reset the drive after connecting the cables and the ControlNet system should be ready to operate

Chapter 2InstallationWiring

2ndash46

ConfigurationThe 1336 FORCE Drive is shipped pre-configured which means that someof the inputs and outputs are linked to a predefined signal Figure 234shows the 1336 FORCE standard configuration when equipped with a PLCCommunication Adapter Board The user has the flexibility to configurethe Drive for a particular application

Figure 234PLC Comm Adapter Links

PLC Comm Adapter Channel B

1

Logic CMD In Port 6

OUTPUT IMAGE TABLEGROUP NUMBER

1336 FORCERemote IO Interface

331

OFFSET

400

SCALEAnalog Outputs Drive ParametersTB21

1

Reserved For-Block Transfer

PLC CONTROLLER

FULL021324354657

024135246357

34 12 1402461357

332333334335336337

01234567

INPUT IMAGE TABLEGROUP NUMBER

FULL021324354657

34 12 1402461357

01234567

360361362363

36710153

2 3 4

27

DriveParameters

Ext Vel Ref 1 HiTorque Mode SelectProcess Trim Ref

56269264265

364365366

182266

1 ndash Full Rack2 ndash 34 Rack3 ndash 12 Rack4 ndash 14 Rack

Logic Status LowFiltered Vel FdbkMotor Current Fdbk

Computed PowerMotor Voltage Fdbk

Stator Frequency

2 3 4 5 6 7 8

+ndash+ndash+ndash+ndash

91011 1213 1514

16 1817 19

ndash+ndash+ndash+ndash+

COMM

401 387

OFFSET

402

SCALE

403 388

OFFSET

404

SCALE

405 389

OFFSET

406

SCALE

407 390

ndash

+10VCommon

ndash10V

Analog InputsOFFSET

392

SCALE

393 339

OFFSET

394

SCALE

395 340

OFFSET

316

SCALE

317 341

OFFSET

318

SCALE

319 342

PowerSupply

269 Filtered Vel Fdbk

182 Computed Power

264 Motor Current Fdbk

265 Motor Voltage Fdbk

104 Ext Vel Ref 2 Hi

28 Process Trim Fdbk

+ndashProc Trim Fdbk

Ext Vel Ref 2 Hi

+ndash

Filtered Vel Fdbk

Comm

Computed Power

Comm

Motor Current Fdbk

Comm

Motor Voltage Fdbk

Comm

330

359024135246357

Chapter 3

3ndash1

Programming Terminals

Chapter Objectives Chapter 3 provides an overview of the optional Programming Terminalsavailable for use with the 1336 FORCE Drive The various controls andindicators found on the Human Interface Module (HIM) and the GraphicProgramming Terminal (GPT) are both explained in this chapterAdditional in depth information on the Graphic Programming Terminalcan be found in the GPT programming Manual

HIM Description When the drive mounted HIM is supplied it will be accessible from thefront of the drive as shown in Figure 31 The HIM has two mainfunctionsbull To provide a means of programming the drive and viewing operating parametersbull To allow different drive functions to be controlled

ATTENTION When a drive mounted HIM is notsupplied on enclosed NEMA Type 1 (IP 20) drives theblank cover plate (option HAB) must be installed to closethe opening in the front cover of the enclosure Failure toinstall the blank cover plate allows access to electricallylive parts which may result in personal injury andorequipment damage

When a drive mounted HIM is supplied with enclosedNEMA Type 1 (IP 20) drives but has been removed fromits mounting cradle for remote operation the blank coverplate must be installed in place of the HIM

The HIM is divided into two sections Display Panel and Control PanelThe Display Panel provides a means of programming the Drive andviewing the various operating parameters The Control Panel allows youto control different drive functions

Figure 31Human Interface Module Location

Display Panel

Control Panel

Human Interface Module(HIM)

JOG

ESC SEL

Chapter 3Programming Terminals

3ndash2

Figure 32HIM Front Panel

LCD Display

AB0273A

Key Descriptions

Descriptions of the keys used with the 1336 FORCE Drive are presented inthe following paragraphs Remaining keys that are not described (shaded infigure above) are not used and reserved for future use

EscapeWhen pressed the ESCape key will cause the programmingsystem to go back one level in the menu tree

SelectPressing the SELect key alternately causes the top or bottomline of the display to become active The flashing first characterindicates which line is active

IncrementDecrementThese keys are used to increment and decrement avalue or scroll through different groups or parameters

EnterWhen pressed a group or parameter will be selected or aparameter value will be entered into memory After a parameterhas been entered into memory the top line of the display willautomatically become active allowing another parameter (orgroup) to be chosen

AB0269A

AB0270A

AB0282A

AB0295A AB0267A

Chapter 3Programming Terminals

3ndash3

Key Descriptions (continued)

AB0283A

StartBy default this key will initiate drive operation if hardware isenabled and no other control devices are sending a Stop commandTo change this function the [Command Mask] and [Typ 1 LogicAxis] parameters must be reconfigured Refer to Chapter 5

StopWhen pressed a stop sequence will be initiated at the SystemModule causing a controlled stop to be initiated in each axis asdetermined by [Stop Mode] [Stop Time Lim] and [Stopping Cur]

JogBy default when this key is pressed the motor will jog at aspeed determined by the [Jog Vel] parameter for any axis that isenabled (default will be 20 of motor rated speed) Releasingthe key will stop the function

Change Direction (JogDigital Velocity Reference Modes Only)Pressing this key will cause the motor to change direction Theappropriate Direction Indicator will light to indicate direction

Direction LEDs (Indicators)These LEDs will illuminate to indicate the direction of motorrotation for Axis 0 (by default)

UpDown Arrows (only available with digital speed control)Pressing these keys will increase or decrease the HIMfrequency command An indication of this command willbe shown on the visual Speed Indicator The drive willrun at this command if the HIM is the selected frequencyreference See [Freq Select 12]

Pressing both keys simultaneously stores the currentHIM frequency command in HIM memory Cyclingpower or removing the HIM from the drive will set thefrequency command to the value stored in HIM memory

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

Speed Indicator (only available with digital speed control)Illuminates in steps to give an approximate visualindication of the commanded speed

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

AB0267A

AB0275A

AB0281A

AB0285A

AB0287A

AB0295A

AB0265A

NotePot Range0 ndash 32767

Chapter 3Programming Terminals

3ndash4

Module Removal For handheld operation the module can be removed and located up to 10 meters(33 feet) from the Drive

ATTENTION Some voltages present behind the Drive frontcover are at incoming line potential To avoid an electric shockhazard use extreme caution when removingreplacing the HIM

Important Removing a HIM (or other SCANport device) from a drivewhile power is applied will cause a ldquoSerial Faultrdquo unless the [Logic Mask]parameter has been set to disable this fault or Control Logic (Control Statusmenu) has been disabled (Series A version 30 or Series B HIM) SettingBit 1 of the [Logic Mask] parameter to ldquo0rdquo will disable ldquoSerial Faultrdquo froma HIM on port 1 Note that this also disables all HIM control functionsexcept StopTo remove the module

1 Assure that power has been removed [Logic Mask] has been set orControl Logic has been disabled

2 Take the drive front cover off and simply slide the module down andout of its cradle Remove cable from module

3 Remove HIM as described in the following sequence If Jog controlis required after the HIM is reconnected repeat steps 1 but selectldquoEnablerdquo

4 Connect the appropriate cable between the HIM and theCommunications Port (Adapter 23 4 or 5)

5 Reverse the above steps to replace the module Apply power resetBit 1 of the [Logic Mask] or enable Control Logic

HIM Operation When power is first applied to the drive the HIM will cycle through aseries of displays These displays will show drive name HIM ID numberand communication status Upon completion the Status Display (seeFigure 33) will be shown

Figure 33Status Display

AB0286A

This display shows the current status of the drive (ie ldquoStoppedrdquoldquoRunningrdquo etc) or any faults that may be present (refer to Chapter 6 forfault information) On a Series A (version 30) or Series B HIM (see back ofHIM) the Status Display can be replaced by the Process Display orPassword Login menu See appropriate sections on the following pages formore information

From this display pressing any key will cause ldquoChoose Moderdquo to bedisplayed Pressing the Increment or Decrement keys will allow differentmodes to be selected as described on the pages that follow

Chapter 3Programming Terminals

3ndash5

DisplayWhen selected the Display mode allows any of the parameters to beviewed However parameter modifications are not allowed

Program Program mode provides access to the complete listing of parametersavailable for programming

ProcessThe Process mode displays two user-selected parameters with text andscaling programmed by the user

EEPROM This mode allows all parameters to be reset to the factory default settingsIn addition a Series B HIM will allow parameter uploaddownloadbetween the HIM and drive BRAM (Battery Backup RAM) jumper mustbe in ldquoEnablerdquo position in order to change parameters

Search (Series A version 30 or Series B HIM Only)This mode will search for parameters that are not at their default values

Control Status (Series A version 30 or Series B HIM Only)Permits the drive logic mask to be disabledenabled allowing HIM removalwhile drive power is applied Disabling the logic mask with a Series A HIMbelow version 30 can be accomplished with [Logic Mask] as explained onpage 3ndash4 This menu also provides access to a fault queue which will list thelast four faults that have occurred ldquoTriprdquo displayed with a fault indicates theactual fault that tripped the drive A clear function clears the queue ndash it willnot clear an active fault

LinkLink mode provides a method of transferring data from a source parameterto a linkable sink parameter When a PLC Comm Adapter Board is usedup to (50) links are allowed Links can be programmed only when theDrive is not running Links are stored in BRAM and established at powerup BRAM recall andor system reset

PasswordThe Password mode protects the drive parameters against programmingchanges by unauthorized personnel When a password has been assignedaccess to the ProgramEEProm modes and the Control LogicClear FaultQueue menus can only be gained when the correct password has beenentered The password can be any five digit number between 00000 and65535

Refer to the Password section of the example that follows

Chapter 3Programming Terminals

3ndash6

or

or

or

Program Mode

or

The Program mode allows access to changeparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoProgramrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnos-ticsrsquo lsquoVelocity Torquersquo lsquoCommunica-tion IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Torque Ref) Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Parameter 53 Torque Mode Sel)

If the parameter you have selected hasbit definition information use the Selectkey to access the 2nd or 3rd lineContinue to press the Select key toaccess the desired bit Use the Inc orDec key to change the valueNOTE If the cursor is a blinkingunderline instead of a flashing characteryou are either in Display mode or aretrying to change a readndashonly parameterFor detailed information on changing bitcoded parameters refer to the Bit Enumssection in this chapter

Press the Enter key to save yourchanges

Choose ModeDisplay

Choose ModeProgram

Choose FileVelocity Torque

Torque Mode Sel

Choose GroupLogic

Choose GroupTorque Ref

or

Chapter 3Programming Terminals

3ndash7

or

or

or

Display Mode

or

The Display mode allows access to viewparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoDisplayrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnosticsrsquo lsquoVelocity TorquersquolsquoCommunication IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Info) Choices includeTransistor Diag Motor Overload FaultSelSts Testpoints Monitor Linear Listand Info Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Adapter ID Param 300)

Choose ModeProcess

Choose ModeDisplay

Choose FileVelocity Torque

Adapter ID

Choose GroupMonitor

Choose GroupInfo

Chapter 3Programming Terminals

3ndash8

or

Bit ENUMsMasksLogic Mask

TB3X1111111

With drive software versions above 200 anda Series A (software version 30) or Series BHIM bit ENUMS (16 character text strings)will be displayed to aid interpretation of bitparameters

Select a bit parameter with the Increment(or Decrement) keys

Press the SELect key to view the ENUMof the first bit Pressing this key again will move the cursor to the left one bit

A blinking underline cursor will indicate that you are in the Display mode or that aRead Only parameter as been accessed Aflashing character will indicate that the value can be changed

Individual bits of a ReadWrite parametercan be changed in the same manner Pressing the SELect key will move the cursor (flashing character) one bit to the left That bit can then be be changed by pressing the IncrementDecrement keys

Link The Link Option allows you to view all current links in the drive and change orclear these links

From the Status display press Enter ldquoChoose Moderdquo will be shown

Press the Increment or Decrement key toreach the Link Option

Press Enter and either the Clear Links or Set Links option screen will appearToggle between the screens using the Incor Dec key

From the Clear Links screen use the Enter key to clear all links

To change links use the Inc or Dec key to reach the link you wish to changeUse the Sel key to access the 2nd line in the display and then change the link using the Inc or Dec key

Choose ModeProcess

Choose ModeLink

or

LinkClear All Links

Drive SW Versionlt 1 gt lt ndash ndash 0 gt

or

or

Chapter 3Programming Terminals

3ndash9

Process Mode When selected the Process mode will allowyou to monitor 6 different prendashprogrammedprocesses 2 of these processes can bedisplayed at one time

Use the Enter key to select the ProcessMode

Press the Enter key again to access theProcess Variable display

Press the Enter key again if you wish tomonitor the processes under ProcessVariable 1

Use the IncDec keys to view the sixprocesses that are currently programmedon line 1

To move to the second Process VariableLine Press the Select key This willallow you to access the six processesunder Process Variable 2

To return to a previous level press theEscape key

Note HIM Series B Version 106 willallow changing of the 6 process dis-plays

Choose ModeProcess

+ 000 Freq Cmd+ 000 Vel FB

Process Var 1=1Process Var 2=2

or

Chapter 3Programming Terminals

3ndash10

AB0282A

or

or

AB0287A

AB0270A

or

or

EEProm Mode

Reset Defaults

Drive ndashgt HIM

The EEProm mode is used to restore all settingsto factory default values or uploaddownloadparameters between the HIM and drive (SeriesB HIM Only)

To restore factory defaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will bedisplayed

Press the Increment (or Decrement) keyuntil ldquoEEPromrdquo is displayed If EEPromis not in the menu programming ispassword protected Refer to PasswordMode later in this section

Press Enter

Press the Increment (or Decrement) keyuntil ldquoReset Defaultsrdquo is displayed

Press Enter to restore all parameters totheir original factory settings

Press ESC Display returns to ChooseMode Screen

Press the Stop key to reset the fault

Note Reset Defaults only modifiesparameters in RAM To save in EE doa ldquoSaverdquo or to recall what is in EE toRAM do a ldquoRecallrdquo

Important If [Input Mode] was previous-ly set to a value other than ldquo1rdquo cycledrive power to reset

To upload a parameter profile from the driveto the HIM you must have a Series B HIM

From the EEProm menu (see steps A-Cabove) press the IncrementDecrementkeys until ldquoDrive ndashgt HIMrdquo is displayed

Press Enter A profile name (up to 14characters) will be displayed on line 2 ofthe HIM This name can be changed or anew name entered Use the SEL key tomove the cursor left The IncrementDecrement keys will change the charac-ter

Stopped+000 Hz

Choose ModeDisplay

Choose ModeEEProm

EEPromReset Defaults

Choose ModeEEPROM

EEPromDrive ndashgt HIM

Drive ndashgt HIM1 A

Chapter 3Programming Terminals

3ndash11

or

Drive ndashgt HIM (continued) Press Enter An informational displaywill be shown indicating the drive typeand firmware version

Press Enter to start the upload Theparameter number currently beinguploaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the upload

ldquoCOMPLETErdquo displayed on line 2 willindicate a successful upload PressEnter If ldquoERRORrdquo is displayed seeChapter 6

1336T VectorVersion 302

Drive ndashgt HIM 60|||||

Drive ndashgt HIM 210COMPLETE

HIM ndashgt DriveTo download a parameter profile from theHIM to a drive you must have a Series BHIM

Important The download function will only beavailable when there is a valid profile storedin the HIM

From the EEProm menu press theIncrementDecrement keys until ldquoHIM ndashgtDriverdquo is displayed

Press the Enter key A profile name willbe displayed on line 2 of the HIMPressing the IncrementDecrement keyswill scroll the display to a second profile(if available)

Once the desired profile name is dis-played press the Enter key An informa-tional display will be shown indicatingthe version numbers of the profile anddrive

Press Enter to start the download Theparameter number currently beingdownloaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the download

A successful download will be indicatedby ldquoCOMPLETErdquo displayed on line 2 ofthe HIM Press Enter If ldquoERRORrdquo isdisplayed see Chapter 6

1336T Vector302 ndash gt 302

EEpromHIM ndashgt Drive

HIM ndashgt Drive1 A

HIM ndashgt Drive 60|||||

Drive ndashgt HIM 210COMPLETE

or

Chapter 3Programming Terminals

3ndash12

or

or

or

Search Mode The Search Mode is only available with aSeries A (version 30) or Series B HIM

This mode allows you to search through theparameter list and display all parameters thatare not at the factory default values Thismode also offers an option to searchparameter links for links that are not factorydefaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoSearchrdquo is displayed

Press Enter The HIM will display theSearch Parameters or Search Linksscreen Use the Increment or Decre-ment key to toggle between screens

From the Search Parameters displaypress Enter The HIM will searchthrough all parameters and display anyparameters that are not at their factorydefault values

Press the Increment (or Decrement) keyto scroll through the list

To search parameter links toggle to theSearch Links display from the SearchParameters display using the Incrementor Decrement key

From the Search Links display pressEnter The HIM will search through alllinks and display any links that are notat their factory default values

Choose ModeSearch

Choose ModeDisplay

Proc Trim Fdbkndash003 28

SearchParameters

Proc Trim Fdbklt28x ndash ndash ndash 355

Search Links

Chapter 3Programming Terminals

3ndash13

AB0282A

or

or

Control Status Mode

Choose ModeControl Status

Choose ModeDisplay

Control LogicDisabled

Control StatusControl Logic

The Control Status mode is only availablewith a Series A (version 30) or Series BHIM

This mode allows the drive logic mask to bedisabled thus preventing a Serial Faultwhen the HIM is removed with drive powerapplied The logic mask can be disabledwith Series A HIM versions below 30 byusing [Logic Mask] as explained on page34

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoControl Statusrdquo is displayed PressEnter

Select ldquoControl Logicrdquo using theIncrementDecrement keys Press Enter

Press the SELect key then use theIncrement (or Decrement) key to selectldquoDisabledrdquo (or ldquoEnablerdquo)

Press Enter The logic mask is nowdisabled (or enabled)

or

Chapter 3Programming Terminals

3ndash14

AB0270A

or

or

or

(continued)Control Status Mode

Fault QueueClear Faults

This menu provides a means to view thefault queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoFault Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The fault queue will bedisplayed ldquoTriprdquo displayed with a faultwill indicate the fault that tripped thedrive

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe fault occurrence press the Enter key

To clear the fault queue press ESCapeThen use the IncrementDecrement keysto select ldquoClear Queuerdquo Press EnterPlease note that ldquoClear Queuerdquo will notclear active faults

Control StatusFault Queue

Fault QueueView Queue

Serial FaultF 10 Trip 1

Reprogram FaultF 48 2

12022 11

or Fault QueueClear Queue

Chapter 3Programming Terminals

3ndash15

AB0270A

or

or

or

(continued)Control Status Mode

Warning QueueClear Warnings

This menu provides a means to view thewarning queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoWarning Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The warning queue will bedisplayed

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe warning occurrence press the Enterkey

To clear the warning queue pressESCape Then use the IncrementDecre-ment keys to select ldquoClear QueuerdquoPress Enter Please note that ldquoClearQueuerdquo will not clear active warnings

Control StatusWarning Queue

Warning QueueView Queue

Vel Fdbk LvlF 5048 5

12022 11

Warning QueueClear Queue

or

Reset Sequence

or

A reset sequence is available on Series BHIMs with 106 or later software

From the Startup Completed displaypress the Enter key

Press the Increment (or Decrement) keyuntil ldquoStartup Reset Sequencerdquo isdisplayed Press Enter

Press the Enter key again to relaunch theStartup sequence

Start UpCompleted

Start UpReset Sequence

Entering Start UpPress lsquoENTERrsquo

Chapter 3Programming Terminals

3ndash16

or

or

or

or

or

Password Mode The factory default password is 0 (whichdisables password protection) To change thepassword and enable password protectionperform the following steps

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoModifyrdquo is displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyto scroll to your desired new passwordWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter to save your new password

Press Enter again to return to thePassword Mode

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

With a Series A (version 30) or SeriesB HIM the Password mode can beprogrammed to appear when drivepower is applied Simultaneously pressthe Increment and Decrement keyswhile the Password display is shown

Sets Password Displayas Power-Up Display

Choose ModePassword

Choose ModeDisplay

PasswordModify

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

Chapter 3Programming Terminals

3ndash17

or

or

Password Mode (continued)Login to the Drive

or

The ProgramEEProm modes and theControl LogicClear Queue menus are nowpassword protected and will not appear inthe menu To access these modes performthe following steps

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter ldquoLoginrdquo will be displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyuntil your correct password is displayedWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter

The Program and EEProm modes willnow be accessible To prevent futureaccess to program changes logout asdescribed in step 1

Logout from the Drive To prevent unauthorized changes toparameters Logout must be performed asdescribed below

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

Choose ModePassword

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

or

Chapter 3Programming Terminals

3ndash18

or

or

Startup Mode

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear If you DO NOT need toenter motor nameplate data toggle to theNo (N) selection and press EnterA display asking you to run the MotorConnect Diagnostics will appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor informationBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesBase Motor SpeedFeedback Device Type

NOTE For more information on thecomplete Quick Startup sequence referto Chapter 4 All tests and entries arecovered in greater detail in the Startupchapter

or

Motor ConnectDiagnostics Y

Chapter 3Programming Terminals

3ndash19

Figure 34 HIM Programming Steps

PowerndashUp andStatus Display

Choose Mode

or or or or

DisplayProcess Program EEProm Search Control

StatusPassword Link

Operator Level

Mode Level

Process DisplayReset DefaultsDrive to HIMHIM to DriveRecall ValuesSave Values

Control LogicFault Queue

LoginLogoutModify

Clear Links

File LevelParameter Files

Group LevelParameter Groups

Element LevelParameters

(Read Only) (ReadWrite)

(See Chapter 5)

(See Chapter 5)

(See Chapter 5)

(Linear List Available)

1 1

2

2

1 Him Versions 202 amp Up2 Series B HIM Only

Set Links

Startup

Change Process Disp3ParamLinks Reset Drive

Warning Queue

3

ContinueReset Seq

3 Series B V 106 amp up

Chapter 3Programming Terminals

3ndash20

GPT Description When an optional GPT (Figure 35) is supplied it will be either mounted tothe front of the Drive as a panel mount terminal or supplied as a remotedevice with a 18 meter (6 foot) long cable The GPT offers a 40 by 8character display that can also be used as a graphics display to showtrending graphs etc

Figure 351201 Graphic Programming Terminal

B5

PRESET 1 PRESET 3

D7

E8

F9

A4

C6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Chapter 3Programming Terminals

3ndash21

Keypad Description The GPT keyboard (Figure 35) is provided as either a 26 key version(nonndashruntime) or 30 key (runtime version) The runtime version asshown in Figure 36 provides additional Start Stop Jog and Directionkeys

Figure 36GPT Keypad

B

5

PRESET 1 PRESET 3

D

7E

8F

9

A

4C

6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Start Key Stop Key

Chapter 3Programming Terminals

3ndash22

When power is first applied to the drive or device a series of hardwarediagnostic tests will run before the Power Up Logo Screen shown inFigure 37 appears Once the initialization has been completed and allinformation from the drive is uploaded the terminal will display eitherthe Main Menu screen or the Process Display screen depending on theterminal setup information

Figure 37GPT Power Up Logo Screen

AumlAumlAumlAuml

0 25 50 75 100

1201 GPT InterfaceAllen Bradley CoCopyright 94 v1 01

Initializing

If it has not been deactivated through the terminal during setup theProcess Display Screen (Figure 38) showing you the programmedprocess variables will appear next If the Process Display Screen isdeactivated the Main Menu Screen (39) will appear first

Figure 38Process Display Screen

MainMenu DSP_Mode

000 Freq CMD000 Vel FB000 COMP PWR000 MTR V FB000 MTR I FB000 Torq FB

Sts Not EnabledDir ForwardOut

Info

When the Process Display Screen is active it is necessary to press theMain Menu Option (F2 soft designator) on the Process Display to reachthe Main Menu The Main Menu contains the password option thatprovides a highlighted dialog box for password entry

GPT Operation

Chapter 3Programming Terminals

3ndash23

The Configuration option (F1 soft designator) allows you to directlyaccess Process parameters from the Process Display screen The DisplayMode option (F3 soft designator) allows you to enter the Logo Status orMeter modes for the Process Display parameters

IMPORTANT Main Menu screens are dynamic and will change basedon functionality provided by adapter and drive status

Figure 39Main Menu Screen

Password ProcDspy

Main Menu

Help TextDescriptionFor Each Menu ItemSelected

1 ndash Parameter2 ndash Link Summary3 ndash Fault Queue4 ndash Warning Queue5 ndash EEPROMBRAM6 ndash Clock Data7 ndash Function Block8 ndash Special

Help

IMPORTANT Only 5 of the 8 Main Menu options are displayed at onetime on the screen Scroll with the IncDec keys to access all eightselections

Figure 310 details the complete menu tree for the GPT ProgrammingTerminal This menu is dynamic and all options may not be supportedby your Drive or SCANport device If you need more detailedinformation on Key functions Menu Screens or general Terminaloperation refer to the appropriate chapter in the GPT user manual

Chapter 3Programming Terminals

3ndash24

Figure 310GPT Programming Options

Power UpLogo Screen

MainMenu

Screen

ProcessDisplayScreen

ProcessConfigScreen

ProcessProgramScreen

1Parameter

2Link

Summary

3Fault

Queue

4WarningQueue

5EEBRAMFunction

6ClockData

7Function

Block

8Special

File

DECINC+

Group

Element

Sink

Source

Fault List

1 Save Par to EE2 Recall EE Par

Warning Entry List

NumericalParameter Screens

FGE Mode

Linear Mode

2 Set Ref3 Load Ref Stamp

Upload

Command

File ID

IO Node

Download

Interval

Event File

Edit List

DataTransfer

VersionInfo

AutotuneTests

ChangePasswordStartup

TrendFunction

DriveIdentity

1 Clear Warning

1 Clear Flt

2 Clear Warn Q

1 Set Clock

4 Zero Acc

2 Clear Flt Q3 Drive Reset

3 Init Par to RAM

➊ This list is dynamic and will change for various Drive States and DriveProduct functions

4 Evnt File Store5 Evnt File Recall6 Evnt File Init7 Proc FB Links8 Clear FB Links

SaveRecallDefault

HIM gt GPT

GPT gt HIM

Chapter 3Programming Terminals

3ndash25

This Page Intentionally Blank

Chapter 4

4ndash1

StartndashUp

Introduction This chapter describes the procedure for the proper start up and tuning ofthe 1336 FORCE AC drive Among the procedures you must perform inthis chapter are the following

bull Prendashpower checksbull Powerndashon checksbull Communication Configurationbull Parameter Programmingbull Motor and Feedback Polarity Checksbull Drive Tuning and Calibration

Safety Precautions

ATTENTION Hazard of Electric Shock exists in this drive Power circuits are optically isolated from control driver circuitsPower circuit components are ldquofloatingrdquo with respect to ldquogroundrdquoUse only approved methods of isolating test equipment when mak-ing measurements in power circuits

ATTENTION Only qualified personnel familiar with the 1336FORCE AC Drive and its associated machinery should plan andimplement the installation startup and subsequent maintenance ofthe Drive Failure to comply may result in personal injury andorequipment damage

ATTENTION Working with energized industrial control equip-ment can be hazardous Severe injury or death can result fromelectrical shock burn or unintended actuation of controlled equip-ment Hazardous voltages may exist in the cabinet even with thecircuit breaker in the off position Multiple sources of power maybe connected to this drive Recommended practice is to disconnectand lock out control equipment from power sources and dischargestored energy in capacitors if present before coming in contactwith any equipment in this cabinet During startup it will be nec-essary to work in the vicinity of energized equipment The SafetyRelated Practices of NFPA 70E ldquoELECTRICAL SAFETY FOREMPLOYEE WORKPLACESrdquo must be followed at all timesDO NOT work alone on energized equipment

Chapter 4Startup

4ndash2

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

ATTENTION This Drive contains ESD (ElectrondashStatic Dis-charge) sensitive devices Static control precautions are requiredwhen installing testing servicing or repairing this assemblyThese precautions should be applied when working with logicboards AND any components in the power section A properlygrounded wrist strap should be worn when contacting any compo-nent in the drive If you are not familiar with static control proce-dures before servicing reference AllenndashBradley Publication8000ndash452 Guarding against Electrostatic Damage or any otherapplicable ESD protection handbook

Required Tools and Equipment The following equipment is required for startndashup and tuning

bull Digital Multimeter (DMM) capable of 1000V DC750V AC with input resistance of at least 1 megohm

bull Hand Tachometer used to monitor motor velocitiesbull User Manuals for optional equipmentbull DriveTools Software (optional)

This startndashup sequence specifies using hand instruments such asmultimeters tachometers ammeters and an oscilliscope to carry out thisstartndashup test procedure If you have the optional DriveTools software forthe 1336 FORCE Drive it can be used to simplify the startup procedureThis option can be used to set input commands manipulate parameters andverify frequencies and voltage levels

IMPORTANT This startup sequence for a Series B Drive assumes thatyou have a HIM Programming Terminal If a different programmingdevice is used you must alter the startup accordingly

Chapter 4Startup

4ndash3

Drive Information During Startup the following information must be recorded for referenceIt is important that an accurate list of drive components be maintained andreferred to when contacting service personnel

Table 4A Data Checks ndash

DRIVE NAMEPLATE DATACatalog NumberSerial NumberSeries

AC Input Volts Amps

AC Output Volts Amps

MOTOR NAMEPLATE DATACatalog NumberSerial NumberSeries

Horsepower Rating

RPM

AC Input Volts Amps

Poles

Hz

ENCODER NAMEPLATE DATA

Input Power Supply

Output Type

Pulses Per Rev

Maximum Speed

Maximum Frequency

PPR

Board Revision Level

Horsepower Rating

Catalog NumberSerial NumberSeries

VoltsInput Signal Level Volts

MAIN CONTROL BOARD

PLC COMM BOARDBoard Revision Level

GATE DRIVER BOARD

STANDARD ADAPTER BOARDBoard Revision Level

Board Revision Level

kw

kw

PLC Comm Adapter Board Switch SettingsU2

U3

U4

U5

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

5 6 7 8

5 6 7 8

Standard Adapter Board Jumper Settings

J5 1 2 2 3PositionPosition

J13 1 2 2 3J10 3 4 17 18

Chapter 4Startup

4ndash4

General Only qualified electrical technicians andor electrical engineers familiarwith solid state controls and circuitry should attempt a 1336 FORCEstartndashup Figure 41 outlines the sequence that is required to startndashup the1336 FORCE DriveFigure 41Bulletin 1336 FORCE StartndashUp Sequence

ExternalWiring Checks

PREndashPOWER CHECKS

InternalDrive Checks

CommunicationConfiguration

LIVEndashPOWER CHECKS

VoltageMeasurements

StandardIO Checks

PARAMETER PROGRAMMING

POLARITY CHECKS

DRIVE TUNING

EncoderCheck

MotorCheck

PrendashPower Checks PrendashPower checks are meant to identify any problems prior to applyingvoltage to the system The drive should be checked for any damage thatmay have occurred during shipment and installation You should alsoverify that all jumpers and configuration controls are properly applied forthe application at hand Finally you must check all wiring external to thedrive for accuracy and reliability

External Wiring Checks1 Verify that all external IO wires are properly terminated in the

terminal blocks A full point ndash to ndash point continuity check should be performed on all IO wiring connected to the drive

Chapter 4Startup

4ndash5

2 Verify that the incoming power connections are properly connected and tight Also verify that the power source is properly sized and protected for your particular drive

3 Verify that the motor power connections are properly connected and tight Motor Phasing should be checked Motor Phase A should be connected to Drive output phase A likewise Phase B and C should be properly terminated to their respective terminals This phasing will be double checked later in this procedure

4 Verify that the encoder feedback device is properly connected The encoder should be a quadrature device with a 12V input power requirement and either 12V or 5V differential outputs Jumpers J3 andJ4 on the Main Control Board (Figure 27) must be set for the desired output Phasing of the encoder should be checked in that A and A B and B are properly terminated This phasing will be double checked later in this procedure

5 If your Drive is equipped with a Standard Adapter Board verify that the Pulse Input Voltage Selection jumper is set correctly for your application Jumper J13 should be set across pins 1 and 2 for +5V DC input and across pins 2 and 3 for +12V DC input voltage

6 If your Drive is equipped with a PLC Comm Adapter Board verify that the standard IO inputs on the PLC Comm Board are configured for the proper input voltage level The Standard IO can be configuredfor operation at 24V DC or 120V AC To select the proper voltage set the jumpers on J5 J6 J7 and J8 across pin 1 and 2 if the input voltage level is 120V AC and across pins 2 and 3 if the input voltage level is 24V DC

Power On After all prendashpower checks have been completed the incoming power maybe applied The application of power for each system can be differentMake sure you know the safety controls associated with the system Powershould only be applied if you have a thorough understanding of the 1336FORCE Drive and the associated system design

bull Measure the incoming line voltage between L1 and L2 L2 and L3 andL1 and L3 Use the DMM on AC Volts highest range (1000 VAC) The input voltage should equal the drive rated input voltage present on the driversquos nameplate within +ndash10 If the voltage is out of toleranceverify the drive rating is correct for the application if it is adjust the incoming line voltage to within +ndash10

Chapter 4Startup

4ndash6

Startup Configuration Procedures After you have completed all wiring and power up the drive the parameterconfiguration procedure must be completed using one of the StartupConfiguration Procedures (Quick or Manual) The configurationprocedures used here assumes you have a HIM programming terminal anda Standard Adapter Board in your Drive If you are using a differentprogramming method or a PLC Comm Adapter Board the configurationprocedure will have to be altered to match your particular setup

ATTENTION Failure to complete the parameter configurationcould result in injury to personnel or damage to the drive andthe motor when attempting to perform the remaining steps inthe Configuration Procedure

Apply power to the Drive The HIM display will appear as shown in Figure 42

ATTENTION During some startup procedures the motor willrotate Hazard of personal injury exists due to unexpected startsrotation in the wrong direction or contact with the motor shaft If possible uncouple the motor from the load and place a guardaround the motor shaft

Figure 42HIM PowerndashUp Display

LCD Display

AB0273A

Chapter 4Startup

4ndash7

or

or

Quick Start Procedure

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

1 An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor information1 Base Motor Current2 Base Motor Volts3 Base Motor Frequency4 Motor Poles5 Base Motor Speed6 Feedback Device Type

When all motor and feedback data havebeen entered a display asking you ifyou wish to run the Motor ConnectDiagnostics will appear Press the Enterkey to initiate the test sequence Insubsequent displays you will be asked ifyou wish to run the following tests1 Inverter Diagnostics2 Motor Rotation TestPress the green Start key to run thediagnostic testPress the red Stop key when the MotorRotation Test has completed

or

Motor ConnectDiagnostics Y

Transistor DiagPress START

Check MotorRotation Y

Chapter 4Startup

4ndash8

or

Quick Start Procedure cont

Measure Paramrsquos Press START

Autotune Torqueamp Vel Loops Y

Change Vel BW amprecalc Gains Y

Autotune TheVelocity Loop Y

1 After Inverter Diagnostics has concluded orif you answer NO to the Motor ConnectDiagnostics question a display will appearasking if you wish to run the AutotuneTorque amp Velocity sequence

Press the Enter key to initiate the test

If you answer YES to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Measure Parameters2 Autotune The Velocity Loop3 Change Velocity Bandwidth amp

recalculate Gains4 Configure Analog Inputs5 Continue CH3 amp 4

configuration6 Configure Analog Outputs7 Configure SCANport

ATTENTION Hazard of PersonalInjury exists when running the AutotuneTorque amp Velocity sequence as motorrotation occurs with several of thesetests

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

ConfigureAnalog Inputs Y

Continue CH 3 amp4 config Y

Configure AnalogOutputs Y

ConfigureSCANport Y

Startup Completed

Chapter 4Startup

4ndash9

or

Quick Start Procedure cont

Configure IO Y

ConfigureInput Mode Y

ConfigureScanport Y

If you answer NO to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Configure IO2 Configure Scanport3 Configure Input Mode4 Configure Pulse Input5 Configure MOP6 Configure Analog Input7 Configure Analog Output

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

If you wish to return to the Startupsequence to make additional changesthis can be accomplished from theStartup Completed display Afterpressing the Enter key use the INC orDEC key to toggle to Reset SequencePress the Enter key again and you cannow rendashenter the Startup routine

Startup CompletePress lsquoENTERrsquo

ConfigurePulse Input Y

ConfigureMOP Y

ConfigureAnalog Input Y

ConfigureAnalog Output Y

Startup Completed

Startup Reset SequenceStartup Completed

ResetSequence

or

Chapter 4Startup

4ndash10

AB0282A

or

or

or

Choose MODE Program

Choose FileStartup

Press the ESC key to access the Drive Mode MenuThe Choose Mode display should appear as shownbelowUse the INCDEC keys to scroll thru the DriveMode menu selections until the PROGRAMselection is reachedPress the ENTER key to enter the Program ModeThe HIM display should appear as shown below

Drive Mode Menu

Drive Mode Menu Selections

Press Enter The Choose Group Display will appear Press the INC or DEC key to reach LINEAR LIST

Press the ENTER key to access the Linear ListmenuThe display should appear as shown below

EEPROMPASSWORDDISPLAYPROCESSPROGRAM

LINKSEARCH

CONTROL STATUSSTARTUP

Choose GroupLINEAR LIST

Drive SW Version301 1 LINEAR LIST

Parameter Number 1

Use the INCDEC keys to scroll to Parameter 150Parameter 150 is feedback device type1 = Encoder feedback5 = Sensorless feedback (Similar to armaturevoltage feedback for a DC Drive)Note If choosing sensorless feedback the bandwidth of thevelocity loop will be significantly reduced

Press the SEL key to access the feedback devicetype selection and use the INCDEC keys to togglebetween the selections

Note If sensorless feedback is selected the drivewill fault on feedback loss You must set bit 0 inparms 88 and 89 from 1 to 0 before clearing thisfault and proceeding with the autotune

The feedback device type can be accepted bypressing the ENTER key The display should nowappear as shown below

Fdbk Device TypeVel Est woDB 150 LINEAR LIST

Parameter Number 150Sensorlessfeedback

or

Manual Startup Mode

Use the INCDEC keys to select the Startup File

Chapter 4Startup

4ndash11

AB0270A

or

Drive Data Startup

Linear ListStartup

After the feedback device type has been selectedand accepted press the ESC key to return to theStartup Menu The display should appear asshown below

STARTUP MENU

Use the INCDEC keys to scroll thru the StartupMode menu selections until DRIVE DATAis reached

Press the ENTER key to access the Drive Datamenu

NOTE These parametersare primarily motorencoder specific param-eters that are used forscaling Drive output tomotor input require-ments

DRIVE DATADRIVE TUNE

LIMITSFAULT SETUP

MONITORLINEAR LIST

DRIVE DATA MENU

Not Used inSensorless Mode

The HIM will allow you to toggle between the IODrive Data menu parameters using the INCDECkeys The definitions of the IO Drive Data menuparameters is detailed below

bull Language Select ndash This parameter indicates whether English or an alternate language will be used for parameter and fault display text

bull Input Mode ndash Defines the function of the inputs on the ldquoLrdquo option board

bull Encoder PPR ndash Number of pulses per revolution for encoder

bull Base Motor Speed ndash Motor Nameplate Speed

bull Base Motor HP ndash Motor Nameplate Horsepower

bull Base Motor Current ndash Motor Nameplate Current

bull Base Motor Volts ndash Motor Nameplate Voltage

bull Base Motor Frequency ndash Motor NameplateFrequency

Language Select 304Input Mode 385

Encoder PPR 235Base Motor Speed 229

Base Motor HP 228Base Motor Current 280

Base Motor Volts 231Base Motor Freq 232Torq Mode Select 53

Undervoltage Setpoint224

Motor Poles 235

NOTE It is important that you retain a record of thefeedback device that was selected because thebandwidth of the velocity regulator will be significantly reduced when the drive is used withoutan encoder

If using a 230V driveparameter 224 should beset to a value of 200V

Chapter 4Startup

4ndash12

or

and

AB0270A

or

AB0282A

Base Motor Speed 1750 RPM

To change a value in any of 10 Drive Data menuparameters the following sequence which showsyou how to change motor base speed should befollowed

Press the SEL key to move from the Drive DataMenu parameter to the Drive Data Value Whenthis is successful a blinking box will appear nextto the Ram value as shown in the following figure

Blinking

Use the INCDEC keys to scroll to the desiredvalue then press the ENTER key to accept the newvalue

When you have entered all Drive Data menu parameters press the ESC key to return to theStartup Menu The display should now appear asshown in the following example

bull Motor Poles ndash Number of Motor Poles (Nameplate)bull Undervoltage Setpoint ndash Sets minimum threshold

voltage for a Bus undervoltage condition Should beset to a value of 200V for 230V AC drives and 400V for a 460VAC drive

bull Torque Mode Select ndash This parameter is used to select the source for the drive torque reference (Must be set to Speed Mode for auto commissioning)

Base Motor Speed 1750 RPMAumlAuml

BlinkingBox

and

DRIVE DATA STARTUP

Use the INCDEC keys to scroll thru the Startupmenu until the Limits option is displayed TheHIM display should now appear as shown belowPress the ENTER key to move into the Limitsmenu

LIMITS STARTUP

ATTENTION The MotorPole Entry is critical to allAutotune tests Make certainyou are entering the correctnumber of poles for yourmotor before proceedingwith the Autotune sequence

Chapter 4Startup

4ndash13

or

AB0270A

or

AB0282A

or

Fwd Speed Limit 1750 RPM

Use the INCDEC keys to scroll through the Limitsmenu selections

When you reach the Limit selection that you wishto change press the SEL key to move the blinkingcursor down to the value field

Limits Menu Selections

Once the cursor is in the value field the INCDECkeys can be used to scroll to the selected valueAfter the desired value is reached the ENTER keymust be pressed to accept the value Thisprocess should be repeated for all of the theparameters in the Limit Menu selection

After all of the parameters in the Limit Menu havebeen setndashup press the ESC key to take you back tothe Startup Menu The HIM Display should nowappear as shown below

You must now access the Drive Tuning option in theStartup menu Use the INCDec keys to scrollthrough the Startup Menu until the Drive Tuningselection is reached The HIM display should nowappear as shown below

When Drive Tune appears press the ENTER key toaccess the Drive Tune Menu

The Parameters you will need to set up in the DriveTune sequence are detailed in the list located in theright column For detailed descriptions of theseparameters and their operation refer to Chapter 5 inthis Manual under Group 1 ldquoSTARTUP FILErdquo

The Drive Tune Parameters can be accessed byusing the INCDEC keys to scroll through the DriveTune Menu Using the default values for theseparameters will work in most cases If the defaultvalue does not work refer to the parameter valueranges in Chap 5 for possible alternate values

Accel Rate 1 389Decel Rate 1 391Accel Rate 2 390Decel Rate 2 391Logic Options 59

Fwd Speed Limit 128Rev Speed Limit 127Pos Mtr Cur Lmt 179Neg Mtr Cur Lmt 180Pos Mtr Tor Lmt 175Neg Mtr Tor Lmt 176Motor Power Lmt 177Regen Power Lmt 178

DiDt Limit 181 Fwd Speed Limit +1750 RPM

Blinking Firstthen

Blinking

Drive Tune Menu Selections

Autotune Diag Sel 256Vel Feedback 146

Vel Desired BW 43Auto Tune Status 44

Motor Inertia 234Total Inertia 46

Ki Velocity Loop 139Kp Velocity Loop 140Kf Velocity Loop 141

Vel Damp Factor 45Auto Tune Speed 41Ph Rot Cur Ref 262

Ph Rot Freq Ref 263

Drive Tune Startup

Limits Startup

Chapter 4Startup

4ndash14

or

AB0282A

or

AB0282A

Scroll to the Autotune Diag Sel parameter Set Bit0 to a value of 1 and then press the ENTER keyand the START button This will execute the In-verter Transistor Diagnostics test which will take300 mSec to run Bit 0 will automatically be setback to 0 upon successful completion of the Invert-er Transistor Diagnostics test If the test fails(nonndashzero value with flashing CP or VP light) re-fer to the Startup troubleshooting section of thismanual (Chap 6) While you are performing theInverter Transistor Diagnostics Test the HIM dis-play should appear as shown below

The purpose of the Inverter Transistor DiagnosticTest is to help you find any problems that mightexist in the installation as well as taking care ofsetting offset in both the Id amp Iq regulators(Parameters 260 amp 261 in the linear list)

The next test you must run is the Phase RotationTest This is accomplished by setting bit 1 to a value of 1 in the Autotune Diag Sel parameter(Parm 256) and pressing the START key toexecute the test The HIM display should appear asshown below

Autotune Diag Sel 00000000 00000001 Bit 0

Autotune Diag Sel 00000000 00000010

Bit 1

When the START key is pressed the motor shouldrotate at a rate specified by both Phase Rotation Frequency Ref and a current output as specified bythe Phase Rotation Currency Ref Typically defaultvalues for both Ph Rot Freq Ref and Ph Rot Cur Refwill work correctly

Interpreting Phase Rotation Results1 In phase rotation the motor should turn in the

direction you define as positive velocity If the motor turns in the wrong direction shut the drivedown remove power and reverse any two motor leads

2 If no motor rotation occurs refer to the Startup troubleshooting section of this manual

3 In phase rotation with the motor now turning in the positve direction the sign of the velocity feedback (P146) should be positive If it isnegative reverse the A and A (NOT A) encoderleads or the B and B (Not B) leads

Note Step 3 is skipped with asensorless drive

ATTENTION During thisportion of the Autotune Sequence reverse motor rotation is a possiblity Ifyour process equipmentcould be damaged by rotation in the wrong direction you must uncouplethe motor from the load before running the Phase Rotation test

Chapter 4Startup

4ndash15

or

or

AB0282A

or

AB0282A

or

AB0282A

After the Phase Rotation test has been performed and themotor rotates in the positive direction with positive en-coder feedback you are ready to tune both the Torq Loopand Velocity Loop of the Drive Tuning both the Torq ampVelocity loops requires setting bits 2 thru 8 to a value of1 and then pressing ENTER followed by pressing theSTART key on the HIM The HIM display should nowappear as shown below

Performing both the Torq and Velocity Loop tests willtake approximately 1 min 30 sec to complete Shaft rota-tion will occur in the latter part of these tests While thetest is being executed the green enable light on the Mo-tor Control board will be on Once these tests are com-plete bits 2 through 8 in the Auto Tune Diag Sel parame-ter will be set back to a value of 0 and the green enablelight will go out If the Drive trips a flashing or solid redVP or CP LED will be present on the Motor ControlBoard When complete save the parameters to EEPROM using the EEPROMndashSAVE option underMENUThe fault that caused the drive to trip will appear on theHIM display Refer to the Startup Troubleshooting section of this manual for possible solutions to the displayed fault Perform both the Torque and Velocityloop autotune tests again after the problem has been re-solvedWhen you have successfully completed the Torque andVelocity Tune tests scroll to the Vel Desired Band Width(Parm 43) in the Drive Tune Menu using the INCDECkeys

Autotune Diag Sel 00000001 11111100

Bits 2 thru 8

Vel Desired BW 1000 RS Enter desired BW here

Blinking Firstthen

BlinkingAumlAumlAumlAuml

Enter the desired bandwidth by pressing the SEL key tocursor down to the value field Use the INC and DECkeys to scroll to the desired BW When the appropriatevalue is selected the ENTER should be pressed to acceptthe entered valueBased on the value entered in the Vel Desired BW theKp amp Ki Velocity Loop Values will change when Bit 8 isset in the Autotune Diag Sel (Parm 256) and the STARTKey is pressed The HIM display should now appear asshown below

Autotune Diag Sel 00000001 00000000

Bit 8 set to 1 toexecute update of

velocity regulatorgains

Note When using asensorless versionthe values listed inTable 4B must beused

Chapter 4Startup

4ndash16

or

AB0287A

Vel Feedback 10000 RPM

After the New Values for Kp amp Ki have been cal-culated you are now ready to start the Drive inVelocity mode Before starting the Drive use theINCDEC keys to scroll to Vel Feedback in theDrive Tune Menu Start the Drive by pressing theSTART key on the HIM Press the SPEED IN-CREMENT key to slowly increment the velocityreference Observe velocity feedback and motorshaft rotation making sure both are stable If theyare not (shaft produces a jittery oscillating or jud-ering rotation) press the STOP key immediatelyand readjust the desired bandwidth This will enternew values for both Kp amp Ki After these new val-ues have been entered you are now ready to restartthe Drive in velocity mode and observe motorshaft rotation and velocity feedback for stability Ifproblems still occur refer to the Velocity LoopAutotune troubleshooting section of this manual(Chap 6) The HIM display should now appear asshown below

This Figure should be stable (no wander-

ing of RPM value)

Additional Sensorless Drive InstructionsIf the sensorless mode is being used (Param 150 = 5ndash7) set Param 43 Param 141 and Param 142 based on the measuredinertia expressed in Parameter 46 (Autotune) in Table 4BSelect Bit 8 of Param 156 and then attempt a Start

Table 4BSensorless Setup Values

Param 46 Param 43

lt 2 Sec

2ndash5 Sec

5ndash20 Sec

gt20 Sec

Param 141 Param 142

10 rad

5 rad

1 rad

5 rad

7

7

7

7

50 rad

25 rad

25 rad

25 rad

bull If the motor wonrsquot start increase the bandwidth (Param 43) select bit 8 of Param 256 and attempt a restart

bull If the motor chatters or velocity ripple is too high decrease the bandwidth (Param 43) select bit 8 of Param 256 and restart

bull If the motor continues to chatter set Param 142 to zero

NOTE For additional information on sensorless operation refer to Appendix A of this manual

Chapter 4Startup

4ndash17

Communication ConfigurationDrive to Drive Communication ndash Drive to Drive Communication (D2D)provides high speed communications between drives D2D is capable ofconnecting up to 64 Drives together using three different transfer rates125K (64 nodes) 250K (64 nodes) and 500K (32 nodes) baud

Hardware Setup ndash Refer to Chapter 2 Installation for Drive to Drivewiring L Option wiring and Pulse Input Configuration

Data Transfer ndash The D2D which allows multiple transmitters tobroadcast information based on priority to multiple receivers which choosethe information they wish to receive The D2D will operate at threedifferent baud rates as shown in the following chart

Baud Rate

125k

Max Distance (End to End)

250k

500k

Data Rate

330m

140m

50m

600us

300us

150us

Max Transmitters (2ms task)

3

6

13

The baud rate choices allow for different end to end distances and numberof transmitters The distance is based on the propagation delay of thesignal through the wire and the maximum transmitters come from notexceeding the 2ms task The propagation delay is based on CAN variablesThe number of transmitters is based on the data rate

2 ms

600us (1) 600us(3)

600us(1)600us(4)

600us (2)

2 ms

600us (1) 600us(3)600us (2) 600us (1) 600us(3)600us (2)

600us(2) 600us(3) 600us(1) 600us(2) 600us(3)

2 ms

Shown above is the D2D set at 125k baud with 3 and 4 transmitters With3 transmitters the data rate never exceeds 2ms and all the data is receivedwithin the 2ms task In the case of 4 transmitters the fourth transmitterdoes not always get transmitted due to the priority of the transmitters Thelower the node address the higher the priority All the data is not seenevery 2ms task Data transfer errors also effect how much data istransferred Errors in the transfer will cause retransmission of the data andmay cause the data rate to exceed 2ms Within the drive itself the VelocityProcessor (VP) will be running the D2D in its 2ms task With the use ofD2D indirects data can be transferred within 2ndash3ms from one drive toanother and 4ndash5ms from one drive to another and back

VelocityFunctions

D2D Xfer

150us 300us600us

Data Transmitted

D2DRx

150us300us600us

VelocityFunctions

2 ms Task

D2DTx

D2DTx

D2D Xfer

D2DTx

2 ms Task

D2DTx

The D2D receive and transmit are on both sides of the velocity functionsThis is to improve the data rate

Chapter 4Startup

4ndash18

Message Transfer ndash The D2D allows each drive to transfer two wordsand receive two words from two different drives for a total words receivedof four (Figure 43)

Figure 43 D2D Communication

Transmit

P11 Node Address

P14 Data 1 Indirect

P15 Data 2 Indirect

P20 Data 1

P21 Data 2

Receive 1

P12 Node Address

P16 Data 1 Indirect

P17 Data 2 Indirect

P22 Data 1

P23 Data 2

Receive 2

P13 Node Address

P18 Data 1 Indirect

P19 Data 2 Indirect

P24 Data 1

P25 Data 2

Node Address ndash The node address for the transmit is the address at whichthe drive will transmit its two words of data The node address for each ofthe receives is the address of the drive which you wish to receive twowords of data from If the node address is set to zero then the transmit orreceive is disabled It is up to you to make sure there are no duplicatetransmit node addresses If duplicate addresses exist you must change oneaddress Refer to the example in Figure 44Figure 44 Node Address Transmittal

Drive 1

P11 Xmit Node Address 32

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 27

Drive 2

P11 Xmit Node Address 0

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 32

Drive 3

P11 Xmit Node Address 5

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 27

Drive 4

P11 Xmit Node Address 27

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 0

Note that a drive cannot receive its own address and both receives cannotbe set to the same address unless it is zero

Data Indirect ndash The indirect function for the transmit indicates to theD2D transmit (TX) where it should obtain data The receive it indicates tothe D2D receive (RX) where it should put its data Indirect parameters canhave either VP or CP parameters entered into them or they can haveindirect data parameters entered into them as shown in the followingexamples

Transmitter ExampleP14 Drive Transmit indirect 1 ndash Any VPCP Parameter

or ndash P20 (Drive Xmit Data 1)P20 would then have a value or be linked to a non VPCP parm

Chapter 4Startup

4ndash19

Receiver ExampleP16 Drive Receive Indirect 1 ndash Any VPCP Parameter

or ndash P22 (Receive 1 Data 1)P22 would then have a value or a non VPCP parm linked to it

Data ndash The D2D TX and RX data exists as non VP parameters in theparameter table This allows data outside the Motor Control Board to getaccess to the D2D Data parameter examples were shown in the previoustransmitter and receiver examples

Master Slave Drive to Drive Communication ndash Figure 45 illustratesan example of D2D applied to a masterslave drive set up The masterdrive receives its speed reference from a speed pot wired to analog input 1on a PLC Comm board P339 (Analog In1) is linked to P101 (Ext Vel Ref)on the master drive P392 (Analog In 1 Offset) and P393 (analog In1Scale) are set accordingly Analog Input 1 must be passed from the masterdrive to the slave drive and connected to the P101 (Ext Vel Ref) using theD2D protocol

Setting up the Master drive requires that a transmit address be chosen Anaddress 1 is chosen in this example P14 (Drive Xmit Indirect 1) will havea value of 20 entered into it (which means look to P20 (Drive Xmit Data1)) P20 (Drive Xmit Data 1) must be linked to P339 (Analog In1) Thisis where the data comes from that will be transmitted

Figure 45MasterSlave Communication Example

Master

P11 Drive Xmit Address ndash Transmitter Station Address ndash 1P14 Drive Xmit Indirect 1 ndash VPCP Parm or P20 ndash20P20 Drive Xmit Data 1 ndash Non VPCP Parm Linked ndash 339 (Analog In 1)

P339 (Analog In 1) linked P101) (Ext Vel Ref)P392 (Analog In1 Offset)P393 (Analog In 1 Scale)

Drive to DriveAnalog Inputs

0 ndash 10V

Slave

P12 Drive Receive 1 Address ndash Transmitter you are getting data from ndash 1P16 Drive Receive Indirect 1 ndash VPCP Parm or P22 ndash101 (Ext Vel Ref)

P102 (Vel Scale Factor)Used to Control Gear Ratio

Drive to Drive

Chapter 4Startup

4ndash20

The slave drive is set up by first setting P12 (Drive Receive 1 Address)P12 contains the address of the tranmitter that you wish to receive datafrom In this example a value of 1 is entered indicating that data shouldbe read from transmitter 1 P16 (Drive Receive Indirect 1) should be set toP101 (Ext Vel Ref) It should be noted that the typical transmission timefrom the master to the slave is between 4ms to 6ms using links otherwiseusing indirects it is only 2ms to 4ms

IO Communication ConfigurationThe Standard IO of the 1336 FORCE Drive must be checked to verifyproper operation The Standard IO is used to interface control circuits intothe drive It is very important that this interface is functioning properly

Standard Adapter Board Equipped Drives If a Control Interface option is installed verify that the Stop Enable andExt Fault interlock inputs are present Voltage level is dependent upon theControl Interface option installed (Refer to Page 227 for Input Mode(Param 385) setting

IMPORTANT The Stop Enable and Ext Fault inputs must be presentbefore the drive will start Refer to LEDs D1 and D2 shown in Figure 213to determine Drive Status

If this option is not installed verify that two jumpers are installed one atpins 3amp 4 and the other at pins 17 amp 18 of J10 If an Ext Fault occurscheck the Fault Mask Programming In parameters 88 and 89 Bit 6 needsto be defined to mask the soft fault and warning indication

PLC Comm Adapter Board Equipped Drives

1 The DRIVE ENABLE (TB20 terminal 1) on the PLC Comm Board input allows the drive to honor a START command D11 on the PLC Comm board a green LED reflects the present state of the DRIVE ENABLE If D11 is illuminated then the drive is enabled and the transistors will be allowed to turn on Parameter 54 bit 1 also reflects the status of the DRIVE ENABLE input

2 The EXTERNAL FAULT (TB20 terminal 4) PLC Comm input allows you to tie a signal into the 1336 FORCE that will be monitored by the Velocity Processor (VP) If the input voltage is removed the VP will issue a fault or warning based on the configuration of that fault and the red LED D5 on the PLC Comm board will be illuminated When Input voltage is applied D5 will not be illuminated

3 The MOTOR THERMOGUARD (TB20 terminal 2) input allows you to tie a signal from the thermondashswitch in the motor into the 1336 FORCE that will be monitored by the Velocity Processor (VP) The red LED D9 will illuminate if an overtemp condition occurs

Chapter 4Startup

4ndash21

4 The NORMAL STOP (TB20 terminal 3) input is stop command that will stop the drive according to the specified Stop Mode The drive responds the same way it would if the STOP bit were set in any Logic Command The red LED D7 reflects the present state of the STOP input When a Stop is in effect the LED is illuminated and the Drive is not allowed to run

5 The FAULT OUT (TB20 terminals 8910) input is a Form C relay contact Red LED D4 reflects the status of relay contact If the LED is illuminated the contact is not energized

External Control Link ConfigurationThe 1336 FORCE AC Drive has been designed to accept control inputthrough the use of Adapter Boards A portion of the Drive Control hasbeen designed to act as an interface from the point of view of externaldevices In order to perform the control functions required by the specificapplication it is necessary to configure various control and referenceinformation such as logic commands speed reference and torquereference Additionally for the external control equipment to monitoroperation conditions in the drive (such as logic status actual speed actualtorque) configuration provides a way for this information to be transferredto the external device

Configuration links must be made between sink and source parameters toallow this information to transfer The source parameter provides the datato be sent to the receiving sink parameter For Example To send the information from Analog Input 1 (Parameter355) to External Velocity Reference 1 (Parameter 101) of the drivethen P101 must be linked to P355 All sink and source parameters in the1336 FORCE AC Drive are available to provide information and sinkparameters can receive information from source parameters The drive isshipped with prendashconfigured links between the Standard Adapter board orPLC Comm board and the Main Control board The user has the flexibilityto reconfigure the drive for a particular application For more informationon how to use a particular programming device to configure the 1336FORCE AC Drive refer to the instruction manual for that particulardevice

Figure 46 shows the as shipped prendashconfiguration links for a 1336FORCE AC Drive equipped with a Standard Adapter board Refer to thePLC Communications Adapter User Manual (1336 FORCE 513) forinformation on prendashconfigured links for PLC Comm equipped drives

PLC COMM Adapter Board Equipped Drives

For PLC Comm Adapter Board Equipped Drives refer to the 1336 FORCEPLC Communication Adapter User Manual (1336 FORCE 513) forconfiguration information

Chapter 4Startup

4ndash22

Figure 47Standard Adapter Links

369

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

1 2 3 4 5

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)Scale

Scale

366

Chapter 4Startup

4ndash23

Analog IO Parameter ConfigurationWhen you have accomplished the hard wiring of the Analog IO to theStandard Adapter Board terminals as was detailed in Chapter 2 it is stillnecessary to set up the parameters in the Drive to allow for data flowbetween the Adapter Board and the Drive Each InputOutput hasparameters associated with it as shown in Figure 47 Set-Up parametersare used to program the Standard Adapter Board functions such as Scaleand Offset Configuration parameters allow the Standard Adapter Board tocommunicate with the Drive and must be linked to analog inputs andoutputs

Each analog input and output is associated with a scaling and offset set-upparameter These parameters must be adjusted for each analog device

The Drive works with internal drive units Each parameter is a 16 bit wordwhich allows a range of plusmn 32767 internal units The Drive is scaled so that4096 is equal to one unit of the quantity being regulated A plusmn 10V DCsignal applied to an analog input is converted to a digital value of plusmn 2048providing a total range of 4096 When calibrating analog inputs a scalefactor is applied to this value to provide an effective range of plusmn 32767 16 times 2048 The offset parameter determines the offset in volts applied tothe raw analog value before the scale factor is applied This allows you toshift the range of the analog input by plusmn 4096 drive units (plusmn20 volts)

Figure 47Analog IO Links

5ndash12V Pulse Input

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

355356 Offset357 Scale

358

361

ndash10V RefCommon

+ndash

In1

TE

TB6

1 2 3 4 5 6 7 8

370

373

376

+ndashPot In put

TEMain+Main ndash

4ndash20mA Input

TE+ndash

Analog + Out 1

+ndash

TE

TE+ndash

+ndash

395 PPR396 Edge397 Scale398 Offset

399

Standard Adapter

PowerSupply

In1

359 Offset360 Scale

10V Input 10V Input

In1 In1

362 Offset363 Scale

Pot Input

mA Input

Pulse Value In1 In1

371 Offset372 Scale

Analog Output 1

Analog Output 2 Analog + Out 2

mA Output

374 Offset375 Scale

mA Out +

377 Offset378 Scale

Chapter 4Startup

4ndash24

A 10V Input and a Pot Input will be used in detailing the scaling and offsetparameters At Pot Input between TB5 terminals 7 and 8 a potentiometerwith a range of plusmn10V DC has been connected Parameter 358 has been linkedto Parameter 104 (Velocity Reference 2 HI) in the Drive which gives thepotentiometer control of the external velocity reference To calibrate the potto control 100 base speed in both directions the scaling parameter must beadjusted The default value of the scale parameters allows a total range of4096 ndash2048 to +2048 This allows only 50 base speed in each directionBy setting a scale factor of 2 in Parameter 360 (An In 1 Scale) the digitalinput is multiplied by 2 providing a range of ndash 4096 to + 4096 or 100 basespeed in both directions If the user wanted a range of plusmn 2 times base speedthe scale factor would have to be 4 (Base Speed = 4096 2 times Base Speed= 8192 2048 times 4 = 8192) Parameter 359 (Offset) will remain at thedefault value of zero allowing the input range to be ndash10V to +10V Therange of the offset parameter is plusmn 20V DC as shown in Figure 48

Figure 48Potentiometer with a +10V Range to Control 0 to +100 Base Speed

10V POT

0ndash10V

A

D

SCALE

+20480

ndash2048

+20480

ndash2048

+40960

ndash4096

OFFSETPAR 359 = 0

RANGE OF 20V

0

000

ndash10Vndash2048X 2

ndash4096

+10V+2048X 2

+4096

PAR 360X 2

plusmn

+10V

POTENTIOMETER DIGITAL VALUESCALEFINAL VALUE PAR 401

PAR 104plusmn 2048(= plusmn10V)

Par 358

Pot Input

VELOCITYREFERENCE 2

HIMULTIPLEXER

For 10V Input a 0 to 10 volt potentiometer will be used to adjust the TorqueReference from ndash100 to +100 To accomplish this both the scale andoffset parameters will need to be adjusted By linking Parameter 355 toParameter 162 Torque Reference the potentiometer connected to AnalogInput becomes the Torque Reference Signal This signal must be scaled andoffset in order to get the entire plusmn 100 in the 0-10 volt range A digitalrange of 8192 (plusmn 4096) must now be scaled for an analog range of 10 voltsand must be offset so 5 volts on the potentiometer will indicate 0 Torque

Chapter 4Startup

4ndash25

As shown in Figure 49 the offset voltage adds the corresponding digitalvalue to the range In this case an offset of ndash5 volts adds a digital value ofndash1024 to the range This causes 0 volts on the potentiometer to register asndash1024 digital internal to the drive and 10 volts on the potentiometer will be+1024 to the drive This can then be scaled by a factor of 4 (8192 drive units) so that 0 volts sends a digital value of ndash4096 for ndash100torque and 10 volts sends a digital value of +4096 for +100 torque

Figure 49Potentiometer 0ndash10V Range to Control +ndash 100 Torque Reference

0ndash10V POT

010v

A

D

SCALE

0to

2048

ndash1024+1024

+4096+4096

RANGE OF 20V

0

00

ndash10Vndash2048

+10V+2048

PAR 357X 4

+0v

POTENTIOMETER DIGITAL VALUEOFFSET BY ndash5V

10Vndash10V

5V1024

00

ndash1024ndash4096

+1024+4096ADDING ndash1024

SCALE BY 4

PAR 162plusmn 2048(= plusmn10V)

OFFSETPar 356 = ndash5V

Par 355MULTIPLEXER

10V Input

Analog outputs are set up similar to analog inputs Each output has a scaleand offset parameter along with a specific variable parameter used forlinking Differences occur because of the direction of information flow Thedrive sends a digital value in drive units which must be matched to thevoltage of the monitoring device Similar to analog inputs the analog outputconverts a plusmn2048 to plusmn10VDC Thus when the drive sends plusmn100 BaseSpeed (equal to plusmn4096) it must be scaled by 05 to be in the proper range(plusmn4096 times 05 = plusmn2048) Offset can be plusmn 20VDC even though the physicallimit is plusmn10VDC This allows you to offset the signal anywhere within theentire range

Chapter 4Startup

4ndash26

In Figure 410 Analog Output 1 is used as an example to detail the scalingand offset parameters At Analog Output 1 a meter with a range of 0-10 VDC has been connected Parameter 370 has been linked to Parameter 146(Velocity Feedback) In order for the meter to indicate speed in bothdirections the scale and offset parameters must be adjusted as shown inFigure 410 Working in the opposite direction as the analog inputs apply thescale factor first The drive sends a plusmn4096 digital value to indicate plusmn100velocity feedback for a total digital range of 8192 The meter having ananalog range of 0-10V DC requires a digital range of 2048 This isaccomplished by applying a scale factor of 025 (8192 times 025 = 2048)In order to have the 0-10V DC meter indicate plusmn100 feedback an offsetmust be applied Offset parameters for analog outputs will again add thecorresponding digital value to the range In this case an offset of 5 volts addsa digital value of 1024 to the range This will allow full range deflection onthe 0 to 10 volt meter with 5 volts indicating zero speed

Figure 410Analog Output 1 +ndash 100 Speed Indication

ndash100B SPD 0 SPD

+100B SPD

5V

0V 10V

+4096 (+100 SPEED)0

ndash4096 (ndash100 SPEED)

+10240

ndash1024

+2048+1024

0

+10V = + 100 BASE SPEED+5V = 0 SPEED

SCALEPAR 372X 025

OFFSETPAR 371

5V = 1024

D

A

SCALED BY 025

0V = ndash100

OFFSET BY 5V ADDING 1024DIGITAL VALUE

METER VOLTAGE BASE SPEED

ndash 4096

ndash 1024+ 1024

00 VOLTS

ndash 100

0

0+ 1024

05 VOLTS

0

4096

+ 1024+ 1024

204810 VOLTS

+ 100

(plusmn 2048 = plusmn10V)

PAR 146 PAR 370

VELOCITYFEEDBACK ANALOG OUT 1

DIGITAL RANGEFROM DRIVE

Chapter 4Startup

4ndash27

SCANport Analog IO Parameter Configuration

SCANport analog IO is what is received from and sent to the SCANportdevices

Figure 411SCANport IO Parameter Configuration

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

1 2 3 4 5

379

SP Analog Out (Par 379)

HIMDefault setting of Drive Parameter 364 = 1

1 2 3 4 5

SP Analog In Select (Par 367)

368

SP Analog In (Par 368)

Default setting of Drive Parameter 367 = 1

Scale

366

Scale

369

To receive analog input from a device the SCANport Analog Input Selectparameter 364 must be set to the SCANport device port number and theSCANport Analog Input parameter 365 must be linked to a sink Set thescale as needed For example if the HIM is plugged into Port 1 and it is tocontrol external velocity you would then enter 1 for SCANport Analog InputSelect (364) and link External Velocity (101) to SCANport Analog Input(365) You may scale the velocity through External Velocity Scale (102) orthrough SP Analog Scale (366)

The Drive sends SCANport Analog Output parameter 379 to all devicesconnected to SCANport To send data out to the SCANport devices youmust link SCANport Analog Output (379) to a source For example If theHIM is to receive Velocity Feedback you would link SCANport AnalogOutput (379) to Velocity Feedback (269)

Output Relay ConfigurationThe outputs consist of three (3) permanently configured and one (1)programmable output

The three permanently configured relays are Run Warning and Fault Runis a normally open contact that closes when current is applied to the motor It follows the enable LED on the Motor Control Board Warning has anormally open and close contact that energizes when there is no warningsand dendashenergizes when there is a warning Fault has a normally open andclose contact that energizes when there are no faults and dendashenergizes whenthere is a fault

Chapter 4Startup

4ndash28

The programmable relay is a normally open contact and is configuredthrough the Output Select parameter 384 It allows the relay to follow asingle bit within the Logic Status parameters 56 and 57 The relay can beconfigured to follow the bit function or the not of the bit function ForExample When the motor is at set speed and you wish the contact to closeyou must enter AT SET SPEED (8) When the motor is at set speed and youwish to have the contact open you must enter NOT AT SET SPEED (40)into Output Select (384)

Pulse Input Configuration

The pulse input allows an external source to provide the drive with a digitalreference or trim signal (Fig 412) It is a differential input with a maximumfrequency of 100khz The pulse input parameters consist of PPR (395)Scale (397) Edges (396) and Offset (398) The PPR is the number of pulsesper one revolution The scale determines the RPM at 1 per unit (4096) Theedges are either one edge ndash rising edge of the pulse or two edges ndash the risingand falling edge of the pulse Two edges provide better resolution Theoffset sets the minimum speed For example You have a lead drive with a1024 PPR encoder with a base speed of 1750 The follower uses the leaddriversquos encoder but runs at half the speed The followerrsquos ppr should be1024 scale should be set to 3500 offset should be 0 and a link should bemade from external reference (101) to Pulse Value (399)

Figure 412Pulse Input Configuration

399

MOTOR CONTROL BOARD

LeadDrive

396

EDGE

395

PPR

397

SCALE

398

OFFSET

AumlAuml AumlAuml

AumlAuml

101PulseValue

Ext Speed Ref

To calculate ScaleFollower Base Speed xLead RPM

Follower RPM

MOP Configuration

The MOP function is controlled by the L Option IO modes 5 9 and 15The MOP up and MOP down increment and decrement the MOP valueparameter 394 based on the MOP increment parameter 393 which is in RPMper second

SCANport Image Configuration

The SCANport image is a mechanism for transferring data to and fromSCANport devices It operates the same way as a PLC image with its 1412 34 and full racks The SCANport image is setup by a SCANportdevice such as a GD1 module or a RIO to SCANport gateway

Chapter 4Startup

4ndash29

SCANport Control Configuration

The SCANport controls are the functions that control the motor like startstop jog etc The control can come from up to 6 SCANport devices and LOption Inputs at the same time The control is based on a ownershipmechanism which allows certain functions to have only one owner and otherfunctions to have multiple owners Speed reference direction and localfunctions are the only one owner functions The other functions like startstop jog etc are considered multiple owner functions Ownership is when aSCANport device or L option Input commands a function As long as thatfunction is commanded that device will be the owner of that function ForExample Device 1 is commanding a forward direction this is a one ownerfunction No other device can change the direction until Device 1 stopscommanding the forward direction If Device 1 is commanding a start whichis a multiple owner function other devices can also command a start Ifdevice 1 stops commanding a start the drive will continue to run if anotherdevice is still commanding a startNOTE A rising edge is required for start and jog functions If jog iscommanded and the drive has been stopped Start and Jog functions will notoperate from any device until the Jog command is stopped The same holdstrue if a Start is commanded while the drive is stopped

The parameters in the range from 340 to 350 indicate the owner of eachfunction The owner is identified by the bit in the parameter as follows

Bit 0 ndash L Option InputsBit 1 ndash SCANport device 1 SCANport device number isBit 2 ndash SCANport device 2 determined by the SCANportBit 3 ndash SCANport device 3 connectionBit 4 ndash SCANport device 4Bit 5 ndash SCANport device 5Bit 6 ndash Internal GatewayBit 7 ndash Not Used

This is very useful for determining who may own a function

Masking of the control functions allows control functions to be enabled ordisabled for all or some of the devices The parameter bit configuration isthe same as the example detailed above with 0 indicating disable and 1indicating enable The masking control starts with the port enable maskwhich enables or disables all of the devices control functions then the localcontrol mask which allows a device to take full control of the drive to theindividual masks like start jog direction speed reference clear faults andreset

Control Interface OptionThe Control Interface Option Modes configure the Control Interface OptionThe different modes are explained in Chapter 2 The modes allow the user tosetup the inputs to meet the requirements of their application The InputMode parameter 385 sets the mode and takes effect on a power cycle or resetThe Input Status parameter 386 indicates the status of the input except for theenable input which can be seen in parameter 54 bit 1 The Stop Selectparameters 387 amp 388 select the way the stop input will function on the L

Chapter 4Startup

4ndash30

option only based on the stop type in modes 3 13 and 16 Stop fromSCANport devices follow parameter 59 bits 4 amp 5 The Accel Rates (389 amp390) and Decel Rates (391 amp 392) are selected by modes 4 11 and 14

NOTE Mode 2 3 4 5 and 6 take permanent ownership of the directionfunction

NOTE If the Control Interface Option is other than 1 the Control InterfaceOption speed reference will take ownership of the speed reference To allowother devices to control speed reference disable the Control Interface Optionspeed reference with the speed reference mask (334)

Using the SCANport ImageYou can view the values in the SCANport image table by using parameters310 through 317 for input and 320 through 327 for output

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data In A1 (Par 310)

Data In A2 (Par 311)

Data In B1 (Par 312)

Data In B2 (Par 313)

Data In C1 (Par 314)

Data In C2 (Par 315)

Data In D1 (Par 316)

Data In D2 (Par 317)

SCANport Image In

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data Out A1 (Par 320)

Data Out A2 (Par 321)

Data Out B1 (Par 322)

Data Out B2 (Par 323)

Data Out C1 (Par 324)

Data Out C2 (Par 325)

Data Out D1 (Par 326)

Data Out D2 (Par 327)

SCANport Image Out

SCANport Device 6 SCANport Device 6

1336 FORCE

Logic Command

Reference

Logic Status

Feedback

SCANport gateways or adapters to RIO DF1DH485 DeviceNet SLCand Flex IO are some of the devices that can transfer data between theSCANport IO image and another device

Refer to the appropriate manual for your specific adapter

Chapter 4Startup

4ndash31

Within the 1336 FORCE drive the IO image table resembles thefollowing

Logic Command Word Logic Status LOW(parameter 52) (parameter 56)Bit 0 Normal Stop Bit 0 Run ReadyBit 1 Start➀ Bit 1 RunningBit 2 Jog 1➀ Bit 2 Command DirBit 3 Clear Fault Bit 3 Rotating DirBit 4 Forward Bit 4 AcceleratingBit 5 Reverse Bit 5 DeceleratingBit 6 Jog 2➀ Bit 6 WarningBit 7 Cur Lim Stop Bit 7 FaultedBit 8 Coast Stop Bit 8 At Set SpeedBit 9 Spd Ramp Dis Bit 9 Local ABit 10 Flux Enable Bit 10 Local BBit 11 Process Trim Bit 11 Local CBit 12 Speed Ref A Bit 12 At Zero SpdBit 13 Speed Ref B Bit 13 Speed Ref ABit 14 Speed Ref C Bit 14 Speed Ref BBit 15 Reset Drive Bit 15 Speed Ref C

Logic Status HI(parameter 57)Bit 0 Flux ReadyBit 1 Flux UpBit 2 Not UsedBit 3 Not UsedBit 4 Bus RidethruBit 5 JoggingBit 6 Not UsedBit 7 Not UsedBit 8 At LimitBit 9 Not UsedBit 10 At Setpoint 1Bit 11 At Setpoint 2

➀ These functions require an edge in order to take effect

1336 FORCE DriveController

Logic Evaluation Block Logic Command Wrd (p 52)SP An 2 Sel (p 367) SP An 2 Scale (p 369) SP An In2 Value (p 368)Data In A1 (p 310) Preset Speed 1 (p 119)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314) Speed Ref 1 (p 101)Data In C2 (p 315) Vel Scale Factor (p 102)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOWHI (param 5657) SP An Output (p 379) Velocity Feedback (p 146)Data Out A1 (p 320) Motor Current Magnitude Feedback (p 264)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

Link Link

Link

Link

The following examples are provided to show how the 1336 FORCE driveinterfaces with some of the available adapters These are only examplesYou should also refer to the appropriate manual for your gateway foradditional information

Chapter 4Startup

4ndash32

SLC to SCANport ModuleThe following figure shows how the IO image table for the SLCprogrammable controller relates to the 1336 FORCE drive In thisexample the drive is connected to channel 1 of the SLC module inenhanced mode If this were an example of basic mode only the O12O13 I12 and I13 entries would be used

1336 FORCE DriveController

SLCIO Image

Output Image

O12O13

O18➀

O19➀

O110➀

O111➀

O112➀

O113➀

O114➀

O115➀

I12I13

I18➀

I19➀

I110➀

I111➀

I112➀

I113➀

I114➀

I115➀

Input Image

Logic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOW (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

SLC toSCANport

Module

Logic CommandReference

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Logic StatusFeedback

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Backplane SCANport

➀ Available only in enhanced mode

➁ Optionally enabled viaG file in SLC processor

M Files Message HandlerMessageBuffers

Chapter 4Startup

4ndash33

Serial Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Serial CommunicationsModule is used

1203ndashGx2DF1DH485 to SCANport

N400ndash63 BTW EmulationN410➀ Logic CommandN411➀ ReferenceN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

1336 FORCE DrivePLC SLCor PC

DF1DH485Serial Messages

(Write)

DF1DH485Serial Messages

(Read)

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status Low (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

N400ndash63 BTR EmulationN410➀ Logic StatusN411➀ FeedbackN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

SCANport

➀ Optionally enabled usingDIP switches on the adapter

Chapter 4Startup

4ndash34

Remote IO Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Remote IOCommunications Module is used

Remote IOCommunications

Module

Block TransferLogic Command

ReferenceDatalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

Block TransferLogic StatusFeedback

Datalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

1336 FORCE DriveController

PLC IO Image

Output Image

O010O011O012O013O014O015O016O017

I010I011I012I013I014I015I016I017

Input Image

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status LO (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

RIO SCANport

➀ Optionally enabled usingDIP switches on the module

8 words maximum

8 words maximum

Flex IO ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Flex IO Module isused

1203ndashFM1and 1203ndashFB1

Modules

Logic CommandReference➀

Logic StatusFeedback

1336 FORCE DriveFlex Adapter

Logic Evaluation BlockSP An 2 Sel (p 367)

Logic Status Low (p 56)SP An Output (p 379)

SCANport

RIODeviceNetControlNetOthers

Chapter 4Startup

4ndash35

This Page Intentionally Blank

Chapter 5

5ndash1

Programming Parameters

Introduction This chapter contains the information required to assist you inprogramming the 1336 FORCE AC Drive for a specific application afterinitial startndashup Drives are shipped programmed with default values andare preconfigured for the options installed

Parameters 0 thru 288 are the parameters for the 1336 FORCE MotorControl Board Parameters 300 and above cover the Adapter Board ofthe 1336 FORCE DRIVE The 1336 FORCE parameter table has beenbroken down into three different table types as follows

Table 5A lists parameters in numeric order with page referencesTable 5B lists parameters alphabetically with page referencesFigures 52 amp 53 list Standard Adapter and PLC Comm Adapter parameters by file and group

Parameters are divided into 4 Files to help ease programming andoperator access as follows

1 Startup File2 Communications IO File3 Velocity Torque File4 Diagnostics File

These four Files are then divided into Groups with each parametermaking up an Element in a specific group Parameters may be used asElements in more than one group Refer to Table 5A for a numericalbreakdown of the FileGroupElement designations

NOTE Parameters that appear in more than one group in Table 5A arelisted after the initial entry in italics

Terminology The definition of terms related to the parameter table include

Configuration ndash The process of linking Sink to Source parameters

Configuration Parameters ndash Parameters used to transfer data betweenthe drive control and external devices The Configuration Parameters arecategorized into two types

1 Source Parameters ndash Parameter used as a source of data2 Sink Parameters ndash Parameter used to receive data input

All parameters in the 1336 FORCE AC Drive can be used for evaluation(sink or source) and some can be modified dynamically (sink only) tomeet application requirements

Drive Units ndash The actual value of the parameter as it is stored within theDrive parameter table The drive units may be converted to engineeringunits or to hexidecimal for display using the Programming Terminal ormay be displayed directly in drive units All internal values in the driveare in terms of Per Unit numbering

Chapter 5Programming Parameters

5ndash2

Engineering Units ndash A label given to parameter data which specifieswhat units are to be used to display the parameter value on theProgramming Terminal Examples of engineering units include RPM etc

NonndashVolatile Memory ndash Data memory in the drive which retains thevalues of all data even when power is disconnected from the drivecontrol BRAM (Battery Backed Random Access Memory) chips areused for the nonndashvolatile memory to store some of the drive parameters

Parameter Table ndash Table of parameter entries for all configuration andsetup parameters used in the drive

Parameter Entry ndash Information stored in the drive which contains theparameter number parameter data and all other information related to thespecific parameter

Parameter ndash Memory location used to store drive data Each parameteris given a number called the parameter number The parameter valuemay be specified in decimal or in hexadecimal When specified inhexadecimal the word ldquoHexrdquo will appear after the parameter value

Per Unit Numbering ndash Per Unit numbering is a numbering systemwhich defines a specific numeric value as representing 100 of aparticular quantity being measured The number 4096 is used in manyplaces in the drive to represent 1 Per Unit (100) [pu]

Parameter Table Structure All data used to perform the Drive functions is stored in the ParameterTable Each parameter entry in the parameter table contains thefollowing information

No ndash The parameter number in decimal

Name ndash Parameter text as it appears on the Programming Terminal

Display Units ndash Specifies what engineering units will be used to displaythe parameter value on the Programming Terminal (RPM etc) Thisis specified first in the Units column of the Parameter Table

Drive Units ndash Specifies the Conversion Units as seen in the Drive

Figure 51 Drive Units Example

4096DriveUnits

Drive Units

Conversion Formula

1750RPM

Engineering Units

Factory Default ndash Parameter value as it will appear after the DriveInitialize (Init) command has been sent from the Programming TerminalThe Init values are the same as the default values listed in the ParameterDescriptions section of this chapter

Min ndash Minimum allowable value for the parameter If no min value isgiven the parameter has not been assigned a minimum limit

Max ndash Maximum allowable value for the parameter If no max value isgiven the parameter has not been assigned a maximum limit

Enum ndash Allows numbers or bits to be represented by text

Chapter 5Programming Parameters

5ndash3

Parameter Table (Standard Adapter Equipped Drives)Note For PLC Comm equipped drives refer to your PLC Comm User Manual for parameter descriptions For ControlNet Adapter equippeddrives refer to your ControlNet Adapter Manual for parameter descriptions

Table 5A ndash 1336 FORCE Numerical Parameter Table

Param No Parameter Name (Element) Group01050809101112131415161718192021222324252627282930313233343536373840

41

43

44

45

46

47

48

52

Drive Software VersionDrive Power Structure TypeMotor Control CounterDrive Comm Task IntervalDrive Comm Baud RateDrive Comm Transmit AddrDrive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Comm Receive 1 Indirect 1Drive Comm Receive 1 Indirect 2Drive Comm Receive 2 Indirect 1Drive Comm Receive 2 Indirect 2Drive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Process Trim OutputProcess Trim ReferenceProcess Trim FeedbackProcess Trim SelectProcess Trim Filter BandwidthProcess Trim DataProcess Trim KI GainProcess Trim KP GainProcess Trim Low LimitProcess Trim High LimitProcess Trim Output GainProcess Trim TestpointProcess Trim Setpoint Select

InfoInfoMonitorDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimVelocity AutotuneTorque AutotuneVelocity AutotuneTorque AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneTestpointsVelocity AutotuneTestpointsLogicLogic

Auto Tune Torque Limit

Auto Tune Speed

VP Desired Bandwidth

Autotune Status

VP Damping Factor

Total Inertia

Auto Tune Testpoint Data

Auto Tune Testpoint Select

Logic Command Word

File (File No)

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Communications IO (2)

Param DescrptSee Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash37See Page 5ndash37See Page 5ndash37See Page 5ndash37

Chapter 5Programming Parameters

5ndash4

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

77787980

81

82

83

84

Torque RefDrive DataLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTransistor DiagLimitsLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTestpointsLogicLogicTestpointsLogicLogicFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Torque Mode Select

Local Input Status

Local Output Status

Logic Status LOW

Logic Status HI

Torque Stop Configuration

Logic Options

At Setpoint 1

At Setpoint 2

Over Setpoint 1

Over Setpoint 2

Over Setpoint 3

Over Setpoint 4

Setpoint Select

Speed Setpoint Tolerance

Current Setpoint Tolerance

Zero Speed Tolerance

Logic Testpoint Data

Logic Testpoint Select

Stop Dwell

Maximum Dynamic Brake PowerMaximum Dynamic Brake TempDynamic Brake Time ConstantPowerupDiagnostic Fault Status

NonndashConfigurable Fault Status

CP Configurable Fault Status

VP Configurable Fault Status

CP Configurable Warning Status

File (File No)

Velocity Torque (3)Startup File (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Communications IO (2)Diagnostics (4)Startup (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Comm IO (2)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Diagnostics (4)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)

Param DescrptSee Page 5ndash37See Page 5ndash37See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39 See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40 See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash43See Page 5ndash43

Chapter 5Programming Parameters

5ndash5

Table 5A ndash 1336T Numerical Parameter Table (Cont)

86

87

88

89

909192

94

95

96

97

9899100101102103104105106107108

109

110

117118119120121122123125126127

128129

CP Fault Configuration

CP Warning Configuration Select

VP Fault Configuration Select

VP Warning Configuration Select

Absolute Overspeed ThresholdStall DelayMotor Overload Limit

Service Factor

Motor Overload Speed 1

Motor Overload Speed 2

Minimum Overload Limit

Fault Testpoint DataFault Testpoint SelectVelocity Reference 1 LOW (FRACTION)Velocity Reference 1 HI (WHOLE 32 bit)Velocity Scale Factor 1Velocity Reference 2 LOW (FRACTION)Velocity Reference 2 HI (WHOLE 32 bit)Velocity Scale Factor 2Velocity Trim LOWVelocity Trim HI (32 bit)Velocity Reference Testpoint Data LOW

Velocity Reference Testpoint Data HI

Velocity Reference Testpoint Select

Jog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeReverse Motor Speed Limit

Forward Motor Speed LimitMaximum Reverse Speed Trim

Param No Parameter Name (Element) Group File (File No)

Fault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SetupFault SetupFault SetupMotor OverloadMotor OverloadLimitsFault SetupMotor OverloadFault SetupMotor OverloadFault SetupMotor OverloadTestpointsTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefTestpointsVelocity RefTestpointsVelocity RefTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefLimitsVelocity RefVelocity Ref

Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Startup (1)Startup (1)Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)

85 VP Configurable Warning Status Fault SelectStatusFault SelectStatus

Communications IO (2)Diagnostics (4)

Param Descrpt

See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44 See Page 5ndash44See Page 5ndash44See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49

Can be viewed only with PLC Comm Board installed

Chapter 5Programming Parameters

5ndash6

Table 5A ndash 1336T Numerical Parameter Table (Cont)

130131132133

Maximum Forward Speed TrimDroop PercentVelocity Reference Output LOWVelocity Reference Output HI (32 bit)

Param No Parameter Name (Element) Group File (File No)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Param DescrptSee Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50

Velocity RefVelocity RefVelocity RefVelocity Ref

136

137

138139

140

141

142143

144

145

146

147

148

149

150151152153154155156157161162163164165166167

168

134135

Velocity Regulator Testpoint Data HI

Velocity Regulator Testpoint Select

Velocity ErrorKI ndash Velocity Loop

KP ndash Velocity Loop

KF ndash Velocity Loop

KF Error Filter BandwidthVelocity Feedback Testpoint Data LOW

Velocity Feedback Testpoint Data HI

Velocity Feedback Testpoint Select

Velocity Feedback

Scaled Velocity Feedback

Encoder Position Feedback LOW

Encoder Position Feedback HI

Fdbk Device TypeFdbk Tracker GainFdbk Filter SelectKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityNotch Filter FreqNotch Filter QExternal Iq ReferenceExternal Torque Reference 1Slave Torque Percent 1External Torque Reference 2Slave Torque Percent 2External Torque StepInternal Torque Reference

Internal Iq Reference

Velocity Regulator OutputVelocity Regulator Testpoint Data LOW

Velocity RegTestpointsVelocity RegTestpointsVelocity RegVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity FdbkVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkDrive TuneVelocity FdbkMonitorVelocity FdbkMonitorMonitorVelocity FdbkMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefMonitorTorque RefMonitor

Velocity RegVelocity RegTestpoints

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity TorqueStartup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)

Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51 See Page 5ndash46 See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55

Chapter 5Programming Parameters

5ndash7

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No)

Torque RefTestpointsTorque RefTestpointsTorque RefLimit

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)

172

173

174

Param Descrpt

See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash56See Page 5ndash56

Torque Reference Testpoint Data

Torque Reference Testpoint Select

Minimum Flux Level

176

177

178

179

180

181

182

183184185

186

220221222223224225226227228229230231232233234

235236237238240241242243244245246

175

Neg Torque Reference Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current Reference Limit

Negative Motor Current Reference Limit

DIDT Limit

Computed Power

Torque Limit StatusTorque Mode StatusPerunit Motor Current

Perunit Motor Voltage

Rated Inverter Output AmpsRated Inverter Input VoltageInverter Carrier FrequencyPrechargeRidethru SelectionUndervoltage SetpointBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsBase Motor HorsepowerBase Motor SpeedBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesMotor Inertia

Encoder PPRRs Tune (Stator Resistance)Leakage InductanceId Tune (Base Flux Current)Iq Tune (Base Torque Current)Vde Tune (Base Torque Voltage)Vqe Tune (Base Flux Voltage)Vde Maximum (Peak HP)Vqe Maximum (Constant HP)Vde MinimumK Slip (Base Slip Frequency)

Pos Torque Reference Limit

Torque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefMonitorMonitorTorque RefTorque RefMonitorMonitorMonitorMonitorInfoInfoTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockDrive DataDrive DataDrive DataDrive DataDrive DataDrive DataDrive TuneVelocity AutotuneDrive DataTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Torque RefLimits

Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Velocity Torque (3)Startup (1)

See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57 See Page 5ndash57 See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash62See Page 5ndash62See Page 5ndash62

Chapter 5Programming Parameters

5ndash8

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

246247248249250251252256

Base Slip FrequencyBase Slip Freq MaxBase Slip Freq MinKp ndash Slip RegulatorKi ndash Slip RegulatorKp ndash Flux RegulatorKi ndash Flux RegulatorAutotuneDiagnostics Selection

Torque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneDrive TuneTorque AutotuneVelocity AutotuneTransistor Diag

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash63See Page 5ndash63See Page 5ndash63See Page 5ndash63

259260261262

263

264

265

266

267268

269

270

271

273

274

275276277278279280281282283284285286287288289290

257258

Inverter Diagnostics Result 2Iq OffsetId OffsetPhase Rotation Current Reference

Phase Rotation Frequency Reference

Motor Current Magnitude Feedback

Motor Voltage Magnitude

Stator Frequency

Calculated TorqueDC Bus Voltage

Filtered Motor Velocity Feedback

Inverter Temperature Feedback

Limited Motor Flux

Testpoint Selection

Testpoint Data

Testpoint Selection 2Testpoint Data 2Testpoint Selection 3Testpoint Data 3Testpoint Selection 4Testpoint Data 4Testpoint Selection 5Testpoint Data 5Testpoint Selection 6Testpoint Data 6Selection for Test DAC 1Selection for Test DAC 2Ki Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency Regulator

Transistor Diagnostics ConfigurationInverter Diagnostics Result 1

Transistor DiagTransistor DiagTransistor DiagTorque AutotuneDrive TuneTorque AutotuneDrivetuneMonitorMonitorMonitorMonitorMonitorMonitor

MonitorMonitorMonitorMonitorVelocity FdbkMonitorMonitorMonitorMonitorTestpointsTorque AutotuneTestpointsTorque AutotuneFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyTorque BlockTorque BlockTorque BlockTorque Block

Transistor DiagTransistor Diag

Diagnostics (4)Diagnostics (4)Diagnostics (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)

Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Velocity Torque (4)Diagnostics (4)Velocity Torque (4)DO NOT USE DO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEVelocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Diagnostics (4)Diagnostics (4)

See Page 5ndash63See Page 5ndash63See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65 See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash68See Page 5ndash68See Page 5ndash68

Chapter 5Programming Parameters

5ndash9

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash69See Page 5ndash69See Page 5ndash69See Page 5ndash69

291292293294295296297298

Frequency Tracking FilterTracking Filter TypeFreq Trim FilterMotor Phase Rot ErrorsMotor Inductance Test ErrorsStator Resistance Test ErrorsMotor Flux (Id) Test ErrorsTorq Block Calc Errors

Torque BlockTorque BlockTorque BlockTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

300301302304

310

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)

Adapter IDAdapter Version

InfoInfo

Adapter ConfigLanguage Select

Data In A1

InfoInfoDrive DataSCANport IO

Diagnostics (4)Diagnostics (4)

See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72 See Page 5ndash72See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77

311312313314315316317320321322323324325326327330331332333334335336337340341342343344345346347348349350352353354355356357358359

Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal MaskStop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner10 Volt In FltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot Offset

SCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog Input

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)

See Page 5ndash70See Page 5ndash70

Chapter 5Programming Parameters

5ndash10

Table 5A ndash 1336T Numerical Parameter Table (Standard Adapter Parameters)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash77See Page 5ndash77See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash79See Page 5ndash79See Page 5ndash79See Page 5ndash79

360361362363364365366367368369370371

Pot ScaleMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleSP Analog Sel SP Analog InSP Analog 1 ScaleSP Analog 2 SelectSP Analog 2 InSP Analog 2 ScaleAnalog Output 1Analog Output 1 Offset

Analog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog OutputAnalog Output

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

384

385

386

387

388

389

390

391

392

393394

395396397398399

404405

406

407

408

372373374375376377378379

Output Select

Input Mode

Input Status

Stop Select 1

Stop Select 2

Accel Rate 1

Accel Rate 2

Decel Rate 1

Decel Rate 2

Mop IncrementMop Value

Pulse PPRPulse EdgePulse ScalePulse OffsetPulse Value

SP Comm RetriesFault Select

Warning Select

Fault Status

Warning Status

Analog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScalemA OutputmA Output OffsetmA Output ScaleSB Analog Out

LogicLogicLogicLogicDrive DataMonitorMonitorLogicLogicLogicLogicVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkMonitorMonitorInfoFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Analog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog Output

Communication IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Diagnostics Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83 See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85

Chapter 5Programming Parameters

5ndash11

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

90389390125302300301370371372373374375606125641444748402292472482252263353501828284862278768310311312313314315316317320321322323324325326327268391392126341

Absolute Overspeed ThresholdAccel Rate 1Accel Rate 2Accel TimeAdapter ConfigAdapter IDAdapter VersionAnalog Output 1Analog Output 1 OffsetAnalog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScaleAt Setpoint 1At Setpoint 2Autotune Diagnostics SelectionAutotune SpeedAutotune StatusAutotune Testpoint DataAutotune Testpoint SelectAutotune Torque LimitBase Motor SpeedBase Slip Freq MaxBase Slip Freq MinBus Precharge TimeoutBus Ridethru TimeoutClear Fault MaskClear Fault OwnerComputed PowerCP Configurable Fault StatusCP Configurable Warning StatusCP Fault Configuration SelectCP Operating OptionsCP Warning Configuration SelectCurrent Setpoint ToleranceData In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2DC Bus VoltageDecel Rate 1Decel Rate 2Decel TimeDirection Owner

5ndash455ndash835ndash835ndash495ndash705ndash705ndash705ndash795ndash795ndash805ndash805ndash805ndash805ndash395ndash395ndash635ndash365ndash365ndash365ndash375ndash355ndash385ndash385ndash385ndash595ndash595ndash735ndash765ndash575ndash425ndash435ndash435ndash605ndash445ndash405ndash705ndash705ndash705ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash725ndash655ndash835ndash835ndash495ndash74

Chapter 5Programming Parameters

5ndash12

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref1022232425121309112021141505011311481492351611621641654074059899150152151269347128291293261238385386167168222260240333343344117118141289252287250139153251

Drive Comm Baud RateDrive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Drive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Task IntervalDrive Comm Transmit AddressDrive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Power Structure TypeDrive Software VersionDroop PercentEncoder Position Feedback LOWEncoder Position Feedback HIEncoder PPRExternal IQ ReferenceExternal Torque Reference 1External Torque Reference 2External Torque StepFault StatusFault SelectFault Testpoint DataFault Testpoint SelectFeedback Device TypeFeedback Filter SelectFeedback Tracker GainFiltered Vel FdbkFlux OwnerForward Motor Speed LimitFrequency Tracker FilterFrequency Trim FilterId OFFSETId Tune (Base Flux Current)Input ModeInput StatusInternal Torque ReferenceInternal Iq ReferenceInverter Carrier FrequencyIq OffsetIq Tune (Base Torque Current)Jog MaskJog 1 OwnerJog 2 OwnerJog Speed 1Jog Speed 2Kf Velocity LoopKff Freq RegulatorKi Flux RegulatorKi Frequency RegulatorKi Slip RegulatorKi Velocity LoopKn Feedback Filter GainKP Flux Regulator

5ndash315ndash335ndash335ndash335ndash335ndash315ndash315ndash315ndash315ndash345ndash345ndash335ndash335ndash335ndash505ndash505ndash505ndash505ndash385ndash545ndash545ndash545ndash545ndash425ndash425ndash465ndash465ndash535ndash535ndash535ndash655ndash755ndash495ndash685ndash685ndash645ndash615ndash825ndash825ndash555ndash555ndash585ndash645ndash615ndash735ndash755ndash755ndash485ndash485ndash515ndash685ndash625ndash675ndash625ndash515ndash535ndash62

Chapter 5Programming Parameters

5ndash13

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

28824914029024630423729534633754565259565770713547778130129361362363376378174972640829723423023223323192951772651798115615762636465185186294263358353

Kp Frequency RegulatorKp Slip RegulatorKp Velocity LoopKsel Freq RegulatorK Slip Language SelectLeakage InductanceLo Test ErrorsLocal OwnerLocal MaskLocal Input StatusLocal Output StatusLogic Command WordLogic OptionsLogic Status LowLogic Status HiLogic Testpoint DataLogic Testpoint SelectmA In FiltrMaximum Dynamic Brake PowerMaximum Dynamic Brake TempMaximum Forward Speed TrimMaximum Reverse Speed TrimMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleMilliAmp OutputMilliAmp Output ScaleMinimum Flux LevelMinimum Overload LimitMotor Current Magnitude FeedbackMotor Control CounterMotor Flux (Id) Test ErrorsMotor InertiaMotor Nameplate AmpsMotor Nameplate FrequencyMotor Nameplate PolesMotor Nameplate VoltsMotor Overload LimitMotor Overload Speed 2Motoring Power LimitMotor Voltage MagnitudeNegative Motor Current Reference LimitNonndashConfigurable Fault StatusNotch Filter FreqNotch Filter QOver Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Perunit Motor CurrentPerunit Motor VoltagePhase Rotation ErrorsPhase Rotation Frequency ReferencePot InputPot In Filtr

5ndash685ndash625ndash515ndash685ndash625ndash705ndash615ndash695ndash755ndash745ndash385ndash385ndash375ndash395ndash385ndash385ndash405ndash415ndash765ndash415ndash415ndash505ndash495ndash775ndash785ndash785ndash805ndash815ndash565ndash455ndash645ndash315ndash695ndash605ndash605ndash605ndash605ndash605ndash455ndash455ndash565ndash645ndash565ndash425ndash545ndash545ndash395ndash395ndash405ndash405ndash575ndash575ndash685ndash645ndash775ndash76

Chapter 5Programming Parameters

5ndash14

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

35936080179175

Pot OffsetPot ScalePowerupDiagnostic Fault StatusPositive Motor Current Reference LimitPositive Torque Ref Limit

5ndash775ndash775ndash425ndash565ndash56

2231191201211221233128303233353426362938372739639539839739934922024133417833612736537936436636836736940434514766285286163165677291332342236

PrechargeRidethru SelectionPreset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Process Trim DataProcess Trim FeedbackProcess Trim Filter BandwidthProcess Trim KI GainProcess Trim KP GainProcess Trim High LimitProcess Trim Low LimitProcess Trim OutputProcess Trim Output GainProcess Trim SelectProcess Trim Setpoint SelectProcess Trim TestpointProcess Trim ReferencePulse EdgePulse PPRPulse OffsetPulse ScalePulse ValueRamp OwnerRated Inverter Output AmpsRated Torque VoltageReference MaskRegen Power LimitReset Drive MaskReverse Motor Speed LimitSP Analog 1 InSP Analog OutSP Analog 1 SelectSP Analog 1 ScaleSP Analog 2 InSP Analog 2 SelectSP Analog 2 ScaleSP Comm RetriesSet Ref OwnerScaled Velocity FeedbackSetpoint SelectSelection for Test DAC 1Selection for Test DAC 2Slave Torque Percent 1Slave Torque Percent 2Speed Setpoint ToleranceStop DwellStall DelayStart MaskStart OwnerStator Resistance

5ndash595ndash485ndash485ndash485ndash495ndash495ndash345ndash345ndash345ndash345ndash355ndash355ndash355ndash345ndash345ndash345ndash355ndash355ndash345ndash845ndash845ndash845ndash845ndash845ndash765ndash585ndash615ndash735ndash565ndash745ndash495ndash785ndash815ndash785ndash785ndash795ndash795ndash795ndash845ndash755ndash525ndash405ndash675ndash675ndash545ndash545ndash405ndash415ndash455ndash735ndash745ndash61

Chapter 5Programming Parameters

5ndash15

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

340387388155274276

Stop OwnerStop Select 1Stop Select 2Tach VelocityTestpoint DataTestpoint Data 2

5ndash745ndash825ndash835ndash545ndash665ndash66

278280284286273275277279281283298183184172173257348224245241138146144143145109108110101100104103133132134136135137134136135137102105107106838545438889

Testpoint Data 3Testpoint Data 4Testpoint Data 5Testpoint Data 6Testpoint SelectionTestpoint Selection 2Testpoint Selection 3Testpoint Selection 4Testpoint Selection 5Testpoint Selection 6Torque Calc ErrorsTorque Limit StatusTorque Mode StatusTorque Reference Testpoint DataTorque Reference Testpoint SelectTransistor Diagnostics ConfigurationTrim OwnerUndervoltage SetpointVde MinimumVde Tune (Base Torque Voltage)Velocity ErrorVelocity FeedbackVelocity Feedback Testpoint Data HIVelocity Feedback Testpoint Data LOWVelocity Feedback Testpoint SelectVelocity Reference Testpoint Data HIVelocity Reference Testpoint Data LOWVelocity Reference Testpoint SelectVelocity Reference 1 HIVelocity Reference 1 LOWVelocity Reference 2 HIVelocity Reference 2 LOWVelocity Reference Output HIVelocity Reference Output LOWVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Scale Factor 1Velocity Scale Factor 2Velocity Trim HIVelocity Trim LOWVP Configurable Fault StatusVP Configurable Warning StatusVP Damping FactorVP Desired BandwidthVP Fault Configuration SelectVP Warning Configuration Select

5ndash665ndash665ndash615ndash675ndash655ndash655ndash665ndash665ndash675ndash675ndash695ndash575ndash575ndash555ndash555ndash635ndash765ndash595ndash625ndash615ndash515ndash525ndash525ndash525ndash525ndash475ndash475ndash485ndash465ndash465ndash475ndash475ndash505ndash505ndash505ndash505ndash505ndash515ndash505ndash505ndash505ndash515ndash465ndash475ndash475ndash475ndash425ndash435ndash365ndash365ndash445ndash44

Chapter 5Programming Parameters

5ndash16

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

40615469352355356357

Warning SelectWnndashFeedback Filter BandwidthZero Speed Tolerance10 Volt In Filtr10 Volt Input10 Volt Offset10 Volt Scale

5ndash855ndash545ndash405ndash765ndash775ndash775ndash77

Standard Adapter Parameters If your 1336 FORCE Drive is equipped with a Standard Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the the Standard Adapter Board Standard Adapter Parameters are divided into four files The complete parameter table for a Standard Adapter equipped 1336 Force is detailed in Figure 52 The table has been divided into Files Groups and Elements for ease of reference

FILE 1 ndash Startup

Drive Data

53228229230231232233235267275276277278279280281282283284285286304385

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRCalc TorqueTorq TP Sel 2Torq TP Data 2Torq TP Sel 3Torq TP Data 3Torq TP Sel 4Torq TP Data 4Torq TP Sel 5Torq TP Data 5Torq TP Sel 6Torq TP Data 6Test DAC 1 Se1Test DAC 2 SelLanguage SelectInput Mode

Figure 52 1336 FORCE Drive Equipped with Standard Adapter Board

Drive Tune

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKi Velocity LoopKp Velocity LoopKf Velocity LoopVel FeedbackMotor InertiaAutotune Diag SelPh Rot Cur RefPhas Rot Freq Ref

Limits Group

5994127128174175176177178179180181389390391392

Logic OptionsService FactorRev Speed LimitFwd Speed LimitMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Motor Cur LimitD1Dt LimitAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2

Fault Setup Group Monitor

86878889909192959697

CP Faukt SelectVP Fault SelectCP Warn SelectVP Warn SelectAbsolute OverspdStall DelayMtr Overload LimMtr Overload Spd 1Motor Overload Spd 2Min Overload Lmt

8148149182184185186264265266

MCB CounterEnc Pos Fdbk LowEnc Pos Fdbk HiComputed PowerPerunit Motor CurrentPerunit Motor VoltageTorque Mode StatusMotor Cur FdbkMotor Volt MagnFreq Command

268269270271386394399

DC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Accessible only while using Drive Tools

Chapter 5Programming Parameters

5ndash17

FILE 2 ndash Communications IO

Figure 52 Standard Adapter Parameters (cont)

Logic

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Over Setpoint 5Speed Setpoint TolCur Setpoint TolZero Speed TolLogic Tstpt DataLogic Testpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

Fault SelectStatus SCANport Owners

80818283848586878889405406407408

340341342343344345346347348349350

Stop OwnerDirection OwnerStart OwnerJog1 OwnerJog2 OwnerReference OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Fault Owner

5254555657585960616263646566676869707172384385387388

Analog Input

352353354355356357358359360361362363364365366367368369

10 Volt in F1ltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot OffsetPot ScalemA InputmA Input OffsetmA Input ScaleSB Analog SelSB Analog InSP Analog 1 ScaleSP Analog 2 SetSP Analog 2 InSP Analog 2 Scale

Analog Output

370371372373374375376377378379

Analog Out 1An Out 1 OffsetAn Out 1 ScaleAnalog Out 2An Out 2 OffsetAn Out 2 ScalemA OutputmA Output OffsetmA Output ScaleSP Analog Out

Pwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

SCANport Masks

330331332333334335336337

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drive MaskLocal Mask

SCANport IO

310311312313314315316317320321322323324325326327

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive to Drive

910111213141516171819202122232425

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv1 AddrD2D Rcv2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv1 Ind1D2D Rcv1 Ind2D2D Rcv2 Ind1D2D Rcv2 Ind2D2D Xmit Data 1D2D Xmit Data 2D2D Rcv1 Data 1D2D Rcv1 Data 2D2D Rcv2 Data 1D2D Rcv2 Data 2

Std Adapter 4xx equipped

Chapter 5Programming Parameters

5ndash18

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123127128129130131132133389390391392393

Vel Ref 1 LowVel Ref 1 HiVel Scale Fctr 1Vel Ref 2 LowVel Ref 2 HiVel Scale Fctr 2Vel Trim LowVel Trim HiVel Ref TP LoVel Ref TP HiVel Ref TP SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Rev Speed LimitFwd Speed LimitMax Rev Spd TrimMax Fwd Spd TrimDroop PercentVel Ref Out LowVel Ref Out HiAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2Mop Increment

Figure 52 Standard Adapter Parameters (cont)

Velocity Fdbk

Error Filter BWVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelVel FeedbackScaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiFdbk Device TypeFdbk Track GainFdbk Filter Sel Fdbk Filter GainFdbk Filter BWTach VelocityFilt Vel FdbkPulse PPRPulse EdgePulse ScalePulse Offset

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filt FreqNotch Filt QExternal Iq RefExt Torq Ref 1Slave Torque 1Ext Torq Ref 2Slave Torque 2Ext Torque StepInt Torque RefInternal Ig RefTorque Ref TPTorq Ref TP SelMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Mtr Cur LmtDiDt LimitComputed PowerTorq Lmt StatTorq Mode Stat

Logic

5254555657585960616263646566676869707172384385387388

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Setpoint SelectSpeed Setpnt TolCur Setpt TolZero Speed TolLogic Tstpt DataLogic Tstpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

142143144145146147148149150151152153154155269395396397398

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

Auto Tune Torque Auto Tune SpeedStator ResLeakage IndBase Flux CurBase Torque CurBase Torque VoltBase Flux VoltVde MaxVqe MaxVde MinBase Slip FreqBase Slip Fr MaxBase Slip Fr MinKp Slip Ki Slip Kp Flux Ki Flux Autotun Diag SelPh Rot Cur RefPh Rot Freq RefTorq TP Sel 1Torq TP Data 1Phs Test Rot ErrLo Test ErrorRs Test ErrorId Test ErrorTorq Calc Error

Vel Reg OutputVel Reg TP LowVel Reg TP HiVel Reg TP SelVelocity ErrorKi Velocity LoopKp Velocity LoopKf Velocity Loop

Torque Block

222223224225226227287288289290291292293

PWM FrequencyPrechRdthru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP OptionsKi Freq RegKp Freq RegKff Freq RegKsel Freq RegFreq Track FiltTrack Filt TypeFreq Trim Filt

Vel Autotune

4041434445464748139140141234256

Auto Tune Torque Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaAuto Tune TPAuto Tune TP SelKi Velocity LoopKp Velocity LoopKf Velocity LoopMotor InertiaAutotun Diag Select

Process Trim

26272829303132333435363738

Proc Trim OutputProc Trim RefProc Trim FdbkProc Trim SelectProc Trim Filtr WProc Trim DataProc Trim KiProc Trim KpProc Trim Lo LmtProc Trim Hi LmtProc Trim Out KProc Trim TPProc Trim TP Sel

Chapter 5Programming Parameters

5ndash19

FILE 4 ndash Diagnostics

Monitor

147148149167168182185186264265266268269270271386394399

Scaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiInt Torque RefInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor Cur FdbkMotor Volt FdbkFreq CommandDC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Figure 52 Standard Adapter Parameters (cont)

Testpoints

Auto Tune TPAuto Tune TP Sel Logic Tstpt DataLogic Tstpt SelFault TPFault TP SelVel Ref TP LowVel Ref TP HiVel Ref TP SelVel Reg TP LoVel Reg TP HiVel Reg TP SelVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelTorq Ref TP SelTorque Ref TPTorque TP Sel 1Torque TP Data 1

Transistor Diag Info

59256257258259260261

15220221300301302304404

Drive SW VersionDrive TypeBase Drive CurrBase Line VoltAdapter IDAdapter VersionAdapter ConfigLanguage SelectSP Comm Retries

474870719899108109110135136137143144145172173273274

Fault SelSts

77787980818283848586878889405406407408

Max DB PowerMax DB TempDB Time ConstPwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

Logic OptionsAutotune Diag SelTrans Diag DisableInverter Diag 1Inverter Diag 2Iq OffsetId Offset

Motor Overload

Mtr Overload Lim Service FactorMtr Overld Spd 1Mtr Overld Spd 2Min Overload Lmt

9294959697

Chapter 5Programming Parameters

5ndash20

PLC Comm Adapter Parameters If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the PLC Comm Adapter Board rather than the Standard Adapter Board PLC Comm Adapter Parameters are divided into four files as they are with a Standard Adapter Board equipped Drive The complete parameter table for aPLC Comm Adapter equipped 1336 Force is detailed in Figure 53 The table has been divided into Files Groups and Elements for ease of referenceFor a detailed description of PLC Comm Adapter parameters refer to the PLC Comm Adapter Reference Manual

FILE 1 ndash Startup

Drive Data Group

53228229230231232233235309

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRLanguage Select

Figure 53 1336 FORCE equipped with a PLC Comm Adapter Board

Drive Tune Group

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKI Vel LoopKP Vel LoopKF Vel LoopVelocity FeedbackMotor InertiaAT Diag SelPhase Rot I RefPhas Rot Req Ref

Limits Group

59125126127128174175176177178179180181

Logic OptionsAccel TimeDecel TimeRev Speed LimitFwd Speed LimitMin Flux LevelPos Motor Tor LimitNeg Motor Tor LimitMotoring Power LimitRegen Power LimitPos Motor Cur LimNeg Motor Cur LimitdIdT Limit

Fault Setup Group Monitor Group

8687888990919294959697

CPFltWarn ConfigVPFltWarn ConfigCP Warn ConfigVP Warn ConfigAbsolute OverspeedStall DelayMotor Ovload LimService FactorMotor Ovload Speed 1Motor Ovload Speed 2Min Overload Lim

8147148149167168182184185186264265266268269270271

Motor Control CntrScaled Velocity FeedbackEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerTorq Mode StatPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt FdbkStator FrequencyDC Bus VoltageFiltered Velocity FdbkInverter Temp FdbkLimited Motor Flux

Chapter 5Programming Parameters

5ndash21

FILE 2 ndash Communications IO

Channel A Group

322323324325326327328329351352353354355356357358427

ChA RIO In 0ChA RIO In 1ChA RIO In 2ChA RIO In 3ChA RIO In 4ChA RIO In 5ChA RIO In 6ChA RIO In 7ChA RIO Out 0ChA RIO Out 1ChA RIO Out 2ChA RIO Out 3ChA RIO Out 4ChA RIO Out 5ChA RIO Out 6ChA RIO Out 7Redund Chan

Figure 53 PLC Comm Adapter Parameters (cont)

Logic Group

Logic CmdLogic Sts LoLogic Sts HiLogic OptionschA Logic CmdchB Logic Cmd

Fault SelectStatus Group SCANport Owners Group

77787980818283848586878889425426430431436437438439440441442443

369370371372373374375376377378379

Stop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner

Channel B Group

330331332333334335336337359360361362363364365366432

ChB RIO In 0ChB RIO In 1ChB RIO In 2ChB RIO In 3ChB RIO In 4ChB RIO In 5ChB RIO In 6ChB RIO In 7ChB RIO Out 0ChB RIO Out 1ChB RIO Out 2ChB RIO Out 3ChB RIO Out 4ChB RIO Out 5ChB RIO Out 6ChB RIO Out 7ChB RIO

52565759367368

Analog Input Group

338339340341342392393394395396397398399

SB Analog InAnalog In 1Analog In 2Analog In 3Analog In 4Analog In 1 OffAnalog In 1 ScaleAnalog In 2 OffAnalog In 2 ScaleAnalog In 3 OffAnalog In 3 ScaleAnalog In 4 OffAnalog In 4 Scale

Analog Output Group

386387388389390400401402403404405406407

SP Analog OutAnalog Out 1Analog Out 2Analog Out 3Analog Out 4Analog Out 1Analog Out 1 OffAnalog Out 1 ScaleAnalog Out 2 ScaleAnalog Out 3 OffAnalog Out 3 ScaleAnalog Out 4 OffAnalog Out 4 Scale

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt StatusNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusCP Flt StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StsSP Flt SelectSP Warn SelSP Flt StatusSP Warn Sts

SCANport Masks

408409410411412413414415

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal Mask

SCANport IO

314315316317318319320321343344345346347348349350

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive To Drive

91011121314151617181920

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv 1 AddrD2D Rcv 2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv 1 Ind 1D2D Rcv 1 Ind 2D2D Rcv 2 Ind 1D2D Rcv 2 Ind 2D2D Xmit Data 1

2122232425

D2D Xmit Data 2D2D Rcv 1 Data 1D2D Rcv 1 Data 2D2D Rcv 2 Data 1D2D Rcv 2 Data 2

Chapter 5Programming Parameters

5ndash22

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123125126127128129130131132133

Vel Ref 1 LoVeL Ref 2 HiVel Scale Factor 1Vel Ref 2 LoVel Ref 2 HiVel Scale Factor 2Vel Trim LoVel Trim HiVel Ref Testpt LoVel Ref Testpt HiVel Ref Testpt SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeRev Speed LimitFwd Speed LimitMax Rev Speed TrimMax Fwd Speed TrimDroop PercentVel Ref Out LoVel Ref Out Hi

Figure 53 PLC Comm Adapter Parameters (cont)

Velocity Fdbk

KF Err Filt BWVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Tesetpt SelVelocity FdbkScaled Vel FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiFdbk Device TypeFdbk Tracker GainFdbk Filter SelKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityFiltered Vel Fdbk

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filter FreqNotch Filter QueExternal Iq RefExt Torque Ref 1Slave Torque Percent 1Ext Torque Ref 2Slave Torque Percent 2External Torque StepInt Torque RefInt Iq RefTorque Ref Testpoint DataTorque Ref Testpnt SelMin Flux LevelPos Torque Ref LimitNeg Torque Ref LimitMotor Power LimitRegen Power LimitPos Motor Cur LimitNeg Motor Cur LimitdIdT LimitComputed PwrTorque Limit StatusTorque Mode Status

Logic

5254555657585960616263646566676869707172367368

Logic CmdLocal Input StsLocal Output StsLocal Sts LoLocal Sts HiTorq Stop ConfigLogic OptionsAt Setpt 1At Setpt 2Over Setpt 1Over Setpt 2Over Setpt 3Over Setpt 4Setpt SelectSpeed Stpt TolCur Setpt TolZero Speed TolLogic Testpt DataLogic Testpt SelStop DwellPt6 Logic CmdPt7 Logic Cmd

142143144145146147148149150151152153154155269

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

AT Torque LimitAT SpeedStator ResistanceLeakage InductanceRated Flux CurrentRated Torque CurrentRated Torque VoltRated Flux VoltageVde MaxVqe MaxVde MinimumBase Slip FreqBase Slip Freq MaxBase Slip Freq MinKp Slip RegulatorKi Slip RegulatorKp Flux RegulatorKi Flux RegulatorAT Diag SelectPhase Rot Cur RefPhase Rot Freq RefTorque Testpoint SelTorque Testpoint DataPhase Rot ErrorsLo Test ErrorsRs Test ErrorsId Test ErrorsTorque Calc Errors

Vel Regulator OutVelocity Reg Testpt LoVelocity Reg Testpt HiVelocity Reg Testpt SelVelocity ErrorKI Vel LoopKP Vel LoopKF Vel Loop

Torque Block

222223224225226227287288289290291292293

Inverter Carrier FreqPrecharge Ridethru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsKi Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency RegulatorFrequency Track FilterTrack Filter TypeFrequency Trim Filter

Velocity Autotune

4041434445464748139140141234256

AT Torque LimAT SpeedVP Desired BWAuto Tune StatusVP Damping FactorTotal InertiaAT Testpt DataAT Tespt SelKI Vel LoopKP Vel LoopKF Vel LoopMotor InertiaAT Diag Select

Process Trim

26272829303132333435363738

Process Trim OutputProcess Trim RefProc Trim FdbkProc Trim SelectProc Trim Filt BWProc Trim DataProc Trim KIProc Trim KPProc Trim Lo LimProc Trim Hi LimProc Trim Out GainProc Trim TestptProc Trim Testpt Sel

Chapter 5Programming Parameters

5ndash23

FILE 4 ndash Diagnostics

Monitor

8147148149167168182185186264265266268269270271

Motor Control CounterScaled Velocity FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt MagnStator FrequencyDC Bus VoltageFiltered Vel FdbkInverter Temp FdbkLimited Motor Flux

Figure 53 PLC Comm Adapter Parameters (cont)

Testpoints

AT Testpt DataAT Testpt SelLogic Testpt DataLogic Testpt SelFault Testpt DataFault Testpt SelVelocity Ref Testpt LoVelocity Ref Testpt HiVelocity Ref Testpt SelVelocity Reg Testpnt LoVelocity Reg Testpnt HiVelocity Reg Testpt SelVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Testpt SelTorque Ref Tespt DataTorque Ref Testpt SelTorque Testpt SelectTorque Testpt Data

Transistor Diag Info

59256257258259260261

15220221300301302303304305306307309

Drive Software VerPower Structure TypeRated Inverter Out AmpsRated Inverter In VoltsAdapter IDAdapter VersionAdapter ConfigChA Dip SwitchChB Dip SwitchChA LED StateCHB LED StatePLC Comm Bd StsLanguage Select

474870719899108109110135136137143144145172173273274

Fault SelectStatus

77787980818283848586878889425426430431436437438439440441442443

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt stsNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StatusSP Flt SelectSP Warn SelectSP Warn StsSP Warn Sts

Logic OptionsAT Diag SelectTrans Diag ConfigInv Dig Result 1Inv Diag Result2Iq OffsetId Offset

Trend IO

454462463464472473474482483484492493

Trend In 1Trend In 1 StatusTrend Out 1Trend In 2Trend In 2 StatusTrend Out 2 StatusTrend In 3Trend In 3 StatusTrend Out 3Trend In 4Trend In 4 StatusTrend Out 4

Trend Setup

455456457458459460461465466467468469470471475476477478479480481485486487488489490491

Trend 1 Operand XTrend 1 Operand YTrend 1 OperatorTrend 1 RateTrend 1 Post SamplesTrend 1 Continuous TrigTrend 1 SelectTrend 2 Operand XTrend 2 Operand YTrend 2 OperatorTrend 2 RateTrend 2 Post SamplesTr2 Cont TriggerTrend 2 SelectTrend 3 Operand XTrend 3 Operand Parm YTrend 3 OperatorTrend 3 RateTrend 3 Post SamplesTrend 3 Continuous TrigTrend 3 SelectTrend 4 Operand XTrend 4 Operand YTrend 4 OperatorTrend 4 RateTrend 4 Post SamplesTrend 4 Continuous TrigTrend 4 Select

Note Trending Functions are NOT implemented in Version 2xx software

Chapter 5Programming Parameters

5ndash24

The complete parameter table for a ControlNet Adapter Board equipped1336 FORCE is detailed in Figure 54 The table has been divided intoFiles Groups amp Elements for ease of reference For a detaileddescription of ControlNet parameters refer to the ControlNet AdapterReference Manual

Figure 54 1336 FORCE equipped with a ControlNet Adapter Board

File 1 ndash Startup➀

Drive Data Group Drive Tune Group Limits Group

Language Sel 309 Autotun Diag Sel 256 Accel Time 125

Encoder PPR 235 Vel Feedback 146 Decel Time 126

Base Motor Speed 229 Vel Desired BW 43 Logic Options 59

Base Motor HP 228 Auto Tune Status 44 Fwd Speed Limit 128

Base Motor Curr 230 Motor Inertia 234 Rev Speed Limit 127

Base Motor Volt 231 Total Inertia 46 Pos Mtr Cur Lmt 179

Base Motor Freq 232 Ki Velocity Loop 139 Neg Mtr Cur Lmt 180

Motor Poles 233 Kp Velocity Loop 140 Pos Mtr Tor Lmt 175

Torque Mode Sel 53 Kf Velocity Loop 141 Neg Mtr Tor Lmt 176

Vel Damp Factor 45 Motor Power Lmt 177

Auto Tune Speed 41 Regen Power Lmt 178

Ph Rot Cur Ref 262 DiDt Limit 181

Ph Rot Freq Ref 263 Min Flux Level 174

Fault Setup Group Monitor Group

CP FltWarn Cfg 86 Filt Vel Fdbk 269

CP WarnNone Cfg 88 Scaled Vel Fdbk 147

VP FltWarn Cfg 87 Int Torque Ref 167

VP WarnNone Cfg 89 Internal Iq Ref 168

Absolute Overspd 90 Computed Power 182

Stall Delay 91 DC Bus Voltage 268

Mtr Overload Lim 92 Motor Volt Fdbk 265

Mtr Overload Spd1 95 Motor Curr Fdbk 264

Mtr Overload Spd2 96 Freq Command 266

Min Overload Lmt 97 Inv Temp Fdbk 270

Service Factor 94 Torque Mode Stat 184

Lim Motor Flux 271

Enc Pos Fdbk Low 148

Enc Pos Fdbk Hi 149

MCB Counter 8

➀ Shaded parameters are Standard 1336 FORCE parameters

ControlNet Parameters

Chapter 5Programming Parameters

5ndash25

File 2 ndash Communications IO

Channel A Group Logic Group Analog Input Group Analog Output Group

CntrlNet In 0 322 ChA Logic Cmd In 367 Analog In 1 339 Analog Out 1 387

CntrlNet In 1 323 Logic Command 52 An In 1 Offset 392 An Out 1 Offset 400

CntrlNet In 2 324 Logic Status Low 56 An In 1 Scale 393 An Out 1 Scale 401

CntrlNet In 3 325 Logic Status Hi 57 Analog In 2 340 Analog Out 2 388

CntrlNet In 4 326 Logic Options 59 An In 2 Offset 394 An Out 2 Offset 402

CntrlNet In 5 327 An In 2 Scale 395 An Out 2 Scale 403

CntrlNet In 6 328 Analog In 3 341 Analog Out 3 389

CntrlNet In 7 329 An In 3 Offset 396 An Out 3 Offset 404

CntrlNet Out 0 351 An In 3 Scale 397 An Out 3 Scale 405

CntrlNet Out 1 352 Analog In 4 342 Analog Out 4 390

CntrlNet Out 2 353 An In 4 Offset 398 An Out 4 Offset 406

CntrlNet Out 3 354 An In 4 Scale 399 An Out 4 Scale 407

CntrlNet Out 4 355 SP Analog In 338 SP Analog Out 386

CntrlNet Out 5 356 SP Analog Sel 391

CntrlNet Out 6 357

CntrlNet Out 7 358

Drv ndash Drv Fault SelSts➂ SCANport Owners SCANport Masks SCANport IO

D2D Tsk Interval 9 SP Fault Sts 442 Stop Owner 369 Port Enable Mask 408 Data In A1 314

D2D Baud Rate 10 SP Warn Sts 443 Start Owner 371 Start Mask 410 Data In A2 315

D2D Xmit Addr 11 SP Fault Sel 440 Jog1 Owner 372 Jog Mask 411 Data In B1 316

D2D Xmit Ind 1 14 SP Warn Sel 441 Jog2 Owner 373 Direction Mask 409 Data In B2 317

D2D Xmit Data 1 20 ICN Fault Sel 425 Direction Owner 370 Reference Mask 412 Data In C1 318

D2D Xmit Ind 2 15 ICN Warn Sel 426 Set Ref Owner 374 Local Mask 415 Data In C2 319

D2D Xmit Data 2 21 CP Flt Status 82 Local Owner 375 Clear Fault Mask 413 Data In D1 320

D2D Rcv 1 Addr 12 VP Flt Status 83 Flux Owner 376 Reset Drive Mask 414 Data In D2 321

D2D Rcv 1 Ind 1 16 CP Warn Status 84 Trim Owner 377 Data Out A1 343

D2D Rcv 1 Data 1 22 VP Warn Status 85 Ramp Owner 378 Data Out A2 344

D2D Rcv 1 Ind 2 17 CP Fault Select 86 Clr Fault Owner 379 Data Out B1 345

D2D Rcv 2 Data 2 23 CP Warn Select 87 Data Out B2 346

D2D Rcv 2 Addr 13 VP Fault Select 88 Data Out C1 347

D2D Rcv 2 Ind 1 18 VP Warn Select 89 Data Out C2 348

D2D Rcv 2 Data 1 24 Ncfg Flt Status 81 Data Out D1 349

D2D Rcv 2 Ind 2 19 PwrUp Flt Status 80 Data Out D2 350

D2D Rcv 2 Data 2 25 Max DB Power 77

Max DB Temp 78

DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash26

File 3 ndash Velocity Torque➀

Velocity Ref Logic Velocity Fdbk Velocity Reg Torque Ref

Preset Speed 1 119 ChA Logic Cmd In 367 Filt Vel Fdbk 269 Vel Reg Output 134 Torque Mode Sel 53

Preset Speed 2 120 Logic Command 52 Vel Feedback 146 Ki Velocity Loop 139 Torq Mode Stat 184

Preset Speed 3 121 Torq Stop Confg 58 Scaled Vel Fdbk 147 Kp Velocity Loop 140 Pos Mtr Cur Lmt 179

Preset Speed 4 122 Logic Options 59 Enc Pos Fdbk Low 148 Kf Velocity Loop 141 Neg Mtr Cur Lmt 180

Preset Speed 5 123 Logic Status Low 56 Enc Pos Fdbk Hi 149 Velocity Error 138 Int Torque Ref 167

Jog Speed 1 117 Logic Status Hi 57 Fdbk Track Gain 151 Vel Reg TP Sel 137 Internal Iq Ref 168

Jog Speed 2 118 At Setpoint 1 60 Fdbk Filter Gain 153 Vel Reg TP Low 135 Computed Power 182

Vel Ref 1 Low 100 At Setpoint 2 61 Fdbk Filter BW 154 Vel Reg TP Hi 136 Torq Lmt Stat 183

Vel Ref 1 Hi 101 Over Setpoint 1 62 Fdbk Device Type 150 External Iq Ref 161

Vel Ref 2 Low 103 Over Setpoint 2 63 Fdbk Filter Sel 152 Ext Torq Ref 1 162

Vel Ref 2 Hi 104 Over Setpoint 3 64 Tach Velocity 155 Ext Torq Ref 2 164

Vel Scale Fctr 1 102 Over Setpoint 4 65 Error Filter BW 142 Slave Torque 1 163

Vel Scale Fctr 2 105 Setpoint Select 66 Vel Fdbk TP Sel 145 Slave Torque 2 165

Vel Trim Low 106 Speed Setpnt Tol 67 Vel Fdbk TP Low 143 Ext Torque Step 166

Vel Trim Hi 107 Cur Setpoint Tol 68 Vel Fdbk TP Hi 144 Notch Filter Freq 156

Vel Ref Out Low 132 Zero Speed Tol 69 Notch Filter Q 157

Vel Ref Out Hi 133 Local In Status 54 Min Flux Level 174

Accel Time 125 Stop Dwell 72 Pos Mtr Tor Lmt 175

Decel Time 126 Local Out Status 55 Neg Mtr Tor Lmt 176

Fwd Speed Limit 128 Logic Tstpt Sel 71 Motor Power Lmt 177

Rev Speed Limit 127 Regen Power Lmt 178

Max Rev Spd Trim 129 DiDt Limit 181

Max Fwd Spd Trim 130 Torq Ref TP Sel 173

Droop Percent 131 Torque Ref TP 172

Vel Ref TP Sel 110

Vel Ref TP Low 108

Vel Ref TP Hi 109

SP Default Ref 416

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash27

Torque Block➀ Process Trim Torque Autotune Velocity Autotune

PWM Frequency 222 Proc Trim Ref 27 Autotun Diag Sel 256 Autotun Diag Sel 256

Prech Rdthru Sel 223 Proc Trim Fdbk 28 Ph Rot Cur Ref 262 Auto Tune Torque 40

Under Volt Stpnt 224 Proc Trim Output 26 Auto Tune Torque 40 Auto Tune Speed 41

Prechrg Timeout 225 Proc Trim Select 29 Auto Tune Speed 41 Total Inertia 46

Ridethru Timeout 226 Proc Trim Ki 32 Ph Rot Freq Ref 263 Motor Inertia 234

CP Options 227 Proc Trim Kp 33 Phs Test Rot Error 294 Auto Tune Status 44

Ki Freq Reg 287 Proc Trim Lo Lmt 34 Lo Test Error 295 Vel Desired BW 43

Kp Freq Reg 288 Proc Trim Hi Lmt 35 Rs Test Error 296 Vel Damp Factor 45

Kff Freq Reg 289 Proc Trim Fltr W 30 Id Test Error 297 Ki Velocity Loop 139

Ksel Freq Reg 290 Proc Trim Data 31 Torq Calc Error 298 Kp Velocity Loop 140

Freq Track Filt 291 Proc Trim Out K 36 Stator Res 236 Kf Velocity Loop 141

Track Filt Type 292 Proc Trim TP Sel 38 Leakage Ind 237 Auto Tune TP Sel 48

Freq Trim Filter 293 Proc Trim TP 37 Base Flux Cur 238 Auto Tune TP 47

Base Torque Cur 240

Base Torque Volt 241

Base Flux Volt 242

Vde Max 243

Vqe Max 244

Vde Min 245

Base Slip Freq 246

Base Slip Fr Max 247

Base Slip Fr Min 248

Kp Slip 249

Ki Slip 250

Kp Flux 251

Ki Flux 252

Torq TP Sel 1 273

Torq TP Data 1 274

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash28

File 4 ndash Diagnostics➀

Monitor Testpoints Fault SelSts Motor Overload

Filt Vel Fdbk 269 Vel Fdbk TP Sel 145 SP Fault Sts 442 Mtr Overload Lim 92

Scaled Vel Fdbk 147 Vel Fdbk TP Low 143 SP Warn Sts 443 Mtr Overld Spd 1 95

Int Torque Ref 167 Vel Fdbk TP Hi 144 SP Fault Sel 440 Mtr Overld Spd 2 96

Internal Iq Ref 168 Vel Reg TP Sel 137 SP Warn Sel 441 Min Overload Lmt 97

Computed Power 182 Vel Reg TP Low 135 ICN Flt Sel 425 Service Factor 94

DC Bus Voltage 268 Vel Reg TP Hi 136 ICN Warn Sel 426

Motor Volt Fdbk 265 Vel Ref TP Sel 110 CP Flt Status 82

Motor Curr Fdbk 264 Vel Ref TP Low 108 VP Flt Status 83

Freq Command 266 Vel Ref TP Hi 109 CP Warn Status 84

Inv Temp Fdbk 270 Auto Tune TP Sel 48 VP Warn Status 85

Torq Mode Stat 184 Auto Tune TP 47 CP Fault Select 86

Lim Motor Flux 271 Logic Tstpt Sel 71 CP Warn Select 87

Enc Pos Fdbk Low 148 Logic Tstpt Data 70 VP Fault Select 88

Enc Pos Fdbk Hi 149 Fault TP Sel 99 VP Warn Select 89

MCB Counter 8 Fault TP 98 Ncfg Flt Status 81

Torq Ref TP Sel 173 PwrUp Flt Status 80

Torque Ref TP 172 Max DB Power 77

Torq TP Sel 1 273 Max DB Temp 78

Torq TP Data 1 274 DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash29

Transistor Diag➀ Trend IO Trend Setup Info

Autotun Diag Sel 256 Tr1 Status 462 Tr1 Opnd Parm X 455 Drive SW Version 1

Logic Options 59 Tr2 Status 472 Tr1 Opnd Parm Y 456 Drive Type 5

Tran Diag Disabl 257 Tr3 Status 482 Tr1 Operator 457 Base Drive Curr 220

Inverter Diag 1 258 Tr4 Status 492 Tr1 Sample Rate 458 Base Line Volt 221

Inverter Diag 2 259 Trend In 1 454 Tr1 Post Samples 459 Adapter Version 301

Iq Offset 260 Trend In 2 464 Tr1 Cont Trigger 460 Adapter ID 300

Id Offset 261 Trend In 3 474 Tr1 Select 461 Language Sel 309

Trend In 4 484 Tr2 Opnd Parm X 465 SP Comm Retries 302

Trend Out 1 463 Tr2 Opnd Parm Y 466 ICN Status 307

Trend Out 2 473 Tr2 Operator 467 ChA LED State 305

Trend Out 3 483 Tr2 Sample Rate 468 DIP Switch ChA 303

Trend Out 4 493 Tr2 Post Samples 469

Tr2 Cont Trigger 470

Tr2 Select 471

Tr3 Opnd Parm X 475

Tr3 Opnd Parm Y 476

Tr3 Operator 477

Tr3 Sample Rate 478

Tr3 Post Samples 479

Tr3 Cont Trigger 480

Tr3 Select 481

Tr4 Opnd Parm X 485

Tr4 Opnd Parm Y 486

Tr4 Operator 487

Tr4 Sample Rate 488

Tr4 Post Samples 489

Tr4 Cont Trigger 490

Tr4 Select 491

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash30

Parameter Descriptions A detailed description of each 1336 FORCE Parameter is contained inthe following listing The parameters are listed in numerical order

Take note that some parameters are used more than once in the 1336FORCE and may be located in more than one File and Group Todetermine if a parameter is used in more than one application refer to thenumerical list which begins on Page 5-3

NOTE The following parameter descriptions in the range from 300 to500 cover the Standard Adapter Only If you have a PLC CommAdapter equipped drive and wish to refer to PLC Comm parameterdescriptions refer to the PLC Comm User Manual If you have aControlNet Adapter equipped drive parameter descriptions are providedat the end of this chapter

NOTE If you wish to record parameter values and links that have beenset for your particular application a User Parameter Sheet is provided inAppendix C

Chapter 5Programming Parameters

5ndash31

Drive Software Version[Drive SIO Version]

Parameter Number 01Parameter Type SourceDisplay Units xxxDrive Units Display units x 100Factory Default 101Minimum Value 000Maximum Value 999

Power Structure Type[Drive Type]

Parameter Number 05Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65635

This parameter stores the present softwarerevision for the firmware productThe firmware value represents the soft-ware version in the range 000 to 999

This number is a unique code that identi-fies the driversquos current and voltage ratingsThis number originates from a serial EEmemory located on the Driversquos Base DriveBoard

Motor Control Counter[MCB Counter]

Parameter Number 08Parameter Type SourceDisplay Units xx secDrive Units NoneFactory Default x 10 secMinimum Value 00 secMaximum Value 655355 sec

This parameter contains a counter thatincrements by 1 every 01 seconds It isintended to be a monitor parameter toindicate that the Motor Control BoardVelocity Processor firmware is executing

Drive Link Task Interval[D2D Tsk Interval]

Parameter Number 09Parameter Type SinkDisplay Units x msDrive Units x2Factory Default 2Minimum Value 1Maximum Value 10

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

Drive Link Transmit Address[D2D Xmit Addr]

Parameter Number 11Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the interval at which drive to drive data will be transmittedand received The intervals are 2 ms intervals up to 20 ms

1 = 2 ms scan2 = 4 ms scan 5 = 10 ms scan 8 = 16 ms scan3 = 6 ms scan 6 = 12 ms scan 9 = 18 ms scan4 = 8 ms scan 7 = 14 ms scan 10 = 20 ms scan

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

This parameter specifies the node addressat which two words of data will be trans-mitted A value of zero disables the trans-mit function

Drive Link Receive 1 Address[D2D Rcv 1 Addr]

Parameter Number 12Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the node addressat which two words of data will be received A value of zero disables the receive function

Chapter 5Programming Parameters

5ndash32

Drive Link Receive 2 Address[D2D Rcv 2 Addr]

Parameter Number 13Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

Drive Link Transmit Indirect 1[D2D Xmit Ind 1]

Drive Link Transmit Indirect 2[D2D Xmit Ind 2]

Parameter Number 15Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 21Minimum Value 1Maximum Value 219

Parameter Number 14Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 20Minimum Value 1Maximum Value 219

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the firstword location of the transmitted message

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the 2ndword location of the transmitted message

This parameter specifies the node addressat which two words of data will bereceived A value of zero disables thereceive function

Drive Link Receive 1 Indirect 1[D2D Rcv 1 Ind 1]

Parameter Number 16Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 22Minimum Value 1Maximum Value 219

Drive Link Receive 1 Indirect 2[D2D Rcv 1 Ind 2]

Parameter Number 17Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 23Minimum Value 1Maximum Value 219

Drive Link Receive 2 Indirect 1[D2D Rcv 2 Ind 1]

Drive Link Receive 2 Indirect 2[D2D Rcv 2 Ind 2]

Parameter Number 19Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 25Minimum Value 1Maximum Value 219

Parameter Number 18Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 24Minimum Value 1Maximum Value 219

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

Chapter 5Programming Parameters

5ndash33

Drive Link Transmit Data 1[D2D Xmit Data1]

Parameter Number 20Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Drive Link Transmit Data 2[D2D Xmit Data2]

Drive Link Receive 1 Data 1[D2D Rcv 1 Data1]

Parameter Number 22Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Parameter Number 21Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the first word of data for transmit

This parameter is the default data locationof the second word of data for transmit

This parameter is the default data locationof the first word of data for receive 1

Drive Link Receive 1 Data 2[D2D Rcv 1 Data 2]

Parameter Number 23Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 1[D2D Rcv 2 Data 1]

Parameter Number 24Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 2[D2D Rcv 2 Data 2]

Parameter Number 25Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the second word of data for receive 1

This parameter is the default data locationof the first word of data for receive 2

This parameter is the default data locationof the second word of data for receive 2

Process Trim Output[Proc Trim Output]

Parameter Number 26Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter represents the scaled andlimited output of the process trimfunction Process Trim consists of a general purpose PI regulator that uses unspecified reference and feedback inputs

Chapter 5Programming Parameters

5ndash34

Process Trim Reference[Proc Trim Ref]

Process Trim Feedback[Proc Trim Fdbk]

Process Trim Select[Proc Trim Sel]

Parameter Number 29Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 1111Enums

Parameter Number 28Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

Process Trim Filter Bandwidth[Proc Trim Fltr W]

Parameter Number 30Parameter Type SinkDisplay Units x radianssecDrive Units 1 = radianssecFactory Default 0 radianssecMinimum Value 0 radianssecMaximum Value 240 radianssec

Parameter Number 31Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 preloadFactory Default +00Minimum Value ndash8000Maximum Value +8000

Parameter Number 27Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default +00Minimum Value ndash8000Maximum Value +8000

Process Trim Data[Proc Trim Data]

This is the reference input value for pro-cess trim The Process Trim Output is up-dated based on the value of this input

This is the feedback input value for pro-cess trim The Process Trim Output pa-rameter is updated based on the value ofthis input

This is a bit coded word of data containingseveral selection options for the processtrim regulator as follows

Bit 0 Trim the Velocity ReferenceBit 1 Trim the Torque ReferenceBit 2 Select Velocity InputsBit 3 Set Output OptionBit 4 Preset Integrator OptionBit 5 Force ON Trim Limit option

This parameter is used to preset the outputof the process trim regulator when eitherthe ldquoSet Output Optionrdquo or ldquoPreset Integra-tor Optionrdquo is selected in parameter 29

This parameter determines the bandwidthof a single pole filter used with the errorinput for process trim The output of thisfilter is used as the input to the processtrim regulator

Process Trim KI Gain[Proc Trim Ki]

Parameter Number 32Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 1000 Ki gainFactory Default 1000Minimum Value 0000Maximum Value 16000

This parameter controls the integral gain ofthe process trim regulator If process trimequals 10 then the process trim PI regula-tor output will equal 1 pu in 1 second for 1pu process trim error

Chapter 5Programming Parameters

5ndash35

Process Trim KP Gain[Proc Trim Kp ]

Process Trim Low Limit[Proc Trim Lo Lmt]

Process Trim High Limit[Proc Trim Hi Lmt]

Parameter Number 35Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash 100Minimum Value ndash 800Maximum Value + 800

Parameter Number 34Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash1000Minimum Value ndash8000Maximum Value +8000

Process Trim Output Gain[Proc Trim Out K]

Parameter Number 36Parameter Type SinkDisplay Units +ndash xxxDrive Units 2048 = +100 gainFactory Default + 100Minimum Value ndash 1600Maximum Value + 1600

Parameter Number 37Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Parameter Number 33Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 10000 Kp gainFactory Default 1000Minimum Value 0000Maximum Value 16000

Process Trim Testpoint[Proc Trim TP]

This parameter controls the proportionalgain of the process trim regulator If theKP process trim is equal to 10 then theprocess trim PI regulator output will equal 1pu for 1 pu process trim error

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the low limit of theprocess trim output value

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the high limit ofthe process trim output value

This parameter selects which location ofthe Process Trim Controller will becomethe testpoint value as followsValue Process Trim Access Point 0 Zero 1 Process Trim Error 2 Process Trim Filter Output 3 Process Trim Control Word

The output of the process trim regulator isscaled by a gain factor This occurs justbefore the upper and lower limit This pa-rameter specifies the gain value to use

Process Trim Testpoint Select[Proc Trim TP Sel]

This parameter indicates the value of theinternal location selected by the ProcessTrim Testpoint Select parameter

Parameter Number 38Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3Enums

Auto Tune Torque Limit[Auto Tune Torque]

Parameter Number 40Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 500 Minimum Value 250 Maximum Value 1000

This parameter specifies the motor torquethat is applied to the motor during theVelocity motor test and the Velocity systemtest 4096 = 100 rated motor torque

Chapter 5Programming Parameters

5ndash36

Auto Tune Speed[Auto Tune Speed]

Parameter Number 41Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default 085 x Base Motor SpeedMinimum Value 03 x Base Motor SpeedMaximum Value Base Motor Speed

This parameter is the speed of the motorduring an auto tune velocity motor testsystem test and system ID measure4096 is base speed

VP Desired Bandwidth[Vel Desired BW]

Parameter Number 43Parameter Type SinkDisplay Units xxx radsecDrive Units Display units x 100Factory Default 500 radsecMinimum Value 001 radsecMaximum Value 10000 radsec

Autotune Status[Auto Tune Status]

Parameter Number 44Parameter Type SourceDisplay Units bitsDrive Units value (of bits)Factory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 00110000011111111Enums

This parameter specifies the velocity loopbandwidth requested by the User anddetermines the dynamic behavior of thevelocity loop The maximum value for thisparameter is changed by the drive when arequest is made to update the the velocityloop gains The vel loop becomes moreresponsive and is able to track a fasterchanging vel ref as bandwidth is increasedSystem and noise limitations will establisha practical upper limit however

This parameter indicates the status of certain conditions related to the autotunefunction This is a bitndashcoded parameterthat is not changeable by the user

VP Damping Factor[Vel Damp Factor]

Parameter Number 45Parameter Type SinkDisplay Units xxDrive Units 2048 = 10 dampingFactory Default 10Minimum Value 05Maximum Value 30

Total Inertia[Total Inertia]

Parameter Number 46Parameter Type SinkDisplay Units xxx secDrive Units Display units x 100Factory Default 200 secMinimum Value 001 secMaximum Value 65500 sec

This parameter determines the dynamicbehavior of the velocity loop The dampingfactor influences the amount of overshootthe velocity loop will exhibit during a tran-sient

This parameter represents the time in se-conds for a motor coupled to a load to ac-celerate from zero to base speed at ratedmotor torque This parameter is calculatedby the Autotune System Inverter Test

Bit 8 ndash 11 = Not UsedBit 12 = TimeoutBit 13 = No Trq Lim

Bit 0 = ExecutingBit 1 = CompleteBit 2 = FailBit 3 = AbortBit 4 = Flux ActiveBit 5 = Not ReadyBit 6 = Not Zero SpdBit 7 = Running

Autotune Testpoint Data[Auto Tune TP]

Parameter Number 47Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates the value of theinternal location selected by the AutotuneTP Sel parameter 48

Chapter 5Programming Parameters

5ndash37

Auto Tune Testpoint Select[Auto Tune TP Sel]

This parameter selects what internal loca-tion of the Velocity Auto Tune Controllerwill become the testpoint value shown inP47 The internal locations available are

Select Value Autotune Access Point

Parameter Number 48Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 10Enums

01234

ZeroAutotune Status BitsAutotune Inhibit Word (all zero = OK)Autotune Error Word (all zero = OK)Calculated Friction (4096 1 pu)

Torque Limit for autotuneAutotune State Word 1Autotune State Word 2Autotune Control BitsMinimum Limit for didt to acheive requested bandwidthMinimum error filter bandwidth

Select Value Autotune Access Point5678910

Logic Command Word[Logic Command]

Parameter Number 52Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This word parameter contains data used toControl Drive logic operation If a bit is setthe function is enabled otherwise it is disabled (inactive)

C B A00001111

00110011

01010101

ndash Zerondash External Ref ndash Preset Speed 1ndash Preset Speed 2ndash Preset Speed 3ndash Preset Speed 4ndash Preset Speed 5ndash External Ref 2

BITS

0123456789101112131415

ndash Ramp Stopndash Start ndash Jog 1ndash Clear Faultndash Forwardndash Reversendash Jog 2ndash Current Limit Stopndash Coast Stopndash Ramp Disablendash Flux Enablendash Process Trim Enablendash Velocity Ref Select Andash Velocity Ref Select Bndash Velocity Ref Select Cndash Reset Drive

Torque Mode Select[Torque Mode Sel]

This is a word parameter used to select thesource for the drive torque reference Theoperation of this parameter functions as aselector switch The position of theselector determines the torque referenceselection as follows

Value Description 0 Zero Torque 1 Velocity Regulate 2 External Torque

Parameter Number 53Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 0Maximum Value 5

Value Description 3 Min Select SpeedTorque (Selects the smallest value when the torque

reference and the torque generated from the speed are compared) 4 Max Select SpeedTorque (Selects the largest value when the torque

reference and the torque generated from the speed are compared 5 Sum Speed and Torque (selects the sum of the torque reference and the

torque generated from the speed)

Chapter 5Programming Parameters

5ndash38

Local Input Status[Local In Status]

Parameter Number 54Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean input sta-tus conditions for the Velocity ProcessorWhen a bit is set to 1 the correspondinginput signal is true

Local Output Status[Local Out Status]

Parameter Number 55Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean outputstatus conditions for the Velocity Proces-sor When a bit is set to 1 the correspond-ing input signal is true

Value Description 0 Brake Request 1 Drive Enable 2 Motor Overtemp Thermoguard 3 Discrete Stop

Value Description 4 External Fault 5 RMS Fault 6 0 = Parall Inv 7 Single Lang

Value Description 8 Test Diag 9 Inverter Status10 Contactor Verify11 Not Used

Value Description12 Not Used13 Not Used14 Not Used15 Not Used

Value Description 0 Brake Enable 1 Turn On Delay Select 2 Not Used 3 Not Used

Value Description 4 Not Used 5 Not Used 6 Not Used 7 Not Used

Value Description 8 Not Used 9 VP Enable10 Pilot Relay11 Not Used

Value Description12 VP Green LED13 VP Red LED14 Not Used15 Not Used

Logic Status Low[Logic Status Low]

Parameter Number 56Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter is the Low part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Logic Status Hi[Logic Status Hi]

Parameter Number 57Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 11111 1111 Enums

This parameter is the Hi part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Value Description 0 Ready to Run 1 Drive Running 2 Cmd Direction (1=FWD 0=Rev) 3 Rotation Direction (1=FWD 0=Rev)

Value Description 4 Accelerating (1=Accel) 5 Decelerating (1=Decel) 6 Warning 7 Faulted

Value Description 8 At Set Speed 9 Local A10 Local B11 Local C

Value Description12 At Zero Speed13 Reference A14 Reference B15 Reference C

Value Description 0 Flux Ready 1 Flux Up 2 Not Used 3 Not Used

Value Description 4 Bus Ridethru 5 Jogging 6 Not Used 7 Not Used

Value Description 8 At Limit 9 Not Used10 At Setpoint 111 At Setpoint 2

Value Description12 Over Setpoint 113 Over Setpoint 214 Over Setpoint 315 Over Setpoint 4

C B A0 0 0 No Change0 0 1 Ref 10 1 0 Ref 20 1 1 Ref 31 0 0 Ref 41 0 1 Ref 51 1 0 Ref 61 1 1 Ref 7

Chapter 5Programming Parameters

5ndash39

Torque Stop Configuration[Torq Stop Config]

Parameter Number 58Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2Enums

This parameter selects how the drive willreact to a stop command when it occurs ina nonndashspeed mode (ex torque mode)Possible selections are0 = Normal Mode ndash Switch to speed modethen perform a controlled stop1 = Stay in selected torque mode until zerospeed is reached2 = Stay in selected torque mode until zerotorque is reached

At Setpoint 1[At Setpoint 1]

Parameter Number 60Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

At Setpoint 2[At Setpoint 2]

Parameter Number 61Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the At Setpoint 1 bit in Logic Status Hi

This parameter is used to specify the setpoint threshold for the At Setpoint2 bit in Logic Status Hi

Logic Options[Logic Options]

Parameter Number 59Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 0010Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter selects the options for logicoperation of the drive as follows

bit Option 0 Start Type A 1 Start Type B 2 Jog Ramp Enable 3 = 1 Jog Coast

= 0 Regen Stop 4 STOP Input Type A 5 STOP Input Type B 6 Do Power Up Diag 7 Do Flux Up Diag

8 Do Start Diag 9 Not Used 10 Not Used 11 = 1 AC Motor Contactor Present 12 = 1 Bipolar Ref +ref value = Forward Dir

ndash ref value = Reverse Dir= 0 Unipolar Bit 4 of P52 = 1 Forward Direction Bit 5 of P52 = 1 Reverse Direction

Over Setpoint 2[Over Setpoint 2]

Parameter Number 63Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the set-point threshold for the Over Setpoint 2 bitin Logic Status Hi

Over Setpoint 1[Over Setpoint 1]

Parameter Number 62Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default +0Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the Over Setpoint 1bit in Logic Status Hi

Start TypeB A0 0 Maint Start Rgen Stop0 1 Maint Start Coast Stop1 0 Momentary Start1 1 Maint Start Rgen Stop

Stop TypeB A0 0 Coast0 1 Normal (RampndashRegen)1 0 I - Limit1 1 Coast

This parameter has no effect if the drive isalready in speed mode when a stop com-mand occurs Coast stop1 commands arealso unaffected by this parameter

1NOTE Coast indicates that the Inverter power has been disabled but actual rotationalstoppage of the motor is dependent on the friction of the connected load

Chapter 5Programming Parameters

5ndash40

Over Setpoint 3[Over Setpoint 3]

Parameter Number 64Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00 Minimum Value ndash8000Maximum Value +8000

Over Setpoint 4[Over Setpoint 4]

Parameter Number 65Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 setpointFactory Default +00 Minimum Value ndash800Maximum Value +800

This parameter is used to specify the set-point threshold for the Over Setpoint 3 bitin Logic Status Hi

This parameter is used to specify the set-point threshold for the Over Setpoint 4 bitin Logic Status Hi

Current Setpoint Tolerance[Cur Setpoint Tol]

Parameter Number 68Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 IqFactory Default 20Minimum Value 00Maximum Value 200

This parameter establishes a hysteresisband around the Setpoints It will be usedto determine when to update the SetpointBits in Logic Status Hi (P57) when config-ured for commanded current option

Speed Setpoint Tolerance[Speed Setpnt Tol]

Parameter Number 67Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = base speedFactory Default base sp 100Minimum Value 00 rpmMaximum Value base speed 10

This parameter establishes a hysteresisband around the At Setpoints It will beused to determine when to update the Set-point Bits in the Logic Status Hi (P57)when configured for actual speed option

Zero Speed Tolerance[Zero Speed Tol]

Parameter Number 69Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = base speedFactory Default base speed 100Minimum Value 00 rpmMaximum Value 8 x base speed

This parameter establishes a band aroundzero speed that will be used to determinewhen to update the At Zero Speed bit inthe Logic Status Low (P56)

Setpoint Select[Setpoint Select]

Parameter Number 66Parameter Type SinkDisplay Units BitsDrive Units bit clear = speed set = currentFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 1111 1111Enums

This parameter makes a selection betweenactual speed or internal Iq current refer-ence for the AtOver Setpoint parametersEach Setpoint Status bit can be set for ei-ther option ( 0 = Actual Speed 1 = Iq Ref-erence)

Bit 0 = At Setpoint 1Bit 1 = At Setpoint 2Bit 2 = Over Setpoint 1Bit 3 = Over Setpoint 2

Bit 4 = Over Setpoint 3Bit 5 = Over Setpoint 4

Logic Testpoint Data[Logic Tstpt Data]

This parameter contains the logic controltestpoint data that has been selected bythe Logic Tstpt Sel parameter P71

Parameter Number 70Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Chapter 5Programming Parameters

5ndash41

Logic Testpoint Select[Logic Tstpt Sel]

Parameter Number 71Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 30Enums

This parameter selects which internal loca-tion in the logic control software will be-come the testpoint value shown in P70The value based upon the select will bestored in the Logic Tstpnt Data parameterThe internal locations of the logic controlsoftware accessible based on the selectvalue are

Select Value Logic Access Point 0 Zero 1 Logic State 2 Edge Filtered Logic Command 3 Logic Control Word 4 Flux Inhibit Conditions 5 Run Inhibit Conditions 6 Current Processor Command Word 7 Current Processor Status Word 8 Diagnostic Request Flag 9 Requested Torque Mode 10 Contactor Fault Flag 11 Monitor Sample 12 Sys Status 13 Loss of CP Enable Acknowledge 14 Last Stop 15 Stop Event

Select Value Logic Access Point 16 Diagnostic Inhibit bits 17 Common Bus Precharge States 18 Contactor Trip Condition 19 Adapter handshake counter 20 Longest handshake count 21 Stop event ndash LED state 22 Stop event ndash System mode register 23 Stop event ndash Fault stop command 24 Stop event ndash Powerup diagnostic status 25 Stop event ndash Nonconfigurable fault status 26 Stop event ndash Current Processor Config Fault Status 27 Stop event ndash Velocity Processor Config Fault Status 28 Stop event ndash Adapter fault status 29 Stop event ndash Logic Command (parameter 52) 30 Stop event ndash Local Inputs (parameter 54)

Stop Dwell[Stop Dwell]

Parameter Number 72Parameter Type SinkDisplay Units xx secDrive Units Display units x 10Factory Default 00 secMinimum Value 00 secMaximum Value 100 sec

This sets an adjustable dwell time beforethe drive disables speed and torque regu-lators when a stop has occurred

Maximum Dynamic Brake Power[Max DB Power]

Parameter Number 77Parameter Type SinkDisplay Units x WattsDrive Units NoneFactory Default 0 WattsMinimum Value 0 WattsMaximum Value 30000 Watts

Maximum Dynamic Brake Temperature[Max DB Temp]

Parameter Number 78Parameter Type SinkDisplay Units x degDrive Units NoneFactory Default 50 deg Minimum Value 50 deg Maximum Value 700 deg

Dynamic Brake Time Constant[DB Time Const]

Parameter Number 79Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 10 secMinimum Value 10 secMaximum Value 600 sec

This parameter defines the power ratingfor the optional Dynamic Brake resistorThis value is used to calculate the per unitR theta for the resistor

This parameter defines the Maximum Tem-perature Rating for the optional DynamicBrake resistor This value is used to estab-lish setpoints for setting and clearing aBrake Overtemperature fault condition

This parameter defines the thermal timeconstant for the Optional Dynamic Brakeresistor This value is used in the brakeresistor thermal model to predict braketemperature as a function of regenerativepower

NOTE Caution should be usedwhen changing the dwell timefrom the factory settingExtended dwell times may not bedesirable from a safety standpointin some applications

Chapter 5Programming Parameters

5ndash42

PowerupDiagnostic Fault Status[PwrUp Flt Status]

Parameter Number 80Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates a faultcondition which has been detected duringpower up or reset of the drive When a bitis ldquo1rdquo the condition is true otherwise thecondition is false

Bit Condition 0 CP PROM Failure 1 CP Internal RAM Failure 2 CP External RAM Failure 3 CP Stack RAM Failure 4 VP Dualport RAM Failure detected by CP 5 Not Used 6 Not Used 7 Not Used 8 VP EPROM Failure

Bit Condition 9 VP Internal RAM Failure 10 VP External RAM Failure 11 VP Stack RAM Failure 12 CP Dualport RAM Failure detected by VP 13 AP Dualport Ram Failure detected by VP 14 Base Drive EE Failure 15 Reserved Leave Zero

CP Configurable Fault Status[CP Flt Status]

Parameter Number 82Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Current Processor (CP)that has been configured to report as aDrive fault condition Each configurationbit matches the bit definitions of Parameter84 86 and 87 When a bit is ldquo1rdquo thecondition is true otherwise the condition isfalse

Nonndashconfigurable Fault Status[Ncfg Flt Status]

Parameter Number 81Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates fault condi-tions in the drive that Cannot be configuredas warnings When a bit is ldquo1rdquo the condi-tion is true otherwise the condition is falseBits 0 ndash 3 are detected by hardware Bits4ndash15 are detected by software

Bit Condition 0 DC Bus Overvoltage Trip 1 Transistor Desaturation 2 Ground Fault 3 Instantaneous Overcurrent 4 Adapter Comm Loss detected by CP 5 MasterSlave Cable Loss

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts)

Bit Condition 10 Analog Power Supply Tolerance 11 Autocommisioning or Transistor Diagnostic Failure 12 Inverter Temperature Trip 13 Software Malfunction detected by VP 14 Not Used 15 Reserved Leave Zero

Bit Condition 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Fluxup Current lt 50

Bit Condition 6 MasterSlave Enable Timeout 7 Not Used 8 Handshake Timeout VP 9 Absolute Overspeed

VP Configurable Fault Status[VP Flt Status]

Parameter Number 83Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as faultconditions Each configuration bit matchesthe definitions of Parameter 85 88 and 89When a bit is ldquo1rdquo the condition is trueotherwise the condition is false

Bit Condition 0 Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending 4 Motor Overload Trip

Bit Condition 10 Math Limit 11 Dynamic Brake Overtemperature 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Trip (IT)

Bit Condition 5 Motor stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit

Chapter 5Programming Parameters

5ndash43

CP Configurable Warning Status[CP Warn Status]

Parameter Number 84Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

VP Configurable Warning Status (bits)[VP Warn Status]

Parameter Number 85Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the current processor (CP) thathave been configured to report as a DriveWarning condition Each configuration bitmatches the bit definitions of parameters82 86 and 87 When a bit is set to ldquo1rdquo thecorresponding condition in the Drive istrue otherwise it is false

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as aDrive warning condition Each configura-tion bit matches the bit definitions ofparameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition inthe Drive is true otherwise it is false

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit 10 Math Limit

Bit Condition 11 Dynamic Brake Resistor Overtemperature 12 Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Foldback

CP FaultWarning Configuration Select[CP Fault Select]

Parameter Number 86Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0010 0011Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definitions ofparameters 82 84 and 87 When a bit isset to rdquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise it will be reported as a WARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Chapter 5Programming Parameters

5ndash44

CP WarningNone Configuration Select[CP Warn Select]

Parameter Number 87Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definition of Pa-rameter 82 84 and 86 When a bit is set toldquo1rdquo the corresponding condition in theDrive will be reported as a FAULT other-wise the condition is reported as aWARNING

VP FaultWarning Configuration Select[VP Fault Select]

Parameter Number 88Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Velocity Processor (VP)that will be reported as either a driveFAULT or drive WARNING condition Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 89 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise the condition is reported as aWARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts) 3 Bus Undervoltage 4 Bus Drop Cycles 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Reserved Leave Zero

Bit Condition 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Trip (IT)

VP WarningNone Configuration Select[VP Warn Select]

Parameter Number 89Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enum

This parameter determines conditions de-tected by the Velocity Processor (VP) thatwill be reported as either a drive FAULT orWARNING or not reported (ignored) Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 88 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as configured byparameter 88 If the bit is set to ldquo0rdquo thecondition is not reported Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault

Bit Condition 8 Not Used 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Foldback (IT)

Chapter 5Programming Parameters

5ndash45

Absolute Overspeed Threshold[Absolute Overspd]

Parameter Number 90Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = 1000 overspeedFactory Default 01 x base speedMinimum Value 00 rpmMaximum Value base speed

This parameter indicates the incrementalspeed above Forward Speed Limit or be-low Reverse Speed Limit that is allowablebefore an Absolute Overspeed Fault isindicated

Stall Delay[Stall Delay]

Parameter Number 91Parameter Type SinkDisplay Units xx secDrive Units sec x 100Factory Default 10 secMinimum Value 01 secMaximum Value 32767 sec

This parameter specifies the amount oftime that the Drive must be in current limitand at zero speed before a Stall Fault willbe indicated

Motor Overload Limit[Mtr Overload Lim]

Parameter Number 92Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Iq for 60 secFactory Default 2000Minimum Value 1100Maximum Value 4000

This parameter specifies the level of Iq current that will cause a Motor OverloadTrip after 60 seconds

Service Factor[Service Factor]

Parameter Number 94Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100Factory Default 100Minimum Value 100Maximum Value 200

This parameter specifies the minimum lev-el of Iq current that will cause a motor over-load (IIT) trip under continuous operationCurrent levels below this value will neverresult in an overload tripExample ndash a service factor of 115 impliescontinuous operation up to 115 of name-plate motor current

Overload Speed 1[Mtr Overld Spd 1]

Parameter Number 95Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use the MinOverload Lmt (parameter 97) as its mini-mum current trip level

Motor Overload Speed 2[Mtr Overld Spd 2]

Parameter Number 96Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use 100 as itsminimum current trip level

Minimum Overload Limit[Min Overload Lmt]

Parameter Number 97Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 currentFactory Default 1000Minimum Value 00 Maximum Value 1000

This is the minimum motor overload triplevel that will be in effect when the motorspeed is at or below Mtr Overld Spd 2(P96)

Chapter 5Programming Parameters

5ndash46

Fault Testpoint Data [Fault TP]

Parameter Number 98Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This parameter contains the fault controltestpoint data that has been selected bythe Fault TP Sel parameter(P99) See thedescription for the Fault TP Sel parameter99 for a list of possible testpoints

Select Value Velocity Reference Access Point 0 Zero 1 Adapter Processor Faulted 2 Actual Velocity when Overspeed occurred 3 Motor Overload Calibration Constant (K) 4 Heatsink NTC Analog Input Voltage 5 Heatsink NTC Foldback Current Limit 6 Negative Analog Supply andor input voltage 7 Positive Analog Supply andor input Voltage 8 Zero 9 Motor Overload Integrator(I2T) level 10 Dynamic Brake Resistor Temperature Degrees C 11 Parameter Limit Status Word 1 12 Parameter Limit Status Word 2 13 Velocity Reference Math Overflow Status 14 Velocity Feedback Math Overflow Status 15 Velocity Regulator Math Overflow Status 16 Torque Reference Math Overflow Status 17 Process Trim Math Overflow Status

VELOCITY Feedback Error Conditions 18 Acceleration Error 19 Illegal State Edge Samples 20 Illegal State Level 21 Encoder Loss Edge Samples

Fault Testpoint Select[Fault TP Sel]

Parameter Number 99Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 32Enums

This parameter selects which internal loca-tion in the fault control software will be-come the testpoint value The value basedupon the selection will be stored in theFault TP parameter 98 The internal loca-tions of the logic control software that areaccessible based on the selected value arelisted below

Select Value Velocity Ref Access Point 22 Encoder Loss Level 23 Iq Reference in per unit Inverter Units 24 Motor Overload Integrator Output Level (IT) 25 Motor Temperature Degrees C 26 Drive to Drive fault status 27 Base Drive EE fault status 28 Base Drive EE drive type address 29 Base Drive EE drive type data 30 Heatsink Warn Temp deg C 31 Heatsink Trip Temp deg C 32 Zero

Velocity Reference 1 LOW (Fraction)[Vel Ref 1 Low]

Parameter Number 100Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This word supplies the fractional part of theexternal velocity reference 1 when external velocity control has been selectedin Logic Command (P52)

Velocity Reference 1 HI (Whole 32 bit)[Velocity Ref 1 Hi]

Parameter Number 101Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

Velocity Scale Factor 1[Vel Scale Fctr 1]

Parameter Number 102Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 10000 gainFactory Default + 10000Minimum Value ndash 40000Maximum Value + 40000

This word supplies the whole number partof external velocity reference 1 when theexternal velocity control has been selectedin Logic Command (P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 1

Chapter 5Programming Parameters

5ndash47

Velocity Reference 2 LOW (Fraction)[Vel Ref 2 Low]

Parameter Number 103Parameter Type SinkDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference 2 HI (Whole 32 bit)[Vel Ref 2 Hi]

Parameter Number 104Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

Velocity Scale Factor 2[Vel Scale Fctr 2]

Velocity Trim LOW[Vel Trim Low]

Parameter Number 106Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Parameter Number 105Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 1000 gainFactory Default +10000Minimum Value ndash40000Maximum Value +40000

This word supplies the fractional part of theexternal velocity reference 2 when the ex-ternal velocity control has been selected inLogic Command (P52)

This word supplies the whole number refer-ence 2 when the external velocity controlhas been selected in Logic Command(P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 2

This word supplies the fractional numberpart of a 32 bit velocity reference trim

Velocity Trim Hi (32 bit)[Vel Trim Hi]

Parameter Number 107Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This word supplies the whole number partof a 32 bit velocity reference trim

Velocity Reference Testpoint Data LOW[Vel Ref TP Low]

Parameter Number 108Parameter Type SourceDisplay Units xDrive Units 1 = 2 128 Base Motor SpeedFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Testpoint Data HI(32 bit)[Vel Ref TP Hi]

This parameter indicates the LOW of the32 bit value of the internal location selectedby the Vel Ref TP Sel (P110)

Parameter Number 109Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base Speed Maximum Value +8 x Base Speed

This parameter indicates the HI 32 bit value of the internal location selected bythe Vel Ref TP Sel (P110)

Chapter 5Programming Parameters

5ndash48

Parameter Number 110Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 12Enums

This parameter selects which internallocation of the velocity reference will be-come the testpoint value shown in P108and 109 The following are the internallocations based upon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Limit Status (HI) Reference Selection (LOW) 2 Selected Reference (HI LOW) 3 Limited Reference (HI LOW) 4 Direction Selected Ref (HI LOW) 5 Fwd Speed Limit (HI)

Rev Speed Limit (LOW) 6 Ramp Input (HI LOW) 7 Ramp Output (HI LOW) 8 Velocity Trim Sum (HI LOW)

Select Value Velocity Reference Access Point 9 Internal Velocity Trim (HI LOW) 10 Trimmed Velocity Reference (HI LOW) 11 Maximum Frequency Limit (HI) Zero (LOW) 12 Reference after Trim Limit (HI LOW) 13 Deadband In (HI LOW) 14 Encoderless On Freq (Low)

Encoderless Off Freq (High) 15 Encoderless Status (Low) 16 Zero

Velocity Reference Testpoint Select[Vel Ref TP Sel]

Jog Speed 1[Jog Speed 1]

Parameter Number 117Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 1 has been selected inthe Logic Command (P52)

Jog Speed 2[Jog Speed 2]

Parameter Number 118Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 2 has been selected inthe Logic Command (P52)

Preset Speed 1[Preset Speed 1]

Parameter Number 119Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Preset Speed 2[Preset Speed 2]

Parameter Number 120Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 1 has been selectedin Logic Command (P52)

This will be the velocity reference used bythe Drive when preset 2 has been selectedin Logic Command (P52)

Preset Speed 3[Preset Speed 3]

Parameter Number 121Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 3 has been selectedin Logic Command (P52)

Chapter 5Programming Parameters

5ndash49

Preset Speed 4[Preset Speed 4]

Parameter Number 122Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 4 has been selectedin the Logic Command (P52)

Preset Speed 5[Preset Speed 5]

This will be the velocity reference used bythe Drive when preset 5 has been selectedin Logic Command (P52)

Parameter Number 123Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Reverse Motor Speed Limit[Rev Speed Limit]

Parameter Number 127Parameter Type SinkDisplay Units ndash xx rpmDrive Units ndash 4096 Base Motor SpeedFactory Default ndash Base Motor SpeedMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 00 rpm

This parameter sets a limit on velocity inthe negative direction The value enteredmust be Negative or Zero The numericrange of this parameter is 0 to ndash 6 timesbase motor speed

Accel Time[Accel Time]

Parameter Number 125Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the ramp rate timefor the velocity reference ramp Time isseconds from zero to base motor speedZero will disable accel ramp See Param389 amp 390 to set this rate Note This parameter not used with a Standard Adapter Board Equipped Drive

Decel Time[Decel Time]

Parameter Number 126Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the decelerationramp time Similar to the parameterabove zero will disable the decel rampSee param 391 amp 392 to set this rateNote This parameter not used with a Standard Adapter Board Equipped Drive

Forward Motor Speed Limit[Fwd Speed Limit]

Parameter Number 128Parameter Type SinkDisplay Units xx rpmDrive Units + 4096 Base Motor SpeedFactory Default Base Motor SpeedMinimum Value + 00 rpmMaximum Value 8 x Base Motor Speed

This parameter sets a limit on velocity inthe positive direction The value enteredmust be Positive or Zero The numericrange of this parameter is +6 x base speedrpm

Maximum Reverse Speed Trim[Max Rev Spd Trim]

Parameter Number 129Parameter Type SinkDisplay Units +ndash xx rpmDrive Units ndash4096 = Base Motor SpeedFactory Default ndash Base SpeedMinimum Value ndash 6 x Base SpeedMaximum Value + 6 x Base Speed

This parameter limits the minimum value ofthe velocity reference after the process trimoutput and the external velocity trim hasbeen added

Chapter 5Programming Parameters

5ndash50

Maximum Forward Speed Trim[Max Fwd Spd Trim]

Parameter Number 130Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + Base SpeedMinimum Value + 00 rpmMaximum Value + 6 x Base Speed

This parameter limits the maximum valueof the velocity reference after the processtrim

Droop Percent[Droop Percent]

Parameter Number 131Parameter Type SinkDisplay Units xxDrive Units Display units x 10Factory Default 0Minimum Value 0Maximum Value 255

This parameter specifies the percent ofbase speed that the velocity reference willbe reduced when at full load torque Thisfeature can be used to cause motor veloc-ity to droop with an increase in load

Velocity Reference Output LOW[Vel Ref Out Low]

Parameter Number 132Parameter Type SourceDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Output HI (32 bit)[Vel Ref Out High]

Parameter Number 133Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This is the low word portion of a 32 bit velocity reference quantity It is the inputterm for the Velocity PI Regulator

This is the high word portion of a 32 bit ve-locity reference quantity It is the inputterm for the Velocity PI Regulator

Velocity Regulator Output[Vel Reg Output]

Parameter Number 134Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = 1000 Iq motorFactory Default + 00 Minimum Value ndash 3000Maximum Value +3000

This parameter represents the torque refer-ence value that appears at the output ofthe Velocity PI Regulator It is the input tothe torque mode selector and is used asthe driversquos torque reference value when intorque mode 1

Velocity Regulator Testpoint DataLOW[Vel Reg TP Low]

Parameter Number 135Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Regulator Testpoint Data HI(32 bit)[Vel Reg TP Hi]

Parameter Number 136Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter indicates the value of theinternal location selected by the VelocityRegulator Testpoint Select parameterP137 The select allows this parameter tobe used as a testpoint for the velocity regulator

This parameter indicates the value of theinternal location selected by the Vel RegTP Sel parameter P137 The select allowsthis parameter to be used as a testpoint forthe velocityregulator

Chapter 5Programming Parameters

5ndash51

Velocity Regulator Testpoint Select[Vel Reg TP Sel]

Velocity Error [Velocity Error]

Parameter Number 138Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Speed rpmMaximum Value +8 x Base Speed rpm

Parameter Number 137Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 15

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in Vel Reg TPLow P135 amp Vel Reg TP Hi P136 The fol-lowing are the internal locations basedupon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Droop Speed Offset (32bit) 2 Drooped Velocity Reference (32 bit) 3 Kf Term (Low) Kf Err (High) 4 Kf Error Filter Output 1 (Low) Kf Error Filter Output 2 (High) 5 Kp Term (32 bit) 6 Or ndash 1st 16 bit (Low) 2nd 16 bit (High) 7 Or ndash 3rd 16 bit (Low) 4th 16 bit (High) 8 Of ndash 1st 16 bit (Low) 2nd 16 bit (High) 9 Of ndash 3rd 16 bit (Low) 4th 16 bit (High) 10 Oe ndash 1st 16 bit (Low) 2nd 16 bit (High) 11 Oe ndash 3rd 16 bit (Low) Not Used (High) 12 Oec1 ndash 1st 16 bit (Low) 2nd 16 bit (High) 13 Oec1 ndash 3rd 16 bit (Low) 4th 16 bit (High) 14 Ki Term (32 bit) 15 Logic Control Word (LOW) Integrator Enable Flag (HIGH)

This parameter contains a value that is thedifference between the whole number por-tion of the velocity regulatorrsquos referenceinput and the velocity feedback

KI ndash Velocity Loop[Ki ndash Velocity Loop]

Parameter Number 139Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 320Minimum Value 00Maximum Value 40960

KP ndash Velocity Loop[Kp ndash Velocity Loop]

Parameter Number 140Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 80Minimum Value 00Maximum Value 2000

This parameter controls the integral errorgain of the velocity regulator Gain has aresolution of 18 therefore a Ki gain of 10is converted to internal drive units as a val-ue of 8

This parameter controls the proportionalerror gain of the velocity regulator Gainhas a resolution of 18 therefore a gain of10 is converted to internal drive units as avalue of 8

KF ndash Velocity Loop[Kf ndash Velocity Loop]

Parameter Number 141Parameter Type SinkDisplay Units xxxDrive Units Display units x 65535Factory Default 100Minimum Value 050Maximum Value 100

This parameter controls the feed forwardgain of the velocity regulator Setting theKf gain to less than one reduces velocityfeedback overshoot in response to a stepchange in velocity reference

KF Error Filter Bandwidth[Error Filter BW]

Parameter Number 142Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 500 RadianSecondsMinimum Value 0Maximum Value 1500 RadianSeconds

This parameter sets the bandwidths of twocascaded low pass filters in the Kf errorpath of the Velocity PI Regulator Band-width is entered in units of radians per second

Chapter 5Programming Parameters

5ndash52

Velocity Feedback Testpoint Data LOW[Vel Fdbk TP Low)

Parameter Number 143Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0uMinimum Value 0uMaximum Value 65535u

Parameter Number 144Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Velocity Feedback Testpoint Data HI(32 bit)[Vel Fdbk TP Hi]

This parameter contains the LOW part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter P145

This parameter contains the HIGH part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parame-ter P145

Velocity Feedback Testpoint Select[Vel Fdbk TP Sel]

Parameter Number 145Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 16Enums

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in P143 amp P144The value based upon the select will bestored in the Vel Fdbk TP Low amp Vel FdbkTP Hi parameter

Select Value Feedback Access Point 0 Zero 1 Encoder Velocity edge (Hi) Diff (Low) 2 Selected Velocity (Low) Difference Velocity (High) 3 2 msec Scan Interval (Low) Zero (High) 4 Edge Pulse Count (Low) Zero (High) 5 Acceleration (Low) Acceleration Error (High) 6 Edges Moved Count (Low) Zero (High) 7 Delta Theta (32 bit) 8 Count Direction (Low) Status Bits (High) 9 Edge to Edge Time (Low) Zero (High) 10 Equal Area Intervals (Low) Zero (High) 11 Empty Intervals (Low) Zero (High) 12 Active Feedback Device 13 Limit Status (Low) Zero (High) 14 Qf ndash 1st 16 bit (Low) 2nd 16 bit (High) 15 Qf ndash 3rd 16 bit (Low) Not Used (High) 16 Zero

Velocity Feedback[Vel Feedback]

Parameter Number 146Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 8 x Base Motor Speed

This parameter indicates the latestmeasured motor velocity information froma feedback device (Tach encoder etc)The value is taken at the output of the selectable feedback filters

Scaled Velocity Feedback[Scaled Vel Fdbk]

Parameter Number 147Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter is a rescaled version of ve-locity feedback from parameter 146 Theinverse of either Velocity Scale Factor 1 or2 is used

Chapter 5Programming Parameters

5ndash53

Feedback Device Type[Fdbk Device Type]

Parameter Number 150Parameter Type SinkDisplay Units xDrive Units NoneFactory Default EncoderMinimum Value 0Maximum Value 7

This parameter selects the source for motor velocity feedback0 ndash Encoder Feedback1 ndash Encoder Feedback2 ndash Encoder Feedback wtracker filter3 ndash Motor Simulator4 ndash External Feedback5 ndash Encoderless velocity estimate with deadband6 ndash Encoderless velocity estimate without deadband7 ndash Encoderless without deadband and low bandwidth

Feedback Tracker Gain[Fdbk Track Gain]

Parameter Number 151Parameter Type SinkDisplay Units xxxxDrive Units 1024 1000 gainFactory Default 1000Minimum Value 0043Maximum Value 1000

Affects gain of the alphandashbeta tracker filterused when Fdbk Device Type = 2Smaller gains result in increased filteringTypical Value = 015 to 07Use 10 to disable

Feedback Filter Select[Fdbk Filt Sel]

Parameter Number 152Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 4

0 = No Filter1 = ldquolightrdquo 3549 radian feedback filter2 = ldquoheavyrdquo 2040 radian feedback filter3 = Single pole Lead Lag feedback filter4 = Notch

Encoder Position Feedback LOW[Enc Pos Fdbk Low]

Parameter Number 148Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the LOW word portion of a 32 bitencoder pulse accumulator Each encoderquadrature edge will be counted resultingin a 4X multiplication As a result this pa-rameter will be scaled such that the posi-tion change per motor revolution is equal to4 times the encoder PPR

Encoder Position Feedback HI[Enc Pos Fdbk HI]

Parameter Number 149Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the HI word portion of a 32 bit en-coder pulse accumulator that was de-scribed for the previous parameter Thisword will change by 1 count for everychange in low count of 65536 4X encoderpulses

Kn ndash Feedback Filter Gain[Fdbk Filt Gain]

Parameter Number 153Parameter Type SinkDisplay Units plusmnxxxDrive Units 256 = 100 gainFactory Default + 100Minimum Value ndash 500Maximum Value +500

Wn ndash Feedback Filter Bandwidth[Fdbk Filt BW]

Parameter Number 154Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 100 RadianSecondsMinimum Value 1 RadianSecondsMaximum Value 900 RadianSeconds

This is the Kn term of the single pole leadlag feedback filter Kn greater than 10 willproduce a lead filter and less than 10 alag filter Kn equal to 10 will disable thefeedback filter

This parameter establishes the breakpointradian frequency for the velocity feedbacklead-lag filter

Chapter 5Programming Parameters

5ndash54

Tach Velocity[Tach Velocity]

Parameter Number 155Parameter Type SinkDisplay Units +ndash xxx rpmDrive Units 4096 = Base Motor SpeedFactory Default 0000 rpmMinimum Value ndash 8 x base speedMaximum Value + 8 x base speed

This word supplies a motor velocity feed-back signal when a source other than anencoder is used This input will typically belinked to an analog input parameter fromthe adapter board

Notch Filter Frequency[Notch Filt Freq]

Parameter Number 156Parameter Type SinkDisplay Units xx HzDrive Units 8 = 10HzFactory Default 135 HzMinimum Value 5 HzMaximum Value 135 Hz

Notch Filter Q[Notch Filter Q]

Parameter Number 157Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 50Minimum Value 2Maximum Value 500

External Iq Reference[External Iq Ref]

Parameter Number 161Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 Iq motorFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

External Torque Reference 1[External Torque Ref 1]

Parameter Number 162Parameter Type SinkDisplay Units xDrive Units NoneFactory Default + 00Minimum Value ndash 800Maximum Value + 800

Slave Torque Percent 1[Slave Torque 1]

Parameter Number 163Parameter Type SinkDisplay Units +ndash xxxDrive Units 4096 = 10 gainFactory Default + 100Minimum Value ndash 200Maximum Value + 200

This parameter supplies an external Iq ref-erence to the Drive The external Iq refer-ence is summed with the internal Iq refer-ence just prior to the current limiter

This word supplies an external motortorque reference to the Drive The externaltorque reference can be selected by settingthe Torque Mode Select parameter (Parm53) to a value of ldquo2rdquo

Ext Torq Ref 1 (P162) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

This parameter sets the center frequencyfor an optional 2ndashpole notch filter The-notch filter is enabled by selecting a valueof lsquo4rsquo in parameter 152

This parameter sets the Quality Factor orQ for the 2ndashpole notch filter described inparameter 156

External Torque Reference 2[Ext Torq Ref 2]

Parameter Number 164Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This word supplies an external motortorque reference to the Drive The Exter-nal Torque Reference can be selected bysetting the Torque Mode Select parameter(Parm 53) to a value of ldquo2rdquo

Slave Torque Percent 2[Slave Torque 2]

Parameter Number 165Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 10 gainFactory Default +100Minimum Value ndash 2000Maximum Value + 2000

Ext Torq Ref 2 (P164) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

Chapter 5Programming Parameters

5ndash55

External Torque Step[Ext Torque Step]

Parameter Number 166Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 00Minimum Value ndash 8000Maximum Value + 8000

This parameter supplies an external torqueoffset to the Drive The Ext Torque Step issummed with the Torque Mode Sel (P53)output prior to the Torque Limiter

Internal Torque Reference[Int Torque Ref]

Parameter Number 167Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash8000Maximum Value +8000

This parameter shows the value of torquereference that is present at the output ofthe torque limiter

Internal Iq Reference[Internal Iq Ref]

Parameter Number 168Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash 8000Maximum Value + 8000

This parameter shows the value of the Iqreference that is present at the output ofthe Iq rate limiter 4096 is 100 Iq motorcurrent

Torque Reference Testpoint Data[Torque Ref TP]

Parameter Number 172Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 (10 pu)Factory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter indicates the value of theinternal location selected by the Torq RefTP Sel parameter P173 The select willallow this parameter to be used as a test-point for the torquereference input

Torque Reference Testpoint Select[Torq Ref TP Sel]

Parameter Number 173Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 31Enums

This parameter selects which internal loca-tion of the torque reference will become thetestpoint value The value based on theselect will be stored in the Torque Ref TP(P172)

Select Value Torque Reference Access Point Select Value Torque Reference Access Point 0 Zero 17 Torque Reference Status 1 NTC Limit 18 Torque Reference Math Overflow Status 2 Inverter Current Limit 19 Active Torque Mode 3 Overload Current Limit 20 Positive Torque Power Limit 4 Positive IQ Limit 21 Negative Torque Power Limit 5 Negative Iq Limit 22 Rated Inverter Current 6 Zero (Not Used) 23 Averaged Motor Flux 7 Torque Limit (Low) 24 lq Current Reference Adjusted for Motor Range 8 Torque Limit (High) 25 lq Sum 9 Scaled External Torque Reference 1 26 Torque Mode Select lq Ref 10 Scaled External Torque Reference 2 27 Inverter Gain 11 Torque Sum 28 Motor Range 12 Torque Command 29 Motor to Inverter Current Ratio 13 Filtered Torque Reference 30 DC Bus Ride-Thru Latch 14 Unlimited Iq Reference 31 Current Processor Regulation Active Flag 15 Current Limited Iq Reference 16 Filtered Iq Reference

Chapter 5Programming Parameters

5ndash56

Minimum Flux Level[Min Flux Level]

Parameter Number 174Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 FluxFactory Default 1000Minimum Value 125Maximum Value 1000

This parameter sets the smallest level offlux that will be used to convert a torque toa current reference Setting the parameterto 4096 will prevent flux reduction and by-pass the torque to current conversion

Pos Torque Reference Limit[Pos Mtr Tor Lmt]

Parameter Number 175Parameter Type SinkDisplay Units xxDrive Units 4096 rated motor torqueFactory Default 2000Minimum Value 00Maximum Value 8000

This parameter provides a user settabletorque limit for positive torque referencevalues Positive motor torque referencewill not be allowed to exceed this value

Neg Torque Reference Limit[Neg Mtr Tor Lmt]

Parameter Number 176Parameter Type SinkDisplay Units ndash xxDrive Units ndash 4096 rated motor torqueFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

Motoring Power Limit[Motoring Power Lmt]

Parameter Number 177Parameter Type SinkDisplay Units xxDrive Units 4096 rated motoring powerFactory Default 2000Minimum Value 00 Maximum Value 8000

This parameter provides for a user entry ofthe maximum power level that will be sup-plied to the motor from the DC bus Themotoring power limit is used in a calcula-tion that results in an internal torque limit

This parameter provides a user settabletorque limit for negative torque referencevalues Negative motor torque referencewill not be allowed to exceed this value

Regen Power Limit[Regen Power Lmt]

Parameter Number 178Parameter Type SinkDisplay Units ndash xxDrive Units 4096 rated regen powerFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

This parameter provides a user entry forthe maximum power level that will be transferred from the motor to the DC bus

Positive Motor Current Reference Limit[Pos Mtr Cur Lmt]

Parameter Number 179Parameter Type SinkDisplay Units xx Drive Units 4096 100 Motor Current (I2)Factory Default 1000Minimum Value 00 Maximum Value 2000

Negative Motor Current ReferenceLimit[Neg Mtr Cur Lmt]

Parameter Number 180Parameter Type SinkDisplay Units ndash xx Drive Units 4096 100 Motor Current (I2)Factory Default ndash 1000Minimum Value ndash 2000Maximum Value + 00

This parameter specifies the largest allow-able positive motor Iq axis current that willbe commanded Bit 0 in Parm 183 indi-cates when this parameter is activelyrestricting Iq current

This parameter determines the largestallowable negative motor Iq axis currentthat will be commanded Bit 8 in Parm 183indicates when this parameter is activelyrestricting Iq current

Chapter 5Programming Parameters

5ndash57

DiDT Limit[DiDt Limit]This parameter determines the largest al-lowable rate of change for the Iq referencesignal This number is scaled in units ofmaximum per unit Iq every 2 msec

Parameter Number 181Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Iq per 2msecFactory Default 200Minimum Value 00Maximum Value 300

Torque Limit Status[Torq Lmt Stat]

Parameter Number 183Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded sum-mary of any condition that may be limitingeither the IQ current or torque reference

0 = Positive Motor IQ Limit1 = Positive NTC Inverter Foldback2 = Positive IT Inverter Foldback3 = Positive Maximum Inverter Current4 = Positive Torque Limit5 = Positive Torque Power Limit6 = Positive Autotune Torque7 = Not Used8 = Negative Motor Iq Limit

9 = Negative NTC Inverter Protection Foldback10 = Negative IT Inverter Protection Foldback11 = Negative Maximum Inverter Current12 = Negative Torque Limit13 = Negative Torque Power Limit14 = Negative Autotune Torque Limit15 = Reserved Leave Zero

Computed Power[Computed Power]Calculated product of Torque Referencetime motor velocity feedback A 125 msecfilter is applied to this result Positive values indicate motoring power negative regenerative power

Parameter Number 182Parameter Type SourceDisplay Units +ndashxxDrive Units 4096 1000 powerFactory Default +00Minimum Value ndash8000Maximum Value +8000

Torque Mode Status[Torq Mode Stat]

Parameter Number 184Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded indica-tion of the currently active torque mode Ifthe drive is running this parameter reflectsthe Torque Mode selected in Torque ModeSel (P 53) If the drive is coasting orstopped this parameter will indicate the ac-tive torque mode is zero If in min or maxmode then the corresponding minmax bitwill be set along with the appropriate speedor torque mode bit as determined by theoutcome of the minmax selectorBits are defined as

Bit 0 ndash Zero Torque (Iq = 0)Bit 1 ndash Speed ModeBit 2 ndash Torque ModeBit 3 ndash Minimum SpeedTorqueBit 4 ndash Maximum SpeedTorqueBit 5 ndash Sum Speed + TorqueBit 6 to Bit 15 ndash Reserved Leave Zero

Perunit Motor Current[Motor Cur Fdbk]

Parameter Number 185Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 motor currentFactory Default 00Minimum Value 00Maximum Value 8000

Displays the perunit value of motor currentas determined from the LEM current sen-sors This data is scaled to read 10 pu atrated motor current This is a version ofparameter 264 that has been scaled to becompatible with analog outputs This datais averaged and updated on a 50 millisec-ond basis

Chapter 5Programming Parameters

5ndash58

Perunit Motor Voltage[Motor Volt Fdbk]Displays the perunit value of motor voltageas determined from an analogndashtondashdigitalconverter input This data is scaled to read10 pu at rated motor voltage This is aversion of parameter 265 that has beenscaled to perunit to be compatible withanalog outputs This data is averaged andupdated on a 50 millisecond basis

Parameter Number 186Parameter Type SourceDisplay Units xxDrive Units 4096 = 1000 motor voltageFactory Default 00Minimum Value 00Maximum Value 8000

Rated Inverter Output Amps[Base Drive Curr]

Parameter Number 220Parameter Type SourceDisplay Units xx ampsDrive Units Display units x 10Factory Default 200 ampsMinimum Value 01 ampsMaximum Value 32767 amps

Current rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type Used forcurrent ref scaling and current processorfeedback scaling

Rated Inverter Input Voltage[Base Line Volt]

Parameter Number 221Parameter Type SourceDisplay Units x voltDrive Units NonFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Drive Nameplate Voltage rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type

Inverter Carrier Frequency[PWM Frequency]

Parameter Number 222Parameter Type SinkDisplay Units x HzDrive Units NoneFactory Default 4000 HzMinimum Value 1000 HzMaximum Value 12000 Hz

This parameter defines the drive carrierfrequency in Hz

Chapter 5Programming Parameters

5ndash59

PrechargeRidethru Selection[PrechRdethru Sel]

Parameter Number 223Filegroup ApplicationBus RegControlParameter Type linkable destinationDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111 Conversion 1 = 1

Parameter 223 lets you choose options forthe bus filter reference prechargeride-through conditions and brakingUse bits 0 through 4 to set the slew rate forthe bus voltage tracker The bus voltagetracker slowly tracks changes in the actualbus voltage If none of the bits (0 through4) are set the slew rate is 005Vsecond

The precharge function of the drive limitsthe current to the bus capacitors whenpower is initially applied to the drive Theprecharge function is completed after aminimum 300 millisecond time delay andbus voltage at least 30 volts greater thanthe undervoltage setpoint and a stable busvoltage Ridethrough provides extendedlogic operating time if the power lines dropout while the drive is running If the pre-charge function is enabled ridethroughalso provides inrush current protection bystarting a precharge in case the incomingpower returns

The bits are defined as follows

Bit Description0 Slew Rate 1

Set to choose a slew rate of 10Vsecond Bit1 Slew Rate 2

Set to choose a slew rate of 5Vsecond2 Slew Rate 3

Set to choose a slew rate of 05Vsecond3 Slew Rate 4

Set to choose a slew rate of 005Vsecond4 Slew Rate 5

Set to choose a slew rate of 0005Vsecond5 Reserved

Leave 0

Undervoltage Setpoint[Under Volt Stpnt]

Parameter Number 224Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 615Minimum Value 100Maximum Value 900

Bus Precharge Timeout[Prechrg Timeout]

Parameter Number 225Parameter Type SinkDisplay Units xx SecDrive Units Display units x 10Factory Default 300 SecMinimum Value 100 SecMaximum Value 65535 Sec

This sets the minimum threshold voltageas a percent of line voltage that will becompared with the DC Bus Voltage as acheck for a Bus Undervoltage condition

This parameter establishes a time delayperiod for DC Bus Precharge If the Drivefails to finish a DC Bus Precharge in thistime a Precharge Timeout will occur

Bus Ridethru Timeout[Ridethru Timeout]

Parameter Number 226Parameter Type SinkDisplay Units xxxx SecDrive Units Display units x 1000Factory Default 2000 SecMinimum Value 0000 SecMaximum Value 65535 Sec

This parameter establishes a time delayperiod for DC Bus Ridethrough If the busremains in a low bus ridethru conditionlonger than this time a Bus ridethru timeout condition will occur

For additional information about PrechargeRidethrough Selectionrefer to Chapter 12 Troubleshooting

Bit Description6 Reserved

Leave 07 Reserved

Leave 08 Fast Fluxup

Set to enable fast flux up9 Reserved

Leave 010 Reserved

Leave 011 Prech Exit

Set to force an exit from precharge after the precharge timeout12 En Comm Bus

Set to enable common bus precharge External fault input is used as precharge enable

13 Dis Prech TmSet to disable bus precharge and undervoltage faults while the drive is disabled

14 Dis Mult PreSet to disable all precharges after the first power up

15 Dis RidethruSet to disable all ridethroughs

Chapter 5Programming Parameters

5ndash60

CP Operating Options[CP Options]

Parameter Number 227Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 0000

For proper operation bits 0 to 6 must beleft at zeroIf bit 7 = 0 this allows the motor to coast toa stop after the flux test is completedIf bit 7 = 1 this brings the motor to a con-trolled stop after the flux test is completed

Parameter Number 228Parameter Type SinkDisplay Units xx HPDrive Units Display units x 10Factory Default 300 HPMinimum Value 10 HPMaximum Value HP

Base Motor Speed[Base Motor Speed]

Motor Nameplate Horsepower[Base Motor HP]

Parameter Number 229Parameter Type SinkDisplay Units x RPMDrive Units xFactory Default 1750 RPMMinimum Value 1 RPMMaximum Value 15000 RPM

Motor Nameplate AMPS[Base Motor Curr]

Parameter Number 230Parameter Type SinkDisplay Units xx ampsDrive Units Display units x 10Factory Default 02 ampsMinimum Value 01 ampsMaximum Value Based on parameter 220

Drive nameplate current rating of themotor Used for current reference scalingand current processor feedback scaling

User entered value of nameplate motorhorsepower The drive uses this informa-tion in the Dynamic Brake Resistortemperature calculation

User entered value of nameplate motorspeed in RPM The drive uses thisinformation to convert motor velocity RPMtofrom drive per unit

Motor Nameplate VOLTS[Base Motor Volt]

Parameter Number 231Parameter Type SinkDisplay Units x VoltDrive Units NoneFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Motor Nameplate Frequency[Base Motor Freq]

Parameter Number 232Parameter Type SinkDisplay Units xx HzDrive Units display units x 10Factory Default 60 HzMinimum Value 1 HzMaximum Value 250 Hz

Drive nameplate voltage rating of themotor

Total number of motor poles in motor

Motor Nameplate Poles[Motor Poles]

Parameter Number 233Parameter Type SinkDisplay Units x polesDrive Units NoneFactory Default 4 polesMinimum Value 2 polesMaximum Value 40 poles

Motor Inertia[Motor Inertia]

Parameter Number 234Parameter Type SinkDisplay Units xxx SecDrive Units Display units x 100Factory Default 060 SecMinimum Value 001 SecMaximum Value 655 Sec

Time taken to acceleratean uncoupled motor from zero to basespeed at rated torque

Drive nameplate frequency rating of themotor

Chapter 5Programming Parameters

5ndash61

Encoder PPR[Encoder PPR]

Parameter Number 235Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024 pprMinimum Value 500 pprMaximum Value 20000 ppr

User entered pulse per revolution rating ofthe feedback device when using anencoder to determine motor velocity

RS Tune[Stator Res]

Parameter Number 236Parameter Type SinkDisplay Units xxx Drive Units 4096 = 10000 Stator ResFactory Default 150Minimum Value 000Maximum Value 10000

Lsigma Tune [Leakage Inductance][Leakage Ind]

Parameter Number 237Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Leakage IndFactory Default 1800Minimum Value 000Maximum Value 10000

Id Tune [Base Flux Current][Base Flux Cur]

Parameter Number 238Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 motor ampsFactory Default 300Minimum Value 00Maximum Value 750

Sum of the stator and cable resistances ofthe motor in a per unit (percent representa-tion) This parameter is determined by theautocommissioning routine

Sum of the motor stator and rotor leakageinductances and the motor cable induc-tance in a per unit base impedance Thisparameter is determined by the autocom-missioning routine

Magnetizing current which produces ratedflux in the motor in a per unit (percent)representation This parameter is deter-mined by the autocommissioning routinebut can be entered manually

Iq Tune (Rated Torque Current)[Base Torque Cur]

Parameter Number 240Parameter Type SinkDisplay Units xxxDrive Units 1024 = 10000 Iq MotorFactory Default 9540 Minimum Value 000Maximum Value 10000

Current which produces rated torque in themotor in a per unit (percent) representa-tion This parameter is determined by theautocommissioning routine but can be en-tered manually

Vde Tune (Base Torque Voltage)[Base Torque Volt]

Parameter Number 241Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default ndash750 voltsMinimum Value ndash4680 voltsMaximum Value 00 volts

D axis voltage command to the motor atrated speed and rated current Parametercalculated by autocommissioning routineand MUST NOT BE CHANGED Datarepresented as XX volts

Vde Maximum (Peak HP)[Vde Max]

Parameter Number 243Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt line to neutral peakFactory Default 1125 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Maximum D axis voltage allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as XXvolts

Vqe Tune (Rated Flux Voltage)[Base Flux Volt]

Parameter Number 242Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Q axis voltage command to the motor atrated speed and rated current if motor isnot in field weakening Parameter calcu-lated by autocommissioning routine andMUST NOT BE CHANGED Data repre-sented as XX volts

Chapter 5Programming Parameters

5ndash62

Vqe Maximum (Constant HP)[Vqe Max]

Parameter Number 244Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4688 volts

Vde Minimum (Constant HP)[Vde Min]

Parameter Number 245Parameter Type SinkDisplay Units xx VoltsDrive Units 16 = 1 volt line to neutral peakFactory Default 30 voltsMinimum Value 00 voltsMaximum Value 500 volts

Kslip (Base Slip Frequency)[Base Slip Freq]

Parameter Number 246Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 0832 HzMinimum Value 0000 HzMaximum Value 10000 Hz

Q axis voltage at which the motor entersfield weakening Parameter calculated byautocommissioning routine and MUSTNOT BE CHANGED Data represented asxx volts

D axis voltage below which the adaption tomotor changes in the torque control is dis-abled Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx volts

Base slip frequency of the motor Parameter calculated by autocommission-ing routine Data represented as xx Hz

Kslip Maximum [Base Slip Fr Max]

Parameter Number 247Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 200 HzMinimum Value 000 HzMaximum Value 3000 Hz

Maximum slip frequency allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx Hz

Kslip Minimum[Base Slip Fr Min]

Parameter Number 248Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hz unit torqueFactory Default 050 HzMinimum Value 000 HzMaximum Value 1000 Hz

Minimum slip frequency allowed on themotor Calculated by autocommissioningroutine and MUST NOT BE CHANGEDData represented as xx Hz

Ki ndash Slip Regulator [Ki Slip]

Kp ndash Flux Regulator[Kp Flux]

Kp ndash Slip Regulator [Kp Slip]

Parameter Number 251Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Parameter Number 250Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 306Minimum Value 0Maximum Value 32767

Parameter Number 249Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 153Minimum Value 0Maximum Value 32767

Proportional Gain of the slip regulatorThis parameter MUST NOT BECHANGEDData represented as x

Integral Gain of the slip regulator Thisparameter MUST NOT BE CHANGEDData represented as x

Proportional Gain of the Flux regulatorThis parameter MUST NOT BECHANGEDData represented as x

Chapter 5Programming Parameters

5ndash63

Ki ndash Regulator[Ki Flux]

Parameter Number 252Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 125Minimum Value 0Maximum Value 32767

Integral gain of the slip regulator This pa-rameter MUST NOT BE CHANGEDData represented as x

AutotuneDiagnostics Selection[Autotun Diag Sel]

Parameter Number 256Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 1111 1111Enums

This parameter allows selection of drivediagnostic and commisioning tests by set-ting individual bits in this parameter

Bit 0 = Inverter transistor DiagnosticsBit 1 = Motor Phase Rotation TestBit 2 = Lsigma Measure TestBit 3 = Rs Measure TestBit 4 = Id Measure TestBit 5 = Torque Block Calc TestBit 6 = Motor Inertia TestBit 7 = System Inertia TestBit 8 = Velocity Loop Gain

Transistor Diagnostics Configuration[Tran Diag Disabl]

Parameter Number 257Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a means of disab-ling certain transistor diagnostic tests bysetting the following bits

Bit 9 = Disable Power Trans V Lower for all testsBit 10 = Disable Power Trans W Upper for all testsBit 11 = Disable Power Trans W Lower for all testsBit 12 = High InductBit 13 = Reserved (Always leave 0)Bit 14 = Reserved (Always leave 0)Bit 15 = Reserved (Always leave 0)High Inductance motors may need extended test time to de-termine opens Setting bit 12 increases the test time

Inverter Diagnostics Result 1[Inverter Diag 1]

Parameter Number 258Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameter 258 amp259

Bit 0 = Software FaultBit 1 = No motor connected or open bus fuse Bit 2 = Phase U and W ShortedBit 3 = Phase U and V shortedBit 4 = Phase V and W shortedBit 5 = Shorted modulesBit 6 = Ground faultBit 7 = Fault before shorted module ranBit 8 = Hardware overvoltage fault occurred

Bit 9 = Hardware desaturation fault occurredBit 10 = Hardware ground fault occurredBit 11 = Hardware phase overcurrent fault occurredBit 12 = Open power transistor(s) See bit 12 in parameter 257Bit 13 = Current feedback fault(s)Bit 14 = Reserved Leave ZeroBit 15 = Reserved Leave Zero

Bit 0 = Disable I feedback phase U offsetBit 1 = Disable I feedback phase W offsetBit 2 = Disable Shorted Transistor TestsBit 3 = Disable Ground Fault TestsBit 4 = Disable Open device testsBit 5 = Not UsedBit 6 = Disable Power Trans U Upper for all testsBit 7 = Disable Power Trans U Lower for all testsBit 8 = Disable Power Trans V Upper for all tests

Chapter 5Programming Parameters

5ndash64

Inverter Diagnostics Result 2[Inverter Diag 2]

Parameter Number 259Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameters 258 amp 259If any of the bits shown below are set thena problem with the associated test isindicated

0 = Transistor U upper shorted 1 = Transistor U lower shorted2 = Transistor V upper shorted3 = Transistor V lower shorted4 = Transistor W upper shorted5 = Transistor W lower shorted

6 = Current fdbk ph U offset too big7 = Current fdbk ph W offset too big8 = Transistor U upper open9 = Transistor U lower open10 = Transistor V upper openSee Parameter 257 bit 12

11 = Transistor V lower open12 = Transistor W upper open13 = Transistor W lower open14 = Current feedback phase U open15 = Current feedback phase W open

Id OFFSET[Id Offset]

Parameter Number 261Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Parameter Number 260Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Iq OFFSET[Iq Offset]

This parameter contains the LEM U offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

This parameter contains the LEM W offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

Phase Rotation Current Reference[Ph Rot Curr Ref]

Parameter Number 262Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Motor CurrentFactory Default 500Minimum Value 00Maximum Value 1000

This parameter sets the current referencethat will be used when the Phase Rotationtest is run (Parm 256 bit 1)

Phase Rotation Frequency Reference[Phase Rot Freq Ref]

Parameter Number 263Parameter Type SinkDisplay Units xx HzDrive Units 128 1 HzFactory Default 30 HzMinimum Value ndash 300 HzMaximum Value +300 Hz

This parameter sets the frequency refer-ence that will be used when the PhaseRotation test is run (Parm 256 bit 1)

Motor Current Magnitude Feedback[Motor Cur Fdbk]

Parameter Number 264Parameter Type SourceDisplay Units xx AmpDrive Units Display units x 10Factory Default 00 ampsMinimum Value 00 ampsMaximum Value 65535 amps

Displays the actual RMS value of the motorcurrent as determined from the LEM cur-rent sensors This data is averaged andupdated on a 50 millisecond basis

Motor Voltage Magnitude[Motor Volt Fdbk]

Parameter Number 265Parameter Type SourceDisplay Units x VoltDrive Units NoneFactory Default + 0 VoltMinimum Value ndash 3000 VoltMaximum Value +3000 Volt

Displays the actual LinendashtondashLine RMS val-ue of motor voltage This data is averagedand updated on a 50 millisecondbasis

Chapter 5Programming Parameters

5ndash65

Stator Frequency[Freq Command]

Parameter Number 266Parameter Type SourceDisplay Units x xxx HzDrive Units 128 1HzFactory Default 0 000 HzMinimum Value ndash255992 HzMaximum Value +255922 Hz

Displays the actual value of motor statorfrequency Units are in Hz times 128 (128 1 Hz)

Parameter Number 268Parameter Type SourceDisplay Units x VltDrive Units NoneFactory Default 0 voltsMinimum Value 0 voltsMaximum Value 1000 volts

DC Bus Voltage[DC Bus Voltage]

Inverter Temperature Feedback[Inv Temp Fdbk]

Parameter Number 270Parameter Type SourceDisplay Units +ndash x degDrive Units NoneFactory Default 0 deg Minimum Value ndash 50 deg Maximum Value +255 deg

This is the actual Bus Voltage as read bythe software from an analog input portUnits are in volts

Inverter temperature determined by NTCdevice on heatsink power structureCan be configured to generate either awarning or fault when heatsink reaches 80degrees C

Filtered Velocity Feedback[Filt Vel Fdbk]

Parameter Number 269Parameter Type SourceDisplay Units xx rpmDrive Units 4096 = base motor speedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

This parameter contains a filtered versionof velocity feedback The value containedin this parameter is not meant to be usedfor control only for display and monitoringpurposes

Limited Motor Flux[Lim Motor Flux]

Parameter Number 271Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 fluxFactory Default 100Minimum Value 125Maximum Value 100

This parameter displays the level of motorfield flux calculated by the current proces-sor and limited by the Min Flux Levelparameter (Param 174)

Parameter Number 267Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 1000 Factory Default 00Minimum Value ndash8000Maximum Value +8000

Calculated Torque[Calc Torque]

This parameter will display the calculatedvalue of motor torque as determined by theVelocity Processor The actual value ofmotor torque will be within 5 of this valueScaling is 4096 at rated motor torque Thisdata is updated on a 2 millisecond basis

Testpoint Selection 1[Torq TP Sel 1]

Parameter Number 273Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

This parameter selects a torque block testpoint The value of that test point can beread from Torq TP Data 1 (Parm 274)

Chapter 5Programming Parameters

5ndash66

Testpoint Data 1[Torq TP Sel 1]

Parameter Number 274Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 2[Torq TP Sel 2]

Parameter Number 275Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 2[Torq TP Data 2]

Parameter Number 276Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 3[Torq TP Sel 3]

Parameter Number 277Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 3[Torq TP Data 3]

Parameter Number 278Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 4[Torq TP Select 4]

Parameter Number 279Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 4[Torq TP Data 4]

Parameter Number 280Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter contains the data selectedby Testpoint Selection 1 (param 273)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 2 (Parm 276)

This parameter contains the data selectedby Testpoint Selection 1 (param 275)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 3 (Parm 278)

This parameter contains the data selectedby Testpoint Selection 3 (param 277)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 4 (Parm 280)

This parameter contains the data selectedby Testpoint Selection 4 (param 279)

Chapter 5Programming Parameters

5ndash67

Testpoint Selection 5[Torq TP Sel 5]

Parameter Number 281Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 5[Torq TP Data 5]

Parameter Number 282Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 6[Torq TP Sel 6]

Parameter Number 283Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 6[Torq TP Data 6]

Parameter Number 284Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Selection for Test DAC 1[Test DAC1 Sel]

Parameter Number 285Parameter TypeDisplay UnitsDrive UnitsFactory Default 1Minimum Value 0Maximum Value 256

Selection for Test DAC 2[Test DAC2 Sel]

Parameter Number 286Parameter TypeDisplay UnitsDrive UnitsFactory Default 4Minimum Value 0Maximum Value 256

This parameter is for factory use only DONOT ATTEMPT TO USE

Ki Frequency Regulator[Ki Freq Reg]

Parameter Number 287Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Integral gain of the frequency regulator insensorless mode This parameter mustnot be changed

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 5 (Parm 282)

This parameter contains the data selectedby Testpoint Selection 5 (param 281)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 6 (Parm 284)

This parameter contains the data selectedby Testpoint Selection 6 (param 283)

This parameter is for factory use only DONOT ATTEMPT TO USE

Chapter 5Programming Parameters

5ndash68

Kp Frequency Regulator[Kp Freq Reg]

Parameter Number 288Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 800Minimum Value 0Maximum Value 32767

Proportional gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Kff Freq Regulator[Kff Freq Reg]

Parameter Number 289Parameter Type SinkDisplay Units xDrive Units 1 = 256Factory Default 1Minimum Value 0Maximum Value 128

Ksel Freq Regulator[Ksel Freq Reg]

Feedforward gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Parameter Number 290Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 67Minimum Value 00Maximum Value 32767

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Frequency Tracker Filter[Freq Track Filt]

Parameter Number 291Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Rotor frequency regulator filter in sensor-less mode This parameter must not bechanged

Tracking Filter Type[Track Filt Type]

Parameter Number 292Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1 (Self Adjust)Minimum Value 0 (Fixed)Maximum Value 128

Frequency Trim Filter[Freq Trim Filt]

Low frequency filter select of the frequencyregulator in sensorless mode This param-eter must not be changed by nonndashfactorypersonnel

Parameter Number 293Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Slip frequency regulator filter in sensorlessmode This parameter must not bechanged

Motor Phase Rotation Errors[Phs Test Rot Err]

Parameter Number 294Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates an error conditiondetected during the motor phase rotationtest1 = Drive condition true0 = Drive condition false

Bits are defined asBit Condition0 1 to 15

Enable Drop OutReserved

Chapter 5Programming Parameters

5ndash69

Motor Inductance Test Errors[Lo Test Error]

Parameter Number 295Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor inductance test1 = Drive condition true0 = Drive condition false

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Zero Current3 AD Overflow at min gain4 Enable drop out5 Sign errorOverflow6 to 15 Reserved

Motor Stator Resistance Test Errors[Rs Test Error]

Parameter Number 296Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Not Used3 Zero Current4 Not Used5 Software Error6 Not Used7 Enable Drop Out8ndash15 Reserved

Motor Flux (Id) Test Errors[Id Test Error]

Parameter Number 297Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor flux (Id) test If abit is set to ldquo1rdquo the Drive condition is trueotherwise the condition is false

Torque Block Calculation Errors[Torq Calc Error]

Parameter Number 298Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates an errorcondition which has been detected duringthe torque block calculations If a bit is setto ldquo1rdquo the Drive condition is true otherwisethe condition is false

Bits are defined as

Bit Condition0 1 to 15

Negative or Zero SlipReserved

Bits are defined as followsBit Condition0 Autotune Speed Low (30 min)1 Identified Id lt zero2 Identified Id gt 100 motor current3 Enable drop out4ndash15 Reserved

Chapter 5Programming Parameters

5ndash70

Adapter Identification Number[Adapter ID]

Parameter Number 300Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 2Minimum Value 2Maximum Value 2

Adapter Software Version[Adapter Version]

Parameter Number 301Parameter Type SourceDisplay Units xxxDrive Units NoneFactory Default xxxMinimum Value 000Maximum Value 999

This parameter displays the StandardAdapter ID

This parameter displays the softwareversion number

Adapter Config[Adapter Config]

Parameter Number 302Parameter Type SourceDisplay UnitsDrive UnitsFactory DefaultMinimum ValueMaximum Value

(Not Used In Present Release)

Language Select[Language Select]

Parameter Number 304Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 1

This parameter makes the selectionbetween two languages0 ndash Primary Language1 ndash Alternate Language

Parameter Number 310Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In A1[Data In A1]

Data In A2[Data In A2]

Data In B1[Data In B1]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 311Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 312Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

NOTE The Parameters shown here in the range from 300 to 500 are Standard Adapter Parameters OnlyParameter descriptions for PLC Comm Adapter Parameters are covered in the PLC Comm Adapter User Manual

Chapter 5Programming Parameters

5ndash71

Data In B2[Data In B2]

Data In C1[Data In C1]

Data In C2[Data In C2]

Data In D1[Data In D2]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 313Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 314Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 315Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 316Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 317Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In D2[Data In D2]

Data Out A1[Data Out A1]

Data Out A2[Data Out A2]

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 321Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 320Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out B1[Data Out B1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 322Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Chapter 5Programming Parameters

5ndash72

Data Out C1[Data Out C1]

Data Out B2[Data Out B2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 323Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 324Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D1[Data Out D1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 326Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out C2[Data Out C2]

Parameter Number 325Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D2[Data Out D2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 327Parameter Type SinkDisplay Units ndashndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

SCANport Port Enable Mask[Port Enable Mask]

Parameter Number 330Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can control the Drive1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash73

SCANport Start Mask[Start Mask]

Parameter Number 332Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a start command1 = Permit Control0 = Deny Control

SCANport Jog Mask[Jog Mask]

Parameter Number 333Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Jog command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Clear Fault Mask[Clear Fault Mask]

Parameter Number 335Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Clear Faults command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Reference Mask[Reference Mask]

Parameter Number 334Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevice can issue a reference command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Direction Mask[Direction Mask]

Parameter Number 331Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a forwardreversecommand1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash74

SCANport Reset Drive Mask[Reset Drive Mask]

Parameter Number 336Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Reset Drive command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Local Control Mask[Local Mask]

Parameter Number 337Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can take local control1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Stop Owner[Stop Owner]

Parameter Number 340Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid stopcommand1 = Stop Input Present0 = Stop Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Direction Owner[Direction Owner]

Parameter Number 341Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofdirection changes1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Start Owner[Start Owner]

Parameter Number 342Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid startcommand1 ndash Start Input Present0 ndash Start Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash75

SCANport Jog 1 Owner[Jog 1 Owner]

Parameter Number 343Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 1command1 = Jog 1 Input present0 = Jog 1 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Reference Owner[Reference Owner]

Parameter Number 345Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe reference changes1 = Current Owner0 = Non Owner

SCANport Jog 2 Owner[Jog 2 Owner]

Parameter Number 344Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 2command1 = Jog 2 Input Present0 = Jog 2 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leavc Zero

SCANport Local Control Owner[Local Owner]

Parameter Number 346Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe drive1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Flux Owner[Flux Owner]

Parameter Number 347Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid fluxcommand1 = Flux Input Present0 = Flux Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash76

SCANport Ramp Owner[Ramp Owner]

Parameter Number 349Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid rampcommand1 = Ramp Input Present0 = Ramp Input Not Present

SCANport Clear Fault Owner[Clr Fault Owner]

Parameter Number 350Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid ClearFault Command1 = Clear Fault Input Present0 = Clear Fault Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Process Trim Owner[Trim Owner]

Parameter Number 348Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are currently issuing a valid process trim command1 = Process Trim Input Present0 = Process Trim Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

10 Volt In Filtr[10 Volt In Filtr]

Parameter Number 352Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequency for the 10 Volt Input

Pot In Filtr[Pot In Filter]

Parameter Number 353Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequecy for the Pot Input

mA In Filtr[mA In Filter]

Parameter Number 354Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointfor the mA Input

Chapter 5Programming Parameters

5ndash77

10 Volt Input[10 Volt Input]

Parameter Number 355Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the +ndash 10 volt input

10 Volt Offset[10 Volt Offset]

Parameter Number 356Parameter Type SinkDisplay Units +ndash xxx voltDrive Units 205 = 1 voltFactory Default +000 voltMinimum Value ndash2000 voltMaximum Value +2000 volt

This parameter determines the offset ap-plied to the raw analog value of the +ndash 10volt input before the scale factor is appliedThis allows the user to shift the range ofthe analog input

10 Volt Scale[10 Volt Scale]

Parameter Number 357Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the +ndash 10 volt input The +ndash 10volt input is converted to +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

Pot Input[Pot Input]

Parameter Number 358Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the pot input

Pot Offset[Pot Offset]

Parameter Number 359Parameter Type SinkDisplay Units +ndash xxx voltsDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog value of the potinput before the scale factor is appliedThis allows the user to shift the range ofthe of the analog input

Pot Scale[Pot Scale]

Parameter Number 360Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +1000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the pot input The pot input isconverted to a +ndash 2048 and then the scaleis applied allowing an effective digital rangeof +ndash 32767

Milli Amp Input[mA Input]

Parameter Number 361Parameter Type SourceDisplay Units xDrive Units NoneFactory Default +0Minimum Value 0Maximum Value +32767

This parameter displays the convertedanalog value of the milli amp input

Chapter 5Programming Parameters

5ndash78

Milli Amp Input Offset[mA Input Offset]

Parameter Number 362Parameter Type SinkDisplay Units + xxxx mADrive Units 128 = 1mAFactory Default +0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw analog value of the milliamp input before the scale factor is ap-plied This allows the user to shift therange of the analog input

Milli Amp Input Scale[mA Input Scale]

Parameter Number 363Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the milli amp input The milliamp input is converted to a +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

SCANport Analog1 Select[SB Analog Sel]

Parameter Number 364Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 365lsquoSP Analog Inrsquo

1 SCANport 12 SCANport 23 SCANport 3

4 SCANport 45 SCANport 56 SCANport 6

SCANport Analog1 In[SB Analog1 In]

Parameter Number 365Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 364 lsquoSP Analog Selrsquo

SP Analog1 Scale[SB Analog1 Scale]

Parameter Number 366Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 365

Chapter 5Programming Parameters

5ndash79

SCANport Analog2 Select[SB Analog2 Sel]

Parameter Number 367Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 368lsquoSB Analog In 2rsquo

1 Scanport 12 Scanport 23 Scanport 3

4 Scanport 45 Scanport 56 Scanport 6

SCANport Analog2 In[SB Analog2 In]

Parameter Number 368Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 367 lsquoSP Analog2 Selrsquo

SP Analog2 Scale[SB Analog2 Scale]

Parameter Number 369Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 368

Analog Output 1[Analog Out 1]

Parameter Number 370Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 1 Offset [An Out 1 Offset]

Parameter Number 371Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog output 1 Theoffset is applied after the scale factor

Chapter 5Programming Parameters

5ndash80

Analog Output 1 Scale[An Out 1 Scale]

Parameter Number 372Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 1 A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Analog Output 2[Analog Out 2]

Parameter Number 373Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 2 Offset[An Out 2 Offset]

Parameter Number 374Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000Minimum Value ndash20000Maximum Value +20000

This parameter determines the offset ap-plied to the raw analog output 2 The offsetis applied after the scale factor

Analog Output 2 Scale[An Out 2 Scale]

Parameter Number 375Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 2 A +ndash 32767digital value is converted by the scale fac-tor which allows abn effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Milli Amp Output[mA Output]

Parameter Number 376Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value +32767

This parameter converts a +ndash 32767digital value to a 4ndash20 mA output

Milli Amp Output Offset[mA Output Offset]

Parameter Number 377Parameter Type SinkDisplay Units +ndash xxxx mADrive Units 128 = 1mAFactory Default 0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw milli amp output The off-set is applied after the scale factor

Chapter 5Programming Parameters

5ndash81

Milli Amp Output Scale[mA Output Scale]

Parameter Number 378Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value 1000

This parameter determines the scale factoror gain for milli amp output A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 20 mA range

SCANport Analog Output[SP Analog Out]

Parameter Number 379Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valuethat is sent to all SCANports

Programmable Output Select[Output Select]

Parameter Number 384Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 8Minimum Value 0Maximum Value 63

This parameter selects the function ofTB7ndash1 Output The NOT column in thefollowing table indicates the value for theinverse condition For example Enteringa value of 0 will result in a Run Readycondition while a value of 32 results in a NOT Run Ready condition

NOT EN 32 0 RUN READY 33 1 RUNNING 34 2 COMMAND DIRECTION 35 3 ROTATING DIRECTION 36 4 ACCELERATING 37 5 DECELERATING 38 6 WARNING 39 7 FAULTED 40 8 AT SET SPEED 41 9 LOCAL A 42 10 LOCAL B 43 11 LOCAL C 44 12 AT ZERO SPEED 45 13 REF A 46 14 REF B 47 15 REF C

NOT EN 48 16 FLUX READY 49 17 FLUX UP 50 18 DIAGNOSTIC COMPLETED 51 19 DIAGNOSTIC ABORTED 52 20 BUS RIDETHRU 53 21 JOGGING 54 22 AUTOTUNE STAT A 55 23 AUTOTUNE STAT B 56 24 AT LIMIT 57 25 NOT USED 58 26 AT SETPOINT 1 59 27 AT SETPOINT 2 60 28 OVER SETPOINT 1 61 29 OVER SETPOINT 2 62 30 OVER SETPOINT 3 63 31 OVER SETPOINT 4

Set P66 to the type of Set Point desiredCurrent or SpeedThen set the appropriate parameter (P60 ndashP65) to monitor your desired SetPoint

Chapter 5Programming Parameters

5ndash82

IO Stop Select 1[Stop Select 1]

Parameter Number 387Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 5 2 = Current limit stop1 = Ramp Stop0 = Coast Stop

Input Status[Input Status]

Parameter Number 386Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 1111 1111Enums

This parameter displays the onoff status ofinputs 1-8 at TB31 = ON0 = Off

Bit Condition0 12

Input 1Input 2Input 3

Bit Condition345

Input 4Input 5Input 6

Bit Condition67

Input 7Input 8

Input Mode[Input Mode]

Parameter Number 385Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 30Enums

This parameter selects the functions of theinputs 1-9 at TB3

Mode 1 2 3 4 5 27 6 7 8 9 2810 291112131415 301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2StopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevPot UpRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3RevSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type12 AccPot UpJogFwdFwdPot OnFwd2nd AccLocRemStop Type12 AccPot upLocRemProc TrimFlux EnSpdTrq2SpdTrq2FwdSpdTrq2Proc TrimFlux EnProc TrimJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd 3Spd 312 DecPot DnLocRemJogSpd 3Spd 3Pot Up1st DecSpd 3Spd 312 DecPot DnStop TypeRampResetSpdTrq1SpdTrq2RampSpdTrq1ResetResetRampSpd 3

Input 7StatusSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Pot Dn2nd DecSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Proc TrimFlux EnResetSpd 2Spd 2Spd 2Spd 2Spd 2

Input 8StatusSpd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1

Chapter 5Programming Parameters

5ndash83

MOP Value[Mop Value]

Parameter Number 394Parameter Type SourceDisplay Units x RPMDrive Units 4096 = Base SpeedFactory Default 00Minimum Value Negative Speed LimitMaximum Value Positive Speed Limit

This parameter displays the MOP value

IO Deceleration Rate 2[Decel Rate 2]

Parameter Number 392Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

Mop Increment[Mop Increment]

Parameter Number 393Parameter Type SinkDisplay Units xx RPM (RPM per sec)Drive Units 4096= Base SpeedFactory Default 10 of base speedMinimum Value 00 RPMMaximum Value Base Speed

This parameter determines the rate ofincrease or decrease to the MOP valueper time

IO Deceleration Rate 1[Decel Rate 1]

Parameter Number 391Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

IO Acceleration Rate 2[Accel Rate 2]

Parameter Number 390Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the 0 rpm tobase speed ramp rate

IO Stop Select 2[Stop Select 2]

Parameter Number 388Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 52 = Current limit stop1 = Ramp Stop0 = Coast Stop

IO Acceleration Rate 1[Accel Rate 1]

This parameter determines the 0 rpm tobase speed ramp rate

Parameter Number 389Parameter Type SinkDisplay Units xx SecDrive Units 10 = 1 secFactory Default 10 secMinimum Value 00 secMaximum Value 65535 sec

Chapter 5Programming Parameters

5ndash84

Pulse Value[Pulse Value]

Parameter Number 399Parameter Type SourceDisplay Units xx RPMDrive Units 4096 = Pulse ScaleFactory Default 00Minimum Value ndash8 x Pulse ScaleMaximum Value +8 x Pulse Scale

This parameter displays the pulse inputvalue

Pulse Offset[Pulse Offset]

Parameter Number 398Parameter Type SinkDisplay Units xx RPMDrive Units NoneFactory Default 00Minimum Value ndash Pulse ScaleMaximum Value + Pulse Scale

This parameter determines the minimumspeed the pulse input will go to

This parameter determines the pulse inputspeed that is equal to 4096 drive units

Pulse Scale[Pulse Scale]

Parameter Number 397Parameter Type SinkDisplay Units x RPMDrive Units 4096Factory Default 1750Minimum Value ndash6000Maximum Value +6000

SP Comm Retries[SP Comm Retries]

Parameter Number 404Parameter Type SourceDisplay Units xDrive UnitsFactory Default 00Minimum Value 0Maximum Value 65535

This parameter monitors the amount ofSCANport communications errorsthat have occurred since power up

Pulse PPR[Pulse PPR]

Parameter Number 395Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024Minimum Value 500Maximum Value 20000

This parameter determines the pulse inputpulses per revolution

Pulse Single or Double Edge[Pulse Edge]

Parameter Number 396Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 2Enums1 = 1 Edge2 = 2 Edges

This parameter determines if rising (single)or rising and falling (double) edges arecounted for the pulse input

Chapter 5Programming Parameters

5ndash85

Fault Status[SA Fault Status]

Parameter Number 407Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1110 0001 0111 1111Enums

This parameter displays the fault status ofthe SCANport device1 = Fault0 = No Fault

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4 ndash 20 mA LossBit 9 ndash Not UsedBit 10 ndash Not UsedBit 11 ndash Not Used

Bit 12 ndash Not UsedBit 13 ndash Illegal Drive Type (Not Configurable)Bit 14 ndash Diff Drive Type (Not Configurable)Bit 15 ndash SCANport error (Not configurable)

Warning Status[SA Warn Status]This parameter displays the warning statusof the SCANport device timeouts1 = Warning0 = No Warning

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6

Parameter Number 408Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

Bit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Fault Select[SA Fault Select]

Parameter Number 405Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter chooses whether a SCAN-port device causes a drive fault a warningbased on lsquoSA Warn Selrsquo (P406) or doesnothing1 = Fault0 = WarningNothing

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Warning Select[SA Warn Select]

Parameter Number 406Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter selects whether a SCAN-port device timeout causes a warning ordoes nothing1 = Warning0 = Does Nothing

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Chapter 5Programming Parameters

5ndash86

This Page Intentionally Blank

Chapter 6

6ndash1

Troubleshooting

General Chapter 6 provides information to guide you in troubleshooting The 1336FORCE Drive employs extensive diagnostics to aid in correcting manymalfunctions that may occur in the system This guide is designed to helpyou interpret the diagnostic response of the Drive when a malfunctionoccurs Possible corrective measures will be explained to help you get theDrive repaired or functional as quickly as possible for most types ofmalfunctions

ATTENTION Only qualified personnel familiar with the1336 FORCE drive system and the associated machinery shouldperform troubleshooting or maintenance functions on the DriveFailure to comply may result in personal injury andorequipment damage

During Start-up you should have recorded board jumper settings for eachboard board software version numbers and the drive and motor nameplate data in Table 4A If it was not record it at this time before beginningany troubleshooting sequences

Required Equipment For initial troubleshooting a programming device is required to read faultcodes In addition to a programming device the following should beavailable before initiating any troubleshooting procedures

Digital Multimeter (DMM) capable of 1000V DC750VAC with one megohm minimum input impedance

Clamp on Ammeter (ACDC) with current ratings to 2X rated current output of 1336 FORCE AC Drive

Dual trace oscilliscope with differential capability digital storage two X10 and one X100 calibrated probes (optional but recommended)

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

Hand tachometer used to monitor motor velocities Programming Device Instruction Manual and Adapter Board

Reference Manuals

Chapter 6Troubleshooting

6ndash2

Fault Descriptions Fault Display ndash Faults are indicated by showing a decimal number of up to5 characters relating to the fault (Figure 61) or by flashing LED sequenceson the Main Control Board The fault will be displayed until a Drive resetor Clear Faults is initiated A Drive Reset will clear all faults but a ClearFaults Command will only clear soft and warning faults Refer to Tables6A amp 6B for a listing and description of the various faults Whenapplicable a possible solution will also be provided

Figure 61Typical Fault Description Display

5500 2

Fault Code Definition ndash The fault code is a 5 character decimal numberthat is defined as follows

SAXXX S = Source DesignatorA = Area DesignatorXXX = Internal Fault Code (0 thru 999)

The Source Designator (S) is the 1st digit of the number0 = Main Board Velocity Processor (VP)1 = Main Board Current Processor (CP)2 = Adapter Processor (PLC Comm Standard Adapter etc)3 = Domino Processor (DP)4 = Reserved

Area Designator (A) is the 2nd digit of a number0 = General1 = Motor2 = Inverter3 = Mtr Control4 = Adapter5 = External Device6 = Communications7 = Reserved8 = Reserved9 = ConverterBrake

Internal Fault Code (XXX)The internal fault codes (last three digits of number) are identified in Table6A thru 6C

Chapter 6Troubleshooting

6ndash3

Table 6A1336 FORCE Main Control Fault Descriptions

Fault Fault Text Parameter

1300013001130021300313004

03008030090301003011030120301302014

12016120171201812019140201602116022

040240302503026120270202803029

120321203312034120351203612037

050480204901050010510105201053050540205503057030580905902060020610606202063

CP EPROM FltCP Int RAM FltCP Ext RAM FltCP Stack RAM FltVP MBI Failure (Dual Port)

VP EPROM FltVP Int RAM FltVP Ext RAM FltVP Stack RAM FltCP MBI Failure AP MBI Failure Power EEPROM Flt

Bus OvervoltageTransistor DesatGround FaultIOC FaultSW Malfunction MS Cable LossMS Ena Timeout

AP Handshake ErrorAbsolute OverspdAnalog Spply TolAtuneDiag FailInv Temperature VP ndash SW Error

Ridethrough TimePrecharge TimeBus DropBus UndervoltBus Drop Cycles gt5Open Circuit

Vel FB LossInv Overtemp PndMtr TemperatureMotor Overld PndMotor Overld TrpMotor StalledExternal Flt InRMS FaultParameter LimitMath LimitDB OvertempAC Contactor Inv Overld PndDrv to Drv ErrorInverter Overload

Bit

8080808080

80808080808080

81818181818181

818181818181

828282828282

838383838383838383838383838383

0001020304

08091011121314

00010203040506

080910111213

000102030405

000102030405060709101112131415

LED

CP Red 1 blinkCP Red 2 blinkCP Red 3 blinkCP Red 4 blinkCP Red 5 blink

VP Red 1 blinkVP Red 2 blinkVP Red 3 blinkVP Red 4 blinkVP Red 5 blinkVP Red 6 blinkVP Red Flashing

CP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid Red

VP Solid RedVP Flashing RedVP Flashing RedCP VP Flash RedVP Solid RedVP Solid Red

CP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing Red

VP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Solid RedVP Flashing RedVP Flashing RedVP Flashing Red

Fault Type

SoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftHard

HardHardHardHardHardHardHard

HardSoftSoftSoftHardHard

SoftSoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftSoftSoftSoftSoftSoftHardSoftSoftSoft

Chapter 6Troubleshooting

6ndash4

The first digit in the 5 character fault number for Standard Adapter Boardfaults is always 2 indicating the source is an Adapter Processor

0 = Velocity Processor (VP)1 = Current Processor (CP)2 = Adapter Processor (Standard Adapter or PLC Comm)3 = Domino Processor (DP)

The Area Designator (2nd digit) and internal fault codes (last three digits)remain the same as described under the Fault Code Definition on page 6ndash2Listed below are the fault codes for the Standard Adapter Board For aPLC Comm Adapter fault codes refer to the PLC Comm Adapter manual

Table 6B1336 FORCE Standard Adapter Fault Descriptions

Fault Description Type24001240022400324004240052400624007

24017240182401924020240212402224024

240292403024031

MBI FailureBRAM FailureVP Handshake FailureCP Handshake FailureVP Mode FailureCP Mode FailureSA Language Failure

SP Port 1 FailureSP Port 2 FailureSP Port 3 FailureSP Port 4 FailureSP Port 5 FailureSP Port 6 Failure4 ndash 20Ma Loss

Drive Type DifferenceIllegal Drive TypeSP Internal Failure

Hard FaultHard FaultHard FaultHard FaultHard FaultHard FaultHard Fault

FaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNone

Soft FaultHard FaultSoft Fault

Fault TextHW MalfunctionHW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionHW Malfunction

SP PT1 TimeoutSP PT2 TimeoutSP PT3 TimeoutSP PT4 TimeoutSP PT5 TimeoutSP PT6 Timeout4 ndash 20Ma Loss

Diff Drv TypeIllegal Drv TypeSW Malfunction

Chapter 6Troubleshooting

6ndash5

FaultWarning Handling The lights on the motor control board indicate the status of the Current andVelocity processors Both the Current and Velocity processors have bothGreen and Red LEDrsquos associated with their status Table 6C explains themeaning of the CP and VP status lights

Table 6CCP and VP Status

Status Meaning

Solid GreenFlashing GreenFlashing RedSolid Red

No FaultDrive WarningDrive Soft FaultDrive Hard Fault

VP LED CP LED

D2D2D3D3

D4D4D5D5

Hard Fault ndash A Drive hard fault is a fault that trips the Drive causing it tocome to a stop This type of fault requires the user to perform a DriveReset to remove the fault

Soft Fault ndash A Drive soft fault will also cause the drive to trip and cometo a stop This type of fault can be removed by doing a Clear Faultscommand after the condition that caused the Drive to trip has beenremoved

Drive Warning ndash A Drive Warning is simply an undesirable conditionthat exists within the Drive It will not cause the Drive to trip A ClearFaults command after the warning condition has been alleviated willremove the warningEverytime the Drive has any of the faults or warnings decribed above afaultwarning message is logged in either the fault or warning queue Thisis designed to aid in troubleshooting

Motor Control Board Faults amp Warnings ndash There are two types of faultand warning queues for the Main Control Board configurable andnonconfigurable

Configurable Faults amp Warnings ndash The configurable fault queuecontains faults that can be set up to either trip the drive or provide only avisual warning while the drive continues to operate

Nonconfigurable Faults amp Warnings ndash The nonconfigurable fault queuecontains faults that you canrsquot disable These faults are the result of acondition that could damage the Drive if allowed to persist The non ndashconfigurable fault queue faults can be viewed in parameter 81 (Fig 62)

In addition to configurable amp nonndashconfigurable faults there are theldquopowerup faultsrdquo

Powerup Faults ndash The powerup faults appear in parameter 80 (Fig 63)These faults primarily consist of problems that could occur with powerupof both the current and velocity processors

Adapter Board Faults ndash Adapter board faults are setup and displayed inseparate parameters from the Main Control Board

Chapter 6Troubleshooting

6ndash6

Figure 62Parameter 81 (Nonndashconfigurable Fault Status)

DC Bus Overvoltage Trip

Transistor Desaturation Trip

Groundfault Trip

Instantaneous Overcurrent Trip

Adapter Comm Loss detected by CP

MasterSlave Cable Loss

MasterSlave Enable Timeout

Not Used

Adapter Comm Loss detected by VP

Absolute Overspeed

Analog Power Supply Tolerance

Autocommission or Transistor Diagnostic Fail

Inverter Temperature Trip

Software Malfunction detected by VP (Task Overrun)

Software Malfunction detected by VP (Illegal Interrupt)

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 63Parameter 80 (PowerupDiagnostic Fault Status)

CP PROM Failure

CP Internal RAM Failure

CP External RAM Failure

CP Stack RAM Failure

CPVP Dualport RAM Failure

NOT USED

NOT USED

NOT USED

VP Prom Failure

VP Internal RAM Failure

VP External RAM Failure

VP Stack RAM Failure

VPCP Dualport RAM Failure

VPAP Dualport RAM Failure

Base Drive EE Failure

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates fault conditions in the Drive that CANNOT be configured as warnings When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false Bit 0ndash3 are detected by hardwareand 4ndash15 are detected by software

This word parameter indicates a fault condition which has been detected during power up or reset of the drive Wherethe bit is set to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash7

Current Processor Faults amp Warnings ndash Both the fault and warningqueues are configurable for either the Current or the Velocity processorYou can configure which Current processor faults you want to trip theDrive by setting Parameter 86 When the Drive trips on one of the faultsset in parameter 86 the CP light on the Main Control board will turn redWhen the drive trips it will coast the motor to a stop Parameter 87 hasthe same bit definitions as parameter 86 but instead of tripping the Drivewill display a warning fault which in turn causes the CP light to flashgreen indicating a warning The Drive will continue to run when there is aCP warning Parameter 82 displays which CP fault caused the Drive totrip while parameter 84 displays any CP warnings that have occurred

Most of the setup for the current processor FaultWarning configurationdeals with DC Bus conditions These Bus conditions deal with the Busprecharge and any type of ride through conditions

Configuring CP Faults and Warnings ndash You can configure which of thefollowing faults you want to trip the drive by using CP FaultWarningConfiguration Select (parameter 86) and CP WarningNone ConfigurationSelect (parameter 87) Parameters 86 and 87 both have the following bitdefinitions

Thisbit

With this text Is defined as

0 RidethruTime A bus ridethrough timeout occurred

1 Prechrg Time A precharge timeout occurred

2 Bus DropA bus voltage drop of 150V below the bus trackervoltage This is covered in detail later in thischapter

3 Bus UndervltA bus voltage drop to a level below the value setin Undervoltage Setpoint (parameter 224)

4 Bus Cyclesgt5More than 5 ridethroughs occurred within a 20second period

5 Open CircuitThe fast flux up current is less than 50 ofcommanded

6ndash15 RESERVED Always leave zero

For each condition that you want the drive to fault on set thecorresponding bit in Fault Select 1 When the drive trips on a conditionthat you set to fault the drive how the drive reacts depends on whichcondition occurred

For bits 0 through 5

bull The red CP light turns on

bull The motor coasts to a stop

Chapter 6Troubleshooting

6ndash8

For each condition that you want the drive to display a warning fault onyou need to

1 Set the corresponding bit in CP Warning None Configuration Select

2 Make sure the corresponding bit in CP Fault Warning ConfigurationSelect is set to 0

When the drive trips on a condition that you set to display a warning

bull The CP light flashes green

bull The drive continues to run

If a particular bit is not set in either CP Fault Warning ConfigurationSelect or CP Warning None Configuration Select the drive ignores thecondition when it occurs

Most of the faultwarning configuration options deal with DC busconditions These bus conditions deal with the bus precharge and anytype of ridethrough conditions The bus precharge and ridethroughconditions are covered later in this chapter

bit = 1

bit = 0

Trips Drive

Fault

Fault Select

Reports as Warning

bit = 1

bit = 0

Reports as Warning

Warning Select

No Report Ignored

Chapter 6Troubleshooting

6ndash9

To understand the precharge and ridethrough faults you need a basicunderstanding of how these functions work as well as the options thatyou can use to alter the way precharge and ridethrough operate in the1336 FORCE drive

Understanding Precharge

The precharge of the drive has different circuits depending on drive sizeFor the precharge operation for large horsepower (40 hp and larger)standalone drives the precharge starts the SCR phase advance andcompletes precharge when the bus is stable For all other drive typesprecharge is completed after a stable bus voltage is achieved and theprecharge device (SCR or relay) byndashpasses the precharge resistor Forcommon bus operation set bit 12 in Precharge Ridethrough Selection(parameter 223) The drive current and voltage ratings stored in EEPromdetermine the standalone operation

With the default configuration the following conditions are needed tocomplete precharge

bull a stable bus voltage for a minimum of 300 milliseconds

bull a bus voltage greater than the value set in Undervoltage Setpoint (parameter 224)

bull a valid control status from the precharge board if present

You can modify the default configuration for common bus drives byusing the external fault (input) and the precharge exit option

bull You can use the external fault input with a cabinet disconnect switchto force precharge when the disconnect is opened and the drive is dis-abled This may reduce current stress when the disconnect is closedagain

bull You can use the exit precharge option to let the precharge completeafter the precharge timeout period (30 seconds) when the bus voltageis not stable All other conditions must be met This is often used inthe case of common or shared bus configurations where other drive(s)may be causing bus voltage variations Only use this option whereneeded otherwise excessive inrush current could open or weaken theline fusesNOTE The precharge timeout fault (Parameter 86) must be disabledto use this option

Before you can enable the inverter all drive types must complete a firsttime precharge This is required even if you have set the disableprecharge function by setting bit 14 of PrechargeRidethrough Selection(parameter 223)

Understanding Prechargeand Ridethrough Faults

Chapter 6Troubleshooting

6ndash10

A filtered or slow average of the bus voltage is developed as areference or bus voltage tracker to determine if a line drop out hasoccurred If a 150 volt (or greater) drop in present bus voltage comparedto the filtered bus voltage occurs the drive can start a ridethrough Theridethrough function

bull disables the drive

bull restarts a precharge

bull waits for the bus to return to within 75 volts of the bus voltage track-errsquos voltage value before starting again

You can use bits 0ndash4 of BusBrake Opts to control the slew rate of thebus voltage tracker Refer to the section on the bus voltage tracker laterin this chapter for additional information

Understanding Ridethrough

Ridethrough provides current inrush protection and extended logicoperating time if the power lines drop out while the drive is runningThe drive is immediately disabled when it senses that the incomingpower lines dropped out (bus capacitor voltage drop) The energy storedin the bus capacitors keeps the logic supplies running for an extendedtime If the power lines return before the logic power supplies losepower you can configure the drive to resume operation without systemintervention (default) The ridethrough timeout is set for two secondsThis means that the drive is configured to fault (default setting) and notautondashrestart if the dropout lasts more than two seconds

ATTENTION You must determine safe autondashrestart andfault configurations at the system and user level Incorrectselection(s) may result in safety concerns andor drivedamage

CP Fault Warning Configuration Select 1 (parameter 86) and CPWarning None Configuration Select (parameter 87) let you specify howyou want the drive to report specific precharge and ridethroughinformation

Ridethrough also protects the drive from excessive inrush current whenthe power returns by entering a precharge mode when ridethrough isinitiated After precharge has finished the drive can completeridethrough and resume normal drive operation The drive is enabledagain after the bus rises to within 75 volts of the bus voltage trackervalue

Chapter 6Troubleshooting

6ndash11

ATTENTION If you are using an external logic powersupply the drive may be able to stay in an indefiniteridethrough state If the power returns to the drive (muchlater) the drive automatically restarts You must thereforehandle the control of enable faults timendashouts driveconfiguration and safety issues at the system level

Use the following parameters to configure the precharge and ridethroughfunctions

bull CP Fault Warning Configuration Select (parameter 86)

bull CP Warning None Configuration Select (parameter 87)

bull Precharge Ridethrough Selection (parameter 223)

bull Undervoltage Setpoint (parameter 224)

In addition Test Select 1 (parameter 93) and Test Data 1 (parameter 92)contain software testpoints that provide additional precharge information

Configuring the Faults and Warnings for Precharge

You can use CP Fault Warning Configuration Select and CP Warning None Configuration Select to enable faultwarning conditions when theappropriate bit is set (1) If a bit is clear (0) in CP Fault WarningConfiguration Select you can choose to have the condition reported as awarning by setting the bit in CP Warning None Configuration SelectThe following are the bits that pertain to precharge

Thisbit

With this text When set generates a fault when

0 RidethruTimeThe ridethrough time exceeds 2 seconds(default see P226)

1 Prechrg TimeThe precharge time exceeds 30 seconds(default see P225)

2 Bus DropThe bus voltage drops 150 volts below thebus tracker voltage This is the level wherethe drive would normally enter ridethrough

3 Bus Undervlt

The bus voltage drops below the level set inUndervoltage Setpoint (parameter 224) Thisis the level where the drive would enterridethrough if it occurs before a 150 volt dropin bus voltage

4 Bus Cyclesgt5

At least 5 ridethrough cycles have occurredwithin a 20 second period This indicates aconverter problem or a problem withincoming power Consider checking theincoming power for a phase loss

Chapter 6Troubleshooting

6ndash12

Using Precharge Ridethrough Selection to ChangePrechargeRidethrough Options

You can use Precharge Ridethrough Selection (parameter 223) tochange how precharge and ridethrough work Precharge RidethroughSelection is a bit encoded word that disables the following functionswhen the appropriate bit is set (1)

Thisbit

Has this definition

0 Sets the bus voltage tracker slew rate to 10 voltssecond

1 Sets the bus voltage tracker slew rate to 5 voltssecond

2 Sets the bus voltage tracker slew rate to 05 voltssecond

3 Sets the bus voltage tracker slew rate to 005 voltssecond

4 Sets the bus voltage tracker slew rate to 0005 voltssecond

5 Reserved Leave zero

6 Reserved Leave zero

7Setting this bit selects the slave drive of a MasterndashSlavecombination to use the master drive analog frequency referencein place of the slave encoder input

8Enables fast flux up This is covered in more detail later in thischapter

9 Reserved Leave zero

10 Reserved Leave zero

11 Forces an exit from precharge after the precharge timeout

12 Identifies the drive as a common bus converter

13

Disables faults or warnings while the drive is disabled Thisallows power up and down the bus for a common bus systemwithout faulting even if the faults or warnings are enabled Forexample faults or warnings only occur if the drive is runningThis may be desirable when external power supplies are used

14

Disables the precharge function after initial power up Any busdrop or undervoltage will not result in precharge This maydestroy the drive if power returns to the system This should beused where you control the input impedance or with a front endconverter that is current limited

15

Disables the ridethrough and precharge functions If the powerlines drop out the drive attempts to continue operation as longas any power is available This may destroy the drive if powerreturns to the system This should be used only where youcontrol the systemrsquos incoming power

Chapter 6Troubleshooting

6ndash13

Using Undervoltage Setpoint

You can use Undervoltage Setpoint (parameter 224) to set the level ofbus voltage that must be present to complete precharge and a level whereridethrough can be initiated If configured as a faultwarningUndervoltage Setpoint sets the bus voltage level that faultswarns thedrive The bus voltage level that is used is determined as follows

Undervoltage Setpoint Rated Inverter Input Voltage (parameter 221) sqrt(2) = bus voltage level for ridethroughs faults or warnings

Using Testpoint Select 1 and Testpoint Data 1 to View SoftwareTestpoints

Additional information concerning precharges and ridethroughs isavailable through Testpoint Select 1 (parameter 273) and Testpoint Data1 (parameter 274)

Viewing the Calculated Undervoltage Value of Bus Voltage

To view the value of the calculated undervoltage

1 Enter a value of 24 into Testpoint Select 1

2 Monitor Testpoint Data 1

You can use this to check the actual bus voltage that causes anundervoltage condition

Checking the Status of the Precharge

To view the precharge status enter a value of 12 into Testpoint Select 1and then monitor Test Data 1 for the precharge status The prechargestatus is bit encoded as follows

Thisbit

When set indicates that

0The precharge function has been completed and the prechargedevice should be on The drive can be enabled only after thisbit is set

1The drive is in ridethrough Precharge must be completed andthe bus must return to within 75 volts of the bus voltage trackerbefore normal drive operation can resume

2 A prechargendashinitiated condition is in ridethrough

3A precharge has been requested due to an external fault (input)Common Bus Configuration only

4The converter is ready for precharge and the controller maystart its precharge function The external precharge board is okif present

Chapter 6Troubleshooting

6ndash14

5The measured bus voltage is not stable (there is a variation ofgreater than plusmn25 volts) and the precharge cannot finish

6 The DC bus voltage is less than line undervolts

7The precharge function cannot complete because the measuredbus voltage is less than 75 volts below the bus voltage trackerThis only applies to precharging after a ridethrough

8 The precharge device has been commanded ON

9 Not used

10 An exit from precharge was requested

11 Precharge was skipped due to an enable dropout

12 An initial (first) precharge is executed

13 A high horsepower drive type is being used

Enabling Fast Flux Up

You can use fast flux up to achieve rated flux conditions andconsequently high torque as fast as possible after an enable Underdefault conditions (no fast flux up) the drive brings the motor to ratedflux conditions in a time proportional to the rotor time constant of themotor These times range from 50 milliseconds for small motors toseveral seconds for large motors If a high load is attempting to bestarted no acceleration occurs until that time has elapsed Enabling fastflux up can decrease that time by a factor of 5 to 10

You can enable the fast flux up function of the drive by setting bit 8 ofPrecharge Ridethrough Selection (parameter 223) In this case

Use Testpoint Select 1 (parameter 273) to check the approximatefluxing time Enter a value of 86 into Testpoint Select 1 to display thefluxing time in Testpoint Data 1 (parameter 274) The time delay isgiven in seconds x 0000977 If the flux time is 0 no fast flux up occursand the drive starts normally If at least 50 of the commanded currentis not measured you can configure the drive to fault at this time usingCP Fault Warning Configuration Select (P86)

Chapter 6Troubleshooting

6ndash15

Forcing the Drive to Complete a Precharge

In some cases the precharge may not complete due to external busdisturbances Setting bit 11 in BusBrake Opts forces the precharge tocomplete at the precharge interval (default 30 seconds) This may causeprecharge damage and should only be used when large inrush currentscannot occur

PrechargeRidethrough Selection (parameter 223) also lets you select arate called a slew rate for the bus voltage tracker The bus voltagetracker slowly tracks changes in the actual bus voltage If the actual busvoltage drops 150 volts or greater below the current value of the busvoltage tracker the drive automatically disables modulation and entersprecharge

Important You should only use the bus voltage tracker if you arehaving ridethrough problems The bus voltage trackeradjusts the bus sensitivity to ridethrough for cases wherethere is an unstable bus

By changing the rate used for the bus voltage tracker you can make yoursystem more or less sensitive to changes in the actual bus voltage Forexample if your drive currently enters precharge after the motor exitsregeneration you may need to change your slew rate

Figure 64 shows an example of the filtered bus voltage reference

Figure 64 Example Bus Voltage Line

Volts

Time

150V

Bus voltage tracker

A

B

CActual bus voltage

At point A the motor was in regeneration so the value of the bus voltagetracker slowly increased

Understanding the BusVoltage Tracker

Chapter 6Troubleshooting

6ndash16

At point B the motor was no longer in regeneration and the bus voltagehad dipped below the nominal range If the drive compared point B withpoint A the drive would have seen a bus drop of 150V and enteredprecharge However because the drive compared point B with the busvoltage tracker the bus drop was less than 150V and the drive continuedoperating

At point C the bus voltage had dropped 150V and the drive entered aprecharge state

Precharge Ridethrough Selection provides the following options forchanging the slew rate

Thisbit

With thistext

Sets the slew rate to

0 Slew Rate 110Vsecond This option is the most sensitive tochanges in the actual bus voltage

1 Slew Rate 2 5Vsecond

2 Slew Rate 3 05Vsecond

3 Slew Rate 4 005Vsecond

4 Slew Rate 50005Vsecond This option is the leastsensitive to changes in the actual bus voltage

If all bits are clear (0) the slew rate is 005Vsecond If more than onebit is set the first bit that is set is used for the slew rate For mostapplications the default slew rate of 005Vsecond which is 1 volt in 20seconds should be appropriate

Chapter 6Troubleshooting

6ndash17

Velocity Processor Faults amp Warnings ndash You can configure whichvelocity processor faults you want to trip the drive by setting Parameter 88(Figure 65) When there is a velocity processor fault the VP light on theMain Control board will blink red (soft fault) for configurable VP faultsWhen this happens the drive will shut off and coast the motor to a stopVP faults can be viewed in parameter 83 (Figure 66) Configurable VPwarnings can be setup in Parameter 89 (Figure 67) and viewed inparameter 85 When a configurable VP warning exists the VP light willbe flashing green but the drive will continue to run Velocity processorwarning faults can be viewed in parameter 85 (Figure 68)

Figure 65 Parameter 88 (VP FaultWarning Configuration Select (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 85 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive will be reported as a FAULT otherwise the condition is reported as aWARNING

Chapter 6Troubleshooting

6ndash18

Figure 66Parameter 83 (VP Configurable Fault Status)

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 67Parameter 89 (VP WarningNone Configuration Select (bits))

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive fault condition Each configuration bit matches the bit definitions of Parameters 85 88 and 89 When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Foldback (IT)This word parameter indicates conditions detected by the Velocity Processor (VP) that will be reported as either a drivefault or warning or not reported at all (ignored) Each configuration bit matches the bit definitions of Parameters 83 85and 88 When a bit is set to ldquo1rdquo the corresponding condition in the Drive will be reported as configured by parameter 88When the bit is set to ldquo0rdquo the condition is not reported

Chapter 6Troubleshooting

6ndash19

Figure 68Parameter 85 (VP Configurable Warning Status (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Foldback (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash20

AutondashTuning Test Procedure AutondashTuning is a procedure which involves the running of a group of testson the motordrive combination Some of these tests check the Drivehardware and others configure Drive parameters for torque control with theattached motorNOTE The Quickstart procedure in Chapter 4 will take you stepndashbyndashstepthrought the Autotuning Procedure The information presented hereexplains how to manually tune specific areas

ATTENTION Power must be applied to the Drive and themotor must be connected for some of the following tests Someof the voltages present are at incoming line potential To avoidelectrical shock hazard or damage to equipment only qualifiedservice personnel should perform the following procedures

Test Overview AutondashTuning includes 6 tests all of which can beperformed on a motor which is either coupled or decoupled from loadThese tests include

The power structure and transistor diagnostics routines let you determine ifany problems exist in the power structure of the drive and determine theprobable cause of these problems

The diagnostic software determines hardware problems through a series ofsystem tests These tests are parameter dependent The test results dependon drive size motor size system wiring and other factors that affectsystem voltage and load impedance

In most cases the software can properly determine if faults exist howeverthere may be some installations where some faults cannot be properlychecked In general test results are listed as failed if a questionable case isfound You must review test results with respect to the whole drive systemto properly interpret whether a real problem exists

You can run the transistor diagnostics before a start by setting bits 6ndash8 ofLogic Options (parameter 59) Transistor diagnostics require motor currentso a userndashstart transition is required to run the tests

To run the transistor diagnostics independently

1 In AutotuneDgn Sel (parameter 256) set bit 0 to 1

2 Enable the drive

The green enable light (D1) turns on very briefly (approximately 300 ms)and then turns off This runs only the transistor diagnostics and leaves thedrive disabled after the diagnostics are complete AutotuneDiagnosticsSelection is automatically cleared to zero after the diagnostics have run

Power Structure andTransistor DiagnosticsTests

Chapter 6Troubleshooting

6ndash21

Because the test results depend on your particular system you candisable tests that may give questionable or nuisance faults UseTransistor Diagnostics Configuration (parameter 257) to disableindividual tests

If you want to disableThen setthis bit

Current feedback phase U offset tests 0

Current feedback phase W offset tests 1

Shorted power transistor tests 2

Ground fault tests 3

Open transistor open motor open current feedbackopen gate drive and open bus fuse tests

4

Power transistor U upper for all tests 6

Power transistor U lower for all tests 7

Power transistor V upper for all tests 8

Power transistor V lower for all tests 9

Power transistor W upper for all tests 10

Power transistor W lower for all tests 11

Bits 5 and 13 through 15 are reserved You must leave these bits 0

Even though you set bits 6 through 11 to disable the individual tests youwill still get a fault with the other tests if there is an open in an individualsection

To test specific modules within the power structure you can disable anytransistor or any combination of transistors You must leave alltransistors enabled under most conditions Use sound judgement toverify that power transistor fault conditions do not exist before disablingtests

Chapter 6Troubleshooting

6ndash22

Inverter Diagnostics Result 1 (parameter 258) and Inverter DiagnosticsResult 2 (parameter 259) contain the results of the transistor diagnostictests

Important Serious component failures may occur if unverified powertransistor fault conditions are ignored or tests are disabledbefore you proceed to run the drive under load

Inverter Diagnostics Result 1 (parameter 258) is defined as follows

When thisbit is set (1)

Then

0 A software fault occurred

1 No motor is connected or a bus fuse is open

2 Phase U and W shorted

3 Phase U and V shorted

4 Phase V and W shorted

5 There are shorted modules

6 A ground fault occurred

7 A fault occurred before the short module ran

8 A hardware overvoltage fault occurred

9 A hardware desat fault occurred

10 A hardware ground fault occurred

11 A hardware phase overcurrent fault occurred

12 There are open power transistor(s)

13 There are current feedback faults

Bits 14 and 15 are reserved

Chapter 6Troubleshooting

6ndash23

Inverter Diagnostics Result 2 (parameter 259) is defined as follows

When thisbit is set (1)

Then

0 Transistor U upper shorted

1 Transistor U lower shorted

2 Transistor V upper shorted

3 Transistor V lower shorted

4 Transistor W upper shorted

5 Transistor W lower shorted

6 The current feedback phase U offset is too large

7 The current feedback phase W offset is too large

8 Transistor U upper open

9 Transistor U lower open

10 Transistor V upper open

11 Transistor V lower open

12 Transistor W upper open

13 Transistor W lower open

14 Current feedback phase U open

15 Current feedback phase W open

If any hardware fault occurs during the open transistor testing then thefollowing occur

bull The hardware fault is saved

bull A phasendashtondashphase fault is set

bull All subsequent testing is stopped

bull Some untested devices may be set as open

Typically you should fix the hardware faults and run open tests again todetermine if any opens exist

What Do Open Transistor Faults Indicate

Open transistor faults could indicate an open anywhere in the control orpower section that turns on a given transistor You should check thepower transistor gate drive signal from the control board through thecabling to the optondashisolators continuing through the gate drives andfinally through the cabling to the power transistor This includes thepower wiring to the motor terminals and the motor If the bus voltage istoo low opens could occur bus voltage should be greater than 85 ofnominal line

Chapter 6Troubleshooting

6ndash24

For proper drive operation it is necessary to have

A A specific phase sequence of the motor leads (M1 M2 M3 M1 M3 M2 etc)

B A specific sequence of encoder leads (pulse A leads B etc)These sequences determine the direction of rotation of the motor shaft on application of torque An improper sequence can result in either the motor rotating the wrong direction or no production of torque This test is used to ensure the above conditions by applying a positive torque and manually checking motor rotation and velocity feedback

Set parameter 256 (Autotune Diagnostics Selection) Bit 3 to a value of 1

Running the Inductance Test

A measurement of the motor inductance is required to determine thereferences for the regulators that control torque This test measures themotor inductance and displays it in Lsigma Tune [Leakage Inductance](parameter 237)

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the inductance test make sure that you have entered thecorrect motor nameplate information

To run the inductance test

1 Set bit 2 in AutotuneDiagnostics Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete Theinductance test runs for approximately 1 minute When a reading isobtained in Lsigma Tune perform the resistance test

Typical values for per unit inductance are in the range of 15 to 25motor impedance The value shown in Lsigma Tune is a percent valueIf you are using long wiring runs the typical value for per unitinductance should increase by the ratio of wiring inductance to motorinductance

Phase Rotation Tests

Sequential Torque BlockTuning

Chapter 6Troubleshooting

6ndash25

The motor inductance measuring routine contains several special faultsIf the drive trips during the inductance test check bits 0 through 5 ofMotor Inductance Test Errors (parameter 295)

If this bitis set (1)

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error you need to1 Run the test again2 Consider replacing the circuit boards

2

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

3

AD Overflow at Min gainThe motor terminal voltage measuring circuit is not working properlyYou need to1 Determine if the motor is connected2 Check cable connections between the gate drive and control boards3 Consider replacing the circuit boards4 Investigate any noise problems

4

Enable Dropout The drive enable was lost during the inductance test Consider runningthe test again and monitor the drive enable (bit 9 of Inverter Status(parameter 54) andor the Inv En LED on the main control board

5

Sign error Overflow The calculated inductance is negative1 Run the test again2 Consider replacing the circuit boards

Chapter 6Troubleshooting

6ndash26

The drive requires a motor resistance measurement to determine thereferences for the regulators that control torque The motor resistancetest measures the motor resistance and displays it in Rs Tune (parameter236) The test runs for approximately 10 ndash 30 seconds

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the resistance test make sure that you have entered thecorrect motor nameplate information

To run the motor resistance test

1 Set bit 3 in AutotuneDiagnostic Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete When areading is obtained in RS Tune perform the flux test

Typical values for per unit motor resistance are in the range of 1 to 3as displayed in RS Tune The value in RS Tune increases as the length ofwiring runs increase

Running the ResistanceTest

Chapter 6Troubleshooting

6ndash27

Several faults have been included to identify some problems that canoccur in the resistance measuring routine If the drive trips during theresistance test check bits 0 through 7 of Motor Stator Resistance TestErrors (parameter 296)

If this bitis set

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error run the test again because the value returned is notreliable

2Not Used

4Not Used

6Not Used

8

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

9Software ErrorA software fault is generated when an improper sequence of events hasoccurred Consider running the test again

10

Enable DropoutThe drive enable was lost during the resistance test Consider running thetest again and monitor the drive enable (bit 9 of Inverter Status (parameter54) andor the Inv En LED on the main control board)

Chapter 6Troubleshooting

6ndash28

What Happens If Multiple Opens OccurIf multiple opens occur several additional faults may be indicated Forexample if transistor U upper and U lower are open the test alsoindicates that current feedback U phase is open Because current cannotrun through phase U the current feedback device cannot be checked andtherefore is listed as a malfunction The type of installation oftendetermines which parts of the transistor diagnostics may or may notwork As a result treat the software only as an aid for testing the powerstructure

What Do I Do If I Get a Software Fault

If bit 0 of Inverter Diagnostics Result 1 (P 258) is set to 1 an impropersequence of events has occurred Either the software cannot distinguishwhat is occurring or there is noise in the system If a fault occursrepeatedly the problem may be a fault that the software cannot directlyidentify (for example a voltage breakdown in a snubber) If this is thecase you need to determine through external measurements if theproblem is real or if there is a noise problem In cases where a specifictest continually results in nuisance faults use Transistor DiagnosticsConfiguration (parameter 257) to disable that test

Chapter 6Troubleshooting

6ndash29

Rated motor flux is required in order to produce rated torque at ratedcurrent

Set Parameter 256 Bit 4 to a value of 1 This selects the Motor FluxTest This test measures the amount of current required to produce ratedmotor flux and displays it in Parameter 238 The motor will accelerateto approximately twondashthirds base speed and then coast for severalseconds This cycle may repeat several times The motor will thendecelerate to a low speed before disabling If the motor will notaccelerate increase parameter 40 (Torque Limit) until the motoraccelerates Parameter 41 (Speed Limit) will change the speed the motoraccelerates to

The Transistor Diagnostics Phase Rotation Inductance and Resistance Tests MUST be run before this test can be performed

Toggle the start bit in the logic command to start the test The Driveenable light will go out when the test is complete When a reading isobtained in Parameter 238 record it and then update the torque blockgains If the test still faults refer to the flux test faults

Flux Test Faults Typical values for rated motor flux range from 20 to 50 Several faults have been added to identify some problemsthat can occur in the flux test Should the drive trip while the flux test isbeing performed the cause can be found using parameter 297 Thepossible faults are detailed in Table 6D

Table 6DFlux Test Fault Descriptions

Bit Fault

0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set

Parameter 41 set to less than 33 speedParm 238 lt 0 CurrentParm 238 gt 100 Drive currentMaster_Slave enable dropout faultNot UsedNot UsedNot UsedNot Used

Responses for faultsParm 41 set to less than 33 speed The Autotune speed must be set higher in order to get a meaningful result out of the flux test

Parm 238 lt 0 Current This indicates that either 1 or some of the parameters are incorrectly set electrical noise iswas present motor phasing could be incorrect or other problems exist

Parm 238 gt 100 Drive Current This identifies flux current greater than the drive rated current This may be due to incorrect parameter settings an undersized drive for the motor or a problem motor

MasterndashSlave Enable Dropout This cable interlock between the Master and Slave drive was opened during the test

Running the Flux Test

Chapter 6Troubleshooting

6ndash30

If you experience problems while running the Flux Test it may be necessary to verify that parameters are set properly The parameters listed in Table 6E are the parameters that directly effect the Flux Test

Table 6EFlux Test Parameters

Parameter Number Description

4041

Autotune Torque LimitAutotune Speed

Reverse Speed Limit

Forward Speed Limit

Positive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitCp Operating Options

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high you may trip out on a BusOvervolts (see note)Set this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet to 0 to allow the motor to coast to stoponce the flux test is completed Set to 128to regen to stop even without a brake oncethe flux test is completed

Note The option to regenerate to stop following identification of flux producing current shouldfunction properly with or without a brake or regeneration unit However if a bus overvoltagefault occurs during the regen to stop the identified value of flux producing current can be retrievedand placed in P238 without rendashrunning the flux identification test with the regen to stopdisabled The identified value of flux can be found by using Software Testpoint Parameter 273 andplacing 67 into it The value of flux can be read by the user in the corresponding testpoint dataparameter 274 The value of 274 is the identified flux current and must then be entered intoparameter 238

127

128

175

176

177

178

179

180

227

100 allows 1 pu torque during accel+ndash 68 is the max for the flux test limitedinternally by the software

Chapter 6Troubleshooting

6ndash31

To update the Torque Block gains bit 5 in Parameter 256 must be set to1 and then a Start command must be given to the drive Bit 5 ofparameter 256 will automatically be set back to zero The values inparameters 240 thru 248 will now to be updated

Calculations This procedure takes the motor parameter information from Parameters 236 237 and 238 along with the inverter and motor nameplate data and calculates the proper regulator references for torque control (Fig 69)

Inductance Test Parameter 237

Calculations

Parameter 240

Parameter 241

Parameter 247

Parameter 248

Resistance Test Parameter 236

Flux Test Parameter 238

MOTOR NP DATA

Figure 69Calculations Test

(Parm 228ndash235)

INVERTER DATA(Parm 220ndash227)

Torque Block Update

Chapter 6Troubleshooting

6ndash32

Velocity Loop Autotune The Velocity Loop Autotune procedure for the 1336 FORCE is designed tolet you determine the maximum bandwidth for a particular system Youcan select operation at any bandwidth at or below the maximum bandwidththat has been calculated

The velocity regulator is a PI regulator with a Velocity Feed Forward term(KF Parm 141) The KF term is user chosen and describes the systemresponse to a change in velocity reference only By decreasing the value ofKF the overshoot of the system will be reduced When KF is 10 thevelocity loop behaves like a normal PI loop with the overshoot equalingapproximately 10 If KF is reduced to 07 (the recommended operatingpoint) then the overshoot is typically less than 1 if KF is reduced evenfurther to 05 (the lowest recommended value) the response becomesunderdamped with no overshoot

The velocity loop KI term (parm 139) is the integral term of the PIregulator The KI term is adjusted to remove any steady state instabilities

The velocity loop KP term (Parm 140) is the proportional term of the PIregulator The KP term is adjusted to determine how the drive responds toa step change in load

IMPORTANT If the velocity regulator is tuned too responsive the motorand load could potentially chatter If tuned nonndashresponsive the regulatorwill seem sluggish The value for Kp will increase as the system inertiaincreases For High inertia systems Kp may be greater than for KI Forlow inertia systems (systems with inertias under 1 Sec) KI will typicallybe larger than KP

Figure 610Velocity Regulator Functional Diagram

Veloc-ity

Time

0

50

KP

KFKI

The list of parameters that must be set to achieve proper velocity looptuning is detailed in Table 6F

Chapter 6Troubleshooting

6ndash33

Table 6FVelocity Loop Parameters

Parameter Number Description

4041

53

Autotune Torque LimitAutotune Speed

Torq Mode Select

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet to Value of 1 for encoder fdbkSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high may trip on a Bus OvervoltagefaultSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not acceleratePulses Per Revolution

127

128

150175

176

177

178

179

180

235

75 allows 75 rated torque during accel75 allows Autotune velocity to go to 75Percent base motor velocitySet to Value of 1 for encoder fdbk

Reverse Speed Limit

Forward Speed Limit

Feedback Device TypePositive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitEncoder PPR

Chapter 6Troubleshooting

6ndash34

Hardware Testpoints The Hardware Testpoints on the Series B 1336 FORCE Control Board areillustrated in Figure 611 The accompanying table details the expectedoutput from each testpoint

Figure 611Main Control Board Test Points

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

Adapter Board Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

TP1TP2TP3TP4TP5TP6TP7TP8TP9

TP10TP11TP12TP13

TP14TP15

DGND+5V+15VAGNDndash15Vndash25 to 25 V0 to 25V+5V when faultedCHA Encoder Fdbk 0 to 5 Square Wave with respect to TP1 or TP25 DGNDTest DAC2 (Development Use Only)Square Wave (Follows Carrier Frequency)Test DAC1 (Development Use Only)CHB Encoder Fdbk 0 to 5V Square Wave with respect to TP1 or TP25 DGNDBus Voltage FDBK (4V = 650 vdc)Feed Forward Voltage (0 to +ndash 75V sine wave)

Flt Trp

1 2 3

1 2 3

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Testpoint Application

TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

Ia FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIc FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIqs Command (0 to +ndash 10V sine wave)Ids Command (0 to +ndash 10V sine wave)Master Reset (5V = Reset)Id FDBK (0 to +ndash 5V sine wave)Feed Forward Voltage (0 to +ndash75V sine wave)ISO 12V for TachometerEncoderISO RTN for TachometerEncoderDGND

Application

Chapter 6Troubleshooting

6ndash35

The Hardware Testpoints on the PLC Comm Adapter Board are illustrated inFigure 612 The accompanying table details the expected output from eachtestpoint

Figure 612PLC Comm Board Test Points

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

TP9 TP10 TP11 TP12 TP13 TP14

TP19

TP20 TP21 TP22 TP23 TP15 TP16 TP17 TP18

TP1TP2TP3TP4TP5TP9TP10TP11TP12TP13TP14

TestpointDGND+5V+15VAGNDndash15VNot UsedNot UsedISO +12 VDCISO ndash5VISO GNDIGND

Application

TP15TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

AIN ndash 1AIN ndash 2AIN ndash 3AIN ndash 4+12VAOUT ndash 1AOUT ndash 2AOUT ndash 3AOUT ndash 4+10V Refndash10V Ref

Application

Chapter 6Troubleshooting

6ndash36

This Page Intentionally Blank

AppendixA

Andash1

Appendix

Motor Cables A variety of cable types are acceptable for 1336 FORCE driveinstallations For many installations unshielded cable is adequateprovided it can be separated from sensitive circuits As an approximateguide allow a spacing of 1 meter (33 feet) for every 10 meters (33 feet)of length In all cases long parallel runs must be avoided

The cable should be 4ndashconductor with the ground lead being connecteddirectly to the drive ground terminal (PE) and the motor frame groundterminal

Shielded Cable ndash Shielded cable is recommended if sensitive circuitsor devices are connected or mounted to the machinery driven by themotor The shield must be connected to the drive ground terminal (PE)and the motor frame ground terminal It is important that the connectionbe made at both ends to minimize the external magnetic field

If cable trays or large conduits are used to distribute the motor leads formultiple drives shielded cable is recommended to reduce or capture thenoise from the motor leads and minimize ldquocross couplingrdquo of noisebetween the leads of different drives The shield should be connected tothe ground (PE) connections at both the motor and drive end

Armored cable also provides effective shielding Ideally it should begrounded only at the the drive (PE) and motor frame Some armoredcable has a PVC coating over the armor to prevent incidental contactwith grounded structure If due to the type of connector the armor mustbe grounded at the cabinet entrance shielded cable should be used withinthe cabinet to continue as far as possible to the coaxial arrangement ofpower cable and ground

In some hazardous environments it is not permissible to ground bothends of the cable armor This is because of the possibility of high currentcirculating at the input frequency if the ground loop is cut by a strongmagnetic field This only applies in the proximity of powerful electricalmachines In this case the ground connection at one end may be madethrough a capacitance which will block the frequency current but presenta low impedance to RF Because of the highly pulsed nature of thecirculating current the capacitor type used must be rated forACndashtondashground voltage Consult factory for specific guidelines

Conduit ndash If metal conduit is preferred for cable distribution thefollowing guidelines must be followed

1 Drives are normally mounted in cabinets and ground connections are made at a common ground point in the cabinet If the conduit is connected to the motor junction box and the drive end no further conduit connections are necessary

Appendix A

Andash2

2 No more than three sets of motor leads can be routed through a single conduit This will minimize ldquocross talkrdquo that could reduce the effectiveness of the noise reduction methods described If more than three drivemotor connections per conduit are required shielded cableas described above must be used If practical each conduit should contain only one set of motor leads

ATTENTION To avoid a possible shock hazard caused byinduced voltages unused wires in the conduit must be grounded atboth ends For the same reason if a drive sharing a conduit isbeing serviced or installed all drives using this conduit should bedisabled This will eliminate the possible shock hazard fromldquocross coupledrdquo drive motor leads

Motor Lead Length ndash Installations with long cables to the motor mayrequire the addition of output reactors or cable terminators to limitvoltage reflections at the motor Refer to the following tables for themaximum length cable allowed for various installation techniques

Appendix A

Andash3

Table A1Maximum Motor Cable Length Restrictions in meters (feet) ndash 380V-480V Drives 1

No External Devices w 1204-TFB2 Term w 1204-TFA1 Terminator Reactor at Drive2

Motor Motor Motor Motor

r e W Motor WA B 1329 1329R HR L A or B 1329 A B 1329 A B or 1329

r e rameDrive kW Motor kW Any

ableAny

ableAny

ableAny

ableCable Type Any

ableCable Type Cable Type Any

ableAny

ableAny

ableDrive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable Shld 3 Unshld

AnyCable Shld3 Unshld Shld3 Unshld

AnyCable

AnyCable

AnyCable

A1 037 (05) 037 (05) 122(40)

335(110)

1143(375)

305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 075 (1) 122(40)

335(110)

1143(375)

305(100)

305(100)

305(100)

305(100)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

Use 1204-TFA1 305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

A2 12 (15) 12 (15) 122(40)

335(110)

1143(375) Unlimited 305

(100)305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 122(40)

335(110)

1143(375)

Applies tonew installa-

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

new installa-tions usingnew motors

d e

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

15 (2) 15 (2) 76(25)

122(40)

1143(375)

e rsand newdrives

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

12 (15) 76(25)

122(40)

1143(375)

For retrofits u s

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

situationscheck withthe motor

u ur

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

the motormanufactur-er for insula-

r

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

22 (3) 22 (3) 76(25)

122(40)

1143(375)

er r sution rating 1829

(600)1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

A3 37 (5) 37 (5) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

22 (3) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 12 4 T 2

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 1204-TFB2229(75)

1829(600)

A4 55-75(75-10)

55-75(75-10)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

B 55-22(75-30)

55-22(75-30)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

C 30-45(X40-X60)

30-45(40-60)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

762(250)

1829(600)

D 45-112(60-X150)

45-112(60-150)

122(40)

305(100)

1143(375)

1829(600)

1829(600)

1829(600)

610(200)

914(300)

E 112-187(150-250)

112-224(150-300)

122(40)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

G 187-448(X250-600)

187-448(250-600)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

Type A Motor Characteristics No phase paper or misplaced phase paper lower quality insulation systems corona inception voltages between 850 and 1000 voltsType B Motor Characteristics Properly placed phase paper medium quality insulation systems corona inception voltages between 1000 and 1200 volts1329R Motors These AC Variable Speed motors are ldquoPower Matchedrdquo for use with Allen-Bradley Drives Each motor is energy efficient and designed to

meet or exceed the requirements of the Federal Energy Act of 1992 All 1329R motors are optimized for variable speed operation andinclude premium inverter grade insulation systems which meet or exceed NEMA MG1 Part 314042

Appendix A

Andash4

Table A2Maximum Motor Cable Length Restrictions in meters (feet) ndash 500V-600V Drives 4

No External Devices w 1204-TFB2 Terminator w 1204-TFA1 Terminator Reactor at Drive 2

Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6

Drive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

A4 075 (1) 075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) 15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

12 (15) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) 22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

NotRecommended

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

Recommended

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

37 (5) 37 (5) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

B 55-15(75-20)

55-15(75-20)

NR 91(30)

152(50)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

C 185-45(25-60)

185-45(25-60)

NR 91(30)

122(40)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

D 56-93(75-125)

56-93(75-125)

NR 91(30)

335(110)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

610(200)

914(300)

1829(600)

E 112-224(150-X300)

112-224(150-X300)

NR 91(30)

213(70)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

G 224-448(300-600)

224-448(300-600)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

H 522-597(700-800)

522-597(700-800)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

NR = Not Recommended1 Values shown are for 480V nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply

values by 085 for high line conditions For input voltages of 380 400 or 415V AC multiply the table values by 125 120 or 115 respectively2 A 3 reactor reduces motor and cable stress but may cause a degradation of motor waveform quality Reactors must have a turnndashturn insulation rating of 2100 volts or

higher3 Includes wire in conduit4 Values shown are for nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply values

by 085 for high line conditions5 Information not available at time of printing6 1329R only

Appendix A

Andash5

Cable Termination Optional Cable Terminator

Voltage doubling at motor terminals known as reflected wavephenomenon standing wave or transmission line effect can occur whenusing drives with long motor cables

Inverter duty motors with phasendashtondashphase insulation ratings of 1600 voltsor higher should be used to minimize effects of reflected wave on motorinsulation life

Applications with nonndashinverter duty motors or any motor withexceptionally long leads may require an output inductor or cableterminator An inductor or terminator will help limit reflection to themotor to levels which are less than the motor insulation value

Tables 2A amp 2B list the maximum recommended cable length forunterminated cables since the voltage doubling phenomenon occurs atdifferent lengths for different drive ratings If your installation requireslonger motor cable lengths a reactor or cable terminator is recommended

Optional Output Reactor

The reactors listed in the 1336 FORCE price list can be used for drive inputand output These reactors are specifically constructed to accomodateIGBT inverter applications with switching frequencies up to 20 KHz Theyhave a UL approved dielectric strength of 4000 volts opposed to a normalrating of 2500 volts The first two and last two turns of each coil are tripleinsulated to guard against insulation breakdown resulting from high dvdtWhen using motor line reactors it is recommended that the drive PWMfrequency be set to its lowest value to minimize losses in the reactorsImportant By using an output reactor the effective motor voltage will belower because of the voltage drop across the reactors ndash this may also meana reduction of the motor torque

Common Mode Cores ndash Common Mode cores will help reduce thecommon mode noise at the drive output and guard against tripping of thedrive caused by capacitive leakage effects The capacitive currents arelarger at higher PWM frequencies

Enclosures Customer Supplied Enclosure Requirements ndash 1336 FORCE drivesinstalled in customer supplied enclosures may be mounted within anenclosure or may be mounted to allow the heatsink to extend outside theenclosure Use the information in Table A3 in combination with theenclosure manufacturerrsquos guidelines for sizing

Appendix A

Andash6

Table A3 ndash Enclosure Requirements

380 ndash 460 VDrives

200 ndash240 VDrives

Catalog NoBase DerateAmps1

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

B001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200B250B300BP300B350BP350B400BP400B450BP450B500B600

500 ndash 600 VDrives

C001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C3005

C3505

C4005

C4505

C5005

C6005

C6505

4512273448657880120149180240291327

256142127344248596578789712015018018024029132740640645945950548157053259967325610121924303545576286109138160252284298354406460505600673

DerateCurve23

NoneNoneNoneFig 1Fig 2Fig 3Fig 44

Fig 5Fig 6Fig 7Fig 8Fig 9Fig 16

NoneNoneNoneNoneFig 10 Fig 1Fig 11Fig 2Fig 12Fig 3Fig 4Fig 44

Fig 13Fig 14Fig 15Fig 15Fig 8Fig 9Fig 16NoneFig 33NoneFig 34NoneFig 35NoneFig 36Fig 17Fig1844444444444

Fig 19Fig 20Fig 21Fig 22Fig 23Fig 24NoneNoneFig 25Fig 26Fig 27Fig 28Fig 29

Heat DissipationDrive Watts 234

1733156200205210215220361426522606755902

152391103117140141141175175193193361361426522606606755902100561910557331295793133593113951485

44

911031171401411411751931933614265224

755890926100014301465150016101700

HeatsinkWatts 2

327248672181993311101110170819442664276937004100

205427039448662872082093393311101110170817081944266427692769370041004805534254556039617563296875700078008767

44

2172513604674925266788999811553197821624

30653625501559357120802089251076712000

TotalWatts 2

491056429211024114313251330206923703186337544555002

35773614976037688619611108110813031303206920692370318633753375445550025810596165106772747071228210793192001025244

308354477607633667853109211741894250426834

38204515594169358550948510425123771400

Base Derate Amps are based onnominal voltage (240 480 or 600V)If input voltage exceeds Drive Rat-ing Drive Output must be derated Refer to Figure 31

1

2Drive Ambient Temperature Rating is40degC If ambient exceeds 40degC thedrive must be derated Refer to Fig-ures 1ndash29

3DriveRating is based on altitudes of1000m (3000 ft) or less If installedat a higher altitude Drive must bederatedRefer to Figure 30

4

Important Two (2) 725 CFM fansare required if an open type drive ismounted in a user supplied enclo-sure

5

Not available at time of publication

Appendix A

Andash7

Derating Guidelines

Drive ratings can be affected by a number of factors If more than onefactor exists consult AllenndashBradley Co

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 21336TndashA015 and B030

75

80

70

85

90

of DriveRated Amps 95

100

65

60

50

55

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 31336TndashA020 and B040

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 41336TndashA025 B050 and BX060

75

80

70

85

90 of Drive

Rated Amps

95

100

65

60

55

45

50

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 11336TndashA010 and B020

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Appendix A

Andash8

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 51336TndashA040

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 61336TndashA050

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 71336TndashA060

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 81336TndashA075 and B150

Carrier Frequency in kHz2 43 5 6

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Appendix A

Andash9

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

65

75

80

70

85

90

of DriveRated Amps 95

100Figure 101336TndashB015

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 91336TndashA100 and B200

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 111336TndashB025

75

80

70

85

90

of DriveRated Amps 95

100

55

65

60

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 121336TndashBX040

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 131336TndashB075

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Appendix A

Andash10

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 141336TndashB100

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 151336TndashB125 and BX150

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 161336TndashB250

70

85

75

65

80

90

95

100 of DriveRated Amps

60

Carrier Frequency in kHz1 4 532 6

Figure 171336TndashB500

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 181336TndashB600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz1 432

Appendix A

Andash11

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 191336TndashC075

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 201336TndashC100

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Figure 211336TndashC125

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

60

1 42 53 6

Figure 221336TndashC150

70

85

75

65

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz1 432 65

Figure 231336TndashC200

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

45

60

Carrier Frequency in kHz1 4 532 6

Appendix A

Andash12

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 241336TndashC250

Carrier Frequency in kHz2

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

60

45

40

1 4 53 6

Figure 251336TndashC400

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 261336TndashC450

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 271336TndashC500

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Appendix A

Andash13

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 281336TndashC600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 291336TndashC650

70

85

75

80

90

95

100 of DriveRated Amps

65

60

55

Carrier Frequency in kHz

50

1 432

of DriveRated Amps

Altitude

m(ft)

100

80

90

0 4000(13200)

3000(9900)

2000(6600)

1000(3300)

Figure 30All Drive Ratings

of DriveRated Amps

Input Voltage

100

80

90

240 480 or 600V Nominal +6+4+2 +10+8

Figure 31Required Only for the following drives1336TndashABCndash025 185 kW (25 HP) at 8 kHz1336TndashABC 22 kW (30 HP) at 6ndash8 kHz1336TndashABC 45 kW (60 HP) at 6 kHz

Appendix A

Andash14

of DriveRated Amps

Figure D-321336E-BP250

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 32BP 250

of DriveRated Amps

Figure D-331336E-BP300

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 33BP 300

Figure 34BP 350

of DriveRated Amps

Figure D-341336E-BP350

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

of DriveRated Amps

Figure D-351336E-BP400

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 35BP 400

Appendix A

Andash15

Figure 36BP 450

of DriveRated Amps

Figure D-361336E-BP450

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 37B700C ampB800C

of DriveRated Amps

Figure D-361336E-B700C and B800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

of DriveRated Amps

Figure D-371336E-C700C and C800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

Figure 38C700C ampC800C

Appendix A

Andash16

Drive Hardware Overview ndash The following illustrations are functionalblock diagrams of the 1336 FORCE Drive detailing the difference inhardware between the various ratings These are basic overviews of the1336 FORCE hardware and should be used as reference material only

Appendix A

Andash17

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

C1

CAPBANK

MOV

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

141312

111098

Schematic Diagram ndash 3 ndash 15 HP 230V 3 ndash 15 HP 460V 3 ndash 20 HP 575V

S

R

TB1

T

CTL

+GND

FAULT

DET

P1P2

UP

P7P8

UN

E2

C1

P3P4

VP

P9P10

VN

E2

E1C2

C1

P5P6

WP

P12

P11

WN

E2

E1C2

U

W

V

E1C2

13

13

GATE DRIVERS

+

ndash

+24V

BRIDGE FAN

BRIDGETERMINALSENSOR (NTC)

To Main Control J1

E1

F3F1

Appendix A

Andash18

Schematic Diagram ndash 20ndash30 HP 230 VAC40ndash60 HP 460 VAC25ndash60 HP 575 VAC

L1

SEETABLE 1

FR

RndashL1

SndashL2

TndashL3FS

FT

TB1ndash5

TB1ndash6

TB1ndash7

PMC1CONV+

DC+

TB1ndash3

DCndash

TB1ndash4

3

2

1

CONVndash

BC

A

SCR4

SCR1SCR3 SCR5

SCR6 SCR5

C1 C2 C2

R1 R2 R321 22 23

SCR5

C4 C5 C6

R4 R5 R611 12 13

E14 E13 E12 E15

STANDARD PRECHARGE BOARD

F1 F2 F3

A

PCB SNUBBER STD

Appendix A

Andash19

Schematic Diagram ndash 20ndash30 HP 230 VAC 40ndash60 HP 460VAC25ndash60 HP 575 VAC

Q1

B1

PMI3

E1B2

E2

C3

B1

PMI2

C1B1

E2

C5

B1

PMI1

C1B1

E2

CAP+

E12CAPPCB

E13CAPPCB

SEETABLE 1

F1

Q4 Q6 Q2

C1

E1

C2

E2

C1

E1

C2

E2

C1

E1

C2

E2

U V W

C7 C8 C9 C11

C10

TB1ndash8 TB1ndash9 TB1ndash10

UndashM1 VndashM2 WndashM3

E5 E9E7

E11

INV+

INVndash

PCB SNUBBER STD74101ndash101ndashXXndashASSrsquoY

74101ndash099ndashSCH

TO CONTROL BOARDINTERFACE

NTC1

PCB MOUNT COMPONENTPCB ARTWORK

ndasht

J11 2 3 4 5 6

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1

TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1VP

3

2

7

6

5

4

1

11

10

9

8

1

ndash12V

1

2

4

1

3

2

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOMRTN

ENCA

ENCA

ENCB

ENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+

SHUNTndash

SHD

TE

PWR

RTN

HILO

1413

12

Y

VELOCITYPROC

R G

CPINVEN

IQS

IDS

VCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1

RTD SEN

RTD2

SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

CAPBANK

F1 F3

A

Appendix A

Andash20

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

CUSTOMERFUSING

CF2

CF3

PE

PE

MOV1

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

DC+

DCndash

CFI

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE TABLE 1SHEET 2

M1

M2

M3

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

To Precharge Board A10

Schematic Diagram ndash 75 amp 100 HP 230 VAC

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash21

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

MOV1

ACOUTPUTPOWER

DC+

DCndash

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

TE

PE

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE SHEET 2

PE

UndashM1

VndashM2

WndashM3

CUSTOMERFUSING

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

13 13 13 13 13 13

1313

Schematic Diagram ndash 150ndash250 HP 380460V 150 ndash 300 HP 575V

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash22

Schematic Diagram ndash X250 ndash 650 HP

CONVSNUBBER

A11

DC+

DCndash

CONVSNUBBER

A12

CONVSNUBBER

A13

ACINPUT

CUSTOMERFUSING

CF1

CF2

CF3

PE

SEETABLE 1SHEET 2

RndashL1

SndashL2

TndashL3

PE

MOV1

PM1

CNVndash

CNV+

K1

G1

TO BLOWERCIRCUIT

SEE SHEET 2

SCR1

SCR4

SCR3

SCR6

SCR5

SCR2

PM2 PM3

(1) (2)

(4) (3)

L1

DC+

DCndash

K1

G1

K1

G1

K2

G2

K2

G2

K2

G2

STANDARD PRECHARGE BOARD

F1 F2 F3

A

Appendix A

Andash23

Schematic Diagram ndash X250ndash650 HP

A

THS1

PE PE PE

INV+

INVndash

C40

C41

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1

VP 3276541

111098

1

ndash12V

12

4132

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOM RTNENCAENCAENCBENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+SHUNTndash

SHD

TE

PWRRTNHILO

141312

Y

VELOCITYPROC

R G

CPINVEN

IQSIDSVCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1RTD SEN

RTD2SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

CAPBANK

F1 F3

Appendix A

Andash24

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

ACOUTPUTPOWER

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

PE

UndashM1

VndashM2

WndashM3

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

Schematic Diagram ndash 300ndash400 HP

To Precharge Board A10

GATE DRIVERS F3STD PRECHARGEBD

F1 F2 F3

F1

Appendix A

Andash25

Schematic Diagram ndash 700ndash800 HP

PE PE PE

CT3

PS+V

CUSTOMER

THS1

F410001

3

CAP BANK

INV+

X

INVndash

CNV+

R10 R12 R11 R13105061

+DC

ndashDC

FUSING

PS+V

3

1

1

PSOMPSndashVPSndashVRL1ndash5RL1ndash9

A10PrechargeCommon BusBoard

J2 J1

TB1

1 4 7 10 1 4

IN POS BUS

IN NEGndashBUS

GATE

CATHODE

1

3

OUT POS BUS

OUT NEG BUS

J3

1

4

7 8 9101112

+SMP

ndashSMP

+15V

ndash15V

COMMON

5VCHARGEAC LINE

UserSupplied120 VACor24 VDC

W1

W1

24VDC120VAC

1ndash2

2ndash3

1 2 3

Appendix A

Andash26

Schematic Diagram ndash 700 ndash 800 HP cont

3

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

21

CT1 40001+15

ndash15U_AMPS 3

21

+15

ndash15W_Amps CT2 40001

PE

PS+V

PS+VPSCOMPSndashVPSndashVRL1ndash5RL1ndash9

GATEDRIVERBOARD

TB5

J13

A1

J6

J9

TB4 J1

+SMP

ndashSMP

+15V

ndash15V

COMMON

+5VCHARGEAC LINE

TO Main Control Board

TB71 2

12

9

654321

6

U_AMPS

W_Amps

J5

ContactorInterface

J2 J10

1 4 7 245

ndash BUS

+BUS

ACT2

ACT1

1 2

TE

24V AUX+

24V AUXndash

J7 J8

A23ndashA28Interface

A23ndashA28Interface

Appendix A

Andash27

Gate Driver Board Connections The connections on 1336 FORCE Gate Driver Boards vary by frame sizeas indicated in the following illustrations

1

J1

1

10

+ BUS

E25

MainControlBoardInterface

TB1

E26 E1

E6 E5

PE

GND

PE

GND

DC +

DC ndash

R (L1)

S (L2)

T (L3)

U (T1)

V(T2)

W(T3)

E20 E19 E21

E29 E22

50

E8

E27

E13 E15 E11

LEM2

LEM1

E16 E12 E14

E10 E9 E17

J4

E18

F1

ndash BUS Motor

To Motor

AC Input Line

RequiredInput Fusing

Required BranchCircuit Disconnect

FAN

PrechargeResistor

BusSwitcherFuse

Frame Size B Gate Driver Board Connections

Appendix A

Andash28

Frame Size C Gate Driver Board Connections

1

J1

MainControlBoardInterface

50

F1

TB4

Main Switcher(Bus Volts gt 24Vdc)

BusSwitcherFuse

J8

Connection to Upper IGBTrsquos

J7

Connection to Lower IGBTrsquos

F3

J9

Standalone or CommonbusPrecharge Board Interface

J10

J2

J6CurrentFeedbackInterface

BusDischargeFuse

Ext 24VSupplyInput

Ground Fault CT

Bus Input

Appendix A

Andash29

Frame Size D Gate Driver Board Connections

1

J1MainControlBoardInterface

50

F1

Logic Level Supply

TB4

Main Switcher(Bus Volts gt 24Vdc)

MainSwitcherBusFuse

J8 Connection to Upper IGBTrsquos

J7Connection to Lower IGBTrsquos

F3

J9

Standalone or Common BusPrecharge Board Interface

J10

J2

J6

BusInput

CurrentFeedbackInterface

GroundFaultCT

BusDischargeFuse

Ext 24VSupplyInput

Appendix A

Andash30

Sensorless Application Notes Sensorless vs Encoder Application Guidelinesndashndash Sensorless is applicable when Speed Regulation requirements are

greater than +ndash 10 of base speed Sensorless may be applicable for regulation requirements between 02 and 10 with manual adjustments Encoder operation is recommended below 02

ndash Sensorless is applicable when the minimum speed is greater than 140 of base speed (ie 45 RPM on a 60 Hz 4 pole motor) Sensorless may be applicable down to speeds of 160 of base speed (30 RPM) if high bandwidth responses are not required Encoder operation is recommended for speeds lt 160 of base speed (30 RPM)

ndash Maximum Speed is the same for sensorless and encoder operation

ndash The maximum velocity bandwidth achievable with sensorless is approximately twice the default bandwidth value Bandwidths higher than this may require an encoder because the velocity ripple may be intolerable or there may be stability problems The maximum bandwidth achievable with sensorless is half the bandwidth achievable with an encoder Note that the maximum achievable bandwidths decrease with increasing inertia for both sensorless and encoder

ndash The starting torque available is the same with sensorless or encoder Available starting torque is at least 150 motor torque and could be as high as 200 if the inverter can supply the current

ndash Minimum (current limit) acceleration and deceleration times are comparable with sensorless and encoder

ndash Torque regulation (+ndash5) is comparable with sensorless and encoder at velocities greater than approximately 25 of base speed At lower speeds sensorless torque regulation may degrade with changing motor temperature

ndash Torque response is comparable with sensorless and encoder (400Hz)

Sensorless Mode Selection ndashndash Param 150 = 5

Minimum preset speed is 160 of base speed When preset speed and actual speed are both lt160 of base speed torque is set to zero When preset speed is gt 160 of base speed torque will be developed to accelerate the motor through the min speed to the preset speed

When a motor is accelerated from a preset speed of 0 to a preset speed gt 160 of base speed the motor will accelerate at the accel rate set by the drive But if the accel rate in the drive is set to 0 or some low value and the acceleration is controlled by ramping the preset speed parameter with a PLC the motor will not accelerate until the preset speed is gt 160 base speed This will result in an accel delay until that speed is reached followed by an acceleration at the speed set by the PLC If this is a problem Mode 7 should be used

ndash Param 150 = 6Minimum preset speed is 11000 of base speed Preset speeds down to zero are permitted although it is very likely that the motor will not operate smoothly at these low speeds This mode will eliminate the problems associated with controlling the acceleration rate by ramping preset speeds from a PLC described in Mode 5 (Param 150 = 5)

ndash Param 150 = 7 (Available in 301 version)Minimum present speed is 11000 of base speed This mode is similar to mode 6 except that the motor can be expected to operate more smoothly and develop higher continuous torque at speeds lt 160 of base speed This mode will also allow operation with lower

Appendix A

Andash31

velocity bandwidths than Mode 5 and allow smoother acceleration

The disadvantage of this mode is that the response to load changes at low speeds is not as fast as mode 5 Also fast speed reversals may not work when the preset speed is ramped from a PLC and the drives acceldecel rate is set to 0

Sensorless Troubleshooting Procedures ndash

ndash Problem Motor wonrsquot accelerate or doesnrsquot start smoothlyndash Possible Solutions

Increase the bandwidth If the bandwidth is too low there is a chance the motor wonrsquot accelerate although the current will increase to current limitIf the regen power limit is 0 increase it to at least ndash5Decrease the acceleration time (faster acceleration)Change Param 150 to mode 7

ndash Problem Motor oscillates after it is up to speed

ndash Possible SolutionsDecrease the bandwidth if the process will allow If this doesnrsquot help set Param 142 to 1500If unstable in field weakening change Param 174 to 100

ndash Problem Inverter trips on absolute overspeed during starting

Increase the bandwidthIf the overspeed occurs during a reversal increase the deceleration time (slower deceleration)

Sensorless FinendashTuning Procedures ndashndash Improving Speed Regulation

Typically the speed regulation (as a function of load) in sensorless mode can be improved by adjusting Param 246 (Base Slip Frequency) after the drive has been completely autondashtuned This parameter is originally calculated during the torque calculation section of autondashtune and is dependent on the nameplate speed of the motor

Ideally this adjustment is made while the motor is fully loaded and at its normal operating temperature Adjust Param 246 until the actual speed as measured by an independent source (ie hand tach) is equal to the desired speed This should result in a minimum steady state speed deviation as load changes The proper slip for good speed regulation is also motor temperature dependent thus if the motor operating temperature normally varies between cold and hot a compromise slip must be selected

ndash Minimizing Acceleration Time from 0 Speed

After a start command is issued there is a 05 sec flux up delay before the motor will start accelerating with sensorless control This delay can be eliminated in subsequent accelerations from 0 speed by configuring the drive to decel down to a preset speed of 0 rather than decelerating to stop

ndash Increasing Speed Range

Speeds down to zero speed may be commanded when Param 150 is set to 7 As operation nears 0 speed cogging may result

Appendix A

Andash32

Software Block Diagram ndash Standard Adapter

SCANport Image In

Data In A1 (310)

SCANports1

2

3

4

5

6

SCANport Analog 1 Select (364)

1

2

3

4

5

6

Data In A2 (311)

Data In B1 (312)Data In B2 (313)Data In C1 (314)

Data In C2 (315)Data In D1 (316)

Data In D2 (317)

Fault Select (405)Warning Select (406) Fault Status (407)

Warning Status (408)Bit1 ndash SCANport 1 Timeout2 ndash SCANport 2 Timeout3 ndash SCANport 3 Timeout4 ndash SCANport 4 Timeout5 ndash SCANport 5 Timeout8 ndash 4ndash20mA Loss13 ndash Illegal Drive Type (Not Configurable) 14 ndash Different Drive Type (Not Configurable)15 ndash SCANport Error (Not Configurable)

SCANport Image Out

Data Out A1 (320)

1

2

3

4

5

6

Data Out A2 (321)Data Out B1 (322)Data Out B2 (323)

Data Out A1 (324)Data Out A2 (325)Data Out D1 (326)

Data Out D2 (327)

SCANport1

2

3

4

5

6

SCANport Analog Out (379)

Discrete IO

Input Mode (385)Input Status (386)

Mode1234

527678

9281029

11121314

15301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2NotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr Flt

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevMOP IncRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3ReverseSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type1st2nd AccMOP IncJogFwdRwdMOP DecFwd2nd AccLocRemStop Type1st2nd AccMOP IncLocRemPTrim EnFlux EnableSpdTrq2SpdTrq2ForwardSpdTrq2PTrim EnFlux EnablePTrim EnJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd Sel 3Spd Sel 31st2nd DecMOP DecLocRemJogSpd Sel 3Spd Sel 3MOP Inc1st DecSpd Sel 3Spd Sel 31st2nd DecMOP DecStop TypeRamp DisResetSpdTrq 1SpdTrq 1Ramp DisSpdTrq 1ResetResetRamp DisSpd Sel 3

Input 7StatusSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2MOP Dec2nd DecSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Ptrim EnFlux EnableResetSpd Set 2Spd Set 2Spd Set 2Spd Set 2Spd Set 2

Input 8StatusSpd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1

Input 9EnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnable

Stop Select 1 (387)Stop Select 2 (388)Accel Rate 1 (389)Accel Rate 2 (390)Decel Rate 1 (391)Decel Rate 2 (392)

SCANport Analog 1 In (365)

TB3ndash19 TB3ndash20 TB3ndash22 TB3ndash23 TB3ndash24 TB3ndash26 TB3ndash27 TB3ndash28 TB3ndash30 TB3ndash21 TB3ndash25 TB3ndash29COMMON

Power Cycle or Reset required to take effect

A

1

2

3

4

5

6

SCANport Analog 2 Select (367)

SCANport Analog 1 Scale (366)

SCANport Analog 2 Scale (368) SCANport Analog 2 In (369)

Appendix A

Andash33

Software Block Diagram ndash Standard Adapter

0123456

MOP Inc (393) MOP Value (394)

Port Enable Mask (330)

1

2

3

4

5

6

C B A0 0 0 ndash No Change0 0 1 ndash External Ref 10 1 0 ndash Preset Speed 10 1 1 ndash Preset Speed 21 0 0 ndash Preset Speed 31 0 1 ndash Preset Speed 41 1 0 ndash Preset Speed 51 1 1 ndash External Ref 2

Local Mask (337)

Start Mask (332)Jog Mask (333)Clear Fault Mask (335)Direction Mask (331)

Reference Mask (334)

Reset Drive Mask (336)

Stop Owner (340)Direction Owner (341)Start Owner (342)Jog 1 Owner (343)Jog 2 Owner (344)Reference Owner (345)Local Owner (346)Flux Owner (347)Trim Owner (348)Ramp Owner (349)Clear Fault Owner (350)

Logic Status (56)

Bit 0 ndash Run ReadyBit 1 ndash RunningBit 2 ndash Command Direction 1 = FWD 0 = REV)Bit 3 ndash Rotating Direction (1 = FWD 0 = REV)Bit 4 ndash AcceleratingBit 5 ndash DeceleratingBit 6 ndash WarningBit 7 ndash FaultedBit 8 ndash AT Set SpeedBit 9 ndash Local ABit 10 ndash Local BBit 11 ndash Local CBit 12 ndash AT Zero SpeedBit 13 ndash Ref ABit 14 ndash Ref BBit 15 ndash Ref C

Logic Status (57)

Bit 0 ndash Flux ReadyBit 1 ndash Flux UpBit 2 ndash Diagnostic CompletedBit 3 ndash Diagnostic CompletedBit 4 ndash Bus RidethruBit 5 ndash JoggingBit 6 ndash Autotune Stat ABit 7 ndash Autotune Stat BBit 8 ndash At LimitBit 9 ndash Not UsedBit 10 ndash At Setpoint 1Bit 11 ndash At Setpoint 2Bit 12 ndash Over Setpoint 1Bit 13 ndash Over Setpoint 2Bit 14 ndash Over Setpoint 3Bit 15 ndash Over Setpoint 4

Fault

Warning

Logic Command (52) (Permanent Link)

Bit 0 ndash Ramp StopBit 1 ndash StartBit 2 ndash Jog 1Bit 3 ndash Clear FaultBit 4 ndash ForwardBit 5 ndash ReverseBit 6 ndash Jog 2Bit 7 ndash Current Limit StopBit 8 ndash Coast StopBit 9 ndash Velocity Ramp AvailableBit 10 ndash Flux EnableBit 11 ndash Process Trim EnableBit 12 ndash Vel Reference Select ABit 13 ndash Vel Reference Select BBit 14 ndash Vel Reference Select CBit 15 ndash Reset Drive

Output Select (384)

TB7ndash6

TB7ndash5

TB7ndash4

TB7ndash9

TB7ndash8

TB7ndash7

Enable (55 Bit 9)

TB7ndash1

TB7ndash2

TB7ndash3

10 Volt Offset (356) 10 Volt Scale (357)10 Volt Input+ TB5 ndash 4ndash TB5 ndash 5

10 Volt Input (355) Analog Out 1 Scale (372) 10 Volt Scale (371)AnalogOutput 1 (370)

Analog Output 1 + TB6 ndash 1 ndash TB6 ndash 2

Pot Offset (359) Pot Scale (360)Pot Input+ TB5 ndash 7ndash TB5 ndash 8

Pot Input (358) Analog Out 1 Scale (375) 10 Volt Scale (374)AnalogOutput 2 (373)

Analog Output 2+TB6 ndash 4 ndash TB6 ndash 5

mA Input Offset (362) mA Input Scale (363)mA Input+ TB5 ndash 10ndash TB5 ndash 11

mA Input (361) mA Output Scale (378) mA Output Offset (377)mA Output 3 (376)

mA Output + TB6 ndash 7 ndash TB6 ndash 8

Pulse PPR (395)Pulse Edge (396)Pulse Scale (397)

Pulse Offset (398) Pulse Value (399)+10V RefCom Refndash10V Ref

TB5ndash1TB5ndash2TB5ndash3

+TB5ndash13ndashTB5ndash14

A

Filter

Filter

354

353

Filter

352

Appendix A

Andash34

36T Firmware Function (Motor Control Board Overview)

PROCESS TRIM

VELOCITYREFERENCE CONTROL

L

B TRIMCONTROL

LC

VR

Tq

DRIVE LOGICCONTROL

VELOCITY PIREGULATOR

GAINS

LC

VELOCITY LOOPAUTOTUNE

3 LOGIC COMMANDS

2 JOGS

2 LOGIC STATUS WORDS

FLUX INHIBIT RUN INHIBIT COND

Tpt

TORQUE TRIM

TL TH

PI

TORQUE LIMIT

VELOCITYFEEDBACK CONTROL

Q

S

VF

φf

TqTORQUE COMMAND

Sheet Connection Symbols

B VELOCITY RAMP OUTPUT

C CURRENT PROCESSOR COMMAND

I f FILTERED Iq REFERENCE

Iq

VELOCITY TRIM

Iq REFERENCE

LC LOGIC CONTROL WORD

M ACTIVE TORQUE MODE

VELOCITY PI REGULATOR OUTPUT

Q

S FILTERED Iq REFERENCE

TL TORQUE LIMIT LOW

TORQUE LIMIT HIGH

TORQUE COMMAND

VELOCITY FEEDBACK

φf

PI

TH

Tq

VELOCITY REFERENCE

TORQUE TRIM

VR

Tpt

5 PRESETS

2 JOGS

2 EXTERNALVELOCITY

REFERENCES

ENCODERLESS

VF

VT

Appendix A

Andash35

36T Firmware Function (Motor Control Board Overview)

2 EXTERNALTORQUEREFERENCES

TORQUE REFERENCECONTROL

M

C

DRIVE FAULTDETECTION

TORQUE BLOCK(DC TO ACCONVERTER)

ANALOG CURRENTREGULATOR

Iq REF (AC)

LOCAL INPUTS

4 FAULT STATUS WORDS

ACMOTORIq

If

1 EXTERNAL Iq Ref

Id REF (AC)

fe

DIGITALENCODER

ENCODERLESS

Appendix A

Andash36

36T Firmware Function (Velocity Reference Overview)

PARAM 52 LOGIC COMMAND WORD

ExternalVelocity Ref 1

SCALE

AUTO TUNEREFERENCE

SELECT

DIRECTIONSELECT

AUTOTUNE

ACTIVE

A

JOGREFERENCE

SELECT

0

JOG 2SPEED

PARM52

102

100101

ExternalVelocity Ref 2

SCALE

105

103104

119

120

121

122

0

123

121314

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2 6

27

118

PROCESS TRIMREFERENCE

REFERENCECONTROL SELECT

41

STOPCOMMAND

078

P54 DISCRETESTOP INPUT

45

PARM52 128

FORWARDSPEED LIMIT

127

REVERSESPEED LIMIT

56

LINEARACCELDECEL

RAMP

LOGICSTATUSPARM

DECEL TIME

125

126

ACCEL TIME

RAMPBYPASS

2679

PARM52

B

PROCESSTRIM VEL INPUT

SELECT

+

ndashC

117JOG 1SPEED

28PROCESS TRIMFEEDBACK

146VELFBK

RAMP OUTPUT

PARM52

PARM52

3

MAXSELECT

2

Parm 59

UNIPOLAR 0

ndash32767BIPOLAR

X (ndash1)

0 0 0Scale8192

Scale8192

2

59

LOGIC OPTION

Vel Ref Type12

Appendix A

Andash37

36T Firmware Function (Trim Control Overview)

PROCESS TRIM

TRIM LIMIT OPTION

STOP

OUTPUT GAIN2048

DATA

PROCESS TRIM PIREGULATOR

RAMP OUTPUT

109HIGH

B

C

108

LOW PASSFILTER

KI4096

KP4096

31

32

33

36

35

HIGH LIMIT

232

LOW LIMIT

LOW

LIMIT

VELOCITYTRIM

29

0

+

+

SELECT VELOCITYOUTPUT

0

+

+

106

10732 Bit ExternalVelocity Trim

ZEROREFERENCE

0

VELOCITY TRIM

LIMIT

TRIMLIMIT

29 0

FREQLIMIT

VR

TO VELOCITYPI REGULATOR

TORQUETRIM

0

Tpt

TO TORQUEREFERENCE

29 1

SELECT TORQUE

29 3

34

29 4

Lc 11FROMDRIVELOGIC

P52

SET OUTPUT OPTION

PRESET INTEG OPTION

130

FWD LIMIT

129

REV LIMIT

Appendix A

Andash38

36T Firmware Function (Velocity Feedback Overview)

DIGITALENCODER

ENCODER SIGNALPROCESSING

SUM

emptyt

DIVIDE

CHAN A

CHAN B

ENCODER FEEDBACK SCALING

PULSE To PER UNIT CONVERSION

LOW SPEEDALGORITHM

A

B

Appendix A

Andash39

36T Firmware Function (Velocity Feedback Overview)

FEEDBACKDEVICESELECT

8192

0

1

3

35492

567

152

0

FILTER

FEEDBACKDEVICE

TYPE

Kn

4

34567

012

1

4

150

FILTERSELECT

3

2 2040FILTER

LeadLag

FILTER

153 154

Wn NotchFilter

2143SCALE

147102 105

Scale 1 Scale 2

VF

155

ENCODERLESSINTERNALFEEDBACK

EXTERNALFEEDBACK

VEL REFSELECT

125 msFILTER

146

VELOCITYFEEDBACK

FV

143 16

TO MOTOROVERLOADFUNCTION

I2TABSOLUTE

OVERSPEED

SELECTEDVELOCITY

TO VELOCITY PI REGULATOR

Scaled VelFeedback

SUM

Q TO VELOCITY PI REGULATOR

Alt Encoder

Motor Sim

A

B

Appendix A

Andash40

36T Firmware Function (Velocity PI Regulator Overview)

VELOCITY PI REGULATOR

INTEGRATOR

VR

SELECT

65535

Kf TERM

I

3

FEEDFORWARD

Kf Velocity Loop

133

HOLD

Q

141

VELOCITY REFERENCE

132

A

65535

Kf

LOWPASS

FILTER

135

+

ndash

14241364135

Wn

Gain

Auto Tune Active

SELECT

50

Kp Velocity Loop 140

A

Gain

Auto Tune Active

Kf ERROR

3136

FAULT TESTPOINT

1596 9

HOLD

S

+

ndash

FROM TRIMCONTROL

DROOPEDVELOCITY

REFERENCE

2136135

9815

3

MATHLIMIT

+

ndash

DROOPGAIN

VF

146

DROOPPERCENT

XX

1298

FROMFEEDBACKCONTROL

FROMFEEDBACKCONTROL

15

131

PARAMETERLIMIT

VELOCITYFEEDBACK

+ ndash

138

VELOCITY ERROR

1598 8

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

Appendix A

Andash41

36T Firmware Function (Velocity PI Regulator Overview)

INTEGRALGAIN

I

PROPORTIONALGAIN

REGULATORENABLE

8

K

SELECT

8

Kp VELOCITY LOOP 139

A

Gain

+ 300

K

8

AUTO TUNEACTIVE

+

TORQUELIMITER183

LIMIT STATUS

1598 1

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

OR

+

2

ndash 300

0

8

PI

134

LC

TOTORQUE

REFERENCECONTROL

LOGICCONTROL

WORD

VELOCITYREGULATOR

OUTPUT

13136

OUTPUTLIMITED

p

= 0

Appendix A

Andash42

36T Firmware Function (Torque Reference Overview)

Limit Selection

TORQUE TRIM

Tpt

FromTrim Control

MINIMUM SELECTOR FOR + LIMIT

NTC LIMIT

A

AUTOTUNEACTIVE

SCALETORQSTEP

ACTIVE TORQUEMODE

M

11172

Torque Sum4096

163

EXTERNALTORQUE

REF 1

162

SLAVETORQUE 1

SCALE

4096

165

164

SLAVETORQUE 2

EXTERNALTORQUE

REF 2

+

PI

SPEED

TORQUE

134

Torque Selection

MIN

MAX

2 1 0

19172

2 1 0C B A

TORQUESELECT

LOGIC BITS

0 0 0 0

0 0 1

TORQUE LIMIT

0 1 0

+ +

+0 1 1

172

1 0 0

18172 13

TORQUE MODE SELECT

NOTCHFILTER

152 = 4 Notch

166

183

0+

1

2

3

4

5

6

0TORQUE

COMMAND

MAXIMUM SELECTOR FOR ndash LIMIT

1172

160NEGATIVE

MOTORCURRENT

LIMIT

179POSITIVEMOTOR

CURRENTLIMIT

( ndash 1)

3172

( ndash 1)

CURRENT TO TORQUE

271

LIMITEDFLUX

POSITIVEIq LIMIT

FLUX

CURRENT TO TORQUE

271

LIMITEDFLUX

FLUX

NEGATIVEIq LIMIT

FROMINVERTEROVERLOAD

PROTECTION

1 0 1

From VelocityPI Regulator

LIMITS

SUM

26

Appendix A

Andash43

36T Firmware Function (Torque Reference Overview)

Power Limits

MIN SELECT AUTOTUNE

TORQUELIMIT

LIMITEDFLUX

TORQUELIMITS

40

+

INTERNAL TORQUEREFERENCE

271

TORQUE TO CURRENT

FLUX+

167

174

8ndash

9

10

12

13

14

MIN FLUX

FULL WAVERECTIFY

Computed Power

XMultiply

Torque Ref

PositiveTorque Limit

MAX SELECT

175

172 20

NegativeTorque Limit

176 7172

Torque Limit Low

8172

Torque Limit High

21172

NEGATIVE TORQUEPOWER LIMIT

POSITIVE TORQUEPOWER LIMIT

1

Vf

1

Vf

+ndash

ndash+

177

146+

VELOCITYFEEDBACK

ndash

167

182

ComputedPower

MOTORINGPOWER

LIMIT

178REGENPOWER

LIMIT

( ndash 1)40

Autotune TorqueLimit

11

LIMIT STATUS

Iq LIMIT PARAM

NTC LIMIT

INVERTER (IT) LIMIT

INVERTER MAXIMUM

TORQUE LIM PARAM

POWER LIM PARAM

AUTOTUNE LIM PARAM

CURRENTLIMITS

MAX SELECT

CURRENTLIMIT

25172

Iq SUM

Iq RATELIMITER

I

Iq

MOTORFLUX

REFERENCETO TORQUEREFERENCE

161EXTERNALIQ

0

Appendix A

Andash44

36T Firmware Function (Torque Block Overview)

SYNCHRONOUS

TO

STATIONARY

TRANSFORMATION

CURRENT COMMAND CONDITIONING

FROMTORQUE

REF

168

Iq

172

MAX MOTORCURRENT

RANGE

172

MIN = ndash8192

MAX = 3072

MIN = 0

DRIVEENABLE

(lq)

RATED FLUX (Id)

238

LIMITER

4096^2ndash[238]^24096

MAX = 8192

DRIVEENABLE

LIMITER

Iq_CMD

Id_CMD

MOTORPOLES

233

THETA e

THETA s

2

HARDWARE

COUNTERS

1024[235]

[233]

4

ENCODERPPR

235

COUNTER 2

COUNTER 1

CHAN A

CHAN B

DIGITALENCODER

Iq_CMD1024

+

+

SLIPREGULATOR

DDT

+

+

THETA r

KSLIP

DELTA_COUNTS

fs(fslip)

fe

(eletrical or stator freq)(rotor)

41

41

R8192

R

ENCODER FEEDBACK CONDITIONING

+

ndash

fr

Appendix A

Andash45

36T Firmware Function (Torque Block Overview)

ANALOG CURRENT REGULATOR

BRIDGE GAIN IN TORQUEndash TESTPOINT 27 WHEN PAR 173=27

INVERTER GAIN

COMMAND

FEEDBACK

172

Iqs

TP18FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

VOLTAGE TP16=25V WITH PEAK RATED-MOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP1 amp TP2=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TP19

TP21

Ids

VOLTAGE TP21=5V WITH PEAK RATEDMOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP3 amp TP4=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TOTAL CURRENT

MOTORCURRENT

MAGNITUDE

XX AMP

264

DAC

260

TP16

+

ndash TP1

TP2

INVERTER GAIN

COMMAND

FEEDBACK

172

FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

DAC

261

+

ndash TP3

TP4

DAC

ADC

++

++

IdOFFSET

IqOFFSET

2048[GAIN]

2048[GAIN]

MAX

MULT

UWV

220INVERTER

AMPSPERUNITMOTOR

CURRENT

XX

185

Appendix A

Andash46

36T Firmware Function (Drive Fault Detection)

lf

91

4

98 18 ACCEL ERROR

98 19 QUAD LOSS EDGE

98 20 QUAD LOSS LEVEL

98 21 PHASE LOSS EDGE

98 22 PHASE LOSS LEVEL

54

857

1256

VELOCITY FEEDBACKTESTPOINTS

98 11 PARAM LIMIT 1

98 12 PARAM LIMIT 2

98 13 MATH LIMIT ndash VEL REF

98 14 MATH LIMIT ndash VEL FBK

98 15 MATH LIMIT ndash VEL REGULATOR

FAULT TESTPOINTS(BIT FIELDS)

FV

95

96

97

92

LC5

98 16 MATH LIMIT ndash TORQUE REF

98 17 MATH LIMIT ndash PROCESS TRIM

QUAD LOSS HSI0

PHASE LOSS HSI1

EXT FAULT

LOGIC STATUS

ENCODER

AT LIMIT

ZERO SPEED

XXX SECSTALL

STOPPED

MOTOR STALLED

BIT 6ndashFAULT CODE 5054

BIT 5ndashFAULT CODE 1053

LOGIC CONTROL WORD

150FEEDBACK DEVICE= ENCODER (1) BIT 0

FAULT CODE 5048

FILTERED

FILTERED

SPEED 1

SPEED 2

MIN

OVERLOAD

BREAKPOINT

ABS

21

ndash05

Y2lq

lq2

MAX

INTG

CALC

LIMIT

0

200

4096

A

B

A

B3891K

AgtB

AgtB

I2T TRIPBIT 4

ndashCODE 1052

I2T PENDINGBIT 3

ndashCODE 1051

MOTOR

CP CONFIGURABLE FAULTWARNING

BIT DESCRIPTION

0 BUS RIDETHROUGH TIMEOUT

1 PRECHARGE TIMEOUT

2 BUS DROP

3 BUS UNDERVOLTAGE

4 BUS DROP CYCLES gt5

5 OPEN CIRCUIT

6 RESERVED

7 RESERVED

8ndash15 NOT USED

PARAMETERS 828486 and 87

CONFIGURABLE FAULTS

lq

LIMIT

OVERLOAD

MOTOR OVERLOAD FUNCTION ldquoI2Trdquo

EDGE

DELAYAND

DELAY

LEVELDETECT

THRESH

(100)

(95)

VEL

LIMIT

94SERVICEFACTOR

Appendix A

Andash47

36T Firmware Function (Drive Fault Overview)

270

128

98 4

87

89

82

83

84

85TC

90

127

FV

LC 5

80

81

WARN

SEL

VP CONFIGURABLE FAULTWARNING

CONFIGFAULTSTATUS

CP

VP

CONFIG WARNSTATUS BITS

CP

VP

XX VOLTS

PARAMETERS 838588 and 89

BIT DESCRIPTION

0 ENCODER FEEDBACK LOSS

1 INVERTER OVERTEMPERATURE PEND

2 MOTOR OVERTEMPERATURE TRIP

3 MOTOR OVERLOAD PENDING ndash IIT

4 MOTOR OVERLOAD TRIP ndash IIT

5 STALLED

6 EXTERNAL FAULT

7 RMS FAULT

POWERTRANSISTOR

HEATSINKTEMPERATURE

(NTC) NTCLOOKndashUP gt

80C05 SEC

INVERTER OVERTEMP PENDING

BIT 1

ltndash20COR

gt100C

05 SECDELAY

INVERTER TEMPERATURE CHECK

LOGICCONTROL

WORD

NOT

RF

LIMIT CHECK

100 msec

HOLD

ABSOLUTE OVERSPEED

BIT 9FAULT CODE

3025

CODE2028

FILTEREDVELOCITYFEEDBACK

ABSOLUTEOVERSPEED

FWD MOTORSPEED LIMIT

REV MOTORSPEED LIMIT

NONndashCONFIGURABE FAULTS

0 BUS OVERVOLTAGE TRIP

1 TRANSISTOR DESATURATION

2 GROUND FAULT

3 INSTANTANEOUS OVERCURRENT

4 SOFTWARE MALFUNCTION ndash (CP)

5 MASTERSLAVE CABLE LOSS

6 MASTERSLAVE ENABLE TIMEOUT

7 RESERVED

8 ADAPTER HANDSHAKE LOSS (VP)

9 ABSOLUTE OVERSPEED

10 ANALOG SUPPLY FAILURE 13 ndash 18V RGE

11 AUTOTUNEDIAG FAIL

0ndash3 ARE HARDWARE FAULTS

12 INVERTER TEMPERATURE TRIP

13 SOFTWARE MALFUNCTION ndash (VP)

14 ILLEGAL INTERRUPT

15 RESERVED

POWERUP FAULTS

STATUSBITS

STATUSBITS

0 CP PROM FAILURE

1 CP INT RAM FAILURE

2 CP EXT RAM FAILURE

3 CP STACK RAM FAILURE

4 VP MBI FAILURE

5

6

7

8 VP PROM FAILURE

9 VP INT RAM FAILURE

10 VP EXT RAM FAILURE

11 VP STACK RAM FAILURE

12 CP MBI FAILURE

13 AP MBI FAILURE

14 EEPROM FAILURE (BASE DRIVE BRD)

15

CP

PO

WE

RU

PV

P P

OW

ER

UP

NONE POWER TRANSISTORHEAT

TEMPERATURE C

DELAY

DRIVE STOPPED

INPUTTABLE

DELAY

BIT DESCRIPTION

8

9 PARAMETER LIMIT

10 MATH LIMIT

11 DYNAMIC BRAKE OVERTEMP

12 AC MOTOR CONTACTOR

13 INVERTER OVERLOAD PENDING ndash IT

14 DRIVEndashTOndashDRIVE FAULT

15 INVERTER OVERLOAD TRIPndashIT or NTC

SELECT

86

88FAULT CP

VPCONFIGSELECT

FAULTCODE2049

BITS

98 2

Actual VelocityAt Overspeed

Appendix A

Andash48

36T Firmware Function (Inverter Overload)

98168

230

220

6172

23

2172

22172

[Iq] x MI

CONVERT MOTOR TOINVERTER UNITS

100 x IM

CONVERT INVERTERTO MOTOR UNITS

Iq x IM

MOTORNAMEPLATEAMPS

RATEDINVERTEROUTPUT AMPS

MAXIMUMINVERTERIq(6144 150)

INTERNALIq REFERENCE

M M

I

I I

M

I

M

TRANSISTORRJC

C RISE

MULT

CONVERT INVERTERTO MOTOR UNITS

30degC

Appendix A

Andash49

36T Firmware Function (Inverter Overload)

1

270

98 25

INVERTER HEATSINKTEMPERATURE C

98

120C

ERROR

ndash100S

INTEGRATOR

LIMITER

300 9

172 1LIMIT STATUS

NTCLIMIT

NTC LIMIT

TO MOTORCURRENTLIMITSELECTION

CONFIGURABLEFAULT

WARNING

83 15

172 3

183 2 10

83 13

IT

PROTECTION

A

B

A

B

LIMIT STATUS

OVERLOAD CURRENT LIMIT

(LIMITING)

(NOT PENDING)

SELECT

TOMOTOR

CURRENTLIMIT

SELECTION

CONFIGURABLEFAULTWARNING

RATED INVERTER Iq IN MOTOR PER UNIT

NTC FOLDBACK PROTECTION

DEVICE JUNCTIONTEMPERATURE C

rsquoIT INVERTER PROTECTION

INVERTER

Appendix A

Andash50

0

1

2

3

4

5

6

7

8

INVERTER TRANSISTOR DIAG

MOTOR PHASE ROTATION TEST

LO MEASURE

RS MEASURE

ID MEASURE

UPDATE TORQUE BLOCK CALC

MEASURE MOTOR INERTIA

MEASURE SYSTEM INERTIA

UPDATE VELOCITY LOOP GAINS

VELOCITY KI 139

VELOCITY KP 140

VELOCITY KF 141

DESIRED XXX RADSEC BANDWIDTH

DAMPING XX FACTOR

LC

43

45

AUTOTUNEDIAGNOSTICSELECTION

0WAIT

1START

3STOP

2MEASURE

256

AUTOTUNETORQUE

40

AUTOTUNESPEED

41

AUTOTUNE PROCEDURE

1 RUN TRANSISTOR DIAGNOSTICS ndash SET BIT 0 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

2 RUN PHASE ROTATION TEST ndash SET BIT 1 IN PARM 256 AND SET START BIT IN LOGIC COMMANDCHECK SIGN OF VELOCITY FEEDBACK (PARM 146) AGAINST FREQ REF (PARM 263)STOP DRIVE AND CLEAR PARAMETER 256SWAP ENCODER PHASES IF NECESSARY TO GET SIGNS TO MATCH

3 RUN TORQUE AUTOTUNE ndash SET BITS 2 THROUGH 5 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

4 RUN VELOCITY AUTOTUNE ndash ENTER DESIRED BANDWIDTH IN PARM 43 SET BITS 6 THROUGH 8 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND CHECK DIDT LIMIT IN PARM 181

181

AUTOTUNESTATUS

AUTOTUNEINHIBIT

ERROR

TORQUELIMIT

XXX SEC 234

XXX SEC

47

47

AUTOTUNE STATES

MOTOR INERTIA

TOTAL INERTIA

I LOOPDIDT LIMIT

V LOOPERROR FILTER BW

142

46

4

5

VELOCITY

LOOP

GAIN

CALCULATIONS

FRICTION

VELOCITY LOOP AUTOTUNE

LOGIC CONTROLDRIVE STOPPED

Appendix A

Andash51

1

2

3

4

DRIVE ENABLE (NO)

MTR THERMO GUARD (NC)

STOP (NC)

EXTERNAL FAULT

VPLED

ADAPTERTERMINALS

J8

LOCALINPUT

STATUS

54

UMCIEPLD

9

TORQUE MODE SELECT

0 ndash ZERO TORQUE1 ndash SPEED REGULATOR2 ndash TORQUE REGULATOR3 ndash MIN TORQUE OR SPEED4 ndash MAX TORQUE OR SPEED5 ndash SUM SPEED amp TORQUE6 ndash ZERO TORQUE7 ndash ZERO TORQUE

50 MSEC SCAN INTERVAL

HIGH BYTE = HANDSHAKE ENABLELOW BYTE = SYSTEM MODE

53

36T Firmware Function (Logic Control)

PSIBOARD

DISCONNECT (NC)16 msec

0

1

2

3

4

5

6

7

8

9

10

BRAKE REQ

DRIVE ENABLE

MOTOR OVERTEMP

DISCRETE STOP

EXTERNAL STOP

RMS FAULT P02

0 = MASTERSLAVE DRIVE

P03

TEST DIG P05

INVERTER STATUS

CONTACTOR VERIFYP26

P24

55

0

1

8

9

10

11

12

13

14

15

LOCALOUTPUTSTATUS

P27

P13

C B A

00001111

00110011

0 ndash ZERO TORQUE1 ndash EXTERNAL REF 10 ndash PRESET SPEED 11 ndash PRESET SPEED REF 20 ndash PRESET SPEED REF 31 ndash PRESET SPEED REF 40 ndash PRESET SPEED REF 51 ndash EXTERNAL REF 2

VELOCITY REF SELECT

BUS VOLTS

52

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NORMAL STOP

START

JOG 1

CLEAR FAULT

FORWARD

REVERSE

JOG 2

CURRENT LIMIT STOP

COAST STOP

VEL RAMP DISABLE

FLUX ENABLE

PROCESS TRIM ENABLE

VEL REF SELECT A

VEL REF SELECT B

VEL REF SELECT C

RESET DRIVE

EDGE

EDGE

EDGE

EDGE

EDGE

70

258 259INVERTERDIAGRESULTS

DISCRETEINPUT

DEBOUNCE

70 12

70 11

J1750 VOLTS

BRAKEINTERFACE

P25

58

0 = NORMAL STOP1 = TORQUE TO 0 SPEED2 = TORQUE TO 0 TORQUE

TORQUE STOP CONFIGURATION

BRAKE ENABLE

TURN ON DELAY P14

ndash ndash ndash ndash ndash ndash ndash ndash ndash

VP ENABLE

PILOT RELAY

GREEN LED

RED LED

INVERTERENABLE

LED

A

B

C

P12

LOGICCOMMAND

WORD

LOCAL DRIVE IO

RequestedTorqueMode

SYMBOL

PARAMETER XXX DATA SINK

PARAMETER YYY DATA SOURCE

BIT

TESTPOINT

OFF SHEETCONNECTION

Appendix A

Andash52

0

1

2

3

FLUX ENABLED

RUN INHIBIT

MOTOR SPINNING

16

STOP EVENT

36T Firmware Function (Logic Control)

NOTUSED

DISCRETE STOP

0

1

2

3

4

5

6

7

AT SETPOINT 1

DRIVE LOGIC STATES

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

54 55

STOP DWELL

70

60

0

59 B A

LAST STOPTYPE

AUTOTUNE COAST

BUS PRECHARGE

COAST STOP (HWSW)

COMMON BUS DISCONNECT (EXT FAULT)

COAST FAULT

NO DRIVE ENABLE J8ndash1

LOSS OF FLUX UP

AC CONTACTOR FAULT

A

B

C

LOGIC OPTION BITS

LOGIC COMMAND PROCESSING

FLUXINHIBIT

BITS

70

70 70 5RUN

INHIBITBITS

START TYPE A

START TYPE B

JOG RAMP ENABLE

JOG COAST(REGEN STOP = 0)

STOP INPUT TYPE A

STOP INPUT TYPE B

DO POWERndashUP DIAG

DO FLUXndashUP DIAG

DO START DIAG

AC CONTACTOR PRESENT = 1

1 = BIPOLAR VEL REF 0 = UNIPOLAR

0011

0101

MAINT START REGEN STOPMAINT START COAST STOPMOMENTARY STARTMAINT START REGEN STOP

B A

0011

0101

COASTNORMALIndashLIMITCOAST

FLUXINHIBIT

FLUX

STOP

1

START

4

DIAG

3

STOPPING

2

RUN

START JOG RESET

8

9

10

11

12

13

14

15

SAVE

4

70 5

RUN INHIBIT

= 0

70 15

70 5

61AT SETPOINT 2

OVER SETPOINT 1 62

63OVER SETPOINT 2

OVER SETPOINT 3 64

65OVER SETPOINT 4

66

67

SETPOINT SELECT

SPD SETPOINT TOL

68

69

Iq SETPOINT TOL

ZERO SPEED TOL

71

72

14

70

D

0 = NONE1 = COAST2 = NORMAL3 = I ndash LIMIT

LOGIC TESTPOINTS

TESTPOINT SELECT

RUNINHIBIT

BITS

E

70 1

LOGIC STATE (0 ndash 4)

F

G

J

KM ACTIVE TORQUE MODE

TO TORQUE REF CONTROL

H

Appendix A

Andash53

36T Firmware Function (Logic Control)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

56

H

LOGIC OPTION BITS

LOGIC CONTROL WORDBITS TO FAULT

CONTROL

70

RUN READY

RUNNING

COMMAND DIRECTION 1= FWD 0 = REV

ROTATING DIRECTION 1 = FWD 0 = REV

ACCELERATING

DECELERATING

WARNING

FAULTED

AT SET SPEED

LOCAL A

LOCAL B

LOCAL C

AT ZERO SPEED

REF A

REF B

REF C

C B A

00001

STOPSTARTRUNSTOPPINGDIAG

STATUS

VP to CP BITS

3

0 11415

D

0 = OKNOT 0 = LOSSOF CP FLUXndashUP

7013

FG

J

LC

E

00110

01010

LOGIC STATE

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

57

FLUX READY

FLUX UP

BUS RIDETHRU

JOGGING

AT LIMIT lt183gt Not = to 0

NOT USED

AT SETPOINT 1

AT SETPOINT 2

OVER SETPOINT 1

OVER SETPOINT 2

OVER SETPOINT 3

OVER SETPOINT 4

LOGIC OPTION BITS

CP to VP BITS

VEL REF CONTROL A

VEL REF CONTROL B

VEL REF CONTROL C

VEL REF CONTROL D

1 = STOPPING

STOPPED

PRECHARGE REQUEST

RAMP CONTROL (1 = RAMP)

SPEED REGULATOR ENABLE

MOTOR SIMULATOR ENABLE

FLUX ENABLE

DIAGNOSTIC ENABLE

VP GAIN CALC

RESET DRIVE

CLEAR FAULT

PROCESS TRIM ENABLECP FLUX LOSS

K

70 6

0 1 2 4 515

70 7

FLUX UPDIAGNOSTIC ACKNOWLEDGEDIAGNOSTIC ERRORMASTER INVERTERSLAVE INVERTER

0 = NO REQNOT 0 = DO DIAG

DIAGNOSTIC REQUEST FLAG

708

FLUX ENABLEDIAGNOSTIC ENABLEENCODERLESS DISABLERIDETHRU ACK

C TO CURRENT PROCESSOR

FROM CURRENT PROCESSOR

LOGIC STATUS

TORQUE BLOCK INTERFACE

See VelRef Testpoint 1

Appendix A

Andash54

Battery Disposal When it becomes necessary to replace the battery that supports the realtime clock on the 1336 FORCE precautions must be taken whendisposing of the old battery The following procedure must be followedwhen disposing of lithium batteries

ATTENTION Do not incinerate or dispose of lithium batteries ingeneral trash collection Explosion or violent rupture is possibleBatteries should be collected for disposal in a manner to preventagainst short circuiting compacting or destruction of caseintegrity and hermetic seal

For disposal batteries must be packaged and shipped in accordance withFederal state local or provincial laws to an appropriate Transfer Storageand Disposal facility

The person disposing of the material is responsible for any hazardscreated in doing so as the material may be considered toxic reactive orcorrosive

AppendixB

Bndash1

CE Conformity

EMC Directive This apparatus is tested to meet Council Directive 89336Electromagnetic Compatibility (EMC) using a technical construction fileand the following standards

bull EN 50081ndash1 ndash2 ndash Generic Emission Standard

bull EN 50082ndash1 ndash2 ndash Generic Immunity Standard

Marked for all applicable directives 1

Emissions EN 50081-1EN 50081-2EN 55011 Class AEN 55011 Class B

Immunity EN 50082-1EN 50082-2IEC 801-1 2 3 4 6 8 per EN50082-1 2

Important The conformity of the drive and filter to any standard doesnot guarantee that the entire installation will conform Manyother factors can influence the total installation and onlydirect measurements can verify total conformity

The following seven items are required for CE conformance

1 Standard 1336 FORCE Drive 037-45 kW (1-60 HP) CE compatible(Series D or higher)

2 Factory installed EMC enclosure (-AE option) or field installed EMCEnclosure Kit (1336x-AEx ndash see page Bndash2)

3 Filter as called out on the following page

4 Grounding as shown on page Bndash2

5 Maximum cable length (drive to motor) of 75 meters (250 feet)

6 Input power (source to filter) and output power (filter to drive amp driveto motor) wiring must be braided shielded cable with a coverage of75 or better metal conduit or other with equivalent or better attenu-ation mounted with appropriate connectors For shielded cable it isrecommended to use a compact strain relief connector with doublesaddle clamp for filter and drive input and compact strain reliefconnector with EMI protection for motor output

7 Control (IO) and signal wiring must be in conduit or have shieldingwith equivalent attenuation

Requirements forConforming Installation

Appendix BCE Conformity

Bndash2

Filter Selection

Filter CatalogNumber

Three-PhaseVolts Used with

FrameReference

1336-RFB-30-A 200-240V 1336T-A001 - A003 A

380-480V 1336T-B001 - B003 B

1336-RFB-27-B 200-240V 1336T-A007 B

380-480V 1336T-B007 - B015 B

1336-RFB-48-B 200-240V 1336T-A010 - A015 B

380-480V 1336T-B020 - B030 B

1336-RFB-80-C 200-240V 1336T-A020 - A030 C

380-480V 1336T-BX040 - BX060 C

1336-RFB-150-D 200-240V 1336T-A040 - A050 D

380-480V 1336T-B060 - B100 D

1336-RFB-180-D 200-240V 1336T-A060 D

380-480V 1336T-B125 - BX150 D

1336-RFB-340-E 200-240V 1336T-A075 - A125 E

380-480V 1336T-B150 - B250 E

1336-RFB-475-G 380-480V 1336T-BX250 - B350 G

1336-RFB-590-G 380-480V 1336T-B400 - B450 G

1336-RFB-670-G 380-480V 1336T-B500 - B600 G

Not Available 380-480V 1336T-B700 - B800 H

EMC Enclosure Kit Selection

Frame Enclosure Kit Catalog NumberFrameReference 200-240V Rating 380-480V Rating 500-600V RatingB 1336-AE4 1336-AE4 1336-AE4C 1336-AE5 1336-AE5 1336-AE5D 1336-AE6 1336-AE6 1336-AE6E 1336-AE7 1336-AE7 1336-AE7FndashH Not Available

RFI Filter Installation

ATTENTION To prevent electrical shock disconnect thepower source before installing or servicing

Important Refer to the instructions supplied with the filter for details

The RFI filter must be connected between the incoming AC supply lineand the drive input terminals

RFI Filter Leakage Current

The RFI filter may cause ground leakage currents Therefore a solidground connection must be provided as shown in the electricalconfiguration scheme shown on the following page

Filter

Appendix BCE Conformity

Bndash3

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some installationsthree-phase supplies are occasionally connected in a 3-wireconfiguration with one phase grounded (Grounded Delta) Thefilter must not be used in Grounded Delta supplies or in anungrounded wye configuration

JOG

ESC SEL

R (L1)

S (L2)

Ground RodGridor Building Structure Steel

T (L3)

PE

Conduit4ndashWire Cable

RFIFilter

Shield Terminated in CableClamp on A Frame Drives

Grounding RFI Filter Grounding

Important Using the RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated intothe filter Therefore the filter must be permanently installed and solidlygrounded (bonded) to the building power distribution ground Ensurethat the incoming supply neutral is solidly connected (bonded) to thesame building power distribution ground

Grounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnectionSome local codes may require redundant ground connections Theintegrity of all connections should be periodically checked

Electrical Configuration

Appendix BCE Conformity

Bndash4

Mechanical Configuration

1 Input power (source to filter) and output power (filter to drive amp drive to motor)wiring must be in conduit or have shieldingarmor with equivalent attenuationSee requirements on page B1

NOTE 1336 FORCE 40ndash60 HP 230V and 60HP 460V mounted in D Frames are NOT CE approved and cannot be used with the RFBndash80ndashC filter

37 ndash 45 kW (1 ndash 60 HP)Frames B amp C

Conduit 1 To Motor 1

ThreendashPhase Input 1

AccessPanel

Flat Washer

Star Washers

Bolt

Important A positive electrical bond must be maintained between drive and filter at all 4 corners Star washers can be eliminated if a positive electrical bond is assured

1336 FORCE

Appendix BCE Conformity

Bndash5

1336 FORCEThrough-the-Wall Mounting)

Frames D amp E 2

1336 FORCE (Conventional Mounting)

Frames D amp E 2

Conduit Box 1

To Motor 1

Access Panel and Input Terminal Block

Lower Access Panel

Filter MountingBracket

Filter MountingBracket

Important Drive and filter must be mounted to a common back plane with a positive electrical bond Spacing is determined by Conduit Box

Three-PhaseInput 1

To Motor 1

Three-PhaseInput 1

Conduit Box 1

NippleFitting

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash6

Filter Mounting (continued)

1336 FORCE (Typical Mounting)

Frame G 2

750(295)

Mounting Brackets

Typical Connectionto Drive

AC Input Terminals

Typical Bracketfor Stability

8310(3272)

Important This information represents the method used to mount 1336-RFB-475 590 amp 670 filters in an Allen-Bradley supplied EMC enclosure User supplied EMC enclosures must follow all of the guidelines shown Illustrations are only intended to identify structural mounting points and hardware shapes You must design and fabricate steel components based on the actual mounting configuration calculated loads and enclosure specifications Refer to Chapter 2 for drive mounting requirements

Important A positive electrical bond must be maintained between the enclosure and filter (including brackets) fans and drive To assure a positive electrical bond any paint near all mounting points must be removed

Important Cooling fans are required for proper drive operation Refer to the User-Supplied Enclosures section in Chapter 2 for CFM recommendations

All Dimensions in Millimeters and (Inches)

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash7

Required Knockout Assignments

Frames B and CFrames A1 through A4

Frame EFrame D

Control IO

Control IO

Control IOFilter Input Filter Input

Filter Input Filter Input

SCANport

Motor Output

Motor Output Motor Output

Motor Output

SCANport

SCANport

SCANport(Side of Drive)Control IO

286349 (113138) - 3 Plcs 222 (088) - 1 Plc 222 (088) - 1 Plc 222286 (088113) - 3 Plcs

8891048 (350413)2 Plcs

127 (050)3 Plcs

349 (138) - 3 Plcs 349500 (138197) - 1 Plc

627762 (247300) - 2 Plcs

Appendix BCE Conformity

Bndash8

This Page Intentionally Blank

AppendixC

Cndash1

User Parameter Values

Use the tables on the following pages to record your particular parametervalue setting for the current application

No Name Default Value No Name Default Value

1 Drive Software Ver 101 47 Autotune TP Data 0000 0000 0000 0000

5 Power Struct Type 0 48 Autotune TP Select 0

8 Motor Cntrl Counter 00 sec 52 Logic Cmd Word 0000 0000 0000 0000

9 Drv Comm Tsk Intrvl 1 53 Torque Mode Sel 1

10 Drv Comm Baud Rate 0 54 Local Input Status 0000 0000 0000 0000

11 Drv Comm Trans Addr 0 55 Local Output Status 0000 0000 0000 0000

12 Drv Comm Rcv 1 Addr 0 56 Logic Status Low 0000 0000 0000 0000

13 Drv Comm Rcv 2 Addr 0 57 Logic Status Hi 0000 0000 0000 0000

14 Dr Comm Xmit Ind 1 20 58 Torq Stop Config 0

15 Dr Comm Xmit Ind 2 21 59 Logic Options 0000 0001 1000 0010

16 Dr Comm Rcv 1 Ind 1 22 60 At Setpoint 1 +00

17 Dr Comm Rcv 1 Ind 2 23 61 At Setpoint 2 +00

18 Dr Comm Rcv 2 Ind 1 24 62 Over Setpoint 1 +00

19 Dr Comm Rcv 2 Ind 2 25 63 Over Setpoint 2 +00

20 Dr Comm Xmit Data 1 0 64 Over Setpoint 3 +00

21 Dr Comm Xmit Data 2 0 65 Over Setpoint 4 +00

22 Dr Comm Rcv1 Data 1 0 66 Setpoint Select 0000 0000 0000 0000

23 Dr Comm Rcv1 Data 2 0 67 Spd Setpoint Tol base speed100

24 Dr Comm Rcv2 Data 1 0 68 Cur Setpoint Tol 20

25 Dr Comm Rcv2 Data 2 0 69 Zero Spd Tolerance base speed100

26 Process Trim Output +000 70 Logic Testpoint Data 0000 0000 0000 0000

27 Process Trim Ref +000 71 Logic Testpoint Sel 0

28 Process Trim Fdbk +000 72 Stop Dwell 10 sec

29 Process Trim Select 0000 0000 0000 0000 77 Max Dyn Brake Pwr 0 Watts

30 Proc Trim Fltr Bdwth 0 radianseconds 78 Max Dyn Brake Tmp 50 deg

31 Proc Trim Data +00 79 Dyn Brk Time Const 10 sec

32 Proc Trim KI Gain 1000 80 Pwr Up Diag Flt Sts 0000 0000 0000 0000

33 Proc Trim KP Gain 1000 81 Non Config Flt Sts 0000 0000 0000 0000

34 Proc Trim Lo Lmt ndash1000 82 CP Config Flt Sts 0000 0000 0000 0000

35 Proc Trim Hi Lmt ndash1000 83 VP Config Flt Sts 0000 0000 0000 0000

36 Proc Trim Out Gain +100 84 CP Config Warn Sts 0000 0000 0000 0000

37 Process Trim Tstpnt +0 85 VP Config Warn Sts 0000 0000 0000 0000

38 Proc Trim TP Sel 0 86 CP FltWarn Sel 0000 0000 0000 0000

40 Auto Tune Trq Lmt 500 87 CP Warn Config Sel 0000 0000 0000 0000

41 Auto Tune Speed 085 x Base Motor Spd 88 VP Fault Select 1111 1111 1111 1111

43 VP Desired BW 500 radianseconds 89 VP Warn Config Sel 0000 0000 0000 0000

44 Autotune Status 5000 radian seconds 90 Abslte Ovrspd Thrsh 01 x base speed

45 VP Damping Factor 10 91 Stall Delay 10 sec

46 Total Inertia 200 sec 92 Mtr Overload Limit 2000

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

94 Service Factor 100 144 Vel Fdbk TP HI +0

95 Mtr Ovrld Speed 1 08 x Base Speed 145 Vel Fdbk TP Select 0

96 Motor Ovrld Speed 2 08 x Base Speed 146 Vel Fdbk +0 0 rpm

97 Min Ovrld Lim 1000 147 Scaled Vel Fdbk 0

98 Fault Tstpt Data 0 148 Enc Pos Fdbk LOW 0

99 Fault Tstpt Sel 0 149 Enc Pos Fdbk HI 0

100 Vel Ref 1 LOW 0 150 Fdbk Device Type None

101 Vel Ref 1 HI 00 rpm 151 Fdbk Tracker Gain 1000

102 Vel Scl Fctr 1 +1000 152 Fdbk Filter Sel 0

103 Vel Ref 2 LOW 0 153 Kn Fdbk Filter Gain +100

104 Vel Ref 2 HI 00 rpm 154 Wn Fdbk Filter BW 100 radianseconds

105 Vel Scl Fctr 2 +1000 155 Tach Velocity +000 rpm

106 Vel Trim LOW 0 156 Notch Filter Freq 135 Hz

107 Vel Trim HI 00 rpm 157 Notch Filter Q None

108 Vel Ref TP LOW 0 161 External Iq Ref +00

109 Vel Ref TP HI 0 162 Ext Trq Ref 1 +00

110 Vel Ref TP Sel 0 163 Slave Torque 1 +100

117 Jog Spd 1 +00 rpm 164 Ext Torq Ref 2 +00

118 Jog Spd 2 +00 rpm 165 Ext Torque 2 +00

119 Preset Speed 1 +00 rpm 166 Ext Torq Step 00

120 Preset Speed 2 +00 rpm 167 Int Torq Ref +00

121 Preset Speed 3 +000 rpm 168 Internal Iq Ref +00

122 Preset Speed 4 +00 rpm 172 Torq Ref TP Data +00

123 Preset Speed 5 +00 rpm 173 Torq Ref TP Sel 0

125 Accel Time 100 seconds 174 Min Flux Level 100

126 Decel Time 100 seconds 175 Pos Mtr Cur Ref Lmt 200

127 Rev Motor Spd Lim ndash Base Motor Speed 176 Neg Mtr Cur Ref Lmt ndash200

128 Fwd Motor Spd Lim Base Motor Speed 177 Motor Power Lmt 200

129 Max Rev Spd Trim ndash base speed 178 Regen Power Lmt ndash200

130 Max Fwd Spd Trim + Base Speed 179 Pos Mtr Cur Ref Lim 100

131 Droop Percent 0 180 Neg Mtr Cur Ref Lim ndash100

132 Vel Ref Out LOW 0 181 DiDt Limit 40

133 Vel Ref Out HI +00 rpm 182 Computed Power +00

134 Vel Reg Out 0 183 Torque Limit Status 0000 0000 0000 0000

135 Vel Reg TP LOW 0 184 Torque Mode Status 0000 0000 0000 0000

136 Vel Reg TP HI 0 185 Perunit Motor Curr 00

137 Vel Reg TP Sel 0 186 Perunit Motor Volt 00

138 Velocity Error +00 rpm 220 Rtd Inv Out Amps 200 amps

139 KI Velocity Loop 320 221 Rtd Inv Input Volts 460 volt

140 KP Velocity Loop 80 222 Inverter Carrier Freq 4000 Hz

141 KF Velocity Loop 100 223 PrechRdthru Sel 0000 0000 0000 0000

143 Vel Fdbk TP LOW 0 224 Undervolt Setpoint 400 volt

Appendix CUser Parameter Values

Cndash1

No Name Default Value No Name Default Value

225 Bus Prech Timeout 300 Sec 271 Lim Motor Flux 100

226 Bus Ridethru Timout 1750 RPM 273 TP Sel 1 0

227 CP Operat Options 0000 0000 0000 0000 274 TP Data 1 0

228 Base Motor HP 300 HP 275 TP Select 2 0

229 Base Motor Speed 1750 RPM 273 TP Sel 1 0

230 Base Motor Current 02 Amps 274 TP Data 1 0

231 Base Motor Volts 460 Volts 275 TP Select 2 0

232 Base Motor Freq 60 Hz 276 TP Data 2 0

233 Motor Poles 4 poles 277 TP Select 3 0

234 Mtr Inertia 060 sec 278 TP Data 3 0

235 Encoder PPR 1024 PPR 279 TP Select 4 0

236 RS Tune 150 280 TP Data 4 100

237 Lsigma Tune 1800 281 TP Select 5 0

238 Id Tune 300 282 TP Data 5 0

240 Iq Tune 9540 283 TP Select 6 0

241 Vde Tune ndash750 volts 284 TP Data 6 0

242 Vqe Tune 3670 volts 285 Select for Tst DAC1 0

243 Vde Maximum 3560 volts 286 Select for Tst DAC2 0

244 Vque Maximum 3670 volts 287 Ki Freq Reg 0

245 Vde Minimum 30 volts 288 Kp Freq Reg 0

246 Base Slip Freq 0469 Hz 289 Kff Freq Reg 0

247 Base Slip Freq Max 200 Hz 290 Ksel Freq Reg 0

248 Base Slip Freq Min 050 Hz 291 Freq Track Filt 0

260 Iq Offset +0 292 Track Filt Type 3

261 Id Offset +0 293 Freq Trim Filt 5000

262 Ph Rot Cur Ref 50 294 Mtr Phs Rot Err 0000 0000 0000 0000

263 Ph Rot Freq Ref 30 Hz 295 Mtr InducTest Error 0000 0000 0000 0000

264 Mtr Cur Mag Fdbk 00 Amps 296 Stator RS Test Error 0000 0000 0000 0000

265 Mtr Volt Fdbk +0 Volts 297 Id Test Errors 0000 0000 0000 0000

266 Stator Freq 0000 Hz 298 Torque Blk Calc 0000 0000 0000 0000

267 Calc Torque 00 300 Adapter ID 2

268 DC Bus Voltage 0 volts 301 Adapter Version xxx

269 Filter Mtr Vel Fdbk 00 rpm 302 Adapter Config

270 Inv Temp Fdbk 0 deg 304 Language Select 0

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

310 Data In A1 0 359 Pot Offset +0000

311 Data In A2 0 360 Pot Scale +1000

312 Data In B1 0 361 Milli Amp Input +0

313 Data In B2 0 362 Milli Amp In Offset +0000 mA

314 Data In C1 0 363 Milli Amp In Scale +2000

315 Data In C2 0 364 SP Analog Sel 1

316 Data In D1 0 365 Sp Analog In 0

317 Data In D2 0 366 Sp An1 Scale 1 (32767)

320 Data Out A1 0 367 Sp Analog Select 1

321 Data Out A2 0 368 Sp Analog2 In 0

322 Data Out B1 0 369 SP An2 Scale 1 (32767)

323 Data Out B2 0 370 Analog Output 1 0

324 Data Out C1 0 371 Analog Out 1 Offset +0000 volt

325 Data Out C2 0 372 An Out 1 Scale +0500

326 Data Out D1 0 373 An Out 2 Scale 0

327 Data Out D2 0 374 Analog Out 2 Offset +0000

330 SP Port Enable Msk 0111 1111 375 An Out 2 Scale +0500

331 SP Direction Mask 0111 1111 376 mA Output 0

332 SP Start Mask 0111 1111 377 mA Output Offset 0000 mA

333 SP Jog Mask 0111 1111 378 Regen Power Lmt +0500

334 SP Ref Mask 0111 1111 379 Pos Mtr Cur Lim 0

335 SP Clr Flt Mask 0111 1111 384 Select for Tst DAC2 8

336 SP Reset Drv Mask 0111 1111 385 Input Mode 1

337 SP Local Cntrl Mask 0111 1111 386 Input Status 0000 0000

340 SP Stop Owner 0000 0000 387 Stop Select 1 0

341 SP Dir Owner 0000 0000 388 Stop Select 2 0

342 SP Start Owner 0000 0000 389 Accel Rate 1 10 sec

343 SP Jog 1 Owner 0000 0000 390 Accel Rate 2 3

344 SP Jog 2 Owner 0000 0000 391 Decel Rate 1 5000

345 SP Ref Owner 0000 0000 392 Decel Rate 2 0000 0000 0000 0000

346 SP Local Owner 0000 0000 393 Mop Increment 0000 0000 0000 0000

347 SP Flux Owner 0000 0000 394 Mop Value 0000 0000 0000 0000

348 SP Trim Owner 0000 0000 395 Pulse PPR 0000 0000 0000 0000

349 SP Ramp Owner 0000 0000 396 Pulse Edge 0000 0000 0000 0000

350 SP Clr Fault Owner 0000 0000 397 Pulse Scale 1750

352 10 Volt In Filtr 00 rs 398 Pulse Offset 00

353 Pot In Fltr 00 rs 399 Pulse Value 00

354 mA In Filtr 00 rs 404 SP Comm Retries 00

355 10 Volt Input 0 405 Fault Select 0000 0000 0111 1111

356 10 Volt Offset 000 Volt 406 Warning Select 0000 0000 0111 1111

357 10 Volt Scale +2000 407 Fault Status 0000 0000 0000 0000

358 Pot Input 0 408 Warning Status 0000 0000 0000 0000

AppendixD

Dndash3

Spare Parts Information

Current 1336 FORCE spare parts information including recommendedparts catalog numbers and pricing can be obtained from the followingsources

AllenndashBradley home page on the World Wide Web athttpwwwabcom

then select ldquoDrives and Motorsrdquo followed by ldquo1336 FORCErdquo from the Product Directory and ldquo Technical Supportrdquo

Select Parts List

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Appendix DSpare Parts

Dndash3

This Page Intentionally Blank

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Index

I-1

AAC Supply Source 2ndash8AC Input Line Fuse Ratings 2ndash12Analog IO ParameterConfiguration 4ndash22Analog Inputs 2ndash30Analog Outputs 2ndash31Analog IO Links 4ndash22AutondashTuning Test Procedure6ndash20

BBattery Disposal Andash54BindashDirectional Operation 2ndash30Bit Enums 3ndash8Bus Voltage Tracker 6ndash15

CCable Termination Andash5Cable and WiringRecommendations 2ndash20CE Filter Bndash2CE Mechanical ConfigurationBndash4CE Requirements Bndash1Configuration (Standard Adapter)2ndash32Configuration (PLC CommAdapter) 2ndash46Communication Configuration4ndash17Control Link Configuration 4ndash20ControlNet Parameters 5ndash24Control Interface Option 2ndash35Control amp Signal Wiring(Standard Adapter) 2ndash28Control amp Signal Wiring (PLCComm Adapter) 2ndash42Control Specifications 1ndash2Control Status Mode 3ndash13Control Wiring 2ndash25Current Processor Faults 6ndash7

DDiscrete Inputs 2ndash44Discrete Outputs 2ndash44 2ndash31Display Mode 3ndash7Derating Guidelines Andash7Drive to Drive Communication2ndash26Drive to Drive HardwareConnection 2ndash27Drive to Drive HardwareConnection 2ndash27Drive Disconnection 2ndash11Drive Features 1ndash12Drive Hardware Overview Andash16

EEnclosure Requirements Andash6Encoder Connections 2ndash26Encoderless Speed Regulation1ndash5EMC Directive Bndash1EEPROM Mode 3ndash10EMIRFI Emission 2ndash13EMIRFI Emission 2ndash13Emmisions 2ndash13Environmental Specifications 1ndash4External Control LinkConfiguration 4ndash21

FFault Descriptions 6ndash2FaultWarning Handling 6ndash5FaultsampWarnings ndash CurrentProcessor 6ndash7Flex IO Module 4ndash34Frame D Drive Connections 2ndash45FaultsampWarnings ndash VelocityProcessor 6ndash17Feedback Devices 1ndash5Flux Test 6ndash29Frame Dimensions 2ndash2Firmware Function OverviewAndash34

Index

I-2

GGate Driver Board ConnectionsAndash27Graphic Programming Terminal3-20Graphic Programming TerminalOperation 3-22Graphic Programming TerminalKeypad Description 3ndash21Grounding Discrete Control andSignal Wiring 2ndash15Grounding Encoder Connections2ndash15Grounding Motor Cables 2ndash15Grounding Sensitive Circuits2ndash15

HHardware Testpoints 6ndash34HIM Control Panel 3ndash1HIM Key Descriptions 3ndash2HIM Module Removal 3ndash4HIM Operation 3ndash4HIM Programming Steps 3ndash6

IInput Devices 2ndash10Input Fusing 2ndash11Input Power Conditioning 2ndash11IO CommunicationConfiguration 4ndash19IO Ratings 2ndash8Immunity 2ndash13Interface Board Installation 2ndash29

LLink Option 3ndash8Lug Selection 2ndash18Lug Kits 2ndash18L4L4E Option 2ndash39L5L5E Option 2ndash40L6L6E Option 2ndash41

MMasterSlave Drive to DriveCommunication 4ndash19Motor Cables 2ndash17 amp A1Mounting Clearances 2ndash1Mounting 2ndash1Multiple Opens 6ndash28

NNuisance Faults 6ndash23

OOptions 1ndash3Option L4L4E Wiring 2ndash39Option L5L5E Wiring 2ndash40Option L6L6E Wiring 2ndash41Output Relay Configuration 4ndash27Open Transistor Faults 6ndash23

PPassword Mode 3ndash16Parameter Descriptions 5ndash24Parameter Table 5ndash3PE Safety Ground 2ndash16Performance Specs 1ndash2PLC Comm Adapter BoardControl Scheme 2ndash45PLC Comm Adapter BoardParameters 5ndash23Phase Rotation Test 6ndash24PLC Comm Adapter BoardControl amp Signal Wiring 2ndash42PLC Comm Switch Settings 2ndash43PLC Comm Adapter BoardConnections 2ndash43PrendashPower Checks 4ndash4Protective Features 1ndash3Process Mode 3ndash9Power Application 4ndash5Power Cabling 2ndash17Power Wiring 2ndash21Power Structure Tests 6ndash20Power Conditioning 2ndash11Precharge Faults 6ndash9

Pulse Input 2ndash31Program Mode 3ndash6

QQuick Start Procedure 4ndash7

RRemote IO Comm Module 4ndash34Repeated ApplicationRemoval ofInput Power 2ndash10Resistance Test 6ndash26RFI Filter 2ndash14 2ndash16 Bndash2RFI Filter Installation Bndash2 2ndash14RFI Filter Leakage Current Bndash22ndash14RFI Filter Grounding Bndash3Reference Signal Connections(PLC Comm) 2ndash43Ridethrough 6ndash10Ridethrough Faults 6ndash9

SSafety Precautions 4ndash1Safety Ground ndash PE 2ndash16SCANport Control Configuration4ndash29Schematic Diagrams Andash17Search Mode 3ndash12Serial Communication Module4ndash33Sequential Torque Block Tuning6ndash24Sensorless Application NotesAndash30Signal Ground ndash TE 2ndash16SLC to SCANport Module 4ndash32Software Block Diagram Andash32Spare Parts Dndash1Speed Regulation with EncoderFeedback 1ndash5Standard Adapter BoardConnections 2ndash28Standard Adapter Parameters5ndash16Startup Configuration 4ndash6

Index

I-3

Startup Mode 3ndash18Startup Safety Precautions 4ndash1Starting and Stopping the Motor2ndash10 2ndash45 2ndash34Switch Settings (PLC Comm)2ndash43

TTE Signal Ground 2ndash16Terminal Block Locations (MainControl Board 2ndash25Terminal Block TBWiring 2ndash21Terminology 1ndash1Test Points 6ndash34TBndash3 Control Interface Option2ndash35TBndash3 Terminal Designations2ndash36Torque Block Tuning 6ndash24Torque Block Update 6ndash31Troubleshooting 6ndash1

UUnbalanced Distribution Systems2ndash9Undervoltage Setpoint 6ndash13Ungrounded Distribution System2ndash9Unindashdirectional Operation 2ndash30

VVelocity Loop Autotune 6ndash32Velocity Processor Faults 6ndash17

WWire Types 2ndash20

Index

I-4

This Page Intentionally Blank

Index

Publication 1336 FORCE-512 September 1998 PN 74002-113-01 (02)Supersedes Publication 1336 FORCEndash512 mdash February 1997 Copyright 1995 Allen-Bradley Company Inc Printed in USA

  • Front Cover
  • Important User Information
  • Document Update
    • HIM UploadDownload Errors
    • Motor Control Board (v6xx)
      • Summary of Changes
      • Table of Contents
      • Introduction
        • Manual Objectives
        • Who Should Use This Manual
        • Terminology
        • Standard Drive Features
        • Performance Specifications
        • Control Specifications
        • Options
        • Protective Features
        • Environmental Specifications
        • Electrical Specifications
        • Feedback Devices
        • Software Compatibility
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v2xx
        • PLC COMM ADAPTER v3xx BOARD
        • v5xx
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v3xx
        • STADARD ADAPTER BOARD
        • v4xx
        • v5xx
        • This Page Intentionally Blank
          • InstallationWiring
            • Chapter Objectives
            • Mounting
            • InputOutput Ratings
            • AC Supply Source
            • Unbalanced Distribution Systems
            • Ungrounded Distribution Systems
            • Input Devices Starting and Stopping the Motor
            • Repeated ApplicationRemoval of Input Power
            • Bypass Contactors
            • Drive Output Disconnection
            • Input Power Conditioning
            • Input Fusing
            • Electrical Interference uacute EMIRFI Immunity
            • Emission
            • RFI Filtering
            • RFI Filter Installation
            • RFI Filter Leakage Current
            • Grounding
            • Sensitive Circuits
            • Motor Cable
            • Encoder Connections
            • Discrete Control and Signal Wiring
            • Signal Ground uacute TE
            • Safety Ground uacute PE
            • RFI Filter
            • Power Cabling
            • Motor Cables
            • Wire Size and Type
            • Lug Kits
            • Power Wiring
            • Control Wiring
            • Encoder Connections
            • Drive to Drive Communication
            • Drive to Drive Setup
            • Figure 214 Drive to Drive Hardware Connection
            • Standard Adapter Board
            • Discrete Outputs
            • Pulse Input
            • Configuration
            • Starting amp Stopping the Motor
            • Control Interface Option uacute TB3
            • Start Enable Stop Clear Fault Ext Flt Reverse 2 Stop Mode Selects Digital Potentiometer (MOP) Run Forward 2 Accel Decel Rates Run Reverse 3 Speed Selects Local Control
            • Option L4L4E uacute Contact Closure Interface Board Requirements
            • Option L5L5E uacute 24V ACDC Interface Board Requirements
            • Option L6L6E uacute 115V AC Interface Board Requirements
            • PLC Communication Adapter Board
            • Switch Settings uacute
            • Discrete Outputs
            • Discrete Inputs
            • Computer Connections to Frame D drives
            • ControlNet Fiber Optic Cable Connections to Frame D drives
            • Configuration
              • Programming Terminals
                • Chapter Objectives
                • HIM Description
                • Key Descriptions
                • Module Removal
                • To remove the module
                • HIM Operation
                • Important
                • GPT Description
                • Keypad Description
                • GPT Operation
                • This Page Intentionally Blank
                  • Start Up
                    • Introduction
                    • Safety Precautions
                    • Required Tools and Equipment
                    • Drive Information
                    • General
                    • PreuacutePower Checks
                    • Power On
                    • Startup Configuration Procedures
                    • Table 4B Sensorless Setup Values
                    • Communication Configuration
                    • Figure 43 D2D Communication
                    • Figure 44 Node Address Transmittal
                    • Figure 45 Master Slave Communication Example
                    • Standard Adapter Board Equipped Drives
                    • PLC Comm Adapter Board Equipped Drives
                    • This Page Intentionally Blank
                      • Programming Parameters
                        • Introduction
                        • Terminology
                        • Parameter Table Structure
                        • Parameter Table (Standard Adapter Equipped Drives)
                        • Standard Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • PLC Comm Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • Figure 54 1336 FORCE equipped with a ControlNet Adapter Board
                        • Parameter Descriptions
                        • This Page Intentionally Blank
                          • Troubleshooting
                            • General
                            • Required Equipment
                            • Fault Descriptions
                            • Table 6A 1336 FORCE Main Control Fault Descriptions
                            • FaultWarning Handling
                            • Hardware Testpoints
                              • Appendix A
                                • Motor Cables
                                • Cable Termination
                                • Enclosures
                                • Derating Guidelines
                                • Gate Driver Board Connections
                                • Sensorless Application Notes
                                • Software Block Diagram - Standard Adapter
                                  • Motor Control Board Overview
                                  • Velocity Reference Overview
                                  • Trim Control Overview
                                  • Velocity Feedback Overview
                                  • Velocity PI Regulator Overview
                                  • Torque Reference Overview
                                  • Torque Block Overview
                                  • Drive Fault Detection
                                  • Drive Fault Overview
                                  • Inverter Overload
                                  • Velocity Loop Autotune
                                  • Logic Control
                                    • Battery Disposal
                                      • CE Conformity
                                        • EMC Directive
                                        • Requirements for Conforming Installation
                                        • Filter
                                        • Electrical Configuration
                                        • Grounding
                                        • Mechanical Configuration
                                        • Required Knockout Assignments
                                          • User Parameter Values
                                          • Spare Parts Information
                                          • Index
                                          • Back Cover
                                            • PDF Job Options

                                              Offset Print Specs

                                              POD Print Specs

                                              1. Refer to Document Update on Page 5
                                              Print On Demand Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 20 bond
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 90 Bristol Index
                                              Ink - Cover Black (1-1-0-1)
                                              Binding Perfect bind (above 220 pages110 sheets)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Per vendor standard method
                                              Delivery Specified by Buyer
                                              Offset Print Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 50 smooth white offset (house stock)
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 8-10 pt coated 1S (house weight amp stock)
                                              Ink - Cover Black and PMS 187 red aqueous coated (2-1-0-1)
                                              Binding Perfect bind (120 pages minimum)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Specified by Buyer
                                              Delivery Specified by Buyer
                                              PDF Job Options
                                              Tab Description
                                              General File Options
                                              Compatibility Acrobat 40
                                              3 Optimized PDF
                                              Resolution 1200 dpi
                                              Binding Left
                                              Compression Color Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Grayscale Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Monochrome Bitmap Images
                                              3 Bicubic Downsampling at 300 dpi
                                              3 Compression CCITT Group 4
                                              3 Compress Text and Line Art
                                              Fonts 3 Embed All Fonts
                                              3 Subset All Embedded Fonts Below 100
                                              When Embedding Fails Warn and Continue
                                              Embedding Base 14 Fonts
                                              Color Conversion
                                              3 Leave Color Unchanged
                                              Options
                                              3 Preserve Overprint Settings
                                              3 Preserve Under Color Removal amd Black Generation
                                              3 Preserve Transfer Functions
                                              Advanced Options
                                              3 Preserve Level 2 copypage Semantics
                                              Document Structuring Convensions (DSC)
                                              3 Process DSC
                                              3 Preserve EPS Info from DSC
                                              3 Preserve OPI Comments
                                              3 Preserve Document Info from DSC
                                              Default Page Size
                                              3 Letter
Page 4: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx

2 1336 FORCE AC Drive User Manual

Page 1ndash6

The table has been updated to include v6xx of the Motor Control Board

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxv6xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

1336 FORCE AC Drive User Manual 3

Page 1ndash7

The table has been updated to include v6xx of the Motor Control Board A note was added to v5xx of the Standard Adapter Board

MOTOR CONTROL BOARD

STANDARDADAPTERBOARD

v1xxv1xx

v2xx v3xx v5xx6xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

v5xx - Compatiblev6xx - Drive to drive communicationsonly compatible at 125k baudNot Compatible at 250k or 500k

4 1336 FORCE AC Drive User Manual

Pages 3ndash20 through 3ndash24

GPT information does not apply

Page 5ndash31

Important note added to ldquoDrive Link Baud Raterdquo description

Important If a v6xx drive is added to the drive link that has v5xx or less it will only operate at 125k baud If all drives on the drive link are v6xx it can operate at 250k and 500k baud

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

wwwrockwellautomationcom

Americas Rockwell Automation 1201 South Second Street Milwaukee WI 53204-2496 USA Tel (1) 4143822000 Fax (1) 4143824444EuropeMiddle EastAfrica Rockwell Automation VorstlaanBoulevard du Souverain 36 1170 Brussels Belgium Tel (32) 2 663 0600 Fax (32) 2 663 0640Asia Pacific Rockwell Automation Level 14 Core F Cyberport 3 100 Cyberport Road Hong Kong Tel (852) 2887 4788 Fax (852) 2508 1846

Power Control and Information Solutions Headquarters

Publication 1336 FORCE-512DU2 ndash February 2007 PN 74002-113-01 (03)Supersedes 1336 FORCE-512DU2 dated February 2006 Copyright copy 2007 Rockwell Automation Inc All rights reserved Printed in USA

US Allen-Bradley Drives Technical Support - Tel (1) 2625128176 Fax (1) 2625122222 Email supportdrivesrarockwellcom Online wwwabcomsupportabdrives

Summary of Changes

Summary of Changes

Summary of Manual Changes The 501 release of the 1336 FORCE 512 User Manual contains some newand updated information The new and updated information is summarizedin the table below For further information refer to the page numbersprovided

Description of New or Updated Information Page Type

H frame dimensions added 2-7 NewLine fuse ratings updated 2-7 ClarificationMotor Cable requirements added 2-16 NewH frame terminal block added 2-22 NewFigure 2ndash17 upgraded 2-29 ClarificationH Frame Terminal Block Location added 2-34 NewFrame D ControlNet connection info added 2-43 NewControlNet Parameter Table added 5-24 NewParameter 71 updated 5-35 ClarificationParameter 92 updated 5-39 ClarificationParameter 185 added 5-51 NewParameter 186 added 5-52 NewParameter 223 updated 5-53 ClarificationParameter 224 updated 5-53 ClarificationParameter 229 updated 5-54 ClarificationParameter 233 updated 5-54 ClarificationParameter 257 updated 5-57 ClarificationParameter 258 updated 5-57 ClarificationParameter 259 updated 5-57 ClarificationParameter 294 updated 5-62 ClarificationParameter 385 updated 5-76 ClarificationUnderstanding Precharge and Ridethru Faults 6ndash9 NewUnderstanding the Bus Voltage Tracker 6ndash15 NewPower structure and transistor Diag tests 6ndash20 NewSequential Torque Block Tuning 6ndash24 NewH Frame Motor cable restrictions added A-4 NewBC 700 amp BC 800 Derating Guidelines added Andash15 New700 ndash 800 HP Schematic added Andash25 NewSoftware Block Diagram updated Andash32 ClarificationTorque Block Firmware Diagram updated Andash45 ClarificationLithium Battery Disposal information added Andash54 NewCE mechanical configuration diagram added Bndash5 Bndash6 Bndash7 NewSpare Part Appendix added D-1 New

This Page Intentionally Blank

Table of Contents

i

Introduction Chapter 1Manual Objectives 1-1

Who Should Use This Manual 1-1

Terminology 1-1

Standard Drive Features 1-2

Performance Specifications 1-2

Control Specifications 1-2

Options 1-3

Protective Features 1-3

Environmental Specifications 1-4

Electrical Specifications 1-4

Feedback Devices 1-5

Software Compatibility 1-6

InstallationWiring Chapter 2Chapter Objectives 2-1

Mounting 2-1

Dimensions 2-2

InputOutput Ratings 2-7

AC Supply Source 2ndash7

Input Devices 2ndash9

Drive Output Disconnection 2ndash10

Input Power Conditioning 2ndash10

Input Fusing 2ndash10

Electrical Interference ndash EMIRFI 2ndash12

RFI Filtering 2ndash13

Grounding 2ndash14

Power Cabling 2ndash16

Wire Size and Type 2ndash16

Lug Kits 2ndash17

Power Wiring 2ndash20

Control Wiring 2ndash23

Encoder Connections 2ndash24

Drive to Drive Communication 2ndash24

Standard Adapter Board 2ndash26

Control amp Signal Wiring (Standard Adapter Board) 2ndash26

Interface Board Installation amp Removal 2ndash27

Standard Adapter Analog Inputs 2ndash28

Standard Adapter Analog Outputs 2ndash29

Standard Adapter Discrete Outputs 2ndash29

Pulse Input (Standard Adapter Equipped Drives) 2ndash29

Starting amp Stopping the Motor (Standard Adapter Equipped Drives) 2ndash32

Control Interface Option ndash TB3 2ndash33

Table of Contents

ii

Control amp Signal Wiring (PLC Comm Adapter Board) 2ndash40

Switch Settings (PLC Comm Board) 2ndash41

Discrete Outputs (PLC Comm Adapter) 2ndash42

Discrete Inputs (PLC Comm Adapter) 2ndash42

Control Scheme 2ndash45

Computer Connections (Frame D Drives) 2ndash45

ControlNet Connections (Frame D Drives) 2ndash45

Configuration (PLC Comm Adapter) 2ndash46

Programming Terminals Chapter 3Chapter Objectives 3-1

HIM Description 3-1

HIM Module Removal 3-4

HIM Operation 3-4

HIM Programming Steps 3-19

GPT Description 3-20

Keypad Description 3-21

GPT Operation 3-22

GPT Programming Options 3-24

StartndashUp Chapter 4Introduction 4-1

Safety Precautions 4-1

Required Tools and Equipment 4-2

Drive Information 4-3

General 4-4

PrendashPower Checks 4-4

Power On 4-5

Startup Configuration Procedures 4-6

Quick Startup Procedure 4-7

Manual Startup Mode 4-10

Communication Configuration 4-17

Drive to Drive Communication 4-17

IO Communication Configuration 4-20

External Control Link Configuration 4-21

Analog IO Parameter Configuration 4-23

SCANport Analog IO Parameter Configuration 4-27

Output Relay Configuration 4-27

Pulse Input Configuration 4-28

MOP Configuration 4-28

SCANport Image Configuration 4-28

SCANport Control Configuration 4-29

Table of Contents

iii

Control Interface Option 4-29

Using the SCANport Image 4-30

IO Image Table 4-31

SLC to SCANport Module 4-32

Serial Communications Module 4-33

Remote IO Communications Module 4-34

Programming Parameters Chapter 5Introduction 5-1

Terminology 5-1

Parameter Table Structure 5-2

Parameter Table (Numerical) 5-3

Parameter Table (Alphabetical) 5-11

Standard Adapter Parameters 5-16

PLC Comm Adapter Parameters 5-20

Parameter Descriptions 5-24

ControlNet Parameters 5-80

Troubleshooting Chapter 6General 6-1

Required Equipment 6-1

Fault Descriptions 6-2

Fault Code Definition 6-2

Main Control Board Fault Descriptions 6-3

Standard Adapter Board Fault Descriptions 6-4

FaultWarning Handling 6-5

Current Processor Faults amp Warnings 6-7

Understanding Precharge and Ridethrough Faults 6-9

Understanding the Bus Voltage Tracker 6-15

Auto-Tuning Test Procedure 6-20

Power Structure and Transistor Diagnostics Tests 6-20

Phase Rotation Tests 6-24

Sequential Torque Block Tuning 6-24

Running the Resistance Test 6-26

Running the Flux Test 6-29

Torque Block Update 6-31

Velocity Loop Autotune 6-32

Hardware Testpoints 6-34

Table of Contents

iv

Appendix Appendix AMotor Cables A-1

Cable Termination A-5

Enclosures A-5

Derating Guidelines A-7

Drive Hardware Overview A-16

Schematic Diagrams A-17

Gate Driver Board Connections A-27

Sensorless Application Notes A-30

Software Block Diagram ndash Standard Adapter A-32

Firmware Function Overview Diagrams A-34

Battery Disposal A-54

CE Conformity Appendix BEMC Directive B-1

Requirements for Conforming Installation B-1

Filter B-2

Electrical Configuration B-3

Grounding B-3

Mechanical Configuration B-4

Required Knockout Assignments B-7

User Parameter Values Appendix CValue Table C-1

Spare Parts Information Appendix DInformation Location D-1

Chapter 1

1ndash1

Introduction

Manual Objectives The purpose of this manual is to provide the user with the necessaryinformation to install program start up and maintain the 1336 FORCEDigital AC Drive This manual should be read in its entirety beforeoperating servicing or initializing the 1336 FORCE Drive

Who Should Use This Manual This manual is intended for qualified service personnel responsible forsetting up and servicing the 1336 FORCE AC Drive You must haveprevious experience with and a basic understanding of electricalterminology programming procedures required equipment and safetyprecautions before attempting any service on the 1336 FORCE Drive

ATTENTION Only personnel familiar with the 1336FORCE Drive and the associated machinery should plan orimplement the installation startndashup and subsequentmaintenance of the Drive Failure to comply may result inpersonal injury andor equipment damage

ATTENTION An incorrectly applied or installed Drivecan result in component damage or a reduction in productlife Wiring or application errors such as undersizing themotor incorrect or inadequate AC supply or excessiveambient temperatures may result in damage to the Drive ormotor

ATTENTION This Drive contains ESD (ElectrostaticDischarge sensitive parts and assemblies Static controlprecautions are required when installing testing servicingor repairing this assembly Component damage may resultif ESD control procedures are not followed If you are notfamiliar with static control procedures referenceAllenndashBradley Publication 8000ndash452 Guarding againstElectrostatic Damage or any other applicable ESDprotection handbook

Terminology Detailed definitions of industrial automation and technical terms usedthroughout this manual may be found in the INDUSTRIALAUTOMATION GLOSSARY ndash a guide to AllenndashBradley technicalterms Publication AGndash71

Chapter 1Introduction

1ndash2

Standard Drive Features The Bulletin1336 FORCE Field Oriented AC Drive is a microprocessorcontrolled Digital AC Drive with the following features

bull 1 to 650 HP at 0 ndash 250 HZ constant torquebull Four Quadrant operation availablebull High Performance Digital Velocity Loopbull Microprocessor controlled field oriented current loopbull Simplified programming through the use of a Parameter Table that

features data entries in engineering units with English descriptionsbull Nonvolatile Parameter Storagebull Extensive diagnostics including both logic board and power

structure testsbull Time stamped nonvolatile FaultWarning Queuebull Real Time Clockbull Reference Time Stampbull Run Time Accumulatorbull Enclosed Constructionbull Multiple Communication Interfacesbull Complete Encoder Interfacebull Drive to Drive Linkbull SCANportTM Peripheral Interface

Performance Specificationsbull Speed Regulation to 0001 of top speedbull Torque Regulation to plusmn 5 of rated motor torquebull Power Loss RidendashThru capability of two secondsbull Flying Start Capability of starting into a spinning motorbull Torque Linearity 1bull Overload Capability 150 for 1 minute 200 of motor rating for

10 seconds up to inverter limitbull Programmable AccelDecel rates from 0 to 6553 secondsbull Current limit programmable from 200 of rated output current

Control Specificationsbull Indirect SelfndashOrganized FieldndashOriented Control

Currentndashregulated sine coded PWM with programmable carrier frequencyHP Drive Rating Carrier Frequency1ndash3 HP 4 kHz 1ndash12 kHz75ndash30 HP 4 kHz 1ndash12 kHz40ndash60 HP 4 kHz 1ndash12 kHz75ndash125 HP 2 kHz 1ndash6 kHz150ndash250 2 kHz 1ndash6 kHz300ndash500 2 kHz 1ndash4 kHz600ndash650 15 kHz 1ndash4 kHz700ndash800 1 kHz 1ndash4 kHzRefer to Derating Guidelines in the Appendix of this manual

bull Output Voltage Range ndash 0 to rated voltagebull Output Frequency Range ndash 0 to 250 Hzbull Speed Regulation with Encoder Feedback ndash 0001 of Top Speed

over a 1001 Speed Range

Chapter 1Introduction

1ndash3

bull Encoderless Speed Regulation ndash 1 of Top Speed over a 401 Speed Range

bull AccelDecel ndash Independently programmable accel and decel times Program from 0 to 6553 seconds in 01 second increments

bull Current Limit ndash Independent Motoring and Regenerative Limitbull Inverse Time Overload Capability ndash Class 20 protection with

speedndashsensitive response Adjustable from 0ndash200 of rated output current in 3 speed ranges ndash 21 41 amp 101 UL Certified ndash Meets NEC Article 430

Optionsbull Standard Adapter Board which provides

ndash 2 Analog Inputs +ndash10Vndash 2 Analog Outputs +ndash 10Vndash One 4ndash20mA inputndash One 4ndash20mA outputndash 5 or 12 vdc pulse inputndash +ndash 10V reference voltagesndash At Speed Run Fault and Alarm contacts

bull PLC Communication Adapter Board which providesndash 4 Analog Inputs +ndash10Vndash 4 Analog Outputs +ndash 10Vndash +ndash 10V Reference voltagesndash RIODHTM+ Communications (2 channels selectable)ndash Function Blocks

bull DriveToolsTM PC Windows TM based programming software compatible with the 1336 FORCE Drive and also other AllenndashBradley 1336 and 1395 products

bull Dynamic Braking

bull AC Motor Contactor

Protective Features The 1336 FORCE Drive incorporates the following protective measures

bull Programmable Motor Overload Protection (I2T) investigated by UL to comply with NEC Article 430

bull Programmable Inverter Overload Protection (IT)bull Overspeed Detection even when operating as a torque followerbull Programmable Stall Detectionbull Peak output current monitoring to protect against excessive current

at the output due to a phase to ground or phase to phase shortbull Ground fault monitoringbull DC Bus Voltage monitoring to protect against underover voltage

conditionsbull Power Structure Heatsink Temperature Monitoring

Chapter 1Introduction

1ndash4

Environmental Specifications The following environmental guidelines apply to both the 1336 FORCEDrive and all devices and accessories connected to the Drivebull Ambient Operating Temperature

IP00 Open 0 to 50 degrees C (32 to 122 degrees F) IP20 NEMA Type 1 Enclosed 0 to 40 degrees C (32 to 104 degrees F) IP65 NEMA Type 4 Enclosed 0 to 40 degrees C (32 to 104 degrees F)

bull Storage Temperature (all constructions) ndash40 to 70 degrees C (ndash40 to 158 degrees F)

bull Relative Humidity 5 ndash 95 nonndashcondensingbull Altitude 1000m (3300 ft) without derating bull Shock 15g peak for 11ms duration (+ 10 ms)bull Vibration 0006 inches (0152 mm) displacement 1G peak

Electrical Specificationsbull Input Voltage Rating

200 ndash 240VAC Standalone 3 Phase +10 ndash15 nominal 380 ndash 480VAC Standalone 3 Phase +10 ndash15 nominal 500 ndash 600VAC Standalone 3 Phase +10 ndash15 nominal 513 ndash 621 VDC Common Bus +10 ndash15 nominal 776 VDC Common Bus +10 ndash15 nominal

bull Input Power Rating 2 ndash 134 KVA (230V) 2 ndash 437 KVA (380V)

2 ndash 555 KVA (460V) 23 ndash 578694 KVA (500600V)

bull Input Frequency 5060HZ (plusmn3HZ)

bull Standard Output Voltage Four frame sizes are available Each frame size is line dependent and can power a motor between the following voltages200 ndash 240 Vac (line dependent)380 ndash 480 Vac (line dependent)500 ndash 600 Vac (line dependent)If voltage required for your application is not shown contact AllenndashBradley for specific application

bull Output Current 25 ndash 673A

bull Output Power 2 ndash 116 KVA (230V)2 ndash 190 KVA (380V)2 ndash 208 KVA (415V)2 ndash 537 KVA (460V)2 ndash 671 KVA (575V)

Note For information on factors that could effect the power output of the drive please refer to the Enclosure and Derating Guidelines in the Appendix of this manual

bull Output Horsepower (Continuous) 75 ndash 650HP

bull Overload CapabilityContinuous ndash 100 Fundamental current1 minute ndash 150

Chapter 1Introduction

1ndash5

bull Output Frequency Range 0 ndash 250 HZ

bull Output Waveform Sinusoidal (PWM)

bull Max Short Circuit Current Rating 200000A rms symmetrical 600 volts (when used with specified AC input line fuses as detailed in Table 2A)

bull Ride Through 2 seconds minimum

bull Efficiency 975 at rated amps nominal line volts

Feedback Devices

bull Encoder Incremental dual channel 12 volts 500mA Supply 512 Volt 10ma Min Inputs isolated with differential transmitter 1025 KHz max Quadrature 90deg plusmn27deg 25degC Duty Cycle 50 + 10

bull Speed Regulation with Encoder Feedback 0001 of Top Speed over a 1001 Speed RangeEncoderless Speed Regulation 05 of Top Speed over a 401 SpeedRange

Chapter 1Introduction

1ndash6

Software Compatibility

MOTOR CONTROL BOARD

PLC COMMADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxCompatible Not Compatible Not Compatible Not Compatible

v2xx Not Compatible Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode

7 not available Calculated Torque 267 not

available Precharge Timeout 225 min

value 0 Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

Not Compatible Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 not available

Perunit Motor Current 186 not available

Transistor Diagnostics 257 bit 12 not available

Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max value

6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional Perunit Motor Current 185 nonndash

functional Perunit Motor Voltage 186 nonndash

functional Transistor Diagnostics 257 bit 12

nonndashfunctional

CompatibleCompatible with exception V304 VP must be used with V303

AP and V303 Language or higher for B800 lsquoH Framersquo drive support

Perunit Motor Current 185 nonndashfunctional

Perunit Motor Voltage 186 nonndashfunctional

Transistor Diagnostics 257 bit 12 nonndashfunctional

Key VP = Velocity Processor CP = Current ProcessorMCC = Main Control Board Language Module DP = Domino Processor on PLC CommAPL = PLC Comm Language Module SAL = Std Adapter Language ModuleAP = Application Processor on PLC Comm SA = Std Adapter Processor

Chapter 1Introduction

1ndash7

MOTOR CONTROL BOARD

STADARDADAPTER BOARD

v1xxv1xx

v2xx v3xx v5xxNot Compatible

Compatible

Compatible

Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

v3xx

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not

available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not

available Precharge Timeout 225 min value 0

Compatible with exception Drive Comm 9ndash19 nonndashlinkable Drive Comm TxRx 14ndash19 max

value 219 Torque Stop Configuration 58 not available Service Factor 94 not available Feedback Device Type 150 mode 7 not available Calculated Torque 267 not available Precharge Timeout 225 min value 0 Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12 not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

Not Compatible Compatible with exception V304 VP must be used with V303 AP and V303 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min value

150 Motor Poles 233 max value 12 Base Motor Speed 229 max val 6000

v4xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267

nonndashfunctional

Compatible with exception V304 VP must be used with V402SA and V402 Language or higher for B800 lsquoH Framersquo drive support

Compatible with exception V5xx VP must be used with V402 AP and V402 Language or higher for B800 lsquoH Framersquo drive support Perunit Motor Current 185 not

available Perunit Motor Voltage 186 not

available Transistor Diagnostics 257 bit 12

not available Iq Rate Limit 181 max value 30 Motor Overload Select 92 min

value 150 Motor Poles 233 max value 12 Base Motor Speed 229 max valu 6000

v5xx Not Compatible Compatible with exception Torque Stop Configuration 58 nonndashfunctional Service Factor 94 nonndashfunctional Feedback Device Type 150

mode 7 nonndashfunctional Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible with exception V304 VP MUST be used with V303 AP

and V303 Language or higher for B800lsquoH Framersquo drive support

Calculated Torque 267 nonndashfuncti Perunit Motor Curr 185 nonndashfunct Perunit Motor Volt 186 nonndashfunct Transistor Diag 257 bit 12 nonndashfunct

Compatible

Chapter 1Introduction

1ndash8

This Page Intentionally Blank

Chapter 2

2ndash1

InstallationWiring

Chapter Objectives Chapter 2 provides the information needed to properly mount and wire the1336 FORCE Drive Since most startndashup difficulties are the result ofincorrect wiring every precaution must be taken to assure that the wiring iscompleted as instructed All items must be read and understood before theactual installation begins

IMPORTANT The end user is responsible for completing theinstallation wiring and grounding of the 1336 FORCE drive and forcomplying with all National and Local Electrical Codes

ATTENTION The following information is merely a guide forproper installation The National Electrical Code and any othergoverning regional or local code will overrule this informationThe Allen-Bradley Company cannot assume responsibility forthe compliance or the noncompliance to any code national localor otherwise for the proper installation of this drive or associatedequipment A hazard of personal injury andor equipmentdamage exists if codes are ignored during installation

Mounting When the 1336 FORCE drive is delivered in a NEMA Type 1 enclosure itmust be mounted so that there is sufficient space at the top sides and frontof the cabinet to allow for heat dissipation as shown in Figure 21

Figure 21Mounting Requirements

Attention Care must be taken toprevent debris (metal shavingsconduit knockouts etc) fromfalling into the drive whileperforming any installation workon or around the drive A hazardof personal injury andorequipment damage exists if foreignmaterial lodges inside the drive

JOG

ESC SEL

1016 mm (40 in)

JOG

ESC SEL

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

1524 mm(60 in)

UP

Chapter 2InstallationWiring

2ndash2

Figure 22 IP20 (NEMA Type 1) Dimensions ndash Frames B and C

C MaxD

A

Y

CC

E B

Z

BB

AA

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 1ndashFixed

286349 222(11251375 0875)

286349 222(11251375 0875)

ShippingWeight

227 kg(50 lbs) 386 kg(85 lbs)

CC

719(283)

719(283)

Frame 1

Reference

B1 B2

C

A

2764(1088)

3018(1188)

B

4763(1875)

7010(2760)

C Max

2250(886)

2250(886)

D

2126(837)

2380(937)

E

4610(1815)

6858(2700)

Y

3200(126)

3200(126)

Z

76(030)

76(030)

AA

1311(516)

1311(516)

BB

1808(712)

3747(1475)

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts(Location Will Vary with HP)

Chapter 2InstallationWiring

2ndash3

Figure 23IP 20 (NEMA Type 1) Dimensions ndash Frame D

DA

Y

CC

E B

Z

BB

AA

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

Knockouts

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 3ndashFixed627762 349500 349(247300 138197 138)

ShippingWeight1089 kg(240 lbs)

CC719(283)

Frame 1ReferenceD

A3815(1502)

B12400(4882)

C Max2708(1066)

D3259(1283)

E12162(4788)

Y2794(110)

Z1194(047)

AA1311(516)

BB6886(2711)

C Max

Chapter 2InstallationWiring

2ndash4

Figure 24IP 20 (NEMA Type 1) Dimensions ndash Frame E

70 (028)

70 (028)

127 (050)

127 (050)

Mounting Holes (4)

D

AY

E B

Z

BB

CC

C Max

KNOCKOUTS3ndashDUAL SIZE 6ndashFIXED

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

Knockouts3ndashDual Size 6ndashFixed

8891016 127(350400 050)

ShippingWeight

186 kg(410 lbs)

163 kg(360 lbs)

CC

1519(598)

1263(497)

Frame 1

ReferenceEndashEnclosed

EndashOpen

A

5110(2012)

5110(2012)

B

14986(5900)

14986(5900)

C Max

4244(1671)

3726(1467)

D

4775(1880)

4775(1880)

E

14478(5700)

14478(5700)

Y

168(066)

168(066)

Z

401(161)

401(161)

AA

1950(768)

1384(545)

BB

9014(3549)

6800(2677)

Chapter 2InstallationWiring

2ndash5

Figure 25IP 20 (NEMA Type 1) Dimensions ndash Frame F

22860(9000)

7620(3000)

2527(995)

6350(2500)

379(149)

2748(1082)

1930(760)

12192(4800)

All Dimensions in Millimeters and (Inches)

ConduitAccess Area

Bottom View

315(124)

6985(2750)

2985(1175)

508(200)

Shipping Weight4150 kg(915 lbs)

Chapter 2InstallationWiring

2ndash6

Figure 26IP 20 (NEMA Type 1) Dimensions ndash Frame G

23241(9150)

Removable Lifting Angle

7620(3000)

635 (250)

6350(2500)

All Dimensions in Millimeters and (Inches)All Weights in Kilograms and (Pounds)

290(114)

159 (063) Diandash 2 Mtg Holes ndash

4318(1700)

3810(1500)

2985(1175)

429(169)

2540(1000)

5476(2156)

Conduit Access Area

6604(2600)

508(200)

4318(1700)

(Top)

ConduitAccess Area

(Bottom)

Shipping Weight4536 kg(1000 lb)

Chapter 2InstallationWiring

2ndash7

Figure 27IP 20 (NEMA Type 1) Dimensions ndash Frame H

Removable Lifting Angle

23241(9150)

All Dimensions in Millimeters and (Inches)

6350(25)

5080(20)

7620(30)

Conduit AccessArea

Conduit AccessArea

Top ViewBottom View

Top Mounted Fan

6350(2500)

12700(50)

12700(50)

6350(25)

Manufacturer-dependentmay be shorter

Chapter 2InstallationWiring

2ndash8

InputOutput Ratings The input and output current ratings grouped by drive voltage rating areprovided in the following table

200ndash240V

Cat No

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

InputkVA

InputAmps

24ndash510ndash1212ndash1417ndash2023ndash2825ndash3027ndash3043ndash5153ndash6460ndash7282ndash99100ndash120111ndash134

512283549677379123154174238289322

OutputkVA2511141926313248607296116130

OutputAmps45122723374826457828012031492180424029143274

380ndash480V

Cat NoB001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200BX250B250B300B350B400B450B500B600BP250BP300BP350BP400BP450B700CB800C12B700C12B800C

InputkVA

InputAmps

24ndash59ndash1214ndash1818ndash2323ndash2923ndash2632ndash4140ndash5041ndash5248ndash606261ndash7778ndash9998ndash124117ndash148148157ndash198191ndash241231ndash291212ndash268265ndash335300ndash379330ndash416372ndash470391ndash494439ndash555230ndash291265ndash334300ndash378313ndash396346ndash437517ndash625647ndash817517ndash625647ndash817

361422283543496263757593119149178178238290350322403455501565594668350402455476526835965835965

OutputkVA25111722273338475261617696120143143191233282259324366402454477537282324366383424677783677783

OutputAmps25601392092723374184825876457827829691203149218041804240029143536327440644592505157025992673435364064459248105317850983850983

575V

Cat NoC001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C300C350C400C450C500C600C650C700C80012C700C12C800C

InputkVA

InputAmps

2ndash35ndash69ndash1111ndash1317ndash2021ndash2627ndash3231ndash3740ndash4848ndash5752ndash6273ndash8894ndash112118ndash142136ndash163217ndash261244ndash293256ndash307304ndash364349ndash419394ndash473434ndash520514ndash617578ndash694616ndash739639ndash767616ndash739639ndash767

3610121925313646556084108137157251282296351403455501594668756786756786

OutputkVA2610121924303545576285109137157251283297352405457503597671767797767797

OutputAmps25699121892363034645157261685810911386159725252836298353640644592505159926734770800770800

AC Supply Source 11ndash485 kW (75ndash650HP) drives are suitable for use on a circuit capable ofdelivering up to a maximum of 200000 rms symmetrical amperes 600volts maximum when used with the AC input line fuses specified in Table2A The 1336 FORCE does not contain input power short circuit fusingSpecifications for the recommended size and type to provide drive inputpower protection against short circuits are on the following pages

ATTENTION To guard against personal injury andor equipmentdamage caused by improper fusing use only the recommendedline fuses specified in Table 2A Branch circuit breakers ordisconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash9

Unbalanced Distribution Systems

The drive is designed for use with conventional threendashphase supplies whichare symmetrical with respect to ground Surge suppression devices areincluded to protect the drive from lightningndashinduced overvoltages betweenline and ground For this reason the drive must not be used directly withsupplies where one phase is grounded (Grounded Delta) In such cases anisolation transformer must be used to provide a supply balanced withrespect to ground

Ungrounded Distribution Systems

All 1336 FORCE drives are equipped with an MOV (Metal Oxide Varistor)that provides voltage surge protection and phasendashtondashphase plusphasendashtondashground protection which is designed to meet IEEE 587 TheMOV circuit is designed for surge suppression only (transient lineprotection) not continuous operation

With ungrounded distribution systems the phasendashtondashphase MOVconnection could become a continuous current path to ground MOVlinendashtondashline and linendashtondashground voltages should not exceed the valueslisted below Exceeding these values may cause physical damage to theMOV

1 2 3 4

Joules = (B)Ground

Three-PhaseAC Input T

SR

Joules = (A)Joules = (A)

Joules = (A)

Line-to-Line MOV RatingEnergy Rating = 2 x Line-Line Rating (A)

Line-to-Ground MOV RatingEnergy Rating = Line-Line (A) + Line-Ground (B)

Frame ReferenceDevice Rating (V)Line-Line (A)Line-Ground (B)

B - C 240 480 600160 160 160220 220 220

A 240 480 600160 140 NA220 220 NA

D - G 240 480 600140 140 150220 220 220

LinendashtondashLine MOV RatingEnergy Rating = 320 JoulesTurn On Voltage = 1020V (nominal)

LinendashtondashGround MOV RatingEnergy Rating = 380 JoulesTurn On Voltage = 1330V (nominal)Input Devices Starting and Stopping the Motor

Chapter 2InstallationWiring

2ndash10

Input Devices Starting and Stopping the Motor

ATTENTION The drive startstop control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC power is removed therewill be a loss of inherent regenerative braking effect amp the motorwill coast to a stop An auxiliary braking method may berequired

Repeated ApplicationRemoval of Input Power

ATTENTION The drive is intended to be controlled by controlinput signals that will start and stop the motor A device thatroutinely disconnects then reapplies line power to the drive forthe purpose of starting and stopping the motor is not recom-mended If this type of circuit is used a maximum of 3 stopstartcycles in any 5 minute period (with a minimum 1 minute restbetween each cycle) is required These 5 minute periods must beseparated by 10 minute rest cycles to allow the drive prechargeresistors to cool Refer to codes and standards applicable to yourparticular system for specific requirements and additionalinformation

Bypass Contactors

ATTENTION An incorrectly applied or installed system canresult in component damage or reduction in product life Themost common causes are

bull Wiring AC line to drive output or control terminals

bull Improper bypass or output circuits not approved by AllenndashBradley

bull Output circuits which do not connect directly to the motor

bull Incorrect or inadequate AC supply

bull Excessive ambient temperature

Contact AllenndashBradley for assistance with application or wiring

Chapter 2InstallationWiring

2ndash11

Drive Output Disconnection Any disconnecting means wired to Drive output terminals M1 M2 and M3must be capable of disabling the Drive if opened during Drive operationIf opened during Drive operation the Drive will fault It is recommendedthat the Drive Enable be removed before the contactor is opened Whenthe Drive Enable is removed the Drive will stop modulating

Input Power Conditioning Typically the 1336 FORCE is suitable for direct connection to athreendashphase AC power line There are however certain power lineconditions which may introduce the possibility of drive input powercomponent malfunction To reduce the possibility of these malfunctions aline reactor or isolation type transformer may be required

The basic rules for determining if a line reactor or isolation typetransformer is required are as follows

1 If the AC line supplying the drive has power factor correction capacitorsconnected an AC line reactor or isolation type transformer must beconnected between the capacitor bank and the input to the drive

2 If the AC line frequently experiences transient power interruptions orsignificant voltage spikes an AC line reactor or isolation typetransformer may be required

Refer to ldquoUnbalanced Distribution Systemsrdquo

Input Fusing

ATTENTION The 1336 FORCE does not provide input powershort circuit fusing Specifications for the recommended fusesize and type to provide drive input power protection againstshort circuits are provided in Table 2A Branch circuit breakersor disconnect switches cannot provide this level of protection fordrive components

Chapter 2InstallationWiring

2ndash12

Table 2AMaximum Recommended AC Input Line Fuse Ratings (fuses are user supplied)

Drive CatalogNumber

kW (HP) Rating 200ndash240VRating

380ndash480VRating

500ndash600VRating

UL Class CC T J1 ndash BS88 (non-UL installations)

1336Tndash _ _ F10 075 (1) 10A 6A ndash

1336Tndash _ _ F30 22 (3) 25A 15A ndash

1336Tndash _ _ F50 37 (5) 40A 20A ndash

1336Tndash _ _ 001 075 (1) 10A 6A 6A

1336Tndash _ _ 003 22 (3) 15A 10A 10A

1336Tndash _ _ 007 55 (75) 40A 20A 15A

1336Tndash _ _ 010 75 (10) 50A 30A 20A

1336Tndash _ _ 015 11 (15) 70A 35A 25A

1336Tndash _ _ 020 15 (20) 100A 45A 35A

1336Tndash _ _ 025 185 (25) 100A 60A 40A

1336Tndash _ _ 030 22 (30) 125A 70A 50A

1336Tndash _ _ 040 30 (40) 150A 80A 60A

1336Tndash _ _ 050 37 (50) 200A 100A 80A

1336Tndash _ _ X060 45 (60) ndash 100A ndash

1336Tndash _ _ 060 45 (60) 250A 125A 90A

1336Tndash _ _ 075 56 (75) ndash 150A 110A

1336Tndash _ _ 100 75 (100) ndash 200A 150A

1336Tndash _ _ 125 93 (125) ndash 250A 175A

1336Tndash _ _ X150 112 (150) ndash 250A ndash

1336Tndash _ _ 150 112 (150) ndash 300A 225A

1336Tndash _ _ 200 149 (200) ndash 400A 350A

1336Tndash _ _ 250 187 (250) ndash 450A 400A

1336Tndash _ _ X300 224 (300) ndash ndash 400A

Bussmann FWPGould Shawmut Andash70C Semindashconductor Type

1336Tndash _ _ X250 187 (250) ndash 450A ndash

1336Endash _ _ P2502 187 (250) ndash 450A2 ndash

1336Tndash _ _ 300T 224 (300) ndash 450A 400A

1336Endash _ _ 3002 224 (300) ndash 500A2 450A

1336Tndash _ _ 350 261 (350) ndash 500A 450A

1336Endash _ _ 3502 261 (350) ndash 600A2

1336Tndash _ _ 400 298 (400) ndash 600A 500A

1336Endash _ _ 4002 298 (400) ndash 600A2

1336Tndash _ _ 450 336 (450) ndash 800A 600A

1336Endash _ _ 4502 336 (450) ndash 700A2 600A

1336Tndash _ _ 500 373 (500) ndash 800A 800A

1336Tndash _ _ 600 448 (600) ndash 900A 800A

1336Tndash _ _ 650 485 (650) ndash ndash 800A

1336Tndash _ _ 700C2 522 (700) ndash 600A3 700A3

1336Tndash _ _ 800C2 597 (800) ndash 700A3 700A3

1 Both fast acting and slow blow are acceptable

2 Fuses are supplied with F and H Frame drives

3 Two fuses in parallel are required

Chapter 2InstallationWiring

2ndash13

Electrical Interference ndash EMIRFI Immunity

The immunity of 1336 FORCE drives to externally generated interferenceis good Usually no special precautions are required beyond the installationpractices provided in this publication

It is recommended that the coils of DC energized contactors associatedwith drives be suppressed with a diode or similar device since they cangenerate severe electrical transients

In areas subject to frequent lightning strikes additional surge suppressionis advisable Suitable MOVs connected between each line and groundshould be used (see Figure 2ndash8)

Emission

Careful attention must be given to the arrangement of power and groundconnections to the drive to avoid interference with nearby sensitiveequipment Refer to ldquoMotor Cablesrdquo Appendix A The cable to the motorcarries switched voltages and should be routed well away from sensitiveequipment

The ground conductor of the motor cable should be connected to the driveground (PE) terminal directly Connecting this ground conductor to acabinet ground point or ground bus bar may cause high frequency currentto circulate in the ground system of the enclosure The motor end of thisground conductor must be solidly connected to the motor case ground

Shielded or armored cable may be used to guard against radiated emissionsfrom the motor cable The shield or armor should be connected to the driveground terminal (PE) and the motor ground as outlined above

Common mode chokes are recommended at the drive output to reduce thecommon mode noise

An RFI filter can be used and in most situations provides an effectivereduction of RFI emissions that may be conducted into the main supplylines

If the installation combines a drive with sensitive devices or circuits it isrecommended that the lowest possible drive PWM frequency beprogrammed

Chapter 2InstallationWiring

2ndash14

RFI Filtering 1336 FORCE drives can be installed with an RFI filter which controlsradiondashfrequency conducted emissions into the main supply lines andground wiring

If the cabling and installation recommendation precautions described inthis manual are adhered to it is unlikely that interference problems willoccur when the drive is used with conventional industrial electronic circuitsand systems Also refer to ldquoMotor Cablesrdquo in the Appendix of this manual

However a filter is recommended if there is a likelihood of sensitivedevices or circuits being installed on the same AC supply or if the motorcable exceeds 50 meters (164 feet) Beyond this length capacitance toground will increase the supply emissions

Where it is essential that very low emission levels must be achieved or ifconformity with standards is required (EN 55011 VDE0875 BSA FCC)the optional RFI filter should be used

Important The conformity of the drive and filter to any standard does notassure that the entire installation will conform Many other factors caninfluence the total installation and only direct measurements can verifytotal conformity

RFI Filter Installation

The RFI filter must be connected between the incoming AC supply lineand the drive power input terminals

In general it is best to install the filter on the same mounting platephysically close (and with short connections) to the drive

Important To assure that the RFI filter is effective the motor cable mustbe shielded or armored and the guidelines given in this manual must befollowed Refer to ldquoMotor Cablesrdquo in the Appendix

RFI Filter Leakage Current

The optional RFI filter may cause ground leakage currents Therefore anappropriate ground connection must be provided (refer to groundinginstructions on the following page)

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some countries threendashphasesupplies are occasionally connected in a 3ndashwire configurationwith one phase grounded (Grounded Delta) The filter must notbe used in Ground Delta supplies

Chapter 2InstallationWiring

2ndash15

Grounding Refer to the grounding diagram on the following page The drive must beconnected to the system ground at the power ground (PE) terminalprovided on the power terminal block (TB1) Ground impedance mustconform to the requirements of national and local industrial safetyregulations (NEC VDE 0160 BSI etc) and should be inspected and testedat appropriate and regular intervals

In any cabinet a single lowndashimpedance ground point or ground bus barshould be used All circuits should be grounded independently and directlyThe AC supply ground conductor should also be connected directly to thisground point or bus bar

Sensitive Circuits

It is essential to define the paths through which the high frequency groundcurrents flow This will assure that sensitive circuits do not share a pathwith such current and to minimize the area enclosed by these pathsCurrent carrying ground conductors must be separated Control and signalground conductors should not run near or parallel to a power groundconductor

Motor Cable

The ground conductor of the motor cable (drive end) must be connecteddirectly to the drive ground terminal (PE) not to the enclosure bus barGrounding directly to the drive (and filter if installed) provides a directroute for high frequency current returning from the motor frame andground conductor At the motor end the ground conductor should also beconnected to the motor case ground

If shielded or armored cables are used the same grounding methods shouldbe used for the shieldarmor as well

Encoder Connections

If encoder connections are required they must be routed in grounded steelconduit The conduit must be grounded at both ends Ground the cableshield at the drive only

Discrete Control and Signal Wiring

The control and signal wiring must be grounded at a single point in thesystem remote from the drive This means the 0V or ground terminalshould be grounded at the equipment end not the drive end If shieldedcontrol and signal wires are used the shield must also be grounded at thispoint

Chapter 2InstallationWiring

2ndash16

Signal Ground ndash TE

The TE terminal block is used for all control signal shields internal to thedrive It must be connected to an earth ground by a separate continuouslead

Any PLC IO communication link must be run in grounded steel conduitThe conduit should be bonded to ground at both ends Ground the cableshield at the drive end only

The maximum and minimum wire size accepted by this block is 21 and030 mm2 (14 and 22 AWG) Maximum torque is 136 Nndashm (12 lbndashin)Use Copper wire Only

Safety Ground ndash PE

This is the safety ground required by code The ground bus can beconnected to adjacent building steel (girder joist) or a floor ground loopprovided grounding points comply with NEC regulations

RFI Filter

Important Using an optional RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated in thefilter to clamp line surges to a limited voltage above ground potentialTherefore the filter must be permanently installed and solidly groundedGrounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnection Theintegrity of this connection should be periodically checked

Figure 28Recommended 1336 FORCE Grounding

JOG

ESC SEL

R (L1)

S (L2)

PE

Ground Rod

T (L3)

PE

U (T1)

Shield

RIODH+

Shield

CommonModeCore

CommonMode Core

Conduit4ndashWire Cable

To ComputerTE Ground

+ CommonMode

ChokesThese are options that can

be installed as needed

Ground perLocal Codes

Motor Frame

MotorTerminator

PE

V (T2)

W (T3)

PEGnd

+DC

DC

Chapter 2InstallationWiring

2ndash17

Power Cabling Input and output power connections are performed through terminal blockTB1 on the Gate Driver Board for Frame Size B (1ndash15 HP 240V 1ndash30 HP380V 1ndash20 HP 600V) drives For larger horsepower drives (frame sizesCDEG and H) TB1 terminal blocks are located on the bottom of thedrive where both the input and output power connections are to be made

Important For maintenance and setup procedures the drive may beoperated without a motor connected

Table 2BTB1 Signals

Terminal Description

PE Power Earth Ground

R (L1) S (L2) T (L3) AC Line Input Terminals

+DC ndashDC DC Bus Terminals

U (T1) V (T2) W (T3) Motor Connection

ATTENTION The National Codes and standards (NEC VDEBSA etc) and local codes outline provisions for safely installingelectrical equipment Installation must comply with specifica-tions regarding wire types conductor sizes branch circuitprotection and disconnect devices Failure to do so may result inpersonal injury andor equipment damage

Motor CablesA variety of cable types are acceptable for use with the 1336 FORCEThe choice of cable type is important to a successful application Motorcables must have an insulation thickness in excess of 15 mils The THHNtype wire or any wire with a nylon coating is not recommended forinstallations where there is a reasonable risk of wire damage (includingsmall nicks in coating or insulation) due to pulling through conduit orwhere moisture is present If wire integrity can be assured and no moistureis present THHN wire must have a minimum insulation thickness greaterthan 15 mils if conduit is used Refer to page 2ndash18 under Conduit forrecommendations on the number of cables per conduit

Refer to the Cable recommendations section in the Appendix of thismanual for additional information on specific cables

Wire Size and Type Wire sizes must be selected individually observing all applicable safetyand NEC and local regulations Due to the drive overload capacity theconductors for the transformer primary and secondary must be sized (at aminimum) for 125 of the maximum motor current The motorconductors must also be rated for 125 of the full load motor current Thedistance between the drive and motor may affect the size of the conductorsused

Chapter 2InstallationWiring

2ndash18

Shielded type wire is recommended in control circuits for protectionagainst interference A shielded wire is required for all signal wires Therecommended conductor size must be a minimum of 16 AWG The bestinterference suppression is obtained with a wire having an individual shieldfor every twisted pair Figure 29 shows recommended cable shielding

Figure 29Cable Shielding Recommendations

12411242

3682368382718281

82918301

83118321

2 ConductorShielded Cable

2 Conductor Shielded Cable

Multi-Conductor ShieldedCable with IndividualShielded twisted Pairs

Shield

Shield

Shield

TE

TE

TE

Shield Connection

Lug Kits DEF and G frame drives have stud type terminals andor bus barsboltsthat require standard crimpndashtype connectors for cable terminationConnectors such as TampB COLORndashKEYED Connectors or equivalent arerecommended Table 2C shows the lug selection for one possible cablechoice Choose connectors for each installation based on the desired cablesizes the application requirements and all applicable national state andlocal codes

Chapter 2InstallationWiring

2ndash19

Table 2C Lug Selection

r e atalo

AC Input R S TOutput U V W and PE

DC+DCndash 2 TE

Drive CatalogNumber

Cable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty NumberCable (per Phase)Qty mm2 (AWG)

TampB Part No3

Qty Number1336EndashA040 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA050 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashA060 (1) 1072 (40) (8) 54168 1 (1) 133 (6) (2) 54135 1 (1) 212 (4) (1) 54139 1

1336EndashA075 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54109 (1) 212 (4) (1) 54139 1

1336EndashA100 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 336 (2) (1) 54142 1

1336EndashA125 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashB060 (1) 424 (1) (8) 54147 1 (1) 84 (8) (2) 54131 1 (1) 133 (6) (1) 54135 1

1336EndashB075 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB100 (1) 850 (30) (8) 54163 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashB125 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashBX150 (1) 1072 (40) (8) 54168 1 (1) 267 (3) (2) 54147 1 (1) 212 (4) (1) 54139 1

1336EndashB150 (2) 535 (10) (8) 54109T(8) 54109B

(1) 336 (2) (2) 54110 (1) 212 (4) (1) 54139 1

1336EndashB200 (2) 850 (30) (8) 54111T(8) 54111B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashB250 (2) 1072 (40) (8) 54112T(8) 54112B

(1) 674 (20) (2) 54110 (1) 336 (2) (1) 54142 1

1336EndashBX250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashBP250 (3) 535 (10) (24) 54109 (1) 674 (20) (2) 54110 NA NA1336EndashB300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashBP300 (3) 674 (20) (24) 54110 (1) 424 (1) (2) 54148 NA NA1336EndashB350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashBP350 (3) 850 (30) (24) 54111 (1) 424 (1) (2) 54148 NA NA1336EndashB400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashBP400 (3) 1072 (40) (24) 54112 (1) 424 (1) (2) 54148 NA NA1336EndashB450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashBP450 (3) 1270 (250 MCM) (24) 54174 (1) 424 (1) (2) 54148 NA NA1336EndashB500 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashB600 (3) 1520 (300 MCM) (24) 54179 (1) 535 (10) (2) 54109 NA NA1336EndashC075 (1) 336 (2) (8) 54142 1 (1) 133 (6) (2) 54135 1 (1) 84 (8) (1) 54131 1

1336EndashC100 (1) 535 (10) (8) 54153 1 (1) 133 (6) (2) 54135 1 (1) 133 (6) (1) 54135 1

1336EndashC125 (1) 674 (20) (8) 54158 1 (1) 267 (3) (2) 54147 1 (1) 133 (6) (1) 54135 1

1336EndashC150 (1) 1072 (40) (8) 54111 (1) 424 (1) (2) 54148 (1) 133 (6) (1) 54135 1

1336EndashC200 (2) 674 (20) (8) 54110T(8) 54110B

(1) 424 (1) (2) 54148 (1) 267 (3) (1) 54142 1

1336EndashC250 (2) 850 (30) (8) 54111T(8) 54111B

(1) 674 (20) (2) 54110 (1) 267 (3) (1) 54142 1

1336EndashCX300 (3) 850 (30) (16) 54111 NA NA1336EndashC300 (3) 850 (30) (16) 54111 NA NA1336EndashC350 (3) 535 (10) (24) 54109 NA NA1336EndashC400 (3) 674 (20) (24) 54110 Consult Factory NA NA1336EndashC450 (3) 850 (30) (24) 54111

Consult FactoryNA NA

1336EndashC500 (3) 1072 (40) (24) 54112 NA NA1336EndashC600 (3) 1270 (250 MCM) (24) 54174 NA NA1336EndashC700C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 541101336EndashC800C ndash ndash (3) 2530 (500 MCM) (6) 54118 (1) 674 (20) (1) 54110

1 516rdquo Stud All other studs are 38rdquo2 Lugs shown for DC+ndash are based on dynamic brake sizing of 50 of (motor rating X 125) Select proper lugs based on required braking torque3 T amp B COLOR-KEYED Connectors require T amp B WT117 or TBMndash6 Crimper tool or equivalent Lugs should be crimped according to manufacturerrsquos tool instructions

Chapter 2InstallationWiring

2ndash20

Table 2DCable and Wiring Recommendations

Category

Power

Control

Signal

(Process)

Signal(Comm)

WiringClass

1

2

3

5

Signal Definition

AC Power (600V or greater)

AC Power (less than 600V)

AC Power

115V ACDC Logic

115V AC Power

24V ACDC Logic

Analog Signals DC Supplies

Digital (low speed)

Digital (high speed)

SerialCommunication

Serial Communication (greaterthan 20k baud)

Signal Examples

23kV 3Ph AC Lines

460V 3Ph AC Lines

AC Motor

Relay LogicPLC IOMotor Thermostat

Power SuppliesInstruments

PLC IO

ReferenceFeedbackSignal 5 to 24V DC

TTL

IO Encoder CounterPulse Tach

RS-232 422 to TerminalsPrinters

PLC Remote IO PLC Data Highway

Cable Type

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

per NEC amp Local Codes

Shielded Cable ndash Belden 87358737 8404

Shielded Cable ndash Belden 97289730

Shielded Cable ndash BeldenRS-232 ndash 8735 8737RS-422 ndash 9729 9730

Twinaxial Cable ndash A-B1770-CD

1

0

39

39

318

234

39

0

36

312

56

39

36

0

39

78

318

312

39

0

91011

Note 6

Note 6

Note 6

13

SpacingNotes

125

125

125

Minimum Spacing in Inches between Classes ndashSteel ConduitTray

Example Spacing relationship between 480V AC incoming power leads and 24V DC logic leads

ndash 480V AC leads are Class 2 24V DC leads are Class 6ndash For separate steel conduits the conduits must be 3 inches (76 mm) apartndash In a cable tray the two groups of leads are to be 6 inches (152 mm) apart

Spacing Notes

1 Both outgoing and return current carrying conductors are to be pulled in sameconduit or laid adjacent in tray

2 Cables of the following classes can be grouped togetherA Class 1 Equal to or above 601 voltsB Classes 23 and 4 may have their respective circuits pulled in the

same conduit or layered in the same trayC Classes 5 and 6 may have their respective circuits pulled in the

same conduit or layered in the same trayNote Bundle may not exceed conditions of NEC 310

D Classes7 and 8 may have their respective circuits pulled in the same conduit or layered in the same trayNote Encoder cables run in a bundle may experience some amount of EMI coupling The circuit application may dictate separate spacing

E Classes 9 10 and 11may have their respective circuits pulled in the same conduit or layered in the same trayCommunication cables run in a bundle may experience some amount of EMI coupling and corresponding communication faults The application may dictate separate spacing

3 All wires of class 7 thru 11 MUST be shielded per the recommendations

4 In cable trays steel separators are advisable between the classgroupings

5 If conduit is used it must be continuous and composed of magneticsteel

6 Spacing of communication cables classes 2 thru 6 isCONDUIT SPACING THRU AIR115 Volts ndash 1 inch 115 Volts ndash 2 inches230 Volts ndash 15 inches 230 Volts ndash 4 inches460575 Volts ndash 3 inches 460575 Volts ndash 8 inches575 volts ndash proportional to 6rdquo 575 volts proportional to 12rdquoper 1000 volts per 1000 volts

General Notes

1 Steel conduit is recommended for all wiring classes (Classes 7-11)

2 Spacing shown between classes is the minimum required for parallel runsless than 400 feet Greater spacing should be used where possible

3 Shields for shielded cables must be connected at one end only The otherend should be cut back and insulated Shields for cables from a cabinet to anexternal device must be connected at cabinet end Shields for cables fromone cabinet to another must be connected at the source end cabinetSplicing of shielded cables if absolutely necessary should be done so thatshields remain continuous and insulated from ground

4 Power wire is selected by load 16AWG is the minimum recommended sizefor control wiring

6

7

8

9

11

2345

Note 6 13 0

Chapter 2InstallationWiring

2ndash21

Power Wiring On 1 to 30 HP drives input and output power connections are performedthrough a 10 position terminal block TB1 located on the Gate DriverBoard On drives larger than 30 HP input and output power connectionsare made at seperate terminal strips located at the bottom of the drive Thedrive connections are illustrated in Figure 210 The C thru Gconfigurations of TB1 are stud terminations and require the use of lug typeconnectors to terminate the field installed conductors Cat No1336ndashLUGndashXXXX Lug Kits are available for use with theseconfigurations of TB1 The wire size used is determined by selecting theproper lug kit based on the Cat No of the drive Refer to Table 2C todetermine the correct lug kit for your application

Figure 210Terminal Block TB1

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

Required 1Input Fusing

AC Input Line

To Motor

200ndash240V 75ndash11 kW (10ndash15 HP) Terminal Designations380ndash480V 15ndash22 kW (20ndash30 HP) Terminal Designations

500ndash600V 15 kW (20 HP) Terminal Designations

Dynamic Brake

To Motor1 Required Branch

Circuit Disconnect

B1 Frame

B2 Frame

PE PE R(L1)

S(L2)

T(L3)

U(T1)

V(T2)

W(T3)

DC+

DCndash

AC Input Line

To Motor

To Motor

200ndash240V 075ndash55 kW (1ndash75 HP) Terminal Designations380ndash480500ndash600V 075ndash11 kW (1ndash15 HP) Terminal Designations

Dynamic Brake

Required 1Input Fusing

1 Required Branch

Circuit Disconnect

Chapter 2InstallationWiring

2ndash22

Figure 210Terminal Block TB1 cont

PEGRD

PEGRD

DC+

Dynamic Brake

Required 1Input Fusing

DCndash

R(L1)

S(L2)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 15ndash22 kW (20ndash30 HP) Terminal Designations380ndash480V 30ndash45 kW (40ndash60 HP) Terminal Designations

500ndash600V 185ndash45 kW (25ndash60 HP) Terminal Designations

1 Required Branch

Circuit Disconnect

C Frame

To Motor

PE PEDC +Brake

1 RequiredInput Fusing

DC ndashBrake

R(L1)

T(L3)

W(T3)

U(T1)

V(T2)

To Motor

AC Input Line

200ndash240V 30ndash45 kW (40ndash60 HP) Terminal Designations380ndash480V 45ndash112 kW (60ndash150 HP) Terminal Designations500ndash600V 56ndash112 kW (75ndash150 HP) Terminal Designations

1 Required BranchCircuit Disconnect

TE

S(L2)

To Motor

DC +Brake

380ndash480V 224ndash448 kW (300ndash600 HP) Terminal Designations500ndash600V 187ndash485 kW (250ndash650 HP) Terminal Designations

To Motor

DC ndashBrakeRequired 1

Input Fusing

AC Input Line

W(M3)

U(M1)

V(M2)

Brake terminals are locatedbehind the ldquoUrdquo terminal

Access terminalsfrom side of chassis

(located at bottom of drive) W

UV

1 Required BranchCircuit Disconnect

R(L1)

S(L2)

T(L3)

typical terminal layout(located at top of drive)

RS

T

D Frame G Frame

Chapter 2InstallationWiring

2ndash23

Figure 210 contTerminal Block TB1

200ndash240V 56ndash75 kW (75ndash100 HP) Terminal Designations380ndash480V 112ndash187 kW (150ndash250 HP) Terminal Designations500ndash600V 112ndash149 kW (150ndash200 HP) Terminal Designations

TEBUS INPUT OUTPUT

ndash DC

+DC

PE PE RndashL1 SndashL2 TndashL3 UndashM1 VndashM2 WndashM3

Required 1Input Fusing

To Motor

AC Input Line

1 Required BranchCircuit Disconnect

To Motor

E Frame

typical terminal

380-480V 187-336 kW (250-450 HP) Terminal Designations

To Motor

T-L3R-L1 S-L2 W-M3U-M1PE V-M2F Frame

Input Fusing(Supplied)

AC Input Line

1 Required BranchCircuit Disconnect

DC ndashBrake

DC +Brake

Chapter 2InstallationWiring

2ndash24

Figure 210 contTerminal Block TB1

DC +Brake

R(L1)

S(L2)

T(L3)

380-480V 522-597 kW (700-800 HP) Terminal Designations500-600V 522-597 kW (700-800 HP) Terminal Designations

To Motor

DC ndashBrakeRequired

Input Fusing1

AC Input Line

(located at bottom of drive)

W(M3)

U(M1)

V(M2)

W

UV

H Frame

1 Required BranchCircuit Disconnect

1 User supplied

Chapter 2InstallationWiring

2ndash25

Control Wiring

ATTENTION When user installed control and signal wiringwith an insulation rating of less than 600V is used this wiringmust be routed inside the drive enclosure so that it is separatedfrom any other wiring and uninsulated live parts Failure to do socould result in equipment damage or unsatisfactory Drive performance

Encoder Brake and Drive to Drive interface connections are performed onthe Main Control Board (Fig 211) The maximum and minimum wiresize accepted by TB10 and TB11 on the Main Control Board is 33 and006 mm2 (12 and 30 AWG) Maximum torque for both terminal blocks is079 Nndashm (7 lbndashin) Use copper wire only

Figure 211Terminal Block Locations Main Control Board

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

AdapterBoard Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

D1D2D3D4D5D43D47

GreenGreenRedGreenRedAmberGreen

Drive EnableVP IndicatorVP IndicatorCP IndicatorCP Indicator Drive to Drive StatusDrive to Drive Power

ON ndash Drive Running OFF ndash Drive Not RunningON ndash No Faults OFF ndash See D3Refer to Fault Codes in Table 4AON ndash No Faults OFF ndash See D5Refer to Fault Codes in Table 4ASolid ndash OK Blinking ndash FaultON ndash Power OFF ndash No Power

Flt Trp

1 2 3

1 2 3

Jumper +5VDC

J3

J4

1ndash2

1ndash2

+12VDC Purpose

2ndash3

2ndash3

Encoder Voltage SelectionEncoder Voltage Selection

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Chapter 2InstallationWiring

2ndash26

Encoder Connections The Encoder connections are made at terminal block TB10 on the MainControl Board as detailed in Figure 212

Figure 212Encoder Connections

Encoder

Shield

Common

+12 Volts

Encoder B

Encoder B

Encoder A

Encoder A

6

7

5

4

3

1

2

TB10

Drive to Drive Communication The TB11 connector on the Main Control Board (Figure 213) is used toconnect the Drive to Drive Communication Interface

Figure 213Drive to Drive Connections

4

3

5

(SHD)

(C_L)

(V+)

2

RTN (Vndash)

TB11

1

(C_H)

Drive to Drive Setup ndash The hardware setup for Drive to Drive (D2D)consists of a shielded cable going from CN+ and CNndash between the drivesThe shields are to be tied together and grounded at one point (TE)TB11ndash3 SHD is an open connection and is used to tie ground wire togetherA wire must go from TB11ndash3 to TE Bus Place a 120Ω terminatingresistor on both ends of the cable You must supply the 8 ndash18 VDC thatpowers the D2D Figure 214 shows a typical D2D connection using therequired AllenndashBradley Isolation Board Recommended cable is Drive toDrive cable (AndashB 1485ndashCndashPIndashC) which is available in 50 150 300 and600 meter lengths

Chapter 2InstallationWiring

2ndash27

Figure 214 Drive to Drive Hardware Connection

DRIVE 1

RTN +15V

(Customer Supplied)

120Ω

Isolator Board

OutputV+CHShdCLVndash

J2

InputV+CHShdCLVndash

J1

24V 1A Max(PN 1336T ndash D2DIS)

1 2 3 4V +

5

CndashH

C1 C2

Shd

8ndash18 VDCPower Supply

PE

CndashL V ndash

DRIVE 2

1 2 3 4V +

5CndashH Shd CndashL V ndash

DRIVE 3

120Ω

1 2 3 4V +

5CndashH Shd CndashL V ndash

ToTEBus

Chapter 2InstallationWiring

2ndash28

Standard Adapter Board When installing and wiring the Standard Adapter board you need to dealwith the following issuesbull Control and Signal Wiringbull Interface Board Installation and Removal

Control amp Signal Wiring ndash If your 1336 FORCE Drive is equipped witha Standard Adapter Board terminal blocks TB5 TB6 and TB7 located atthe bottom center of the board (Figure 215) are used for control and signalwiring (Drive Permissives) The Standard Adapter Board is connected tothe Main Control Board through J1 the Main Control Interface

The maximum and minimum wire size accepted by TB5 TB6 and TB7 is33 and 006 mm2 (12 and 30 AWG) Maximum torque for these terminalblocks is 079 Nndashm (7 lb ndash in) Recommended control signal wire isbull Belden 8760 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shieldedbull Belden 8770 or equiv ndash 0750 mm2 (18 AWG) 3 ndash Conductor Shieldedbull Belden 9460 or equiv ndash 0750 mm2 (18 AWG) Twisted Pair Shielded

Figure 215Standard Adapter Board Connections

LANGUAGE MODULE

1

J11

TP1

Port 1

TB5

J9

D1

TE

Port 2

TP3

J1Main Control InterfaceJ5

BRAM

AgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgraveAgrave

TP2

TP6

TP5

+5V

DGND

+15V

AGND

ndash15VEN DIS

D2

1

L OPTION BOARD

TB6 TB7

TP7 TP8

12V ISO ISO COM

Jumper

J13

J1331

+5V DC

1 to 2

+12V DC

2 to 3

Purpose Jumper

J5

Position

1 to 22 to 3

Purpose

BRAM Write EnableBRAM Write Disabled

14 121 8

Stat

us

LED STATE DESCRIPTION

D1 (Green) OFF

Flashing

Solid ON

D2 On or No Power

Adapter Warning Fault

Adapter OK

D2 (RED) OFF

Flashing

Solid ON

D1 On or No Power

Adapter Soft Fault

Adapter Hard Fault

TE

1

20

J10 J12

20

1

Refer to Fault Codes in Table 6B

Pulse Input Voltage Selection

Chapter 2InstallationWiring

2ndash29

Interface Board Installation and Removal ndashIMPORTANT If the L Option Board is being installed Standard AdapterBoard jumpers at pins 3 amp 4 and 17 amp 18 of J10 must be removed and theproper Input Mode selected (Figure 216) If the L Option board isremoved these jumpers must be reinstalled and the Input Mode parametermust be programmed to ldquo1rdquo

Figure 216Interface Board Jumper Locations

JOG

ESC

SEL

Figure 217Reference Signal Connections (Standard Adapter Board)

TB51 2 3 4 5 6 7 8 9 10 11 12

TB613 14

TB7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12

+10V ndash10VCom

+ ndash SH + ndash + ndash

4 to 20ma0 to plusmn10V

SH SH + ndash

PulseSource

0 to plusmn10V

+ ndash SH + ndash

0 to plusmn10V 4 ndash 20 ma

SH + ndash

AnalogOutputs

Run FaultRelay

AlarmRelay

TE TE

Programmable Run Fault Alarm

Terminal

TB5

Signal

SH Shield Ground

123 DC Power Supply

4567 Input Impedance = 20K Ohms

1011

Pulse Input forFrequency Ref

+5V DC ndash Jumper xx Set to xx+12V DC ndash Jumper xx Set to xx

Scale Factor (Pulse PPR) must be set

TB6 SH

1245

Shield Ground

0 to +ndash 10 VDC Output

Output Impedance = 100 Ohms

78 4 ndash 20 ma DC Output

Input Impedance = 130 Ohms

1314

4 ndash 20ma Input

Output Impedance = 100 Ohms

TB7 TE

456

Logic Earth Ground Shield Ground

Fault Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

789 Alarm Contact Resistive Rating = 115VAC30VDC 50AInductive Rating = 115VAC30VDC 20A

ProgrammableSupply

Note This output is programmable through P384

If using a potentiometer reference 25K Ω minimum

External to Drive

DC Power Supply

+ndash 10VDC 50 mA per voltage

Output Impedance = 20 Ohms

User Supplied Analog Device

0 to +ndash 10V DC Input

Terminal Block

Chapter 2InstallationWiring

2ndash30

Analog Inputs ndash There are (2) analog inputs to the Standard AdapterBoard (Figure 218) that have a range of plusmn10V (1) 4ndash20 mA analog inputand (1) pulse source input with a digital resolution of 12 bits These inputsare differential inputs with noise rejection filtering

Each input has a gain and offset adjustment The AD converter is a 12 bitdevice where an input value of +10V will result in a digital value of 2048Likewise an input value of ndash10V will result in a digital output value ofndash2048

NOTE Analog input parameters must be linked to a velocity referenceparameter as well as a scaling and offset parameter for an analog input tofunction

NOTE Refer to Chapter 4 Startup for Analog IO configurationinformation

Figure 218Analog Input Connections

Typical Connections for Unidirectional Operation

Typical Connections for Bidirectional Operation

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

REFERENCE POT25 kΩ MINIMUM

TB5

1

ndash 10V DC (POWER SUPPLY) 3

ADC

REVERSE

FORWARD

R

Reverse

ReverseRelay

Forward

6

0 to+ndash10V

7

8

2

COM (POWER SUPPLY COMMON)

IN + (ANALOG IN)

+ 10V DC (POWER SUPPLY)

IN (ANALOG IN)

2

6

REFERENCE POT25 kΩ MINIMUM

TB5

Connect toEither 1 or 3(ONLY ONE)

1

ndash 10V DC (POWER SUPPLY) 3

ADC7

8

0 to+ndash10V

Chapter 2InstallationWiring

2ndash31

Analog Outputs ndash There are (2) analog outputs from the StandardAdapter Board that have a range of + 10V and (1) 4ndash20 mA output with adigital resolution of 12 bits

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB7 onthe Standard Adapter Board Fault outputs provide warning or fault signalsbased on Drive ProgrammingFault NC Fault ComFault NO ndash A form C NONC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 219Typical Digital Output (Standard Adapter)

Fault Com (Digital Out)

Fault NC (Digital Out)

6

5

4

TB7

Fault NO (Digital Out)

Pulse InputThe pulse input lets an external source provide the drive with a digitalreference or trim signal Pulse input is a differential input with a maximumfrequency of 100 kHz

Figure 220Pulse Input Connection

5 ndash 12V Pulse Input 100 kHz max

12

13

14

TB5

TE

Unidirectional

The pulse input can be useful if you have a system with multiple drives andyou want encoder magnetic pickup or other drives that provide a pulse tosupply the reference for additional drives You could use this reference toensure that all drives run at the same speed or to ensure that the speed ofthe other drives is related to the speed of the reference

Chapter 2InstallationWiring

2ndash32

ConfigurationThe 1336 FORCE Drive is shipped prendashconfigured meaning that some ofthe inputs and outputs are linked to a predefined signal Figure 221 showsthe 1336 FORCE standard configuration when equipped with a StandardAdapter Board The user has the flexibility to configure the Drive for aparticular application

Chapter 2InstallationWiring

2ndash33

Figure 221Standard Adapter Links

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select 1 (Par 364)

365

SP Analog In 1 (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)

1 2 3 4 5

366

Scale

369

Scale

Chapter 2InstallationWiring

2ndash34

Starting amp Stopping the Motor

ATTENTION The 1336 FORCE Drive control circuitry includessolidndashstate components If hazards due to accidental contact withmoving machinery or unintentional flow of liquid gas or solidsexist an additional hardwired stop circuit is required to removeAC line power to the drive When AC input power is removedthere will be a loss of inherent regenerative braking effect and themotor will coast to a stop An auxiliary braking method may berequired

Figure 222 illustrates the location of the terminal blocks that are used forinterfacing control signals to a 1336 FORCE equipped with a StandardAdapter Board

Figure 222Terminal Block Locations

TB1TB11TB3

TB4TB6

Power Terminal BlockControl amp Signal WiringControl Interface Option24V DC Auxiliary InputHigh Voltage DC Auxiliary Input480V Output (F Frame Only)Shield Terminals

TB1TB10 11TB3TB4TB6TB9TE

Frames B C Frames D E

TB1

TB11

TB3Control Interface

Option

Control InterfaceOption

TB1

TB1Location

TB1 LocationTB4

TB6TE

TB1

Frame G

Frame F

U V Wamp BrakeTerminals

TB10 11

TB3

BrakeTerminals

R S T

TE

TE

PEGround

TB10 11

TB3

TB9

TB1Location

TB10

TB10

Frame H

U V Wamp BrakeTerminals

TB10 11

TB3

+ -

TE

PE Ground

TB1Location

TB1 Power Terminal BlockTB10 11 Control amp Signal WiringTB3 Control Interface OptionTB4 (For Factory Use Only)TB6 (For Factory Use Only)TB9 480V Output (F Frame Only)TE Shield Terminals

Chapter 2InstallationWiring

2ndash35

Control Interface Option ndash TB3The Control Interface Option provides a means of interfacing varioussignals and commands to the 1336 FORCE by using contact closures

Six different versions of the option are available

L4 Contact Closure Interface L4E Contact Closure Interface with Encoder Feedback Inputs1

L5 +24V ACDC InterfaceL5E +24V ACDC Interface with Encoder Feedback Inputs1

L6 115V AC InterfaceL6E 115V AC Interface with Encoder Feedback Inputs1

1 Encoder feedback inputs are connected to TB10 on the FORCE Drive Do Not connect Encoder Feedback inputs to the Control Interface Option card

The user inputs are connected to the option board through TB3 The L4 L5and L6 options each have nine control inputs The function of each inputmust be selected through programming as explained later in this sectionThe L4E L5E and L6E options are similar to L4 L5 and L6 with theaddition of encoder feedback inputs which are not used with the 1336FORCE

Available InputsA variety of combinations made up of the following inputs are available

Start EnableStopClear Fault Ext FltReverse 2 Stop Mode SelectsDigital Potentiometer (MOP) Run Forward2 AccelDecel Rates Run Reverse3 Speed Selects Local Control

The available combinations are shown in Figure 224 Programming the[Input Mode] parameter to one of the Input Mode numbers listed willselect that combination of input functions

Important The [Input Mode] parameter can be changed at any time butthe change will not affect drive operation until power to the drive has beenremoved and bus voltage has decayed completely When changing the[Input Mode] parameter the functions of the TB3 inputs will change whenpower is reapplied to the drive

Important If a Control Interface Option is not installed the [Input Mode]parameter must be set to 1 (default) and jumpers must be installed If thedrive was shipped from the factory without the option these jumpers willhave been installed

The programming options of the Control Interface Option allow the user toselect an input combination to meet the needs of a specific installationAppropriate selection of a combination may be done by using Figure 224First determine the type of startstopdirection control desired Then selectthe remaining control functions available Record the selected modenumber below

Selected Mode Number _____________________

Chapter 2InstallationWiring

2ndash36

Figure 223 provides the terminal designations for TB3 The maximum andminimum wire size accepted by TB3 is 21 and 030 mm2 (14 and 22AWG) Maximum torque for all terminals is 136 Nndashm (12 lbndashin) UseCopper wire only

Figure 223TB3 Terminal Designations

NOTE Terminals 31 thru 36 are not used with 1336 FORCE applications

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Included on L4E L5E amp L6E OnlyNOT USED

Inpu

t 1

Inpu

t 2 (S

top)

Com

mon

Inpu

t 3

Inpu

t 4

Inpu

t 5

Com

mon

Inpu

t 6

Inpu

t 7

Inpu

t 8

Com

mon

Enab

le

Enco

der B

Enco

der N

OT

A

Enco

der N

OT

B

Enco

der A

+12V

(200

mA

max

)

Enco

der C

omm

on

The following table defines the input state of the Speed Select inputs for adesired frequency source

Table 2ESpeed Select Input State vs Frequency Source

Speed Select 3 Speed Select 2 Speed Select 1 Velocity Reference Source

TB3 Terminal 26 Terminal 27 Terminal 28 Interface Option (MOD L4L5L6)

O O O Ext Ref 1 Para 101

O O X Preset Speed Ref 1 (P 119)

O X O Preset Speed Ref 2 (P 120)

O X X Preset Speed Ref 3 (P 121)

X O O Preset Speed Ref 4 (P 122)

X O X Preset Speed Ref 5 (P 123)

X X O External Reference 2 (P 104)

X X X Last State

Equivalent truth table implemented in Parameter 52 Logic Command Word

Para 52 Bit 14 Bit 13 Bit 12 Velocity Reference Source Bits

O O X Ext Ref 1 (P 101)

O X O Preset Speed Ref 1 (P 119)

O X X Preset Speed Ref 2 (P 120)

X O O Preset Speed Ref 3 (P 121)

X O X Preset Speed Ref 4 (P 122)

X X O Preset Speed Ref 5 (P 123)

X X X External Reference 2 (P 104)

O O O No Reference or Last State

0 = Open ndash input removed X = Closed ndash input present

Unless otherwise configured this will default to the HIM speed reference input

Chapter 2InstallationWiring

2ndash37

Figure 224Input Mode Selection amp Typical TB3 Connections

19

20

21

22

23

24

25

26

27

28

29

30

Status

Not StopClear Fault 3

Common

Status

Status

Status

Common

Status

Status

Status

Common

Enable 3

[Input Mode] 1Factory Default

19

20

21

22

23

24

25

26

27

28

29

30

Start

Not StopClear Fault 378

Common

RevFwd5

Auxiliary 3

Common

Speed Select 2 1

Speed Select 1 1

Common

Enable 3

Jog StopType

2nd1stAccel

DigitalPot Up

SpeedSelect 31

SpeedSelect 31

2nd1stDecel

DigitalPot Dn

2 3 4 5279 6Mode

[Input Mode] 2ndash6 17 18ThreendashWire Control with SinglendashSource Reversing

1 See Speed Select Table on previous page2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 5 For Common Bus ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for Reverse Direction Control7 Soft Fault Reset Only Must Cycle Power to Drive to Clear Hard Fault Hard Fault = See Troubleshooting Section

8 Soft Fault Refer to Para 59 to Configure Start amp Stop Type9 Digital Pot Value Zeroed When Stop Asserted

ProcTrim

LocalControl2

Jog Flux EnJog

Ramp Reset

17 18

Chapter 2InstallationWiring

2ndash38

Figure 225Input Mode Selection amp Typical TB3 Connections

Run Forward 4 6

Not StopClear Fault 378

Common

Run Reverse 4 6

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

LocalControl 2

StopType

2nd1stAccel

DigitalPot Up

LocalControl 2

SpeedSelect 3 1

SpeedSelect 3 1

2nd1stDecel

DigitalPot Dn

StopType

12 13 14 15 309 16

Mode

[Input Mode] 12ndash16TwondashWire Control SinglendashSource Control

19

20

21

22

23

24

25

26

27

28

29

30

Start 6

Not StopClear Fault 378

Common

Ext Fault 3 5

Common

Speed Select 1 1

Common

Enable 3

Forward 6

Forward 6

DigitalPot Dn

Forward 6

2ndAccel

Jog SpeedSelect 3 1

SpeedSelect 3 1

DigitalPot Up

1stDecel

[Input Mode] 7ndash11ThreendashWire Control with MultindashSource Reversing

Reverse 4 6

Reverse 46

DigitalPot Up

Reverse 4 6

1st

Accel

7 8 9 289 10 299 11

Mode

SpeedSelect 2 1

SpeedSelect 2 1

SpeedSelect 2 1

DigitalPot Dn

2ndDecel

19

20

21

22

23

24

25

26

27

28

29

30

1 See Table 2E2 Drive must be stopped to take Local Control

Control by all other adapters is disabled (except Stop) 3 These inputs must be present before drive will start 4 Bit 0 of [Direction Mask] must = 1 to allow operation5 For Common ndash Precharge Enable

6 Bit 12 of Para 59 Logic Options must = 0 for reverse direction control7 Soft Fault Reset Only Must recycle power to drive to clear Hard fault ndash see Troubleshooting8 Refer to Para 59 to configure Start amp Stop type9 Digital Pot Value Zeroed When Stop Asserted

Speed Select 2 1

SpdTq2

SpdTq3

Proc Trim

19

SpdTq1

SpdTq2

SpdTq3

Flux En

20

SpdTq1

Fwd

Rev

Reset

21

Ramp Dis

SpdTq2

SpdTq3

Spd Sel 2

SpdTq1

22

23 24 25 26

ProcTrim

Reset

Flux En Proc Trim

Reset Ramp Dis

Jog

Spd Sel 3

Parameter 53 (SpdTrq Mode Sel) becomes read only

Chapter 2InstallationWiring

2ndash39

Figure 226Option L4L4E Wiring

19 20 21 22 23 24 25 26 27 28 29 30 31 32A A

ENCRET

ENC12V

33 34 35 36

Typical of Each Input

Typical

L4 L4E Options

Isolated+5V

IsolatedGround

01microf 01microf

01microf

107k

470 470 12V

681

100

909

5VJP4

IGND

107k

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

TB3

NOTUSED

Option L4L4E ndash Contact Closure Interface Board Requirements

Circuits used with Option L4L4E must be capable of operating with low =true logic Reed type input devices are recommended

In the low state external circuits must be capable of a sinking current ofapproximately 10mA to pull the terminal voltage low to 30V DC or less

In the high state external circuits must allow the terminal voltage to rise toa voltage of 40ndash50V DC

The L4L4E option is compatible with the following AllenndashBradley PLCmodulesbull 1771ndashOYLbull 1771ndashOZL

Chapter 2InstallationWiring

2ndash40

Figure 227Option L5L5E Wiring

Typical

TB3

L5 L5E Options

A AENCRET

ENC12V

Common

+24V

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

022microf

1k

20k

510

510 510

User Supplied24V ACDC

Contacts shown are general refer to Figures 224 amp 225 forInput Mode selection and recommended contact types

NOTUSED

Option L5L5E ndash 24V ACDC Interface Board Requirements

Circuits used with Option L5L5E must be capable of operating with high= true logic

DC external circuits in the low state must generate a voltage of no morethan 8V DC Leakage current must be less than 15 mA into a 25k ohmload

AC external circuits in the low state must generate a voltage of no morethan 10V AC Leakage current must be less than 25 mA into a 25k ohmload

Both AC and DC external circuits in the high state must generate a voltageof +20 to +26 volts and source a current of approximately 10 mA for eachinput

The L5L5E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOB bull 1771ndashOQ16bull 1771ndashOB16bull 1771ndashOBD bull 1771ndashOYLbull 1771ndashOBN bull 1771ndashOZLbull 1771ndashOQ bull 1771ndashOBB

Chapter 2InstallationWiring

2ndash41

Figure 228Option L6L6E Wiring

Typical of Each Input

L6 L6E Options

A AENCRET

ENC12V

115V AC Fuse

Common

Typical

12V

681

100

909

5VJP4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

015microf033f

022microf

49

499k

20k

100 100

User Supplied115V AC

Contacts shown are general refer to Figure 224 forInput Mode selection and recommended contact types

Fuse

TB3

NOTUSED

Option L6L6E ndash 115V AC Interface Board Requirements

Circuits used with Option L6L6E must be capable of operating with high= true logic In the low state circuits must generate a voltage of no morethan 30V AC Leakage current must be less than 10 mA into a 65k ohmload In the high state circuits must generate a voltage of 90ndash115V AC+ndash10 and source a current of approximately 20 mA for each inputThe L6L6E option is compatible with these AllenndashBradley PLC modulesbull 1771ndashOW bull 1771ndashOAbull 1771ndashOWN bull 1771ndashOAD (contact factory for recommended series rev level)

Chapter 2InstallationWiring

2ndash42

PLC Communication Adapter Board Control and Signal Wiring ndash When installing and wiring the PLCCommunication Adapter Board you need to deal with the following issuesbull Control and Signal Wiringbull Jumper Settings for IO CircuitsIf your 1336 FORCE Drive is equipped with a PLC Comm Adapter Boardterminal blocks TB20 amp TB21 located at the bottom center of the PLCComm Board (Figure 229) are used for control and signal wiring (DrivePermissives) Connector TB21 provides the interface for Analog Input andOutput reference signals as detailed in Figure 230

Figure 229PLC Comm Board Connections

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

NOTE For more information on the PLC Communication Board including LEDs and Jumpers refer to the PLC Communication UserManual 1336 FORCE 513

CHANNEL A

SHIELD

CHANNEL B

2

1

SHIELD2

1

The maximum and minimum wire size accepted by TB20 TB21 ChannelA and Channel B is 33 and 006 mm2 (12 and 30 AWG) Maximumtorque for these terminal blocks is 079 Nndashm (7 lb ndash in) Only copperwire may be used

Chapter 2InstallationWiring

2ndash43

Figure 230Reference Signal Connections (PLC Comm Adapter)

TB20

1 2 3 4 5 6 7 8 9 10

TB21

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Common

Terminal Block

TerminalNumber(s)

TB20

Signal

1 Drive Enable (NO)

2 Motor Thermoguard (NC)

3 Normal Stop (NC)

Analog Out 1

Analog Out 2

Analog Out 3

Analog Out 4

4

5

6

External Fault (NC)

Input Common

7

8

9

Fault Output (NC)

Fault Output (COM)

10 Fault Output (NO)

TB21 1 OUT 1

2 COM 1

3

COM 24

5

6

7

8

9

10

OUT 2

OUT 3

COM 3

OUT 4

COM 4

IN 1+

IN 1ndash

11

12

13

14

15

16

IN 2+

IN 2ndash

IN 3 +

IN 3ndash

IN 4+

IN 4 ndash

17

18

19

+10V

COM

ndash10V

DriveEnable

MotorThermo

Norm Stop

ExtFault

Fault Relay

Analog In 1

Analog In 2

Analog In 3

Analog In 4

+10 ndash10Comm

Note If using a pot as an input 25KΩ min

Refer to Parameter 58 description for explanation of modes

Pin jumper J3 on the PLC Communication Adapter Board Enables orDisables the BRAM (Battery Backup RAM) Write function as follows

Jumpered 1 ndash 2 = EnabledJumpered 2 ndash 3 = Disabled

The PLC Communication Adapter Board 120V24V jumper settings for I0circuits (J8 ndash J11) are detailed in the 1336 FORCE PLC CommunicationsAdapter User Manual Publication 1336 FORCEndash 513

Switch Settings ndash There are DIP switches and jumpers located on the PLCCommunications Adapter Board that have been preset at the factoryCommunication is received through Channels A and B Thiscommunication protocol is defined through SW U2 ndash U5 If you need toreconfigure the switches or jumpers consult the 1336 FORCE PLCCommunications Adapter User Manual

Chapter 2InstallationWiring

2ndash44

Discrete OutputsFault outputs from the 1336 FORCE are supplied at terminal block TB20on the PLC Communication Adapter Board Fault outputs provide warningor fault signals based on drive programmingFault NCFault ComFault NO ndash A form C NO NC relay contact on the Standard AdapterBoard programmed to provide external warning or fault changendashofndashstatesignalsContact Ratings = 2A 115 VAC

2A 30 VDC

Figure 231Typical Digital Output

Fault Com (Digital Out)

Fault NC (Digital Out)

10

9

8

TB20

Fault NO (Digital Out)

Discrete InputsDiscrete Inputs to the 1336 FORCE are only supplied when a PLCCommunication Adapter Board is used These inputs are supplied atterminal block TB20Discrete inputs serve to enable and stop the Drive as well as providechecks on drive and motor operation

Figure 232Typical Digital Output

EXT FAULT (Digital Out)

INPUT COM (Digital Common)

NORM STOP (Digital In)

6

4

3

TB20

2

1

(Common)

MOTOR THERMO (Digital In)

DRIVE ENABLE (Digital In)

115V AC+24V DC (HIGH)

EXTERNAL FAULT

STOP

MOTOR THERMO

ENABLE

Chapter 2InstallationWiring

2ndash45

Figure 2ndash33 illustrates a typical stop control scheme that might be usedwhen the 1336 FORCE is equipped with a PLC Communication AdapterBoard For further information on PLC Communication Adapter boardoperation and configuration refer to the PLC Communication AdapterBoard User Manual 1336 FORCE 513

Figure 233Control Scheme

TB20

Drive Enable 12024V

Motor Thermo 12024V

Stop 12024V

Ext Fault 12024V

Input Common

Fault NC

Fault Com

Fault NO

120V24V

Input Common

Note Terminal Blocks TB20 amp TB21 are pull apart terminal blocks to aid in making cable connections Bothterminal blocks will accept wire sizes from 30ndash12 AWG (006 ndash 33 mm2)

This is a configurable stop see parameter 59 under the Drive Logic group for Start and Stop options Input must be jumpered if not used

Computer Connections to Frame D drivesIn some cases it will be necessary to use a DH+ port connection kit whenconnecting some computers to a 1336 FORCE drive in FRAME D ONLY

Refer to the Installation instructions included with Frame D drives formore information on the use and installation of this kit

ControlNet Fiber Optic Cable Connections to Frame D drivesIf you are installing the fiber optic cable for ControlNet on a Frame Ddrive special note should be taken of the following

ndash The strain relieflatching cover assembly must be removed from the cable connectors due to space constraints The cable connectors must then be separately plugged into the ControlNet board connectors on Frame D drives ONLY

ndash Correct orientation of the loose cables is determined by the color of the connectors The blue connector must be plugged into the dark grey connection on the board The black connector plugs into the light grey connection on the board The cable with the black connector is the transmit cable (TX) and the cable with the blue connector is the receive (RX) cable Reset the drive after connecting the cables and the ControlNet system should be ready to operate

Chapter 2InstallationWiring

2ndash46

ConfigurationThe 1336 FORCE Drive is shipped pre-configured which means that someof the inputs and outputs are linked to a predefined signal Figure 234shows the 1336 FORCE standard configuration when equipped with a PLCCommunication Adapter Board The user has the flexibility to configurethe Drive for a particular application

Figure 234PLC Comm Adapter Links

PLC Comm Adapter Channel B

1

Logic CMD In Port 6

OUTPUT IMAGE TABLEGROUP NUMBER

1336 FORCERemote IO Interface

331

OFFSET

400

SCALEAnalog Outputs Drive ParametersTB21

1

Reserved For-Block Transfer

PLC CONTROLLER

FULL021324354657

024135246357

34 12 1402461357

332333334335336337

01234567

INPUT IMAGE TABLEGROUP NUMBER

FULL021324354657

34 12 1402461357

01234567

360361362363

36710153

2 3 4

27

DriveParameters

Ext Vel Ref 1 HiTorque Mode SelectProcess Trim Ref

56269264265

364365366

182266

1 ndash Full Rack2 ndash 34 Rack3 ndash 12 Rack4 ndash 14 Rack

Logic Status LowFiltered Vel FdbkMotor Current Fdbk

Computed PowerMotor Voltage Fdbk

Stator Frequency

2 3 4 5 6 7 8

+ndash+ndash+ndash+ndash

91011 1213 1514

16 1817 19

ndash+ndash+ndash+ndash+

COMM

401 387

OFFSET

402

SCALE

403 388

OFFSET

404

SCALE

405 389

OFFSET

406

SCALE

407 390

ndash

+10VCommon

ndash10V

Analog InputsOFFSET

392

SCALE

393 339

OFFSET

394

SCALE

395 340

OFFSET

316

SCALE

317 341

OFFSET

318

SCALE

319 342

PowerSupply

269 Filtered Vel Fdbk

182 Computed Power

264 Motor Current Fdbk

265 Motor Voltage Fdbk

104 Ext Vel Ref 2 Hi

28 Process Trim Fdbk

+ndashProc Trim Fdbk

Ext Vel Ref 2 Hi

+ndash

Filtered Vel Fdbk

Comm

Computed Power

Comm

Motor Current Fdbk

Comm

Motor Voltage Fdbk

Comm

330

359024135246357

Chapter 3

3ndash1

Programming Terminals

Chapter Objectives Chapter 3 provides an overview of the optional Programming Terminalsavailable for use with the 1336 FORCE Drive The various controls andindicators found on the Human Interface Module (HIM) and the GraphicProgramming Terminal (GPT) are both explained in this chapterAdditional in depth information on the Graphic Programming Terminalcan be found in the GPT programming Manual

HIM Description When the drive mounted HIM is supplied it will be accessible from thefront of the drive as shown in Figure 31 The HIM has two mainfunctionsbull To provide a means of programming the drive and viewing operating parametersbull To allow different drive functions to be controlled

ATTENTION When a drive mounted HIM is notsupplied on enclosed NEMA Type 1 (IP 20) drives theblank cover plate (option HAB) must be installed to closethe opening in the front cover of the enclosure Failure toinstall the blank cover plate allows access to electricallylive parts which may result in personal injury andorequipment damage

When a drive mounted HIM is supplied with enclosedNEMA Type 1 (IP 20) drives but has been removed fromits mounting cradle for remote operation the blank coverplate must be installed in place of the HIM

The HIM is divided into two sections Display Panel and Control PanelThe Display Panel provides a means of programming the Drive andviewing the various operating parameters The Control Panel allows youto control different drive functions

Figure 31Human Interface Module Location

Display Panel

Control Panel

Human Interface Module(HIM)

JOG

ESC SEL

Chapter 3Programming Terminals

3ndash2

Figure 32HIM Front Panel

LCD Display

AB0273A

Key Descriptions

Descriptions of the keys used with the 1336 FORCE Drive are presented inthe following paragraphs Remaining keys that are not described (shaded infigure above) are not used and reserved for future use

EscapeWhen pressed the ESCape key will cause the programmingsystem to go back one level in the menu tree

SelectPressing the SELect key alternately causes the top or bottomline of the display to become active The flashing first characterindicates which line is active

IncrementDecrementThese keys are used to increment and decrement avalue or scroll through different groups or parameters

EnterWhen pressed a group or parameter will be selected or aparameter value will be entered into memory After a parameterhas been entered into memory the top line of the display willautomatically become active allowing another parameter (orgroup) to be chosen

AB0269A

AB0270A

AB0282A

AB0295A AB0267A

Chapter 3Programming Terminals

3ndash3

Key Descriptions (continued)

AB0283A

StartBy default this key will initiate drive operation if hardware isenabled and no other control devices are sending a Stop commandTo change this function the [Command Mask] and [Typ 1 LogicAxis] parameters must be reconfigured Refer to Chapter 5

StopWhen pressed a stop sequence will be initiated at the SystemModule causing a controlled stop to be initiated in each axis asdetermined by [Stop Mode] [Stop Time Lim] and [Stopping Cur]

JogBy default when this key is pressed the motor will jog at aspeed determined by the [Jog Vel] parameter for any axis that isenabled (default will be 20 of motor rated speed) Releasingthe key will stop the function

Change Direction (JogDigital Velocity Reference Modes Only)Pressing this key will cause the motor to change direction Theappropriate Direction Indicator will light to indicate direction

Direction LEDs (Indicators)These LEDs will illuminate to indicate the direction of motorrotation for Axis 0 (by default)

UpDown Arrows (only available with digital speed control)Pressing these keys will increase or decrease the HIMfrequency command An indication of this command willbe shown on the visual Speed Indicator The drive willrun at this command if the HIM is the selected frequencyreference See [Freq Select 12]

Pressing both keys simultaneously stores the currentHIM frequency command in HIM memory Cyclingpower or removing the HIM from the drive will set thefrequency command to the value stored in HIM memory

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

Speed Indicator (only available with digital speed control)Illuminates in steps to give an approximate visualindication of the commanded speed

If the Analog Speed Potentiometer option has beenordered the UpDown keys and Speed Indicator will bereplaced by the pot

AB0267A

AB0275A

AB0281A

AB0285A

AB0287A

AB0295A

AB0265A

NotePot Range0 ndash 32767

Chapter 3Programming Terminals

3ndash4

Module Removal For handheld operation the module can be removed and located up to 10 meters(33 feet) from the Drive

ATTENTION Some voltages present behind the Drive frontcover are at incoming line potential To avoid an electric shockhazard use extreme caution when removingreplacing the HIM

Important Removing a HIM (or other SCANport device) from a drivewhile power is applied will cause a ldquoSerial Faultrdquo unless the [Logic Mask]parameter has been set to disable this fault or Control Logic (Control Statusmenu) has been disabled (Series A version 30 or Series B HIM) SettingBit 1 of the [Logic Mask] parameter to ldquo0rdquo will disable ldquoSerial Faultrdquo froma HIM on port 1 Note that this also disables all HIM control functionsexcept StopTo remove the module

1 Assure that power has been removed [Logic Mask] has been set orControl Logic has been disabled

2 Take the drive front cover off and simply slide the module down andout of its cradle Remove cable from module

3 Remove HIM as described in the following sequence If Jog controlis required after the HIM is reconnected repeat steps 1 but selectldquoEnablerdquo

4 Connect the appropriate cable between the HIM and theCommunications Port (Adapter 23 4 or 5)

5 Reverse the above steps to replace the module Apply power resetBit 1 of the [Logic Mask] or enable Control Logic

HIM Operation When power is first applied to the drive the HIM will cycle through aseries of displays These displays will show drive name HIM ID numberand communication status Upon completion the Status Display (seeFigure 33) will be shown

Figure 33Status Display

AB0286A

This display shows the current status of the drive (ie ldquoStoppedrdquoldquoRunningrdquo etc) or any faults that may be present (refer to Chapter 6 forfault information) On a Series A (version 30) or Series B HIM (see back ofHIM) the Status Display can be replaced by the Process Display orPassword Login menu See appropriate sections on the following pages formore information

From this display pressing any key will cause ldquoChoose Moderdquo to bedisplayed Pressing the Increment or Decrement keys will allow differentmodes to be selected as described on the pages that follow

Chapter 3Programming Terminals

3ndash5

DisplayWhen selected the Display mode allows any of the parameters to beviewed However parameter modifications are not allowed

Program Program mode provides access to the complete listing of parametersavailable for programming

ProcessThe Process mode displays two user-selected parameters with text andscaling programmed by the user

EEPROM This mode allows all parameters to be reset to the factory default settingsIn addition a Series B HIM will allow parameter uploaddownloadbetween the HIM and drive BRAM (Battery Backup RAM) jumper mustbe in ldquoEnablerdquo position in order to change parameters

Search (Series A version 30 or Series B HIM Only)This mode will search for parameters that are not at their default values

Control Status (Series A version 30 or Series B HIM Only)Permits the drive logic mask to be disabledenabled allowing HIM removalwhile drive power is applied Disabling the logic mask with a Series A HIMbelow version 30 can be accomplished with [Logic Mask] as explained onpage 3ndash4 This menu also provides access to a fault queue which will list thelast four faults that have occurred ldquoTriprdquo displayed with a fault indicates theactual fault that tripped the drive A clear function clears the queue ndash it willnot clear an active fault

LinkLink mode provides a method of transferring data from a source parameterto a linkable sink parameter When a PLC Comm Adapter Board is usedup to (50) links are allowed Links can be programmed only when theDrive is not running Links are stored in BRAM and established at powerup BRAM recall andor system reset

PasswordThe Password mode protects the drive parameters against programmingchanges by unauthorized personnel When a password has been assignedaccess to the ProgramEEProm modes and the Control LogicClear FaultQueue menus can only be gained when the correct password has beenentered The password can be any five digit number between 00000 and65535

Refer to the Password section of the example that follows

Chapter 3Programming Terminals

3ndash6

or

or

or

Program Mode

or

The Program mode allows access to changeparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoProgramrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnos-ticsrsquo lsquoVelocity Torquersquo lsquoCommunica-tion IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Torque Ref) Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Parameter 53 Torque Mode Sel)

If the parameter you have selected hasbit definition information use the Selectkey to access the 2nd or 3rd lineContinue to press the Select key toaccess the desired bit Use the Inc orDec key to change the valueNOTE If the cursor is a blinkingunderline instead of a flashing characteryou are either in Display mode or aretrying to change a readndashonly parameterFor detailed information on changing bitcoded parameters refer to the Bit Enumssection in this chapter

Press the Enter key to save yourchanges

Choose ModeDisplay

Choose ModeProgram

Choose FileVelocity Torque

Torque Mode Sel

Choose GroupLogic

Choose GroupTorque Ref

or

Chapter 3Programming Terminals

3ndash7

or

or

or

Display Mode

or

The Display mode allows access to viewparameters

From the Status Display press EnterldquoChoose Moderdquo will be shown

Press the Increment (or Decrement) keyto show ldquoDisplayrdquo if it is not currentlyshown

Press Enter The Choose File Displaywill appear Use the Increment (orDecrement) key to select the lsquoDiagnosticsrsquo lsquoVelocity TorquersquolsquoCommunication IOrsquo or lsquoStartuprsquo file

Press Enter The Choose Group Displaywill appear

Press the Increment (or Decrement) keyuntil the desired group is displayed (Inthis case Info) Choices includeTransistor Diag Motor Overload FaultSelSts Testpoints Monitor Linear Listand Info Press Enter

Press the Increment (or Decrement) keyto scroll to the desired parameter (In thiscase Adapter ID Param 300)

Choose ModeProcess

Choose ModeDisplay

Choose FileVelocity Torque

Adapter ID

Choose GroupMonitor

Choose GroupInfo

Chapter 3Programming Terminals

3ndash8

or

Bit ENUMsMasksLogic Mask

TB3X1111111

With drive software versions above 200 anda Series A (software version 30) or Series BHIM bit ENUMS (16 character text strings)will be displayed to aid interpretation of bitparameters

Select a bit parameter with the Increment(or Decrement) keys

Press the SELect key to view the ENUMof the first bit Pressing this key again will move the cursor to the left one bit

A blinking underline cursor will indicate that you are in the Display mode or that aRead Only parameter as been accessed Aflashing character will indicate that the value can be changed

Individual bits of a ReadWrite parametercan be changed in the same manner Pressing the SELect key will move the cursor (flashing character) one bit to the left That bit can then be be changed by pressing the IncrementDecrement keys

Link The Link Option allows you to view all current links in the drive and change orclear these links

From the Status display press Enter ldquoChoose Moderdquo will be shown

Press the Increment or Decrement key toreach the Link Option

Press Enter and either the Clear Links or Set Links option screen will appearToggle between the screens using the Incor Dec key

From the Clear Links screen use the Enter key to clear all links

To change links use the Inc or Dec key to reach the link you wish to changeUse the Sel key to access the 2nd line in the display and then change the link using the Inc or Dec key

Choose ModeProcess

Choose ModeLink

or

LinkClear All Links

Drive SW Versionlt 1 gt lt ndash ndash 0 gt

or

or

Chapter 3Programming Terminals

3ndash9

Process Mode When selected the Process mode will allowyou to monitor 6 different prendashprogrammedprocesses 2 of these processes can bedisplayed at one time

Use the Enter key to select the ProcessMode

Press the Enter key again to access theProcess Variable display

Press the Enter key again if you wish tomonitor the processes under ProcessVariable 1

Use the IncDec keys to view the sixprocesses that are currently programmedon line 1

To move to the second Process VariableLine Press the Select key This willallow you to access the six processesunder Process Variable 2

To return to a previous level press theEscape key

Note HIM Series B Version 106 willallow changing of the 6 process dis-plays

Choose ModeProcess

+ 000 Freq Cmd+ 000 Vel FB

Process Var 1=1Process Var 2=2

or

Chapter 3Programming Terminals

3ndash10

AB0282A

or

or

AB0287A

AB0270A

or

or

EEProm Mode

Reset Defaults

Drive ndashgt HIM

The EEProm mode is used to restore all settingsto factory default values or uploaddownloadparameters between the HIM and drive (SeriesB HIM Only)

To restore factory defaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will bedisplayed

Press the Increment (or Decrement) keyuntil ldquoEEPromrdquo is displayed If EEPromis not in the menu programming ispassword protected Refer to PasswordMode later in this section

Press Enter

Press the Increment (or Decrement) keyuntil ldquoReset Defaultsrdquo is displayed

Press Enter to restore all parameters totheir original factory settings

Press ESC Display returns to ChooseMode Screen

Press the Stop key to reset the fault

Note Reset Defaults only modifiesparameters in RAM To save in EE doa ldquoSaverdquo or to recall what is in EE toRAM do a ldquoRecallrdquo

Important If [Input Mode] was previous-ly set to a value other than ldquo1rdquo cycledrive power to reset

To upload a parameter profile from the driveto the HIM you must have a Series B HIM

From the EEProm menu (see steps A-Cabove) press the IncrementDecrementkeys until ldquoDrive ndashgt HIMrdquo is displayed

Press Enter A profile name (up to 14characters) will be displayed on line 2 ofthe HIM This name can be changed or anew name entered Use the SEL key tomove the cursor left The IncrementDecrement keys will change the charac-ter

Stopped+000 Hz

Choose ModeDisplay

Choose ModeEEProm

EEPromReset Defaults

Choose ModeEEPROM

EEPromDrive ndashgt HIM

Drive ndashgt HIM1 A

Chapter 3Programming Terminals

3ndash11

or

Drive ndashgt HIM (continued) Press Enter An informational displaywill be shown indicating the drive typeand firmware version

Press Enter to start the upload Theparameter number currently beinguploaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the upload

ldquoCOMPLETErdquo displayed on line 2 willindicate a successful upload PressEnter If ldquoERRORrdquo is displayed seeChapter 6

1336T VectorVersion 302

Drive ndashgt HIM 60|||||

Drive ndashgt HIM 210COMPLETE

HIM ndashgt DriveTo download a parameter profile from theHIM to a drive you must have a Series BHIM

Important The download function will only beavailable when there is a valid profile storedin the HIM

From the EEProm menu press theIncrementDecrement keys until ldquoHIM ndashgtDriverdquo is displayed

Press the Enter key A profile name willbe displayed on line 2 of the HIMPressing the IncrementDecrement keyswill scroll the display to a second profile(if available)

Once the desired profile name is dis-played press the Enter key An informa-tional display will be shown indicatingthe version numbers of the profile anddrive

Press Enter to start the download Theparameter number currently beingdownloaded will be displayed on line 1 ofthe HIM Line 2 will indicate totalprogress Press ESC to stop the download

A successful download will be indicatedby ldquoCOMPLETErdquo displayed on line 2 ofthe HIM Press Enter If ldquoERRORrdquo isdisplayed see Chapter 6

1336T Vector302 ndash gt 302

EEpromHIM ndashgt Drive

HIM ndashgt Drive1 A

HIM ndashgt Drive 60|||||

Drive ndashgt HIM 210COMPLETE

or

Chapter 3Programming Terminals

3ndash12

or

or

or

Search Mode The Search Mode is only available with aSeries A (version 30) or Series B HIM

This mode allows you to search through theparameter list and display all parameters thatare not at the factory default values Thismode also offers an option to searchparameter links for links that are not factorydefaults

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoSearchrdquo is displayed

Press Enter The HIM will display theSearch Parameters or Search Linksscreen Use the Increment or Decre-ment key to toggle between screens

From the Search Parameters displaypress Enter The HIM will searchthrough all parameters and display anyparameters that are not at their factorydefault values

Press the Increment (or Decrement) keyto scroll through the list

To search parameter links toggle to theSearch Links display from the SearchParameters display using the Incrementor Decrement key

From the Search Links display pressEnter The HIM will search through alllinks and display any links that are notat their factory default values

Choose ModeSearch

Choose ModeDisplay

Proc Trim Fdbkndash003 28

SearchParameters

Proc Trim Fdbklt28x ndash ndash ndash 355

Search Links

Chapter 3Programming Terminals

3ndash13

AB0282A

or

or

Control Status Mode

Choose ModeControl Status

Choose ModeDisplay

Control LogicDisabled

Control StatusControl Logic

The Control Status mode is only availablewith a Series A (version 30) or Series BHIM

This mode allows the drive logic mask to bedisabled thus preventing a Serial Faultwhen the HIM is removed with drive powerapplied The logic mask can be disabledwith Series A HIM versions below 30 byusing [Logic Mask] as explained on page34

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoControl Statusrdquo is displayed PressEnter

Select ldquoControl Logicrdquo using theIncrementDecrement keys Press Enter

Press the SELect key then use theIncrement (or Decrement) key to selectldquoDisabledrdquo (or ldquoEnablerdquo)

Press Enter The logic mask is nowdisabled (or enabled)

or

Chapter 3Programming Terminals

3ndash14

AB0270A

or

or

or

(continued)Control Status Mode

Fault QueueClear Faults

This menu provides a means to view thefault queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoFault Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The fault queue will bedisplayed ldquoTriprdquo displayed with a faultwill indicate the fault that tripped thedrive

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe fault occurrence press the Enter key

To clear the fault queue press ESCapeThen use the IncrementDecrement keysto select ldquoClear Queuerdquo Press EnterPlease note that ldquoClear Queuerdquo will notclear active faults

Control StatusFault Queue

Fault QueueView Queue

Serial FaultF 10 Trip 1

Reprogram FaultF 48 2

12022 11

or Fault QueueClear Queue

Chapter 3Programming Terminals

3ndash15

AB0270A

or

or

or

(continued)Control Status Mode

Warning QueueClear Warnings

This menu provides a means to view thewarning queue and clear it when desired

From the Control Status menu press theIncrement (or Decrement) key untilldquoWarning Queuerdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoView Queuerdquo is displayed

Press Enter The warning queue will bedisplayed

Use the Increment (or Decrement) keyto scroll through the list

If you wish to view the time and date ofthe warning occurrence press the Enterkey

To clear the warning queue pressESCape Then use the IncrementDecre-ment keys to select ldquoClear QueuerdquoPress Enter Please note that ldquoClearQueuerdquo will not clear active warnings

Control StatusWarning Queue

Warning QueueView Queue

Vel Fdbk LvlF 5048 5

12022 11

Warning QueueClear Queue

or

Reset Sequence

or

A reset sequence is available on Series BHIMs with 106 or later software

From the Startup Completed displaypress the Enter key

Press the Increment (or Decrement) keyuntil ldquoStartup Reset Sequencerdquo isdisplayed Press Enter

Press the Enter key again to relaunch theStartup sequence

Start UpCompleted

Start UpReset Sequence

Entering Start UpPress lsquoENTERrsquo

Chapter 3Programming Terminals

3ndash16

or

or

or

or

or

Password Mode The factory default password is 0 (whichdisables password protection) To change thepassword and enable password protectionperform the following steps

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoModifyrdquo is displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyto scroll to your desired new passwordWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter to save your new password

Press Enter again to return to thePassword Mode

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

With a Series A (version 30) or SeriesB HIM the Password mode can beprogrammed to appear when drivepower is applied Simultaneously pressthe Increment and Decrement keyswhile the Password display is shown

Sets Password Displayas Power-Up Display

Choose ModePassword

Choose ModeDisplay

PasswordModify

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

Chapter 3Programming Terminals

3ndash17

or

or

Password Mode (continued)Login to the Drive

or

The ProgramEEProm modes and theControl LogicClear Queue menus are nowpassword protected and will not appear inthe menu To access these modes performthe following steps

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter ldquoLoginrdquo will be displayed

Press Enter ldquoEnter Passwordrdquo will bedisplayed

Press the Increment (or Decrement) keyuntil your correct password is displayedWith a Series A (version 30) or SeriesB HIM the SELect key will move thecursor

Press Enter

The Program and EEProm modes willnow be accessible To prevent futureaccess to program changes logout asdescribed in step 1

Logout from the Drive To prevent unauthorized changes toparameters Logout must be performed asdescribed below

Press the Increment (or Decrement) keyuntil ldquoPasswordrdquo is displayed

Press Enter

Press the Increment (or Decrement) keyuntil ldquoLogoutrdquo is displayed

Press Enter to log out of the Passwordmode

Choose ModePassword

Enter Passwordlt 0gt

Enter Passwordlt 123gt

Choose ModePassword

PasswordLogin

Choose ModePassword

PasswordLogin

PasswordLogout

Choose ModePassword

or

Chapter 3Programming Terminals

3ndash18

or

or

Startup Mode

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear If you DO NOT need toenter motor nameplate data toggle to theNo (N) selection and press EnterA display asking you to run the MotorConnect Diagnostics will appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor informationBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesBase Motor SpeedFeedback Device Type

NOTE For more information on thecomplete Quick Startup sequence referto Chapter 4 All tests and entries arecovered in greater detail in the Startupchapter

or

Motor ConnectDiagnostics Y

Chapter 3Programming Terminals

3ndash19

Figure 34 HIM Programming Steps

PowerndashUp andStatus Display

Choose Mode

or or or or

DisplayProcess Program EEProm Search Control

StatusPassword Link

Operator Level

Mode Level

Process DisplayReset DefaultsDrive to HIMHIM to DriveRecall ValuesSave Values

Control LogicFault Queue

LoginLogoutModify

Clear Links

File LevelParameter Files

Group LevelParameter Groups

Element LevelParameters

(Read Only) (ReadWrite)

(See Chapter 5)

(See Chapter 5)

(See Chapter 5)

(Linear List Available)

1 1

2

2

1 Him Versions 202 amp Up2 Series B HIM Only

Set Links

Startup

Change Process Disp3ParamLinks Reset Drive

Warning Queue

3

ContinueReset Seq

3 Series B V 106 amp up

Chapter 3Programming Terminals

3ndash20

GPT Description When an optional GPT (Figure 35) is supplied it will be either mounted tothe front of the Drive as a panel mount terminal or supplied as a remotedevice with a 18 meter (6 foot) long cable The GPT offers a 40 by 8character display that can also be used as a graphics display to showtrending graphs etc

Figure 351201 Graphic Programming Terminal

B5

PRESET 1 PRESET 3

D7

E8

F9

A4

C6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Chapter 3Programming Terminals

3ndash21

Keypad Description The GPT keyboard (Figure 35) is provided as either a 26 key version(nonndashruntime) or 30 key (runtime version) The runtime version asshown in Figure 36 provides additional Start Stop Jog and Directionkeys

Figure 36GPT Keypad

B

5

PRESET 1 PRESET 3

D

7E

8F

9

A

4C

6

ALT PRESET 4

1XREF 1

3

ESC

PRESET 5

2

PRESET 2

0

JOG

F1 F2 F3 F4

Start Key Stop Key

Chapter 3Programming Terminals

3ndash22

When power is first applied to the drive or device a series of hardwarediagnostic tests will run before the Power Up Logo Screen shown inFigure 37 appears Once the initialization has been completed and allinformation from the drive is uploaded the terminal will display eitherthe Main Menu screen or the Process Display screen depending on theterminal setup information

Figure 37GPT Power Up Logo Screen

AumlAumlAumlAuml

0 25 50 75 100

1201 GPT InterfaceAllen Bradley CoCopyright 94 v1 01

Initializing

If it has not been deactivated through the terminal during setup theProcess Display Screen (Figure 38) showing you the programmedprocess variables will appear next If the Process Display Screen isdeactivated the Main Menu Screen (39) will appear first

Figure 38Process Display Screen

MainMenu DSP_Mode

000 Freq CMD000 Vel FB000 COMP PWR000 MTR V FB000 MTR I FB000 Torq FB

Sts Not EnabledDir ForwardOut

Info

When the Process Display Screen is active it is necessary to press theMain Menu Option (F2 soft designator) on the Process Display to reachthe Main Menu The Main Menu contains the password option thatprovides a highlighted dialog box for password entry

GPT Operation

Chapter 3Programming Terminals

3ndash23

The Configuration option (F1 soft designator) allows you to directlyaccess Process parameters from the Process Display screen The DisplayMode option (F3 soft designator) allows you to enter the Logo Status orMeter modes for the Process Display parameters

IMPORTANT Main Menu screens are dynamic and will change basedon functionality provided by adapter and drive status

Figure 39Main Menu Screen

Password ProcDspy

Main Menu

Help TextDescriptionFor Each Menu ItemSelected

1 ndash Parameter2 ndash Link Summary3 ndash Fault Queue4 ndash Warning Queue5 ndash EEPROMBRAM6 ndash Clock Data7 ndash Function Block8 ndash Special

Help

IMPORTANT Only 5 of the 8 Main Menu options are displayed at onetime on the screen Scroll with the IncDec keys to access all eightselections

Figure 310 details the complete menu tree for the GPT ProgrammingTerminal This menu is dynamic and all options may not be supportedby your Drive or SCANport device If you need more detailedinformation on Key functions Menu Screens or general Terminaloperation refer to the appropriate chapter in the GPT user manual

Chapter 3Programming Terminals

3ndash24

Figure 310GPT Programming Options

Power UpLogo Screen

MainMenu

Screen

ProcessDisplayScreen

ProcessConfigScreen

ProcessProgramScreen

1Parameter

2Link

Summary

3Fault

Queue

4WarningQueue

5EEBRAMFunction

6ClockData

7Function

Block

8Special

File

DECINC+

Group

Element

Sink

Source

Fault List

1 Save Par to EE2 Recall EE Par

Warning Entry List

NumericalParameter Screens

FGE Mode

Linear Mode

2 Set Ref3 Load Ref Stamp

Upload

Command

File ID

IO Node

Download

Interval

Event File

Edit List

DataTransfer

VersionInfo

AutotuneTests

ChangePasswordStartup

TrendFunction

DriveIdentity

1 Clear Warning

1 Clear Flt

2 Clear Warn Q

1 Set Clock

4 Zero Acc

2 Clear Flt Q3 Drive Reset

3 Init Par to RAM

➊ This list is dynamic and will change for various Drive States and DriveProduct functions

4 Evnt File Store5 Evnt File Recall6 Evnt File Init7 Proc FB Links8 Clear FB Links

SaveRecallDefault

HIM gt GPT

GPT gt HIM

Chapter 3Programming Terminals

3ndash25

This Page Intentionally Blank

Chapter 4

4ndash1

StartndashUp

Introduction This chapter describes the procedure for the proper start up and tuning ofthe 1336 FORCE AC drive Among the procedures you must perform inthis chapter are the following

bull Prendashpower checksbull Powerndashon checksbull Communication Configurationbull Parameter Programmingbull Motor and Feedback Polarity Checksbull Drive Tuning and Calibration

Safety Precautions

ATTENTION Hazard of Electric Shock exists in this drive Power circuits are optically isolated from control driver circuitsPower circuit components are ldquofloatingrdquo with respect to ldquogroundrdquoUse only approved methods of isolating test equipment when mak-ing measurements in power circuits

ATTENTION Only qualified personnel familiar with the 1336FORCE AC Drive and its associated machinery should plan andimplement the installation startup and subsequent maintenance ofthe Drive Failure to comply may result in personal injury andorequipment damage

ATTENTION Working with energized industrial control equip-ment can be hazardous Severe injury or death can result fromelectrical shock burn or unintended actuation of controlled equip-ment Hazardous voltages may exist in the cabinet even with thecircuit breaker in the off position Multiple sources of power maybe connected to this drive Recommended practice is to disconnectand lock out control equipment from power sources and dischargestored energy in capacitors if present before coming in contactwith any equipment in this cabinet During startup it will be nec-essary to work in the vicinity of energized equipment The SafetyRelated Practices of NFPA 70E ldquoELECTRICAL SAFETY FOREMPLOYEE WORKPLACESrdquo must be followed at all timesDO NOT work alone on energized equipment

Chapter 4Startup

4ndash2

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

ATTENTION This Drive contains ESD (ElectrondashStatic Dis-charge) sensitive devices Static control precautions are requiredwhen installing testing servicing or repairing this assemblyThese precautions should be applied when working with logicboards AND any components in the power section A properlygrounded wrist strap should be worn when contacting any compo-nent in the drive If you are not familiar with static control proce-dures before servicing reference AllenndashBradley Publication8000ndash452 Guarding against Electrostatic Damage or any otherapplicable ESD protection handbook

Required Tools and Equipment The following equipment is required for startndashup and tuning

bull Digital Multimeter (DMM) capable of 1000V DC750V AC with input resistance of at least 1 megohm

bull Hand Tachometer used to monitor motor velocitiesbull User Manuals for optional equipmentbull DriveTools Software (optional)

This startndashup sequence specifies using hand instruments such asmultimeters tachometers ammeters and an oscilliscope to carry out thisstartndashup test procedure If you have the optional DriveTools software forthe 1336 FORCE Drive it can be used to simplify the startup procedureThis option can be used to set input commands manipulate parameters andverify frequencies and voltage levels

IMPORTANT This startup sequence for a Series B Drive assumes thatyou have a HIM Programming Terminal If a different programmingdevice is used you must alter the startup accordingly

Chapter 4Startup

4ndash3

Drive Information During Startup the following information must be recorded for referenceIt is important that an accurate list of drive components be maintained andreferred to when contacting service personnel

Table 4A Data Checks ndash

DRIVE NAMEPLATE DATACatalog NumberSerial NumberSeries

AC Input Volts Amps

AC Output Volts Amps

MOTOR NAMEPLATE DATACatalog NumberSerial NumberSeries

Horsepower Rating

RPM

AC Input Volts Amps

Poles

Hz

ENCODER NAMEPLATE DATA

Input Power Supply

Output Type

Pulses Per Rev

Maximum Speed

Maximum Frequency

PPR

Board Revision Level

Horsepower Rating

Catalog NumberSerial NumberSeries

VoltsInput Signal Level Volts

MAIN CONTROL BOARD

PLC COMM BOARDBoard Revision Level

GATE DRIVER BOARD

STANDARD ADAPTER BOARDBoard Revision Level

Board Revision Level

kw

kw

PLC Comm Adapter Board Switch SettingsU2

U3

U4

U5

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

5 6 7 8

5 6 7 8

Standard Adapter Board Jumper Settings

J5 1 2 2 3PositionPosition

J13 1 2 2 3J10 3 4 17 18

Chapter 4Startup

4ndash4

General Only qualified electrical technicians andor electrical engineers familiarwith solid state controls and circuitry should attempt a 1336 FORCEstartndashup Figure 41 outlines the sequence that is required to startndashup the1336 FORCE DriveFigure 41Bulletin 1336 FORCE StartndashUp Sequence

ExternalWiring Checks

PREndashPOWER CHECKS

InternalDrive Checks

CommunicationConfiguration

LIVEndashPOWER CHECKS

VoltageMeasurements

StandardIO Checks

PARAMETER PROGRAMMING

POLARITY CHECKS

DRIVE TUNING

EncoderCheck

MotorCheck

PrendashPower Checks PrendashPower checks are meant to identify any problems prior to applyingvoltage to the system The drive should be checked for any damage thatmay have occurred during shipment and installation You should alsoverify that all jumpers and configuration controls are properly applied forthe application at hand Finally you must check all wiring external to thedrive for accuracy and reliability

External Wiring Checks1 Verify that all external IO wires are properly terminated in the

terminal blocks A full point ndash to ndash point continuity check should be performed on all IO wiring connected to the drive

Chapter 4Startup

4ndash5

2 Verify that the incoming power connections are properly connected and tight Also verify that the power source is properly sized and protected for your particular drive

3 Verify that the motor power connections are properly connected and tight Motor Phasing should be checked Motor Phase A should be connected to Drive output phase A likewise Phase B and C should be properly terminated to their respective terminals This phasing will be double checked later in this procedure

4 Verify that the encoder feedback device is properly connected The encoder should be a quadrature device with a 12V input power requirement and either 12V or 5V differential outputs Jumpers J3 andJ4 on the Main Control Board (Figure 27) must be set for the desired output Phasing of the encoder should be checked in that A and A B and B are properly terminated This phasing will be double checked later in this procedure

5 If your Drive is equipped with a Standard Adapter Board verify that the Pulse Input Voltage Selection jumper is set correctly for your application Jumper J13 should be set across pins 1 and 2 for +5V DC input and across pins 2 and 3 for +12V DC input voltage

6 If your Drive is equipped with a PLC Comm Adapter Board verify that the standard IO inputs on the PLC Comm Board are configured for the proper input voltage level The Standard IO can be configuredfor operation at 24V DC or 120V AC To select the proper voltage set the jumpers on J5 J6 J7 and J8 across pin 1 and 2 if the input voltage level is 120V AC and across pins 2 and 3 if the input voltage level is 24V DC

Power On After all prendashpower checks have been completed the incoming power maybe applied The application of power for each system can be differentMake sure you know the safety controls associated with the system Powershould only be applied if you have a thorough understanding of the 1336FORCE Drive and the associated system design

bull Measure the incoming line voltage between L1 and L2 L2 and L3 andL1 and L3 Use the DMM on AC Volts highest range (1000 VAC) The input voltage should equal the drive rated input voltage present on the driversquos nameplate within +ndash10 If the voltage is out of toleranceverify the drive rating is correct for the application if it is adjust the incoming line voltage to within +ndash10

Chapter 4Startup

4ndash6

Startup Configuration Procedures After you have completed all wiring and power up the drive the parameterconfiguration procedure must be completed using one of the StartupConfiguration Procedures (Quick or Manual) The configurationprocedures used here assumes you have a HIM programming terminal anda Standard Adapter Board in your Drive If you are using a differentprogramming method or a PLC Comm Adapter Board the configurationprocedure will have to be altered to match your particular setup

ATTENTION Failure to complete the parameter configurationcould result in injury to personnel or damage to the drive andthe motor when attempting to perform the remaining steps inthe Configuration Procedure

Apply power to the Drive The HIM display will appear as shown in Figure 42

ATTENTION During some startup procedures the motor willrotate Hazard of personal injury exists due to unexpected startsrotation in the wrong direction or contact with the motor shaft If possible uncouple the motor from the load and place a guardaround the motor shaft

Figure 42HIM PowerndashUp Display

LCD Display

AB0273A

Chapter 4Startup

4ndash7

or

or

Quick Start Procedure

Choose ModeStartup

Choose ModeDisplay

Base Motor HP300 HP

Setup MotorNameplate N

1 An automated Quick Startup sequence isavailable on the HIM to lead you through alldata entry configuration and diagnostic teststhat must be performed when starting up the1336 FORCE drive

From the Status Display press Enter (orany key) ldquoChoose Moderdquo will beshown

Press the Increment (or Decrement) keyuntil ldquoStartuprdquo is displayed Press Enter

The ldquoSetup Motor Nameplaterdquo displaywill appear

If you have not previously entered theMotor Nameplate data toggle to the Yes(Y) selection in the Setup MotorNameplate display and press Enter

The first motor informational screenwill appear Use the Select key toaccess the second line and make anychanges with the Increment and Decre-ment keys In subsequent displays youwill be asked to provide the followingmotor information1 Base Motor Current2 Base Motor Volts3 Base Motor Frequency4 Motor Poles5 Base Motor Speed6 Feedback Device Type

When all motor and feedback data havebeen entered a display asking you ifyou wish to run the Motor ConnectDiagnostics will appear Press the Enterkey to initiate the test sequence Insubsequent displays you will be asked ifyou wish to run the following tests1 Inverter Diagnostics2 Motor Rotation TestPress the green Start key to run thediagnostic testPress the red Stop key when the MotorRotation Test has completed

or

Motor ConnectDiagnostics Y

Transistor DiagPress START

Check MotorRotation Y

Chapter 4Startup

4ndash8

or

Quick Start Procedure cont

Measure Paramrsquos Press START

Autotune Torqueamp Vel Loops Y

Change Vel BW amprecalc Gains Y

Autotune TheVelocity Loop Y

1 After Inverter Diagnostics has concluded orif you answer NO to the Motor ConnectDiagnostics question a display will appearasking if you wish to run the AutotuneTorque amp Velocity sequence

Press the Enter key to initiate the test

If you answer YES to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Measure Parameters2 Autotune The Velocity Loop3 Change Velocity Bandwidth amp

recalculate Gains4 Configure Analog Inputs5 Continue CH3 amp 4

configuration6 Configure Analog Outputs7 Configure SCANport

ATTENTION Hazard of PersonalInjury exists when running the AutotuneTorque amp Velocity sequence as motorrotation occurs with several of thesetests

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

ConfigureAnalog Inputs Y

Continue CH 3 amp4 config Y

Configure AnalogOutputs Y

ConfigureSCANport Y

Startup Completed

Chapter 4Startup

4ndash9

or

Quick Start Procedure cont

Configure IO Y

ConfigureInput Mode Y

ConfigureScanport Y

If you answer NO to the AutotuneTorque amp Velocity question the follow-ing configuration options will appear insequence as each configuration opera-tion is completed1 Configure IO2 Configure Scanport3 Configure Input Mode4 Configure Pulse Input5 Configure MOP6 Configure Analog Input7 Configure Analog Output

Use the SELect key to access the 2ndline in any configuration display and theINC or DEC keys to make any changesWhen an option or enable operation iscomplete use the Enter key to save thischange

When all tests and enable operationshave been completed a Startup Complete display will appear Press theEnter key to save all configuration dataA Startup Completed display willappear to indicate that the Quick StartProcedure has been successfullycompleted and saved

If you wish to return to the Startupsequence to make additional changesthis can be accomplished from theStartup Completed display Afterpressing the Enter key use the INC orDEC key to toggle to Reset SequencePress the Enter key again and you cannow rendashenter the Startup routine

Startup CompletePress lsquoENTERrsquo

ConfigurePulse Input Y

ConfigureMOP Y

ConfigureAnalog Input Y

ConfigureAnalog Output Y

Startup Completed

Startup Reset SequenceStartup Completed

ResetSequence

or

Chapter 4Startup

4ndash10

AB0282A

or

or

or

Choose MODE Program

Choose FileStartup

Press the ESC key to access the Drive Mode MenuThe Choose Mode display should appear as shownbelowUse the INCDEC keys to scroll thru the DriveMode menu selections until the PROGRAMselection is reachedPress the ENTER key to enter the Program ModeThe HIM display should appear as shown below

Drive Mode Menu

Drive Mode Menu Selections

Press Enter The Choose Group Display will appear Press the INC or DEC key to reach LINEAR LIST

Press the ENTER key to access the Linear ListmenuThe display should appear as shown below

EEPROMPASSWORDDISPLAYPROCESSPROGRAM

LINKSEARCH

CONTROL STATUSSTARTUP

Choose GroupLINEAR LIST

Drive SW Version301 1 LINEAR LIST

Parameter Number 1

Use the INCDEC keys to scroll to Parameter 150Parameter 150 is feedback device type1 = Encoder feedback5 = Sensorless feedback (Similar to armaturevoltage feedback for a DC Drive)Note If choosing sensorless feedback the bandwidth of thevelocity loop will be significantly reduced

Press the SEL key to access the feedback devicetype selection and use the INCDEC keys to togglebetween the selections

Note If sensorless feedback is selected the drivewill fault on feedback loss You must set bit 0 inparms 88 and 89 from 1 to 0 before clearing thisfault and proceeding with the autotune

The feedback device type can be accepted bypressing the ENTER key The display should nowappear as shown below

Fdbk Device TypeVel Est woDB 150 LINEAR LIST

Parameter Number 150Sensorlessfeedback

or

Manual Startup Mode

Use the INCDEC keys to select the Startup File

Chapter 4Startup

4ndash11

AB0270A

or

Drive Data Startup

Linear ListStartup

After the feedback device type has been selectedand accepted press the ESC key to return to theStartup Menu The display should appear asshown below

STARTUP MENU

Use the INCDEC keys to scroll thru the StartupMode menu selections until DRIVE DATAis reached

Press the ENTER key to access the Drive Datamenu

NOTE These parametersare primarily motorencoder specific param-eters that are used forscaling Drive output tomotor input require-ments

DRIVE DATADRIVE TUNE

LIMITSFAULT SETUP

MONITORLINEAR LIST

DRIVE DATA MENU

Not Used inSensorless Mode

The HIM will allow you to toggle between the IODrive Data menu parameters using the INCDECkeys The definitions of the IO Drive Data menuparameters is detailed below

bull Language Select ndash This parameter indicates whether English or an alternate language will be used for parameter and fault display text

bull Input Mode ndash Defines the function of the inputs on the ldquoLrdquo option board

bull Encoder PPR ndash Number of pulses per revolution for encoder

bull Base Motor Speed ndash Motor Nameplate Speed

bull Base Motor HP ndash Motor Nameplate Horsepower

bull Base Motor Current ndash Motor Nameplate Current

bull Base Motor Volts ndash Motor Nameplate Voltage

bull Base Motor Frequency ndash Motor NameplateFrequency

Language Select 304Input Mode 385

Encoder PPR 235Base Motor Speed 229

Base Motor HP 228Base Motor Current 280

Base Motor Volts 231Base Motor Freq 232Torq Mode Select 53

Undervoltage Setpoint224

Motor Poles 235

NOTE It is important that you retain a record of thefeedback device that was selected because thebandwidth of the velocity regulator will be significantly reduced when the drive is used withoutan encoder

If using a 230V driveparameter 224 should beset to a value of 200V

Chapter 4Startup

4ndash12

or

and

AB0270A

or

AB0282A

Base Motor Speed 1750 RPM

To change a value in any of 10 Drive Data menuparameters the following sequence which showsyou how to change motor base speed should befollowed

Press the SEL key to move from the Drive DataMenu parameter to the Drive Data Value Whenthis is successful a blinking box will appear nextto the Ram value as shown in the following figure

Blinking

Use the INCDEC keys to scroll to the desiredvalue then press the ENTER key to accept the newvalue

When you have entered all Drive Data menu parameters press the ESC key to return to theStartup Menu The display should now appear asshown in the following example

bull Motor Poles ndash Number of Motor Poles (Nameplate)bull Undervoltage Setpoint ndash Sets minimum threshold

voltage for a Bus undervoltage condition Should beset to a value of 200V for 230V AC drives and 400V for a 460VAC drive

bull Torque Mode Select ndash This parameter is used to select the source for the drive torque reference (Must be set to Speed Mode for auto commissioning)

Base Motor Speed 1750 RPMAumlAuml

BlinkingBox

and

DRIVE DATA STARTUP

Use the INCDEC keys to scroll thru the Startupmenu until the Limits option is displayed TheHIM display should now appear as shown belowPress the ENTER key to move into the Limitsmenu

LIMITS STARTUP

ATTENTION The MotorPole Entry is critical to allAutotune tests Make certainyou are entering the correctnumber of poles for yourmotor before proceedingwith the Autotune sequence

Chapter 4Startup

4ndash13

or

AB0270A

or

AB0282A

or

Fwd Speed Limit 1750 RPM

Use the INCDEC keys to scroll through the Limitsmenu selections

When you reach the Limit selection that you wishto change press the SEL key to move the blinkingcursor down to the value field

Limits Menu Selections

Once the cursor is in the value field the INCDECkeys can be used to scroll to the selected valueAfter the desired value is reached the ENTER keymust be pressed to accept the value Thisprocess should be repeated for all of the theparameters in the Limit Menu selection

After all of the parameters in the Limit Menu havebeen setndashup press the ESC key to take you back tothe Startup Menu The HIM Display should nowappear as shown below

You must now access the Drive Tuning option in theStartup menu Use the INCDec keys to scrollthrough the Startup Menu until the Drive Tuningselection is reached The HIM display should nowappear as shown below

When Drive Tune appears press the ENTER key toaccess the Drive Tune Menu

The Parameters you will need to set up in the DriveTune sequence are detailed in the list located in theright column For detailed descriptions of theseparameters and their operation refer to Chapter 5 inthis Manual under Group 1 ldquoSTARTUP FILErdquo

The Drive Tune Parameters can be accessed byusing the INCDEC keys to scroll through the DriveTune Menu Using the default values for theseparameters will work in most cases If the defaultvalue does not work refer to the parameter valueranges in Chap 5 for possible alternate values

Accel Rate 1 389Decel Rate 1 391Accel Rate 2 390Decel Rate 2 391Logic Options 59

Fwd Speed Limit 128Rev Speed Limit 127Pos Mtr Cur Lmt 179Neg Mtr Cur Lmt 180Pos Mtr Tor Lmt 175Neg Mtr Tor Lmt 176Motor Power Lmt 177Regen Power Lmt 178

DiDt Limit 181 Fwd Speed Limit +1750 RPM

Blinking Firstthen

Blinking

Drive Tune Menu Selections

Autotune Diag Sel 256Vel Feedback 146

Vel Desired BW 43Auto Tune Status 44

Motor Inertia 234Total Inertia 46

Ki Velocity Loop 139Kp Velocity Loop 140Kf Velocity Loop 141

Vel Damp Factor 45Auto Tune Speed 41Ph Rot Cur Ref 262

Ph Rot Freq Ref 263

Drive Tune Startup

Limits Startup

Chapter 4Startup

4ndash14

or

AB0282A

or

AB0282A

Scroll to the Autotune Diag Sel parameter Set Bit0 to a value of 1 and then press the ENTER keyand the START button This will execute the In-verter Transistor Diagnostics test which will take300 mSec to run Bit 0 will automatically be setback to 0 upon successful completion of the Invert-er Transistor Diagnostics test If the test fails(nonndashzero value with flashing CP or VP light) re-fer to the Startup troubleshooting section of thismanual (Chap 6) While you are performing theInverter Transistor Diagnostics Test the HIM dis-play should appear as shown below

The purpose of the Inverter Transistor DiagnosticTest is to help you find any problems that mightexist in the installation as well as taking care ofsetting offset in both the Id amp Iq regulators(Parameters 260 amp 261 in the linear list)

The next test you must run is the Phase RotationTest This is accomplished by setting bit 1 to a value of 1 in the Autotune Diag Sel parameter(Parm 256) and pressing the START key toexecute the test The HIM display should appear asshown below

Autotune Diag Sel 00000000 00000001 Bit 0

Autotune Diag Sel 00000000 00000010

Bit 1

When the START key is pressed the motor shouldrotate at a rate specified by both Phase Rotation Frequency Ref and a current output as specified bythe Phase Rotation Currency Ref Typically defaultvalues for both Ph Rot Freq Ref and Ph Rot Cur Refwill work correctly

Interpreting Phase Rotation Results1 In phase rotation the motor should turn in the

direction you define as positive velocity If the motor turns in the wrong direction shut the drivedown remove power and reverse any two motor leads

2 If no motor rotation occurs refer to the Startup troubleshooting section of this manual

3 In phase rotation with the motor now turning in the positve direction the sign of the velocity feedback (P146) should be positive If it isnegative reverse the A and A (NOT A) encoderleads or the B and B (Not B) leads

Note Step 3 is skipped with asensorless drive

ATTENTION During thisportion of the Autotune Sequence reverse motor rotation is a possiblity Ifyour process equipmentcould be damaged by rotation in the wrong direction you must uncouplethe motor from the load before running the Phase Rotation test

Chapter 4Startup

4ndash15

or

or

AB0282A

or

AB0282A

or

AB0282A

After the Phase Rotation test has been performed and themotor rotates in the positive direction with positive en-coder feedback you are ready to tune both the Torq Loopand Velocity Loop of the Drive Tuning both the Torq ampVelocity loops requires setting bits 2 thru 8 to a value of1 and then pressing ENTER followed by pressing theSTART key on the HIM The HIM display should nowappear as shown below

Performing both the Torq and Velocity Loop tests willtake approximately 1 min 30 sec to complete Shaft rota-tion will occur in the latter part of these tests While thetest is being executed the green enable light on the Mo-tor Control board will be on Once these tests are com-plete bits 2 through 8 in the Auto Tune Diag Sel parame-ter will be set back to a value of 0 and the green enablelight will go out If the Drive trips a flashing or solid redVP or CP LED will be present on the Motor ControlBoard When complete save the parameters to EEPROM using the EEPROMndashSAVE option underMENUThe fault that caused the drive to trip will appear on theHIM display Refer to the Startup Troubleshooting section of this manual for possible solutions to the displayed fault Perform both the Torque and Velocityloop autotune tests again after the problem has been re-solvedWhen you have successfully completed the Torque andVelocity Tune tests scroll to the Vel Desired Band Width(Parm 43) in the Drive Tune Menu using the INCDECkeys

Autotune Diag Sel 00000001 11111100

Bits 2 thru 8

Vel Desired BW 1000 RS Enter desired BW here

Blinking Firstthen

BlinkingAumlAumlAumlAuml

Enter the desired bandwidth by pressing the SEL key tocursor down to the value field Use the INC and DECkeys to scroll to the desired BW When the appropriatevalue is selected the ENTER should be pressed to acceptthe entered valueBased on the value entered in the Vel Desired BW theKp amp Ki Velocity Loop Values will change when Bit 8 isset in the Autotune Diag Sel (Parm 256) and the STARTKey is pressed The HIM display should now appear asshown below

Autotune Diag Sel 00000001 00000000

Bit 8 set to 1 toexecute update of

velocity regulatorgains

Note When using asensorless versionthe values listed inTable 4B must beused

Chapter 4Startup

4ndash16

or

AB0287A

Vel Feedback 10000 RPM

After the New Values for Kp amp Ki have been cal-culated you are now ready to start the Drive inVelocity mode Before starting the Drive use theINCDEC keys to scroll to Vel Feedback in theDrive Tune Menu Start the Drive by pressing theSTART key on the HIM Press the SPEED IN-CREMENT key to slowly increment the velocityreference Observe velocity feedback and motorshaft rotation making sure both are stable If theyare not (shaft produces a jittery oscillating or jud-ering rotation) press the STOP key immediatelyand readjust the desired bandwidth This will enternew values for both Kp amp Ki After these new val-ues have been entered you are now ready to restartthe Drive in velocity mode and observe motorshaft rotation and velocity feedback for stability Ifproblems still occur refer to the Velocity LoopAutotune troubleshooting section of this manual(Chap 6) The HIM display should now appear asshown below

This Figure should be stable (no wander-

ing of RPM value)

Additional Sensorless Drive InstructionsIf the sensorless mode is being used (Param 150 = 5ndash7) set Param 43 Param 141 and Param 142 based on the measuredinertia expressed in Parameter 46 (Autotune) in Table 4BSelect Bit 8 of Param 156 and then attempt a Start

Table 4BSensorless Setup Values

Param 46 Param 43

lt 2 Sec

2ndash5 Sec

5ndash20 Sec

gt20 Sec

Param 141 Param 142

10 rad

5 rad

1 rad

5 rad

7

7

7

7

50 rad

25 rad

25 rad

25 rad

bull If the motor wonrsquot start increase the bandwidth (Param 43) select bit 8 of Param 256 and attempt a restart

bull If the motor chatters or velocity ripple is too high decrease the bandwidth (Param 43) select bit 8 of Param 256 and restart

bull If the motor continues to chatter set Param 142 to zero

NOTE For additional information on sensorless operation refer to Appendix A of this manual

Chapter 4Startup

4ndash17

Communication ConfigurationDrive to Drive Communication ndash Drive to Drive Communication (D2D)provides high speed communications between drives D2D is capable ofconnecting up to 64 Drives together using three different transfer rates125K (64 nodes) 250K (64 nodes) and 500K (32 nodes) baud

Hardware Setup ndash Refer to Chapter 2 Installation for Drive to Drivewiring L Option wiring and Pulse Input Configuration

Data Transfer ndash The D2D which allows multiple transmitters tobroadcast information based on priority to multiple receivers which choosethe information they wish to receive The D2D will operate at threedifferent baud rates as shown in the following chart

Baud Rate

125k

Max Distance (End to End)

250k

500k

Data Rate

330m

140m

50m

600us

300us

150us

Max Transmitters (2ms task)

3

6

13

The baud rate choices allow for different end to end distances and numberof transmitters The distance is based on the propagation delay of thesignal through the wire and the maximum transmitters come from notexceeding the 2ms task The propagation delay is based on CAN variablesThe number of transmitters is based on the data rate

2 ms

600us (1) 600us(3)

600us(1)600us(4)

600us (2)

2 ms

600us (1) 600us(3)600us (2) 600us (1) 600us(3)600us (2)

600us(2) 600us(3) 600us(1) 600us(2) 600us(3)

2 ms

Shown above is the D2D set at 125k baud with 3 and 4 transmitters With3 transmitters the data rate never exceeds 2ms and all the data is receivedwithin the 2ms task In the case of 4 transmitters the fourth transmitterdoes not always get transmitted due to the priority of the transmitters Thelower the node address the higher the priority All the data is not seenevery 2ms task Data transfer errors also effect how much data istransferred Errors in the transfer will cause retransmission of the data andmay cause the data rate to exceed 2ms Within the drive itself the VelocityProcessor (VP) will be running the D2D in its 2ms task With the use ofD2D indirects data can be transferred within 2ndash3ms from one drive toanother and 4ndash5ms from one drive to another and back

VelocityFunctions

D2D Xfer

150us 300us600us

Data Transmitted

D2DRx

150us300us600us

VelocityFunctions

2 ms Task

D2DTx

D2DTx

D2D Xfer

D2DTx

2 ms Task

D2DTx

The D2D receive and transmit are on both sides of the velocity functionsThis is to improve the data rate

Chapter 4Startup

4ndash18

Message Transfer ndash The D2D allows each drive to transfer two wordsand receive two words from two different drives for a total words receivedof four (Figure 43)

Figure 43 D2D Communication

Transmit

P11 Node Address

P14 Data 1 Indirect

P15 Data 2 Indirect

P20 Data 1

P21 Data 2

Receive 1

P12 Node Address

P16 Data 1 Indirect

P17 Data 2 Indirect

P22 Data 1

P23 Data 2

Receive 2

P13 Node Address

P18 Data 1 Indirect

P19 Data 2 Indirect

P24 Data 1

P25 Data 2

Node Address ndash The node address for the transmit is the address at whichthe drive will transmit its two words of data The node address for each ofthe receives is the address of the drive which you wish to receive twowords of data from If the node address is set to zero then the transmit orreceive is disabled It is up to you to make sure there are no duplicatetransmit node addresses If duplicate addresses exist you must change oneaddress Refer to the example in Figure 44Figure 44 Node Address Transmittal

Drive 1

P11 Xmit Node Address 32

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 27

Drive 2

P11 Xmit Node Address 0

P12 Rcv 1 Node Address 5

P13 Rcv 2 Node Address 32

Drive 3

P11 Xmit Node Address 5

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 27

Drive 4

P11 Xmit Node Address 27

P12 Rcv 1 Node Address 0

P13 Rcv 2 Node Address 0

Note that a drive cannot receive its own address and both receives cannotbe set to the same address unless it is zero

Data Indirect ndash The indirect function for the transmit indicates to theD2D transmit (TX) where it should obtain data The receive it indicates tothe D2D receive (RX) where it should put its data Indirect parameters canhave either VP or CP parameters entered into them or they can haveindirect data parameters entered into them as shown in the followingexamples

Transmitter ExampleP14 Drive Transmit indirect 1 ndash Any VPCP Parameter

or ndash P20 (Drive Xmit Data 1)P20 would then have a value or be linked to a non VPCP parm

Chapter 4Startup

4ndash19

Receiver ExampleP16 Drive Receive Indirect 1 ndash Any VPCP Parameter

or ndash P22 (Receive 1 Data 1)P22 would then have a value or a non VPCP parm linked to it

Data ndash The D2D TX and RX data exists as non VP parameters in theparameter table This allows data outside the Motor Control Board to getaccess to the D2D Data parameter examples were shown in the previoustransmitter and receiver examples

Master Slave Drive to Drive Communication ndash Figure 45 illustratesan example of D2D applied to a masterslave drive set up The masterdrive receives its speed reference from a speed pot wired to analog input 1on a PLC Comm board P339 (Analog In1) is linked to P101 (Ext Vel Ref)on the master drive P392 (Analog In 1 Offset) and P393 (analog In1Scale) are set accordingly Analog Input 1 must be passed from the masterdrive to the slave drive and connected to the P101 (Ext Vel Ref) using theD2D protocol

Setting up the Master drive requires that a transmit address be chosen Anaddress 1 is chosen in this example P14 (Drive Xmit Indirect 1) will havea value of 20 entered into it (which means look to P20 (Drive Xmit Data1)) P20 (Drive Xmit Data 1) must be linked to P339 (Analog In1) Thisis where the data comes from that will be transmitted

Figure 45MasterSlave Communication Example

Master

P11 Drive Xmit Address ndash Transmitter Station Address ndash 1P14 Drive Xmit Indirect 1 ndash VPCP Parm or P20 ndash20P20 Drive Xmit Data 1 ndash Non VPCP Parm Linked ndash 339 (Analog In 1)

P339 (Analog In 1) linked P101) (Ext Vel Ref)P392 (Analog In1 Offset)P393 (Analog In 1 Scale)

Drive to DriveAnalog Inputs

0 ndash 10V

Slave

P12 Drive Receive 1 Address ndash Transmitter you are getting data from ndash 1P16 Drive Receive Indirect 1 ndash VPCP Parm or P22 ndash101 (Ext Vel Ref)

P102 (Vel Scale Factor)Used to Control Gear Ratio

Drive to Drive

Chapter 4Startup

4ndash20

The slave drive is set up by first setting P12 (Drive Receive 1 Address)P12 contains the address of the tranmitter that you wish to receive datafrom In this example a value of 1 is entered indicating that data shouldbe read from transmitter 1 P16 (Drive Receive Indirect 1) should be set toP101 (Ext Vel Ref) It should be noted that the typical transmission timefrom the master to the slave is between 4ms to 6ms using links otherwiseusing indirects it is only 2ms to 4ms

IO Communication ConfigurationThe Standard IO of the 1336 FORCE Drive must be checked to verifyproper operation The Standard IO is used to interface control circuits intothe drive It is very important that this interface is functioning properly

Standard Adapter Board Equipped Drives If a Control Interface option is installed verify that the Stop Enable andExt Fault interlock inputs are present Voltage level is dependent upon theControl Interface option installed (Refer to Page 227 for Input Mode(Param 385) setting

IMPORTANT The Stop Enable and Ext Fault inputs must be presentbefore the drive will start Refer to LEDs D1 and D2 shown in Figure 213to determine Drive Status

If this option is not installed verify that two jumpers are installed one atpins 3amp 4 and the other at pins 17 amp 18 of J10 If an Ext Fault occurscheck the Fault Mask Programming In parameters 88 and 89 Bit 6 needsto be defined to mask the soft fault and warning indication

PLC Comm Adapter Board Equipped Drives

1 The DRIVE ENABLE (TB20 terminal 1) on the PLC Comm Board input allows the drive to honor a START command D11 on the PLC Comm board a green LED reflects the present state of the DRIVE ENABLE If D11 is illuminated then the drive is enabled and the transistors will be allowed to turn on Parameter 54 bit 1 also reflects the status of the DRIVE ENABLE input

2 The EXTERNAL FAULT (TB20 terminal 4) PLC Comm input allows you to tie a signal into the 1336 FORCE that will be monitored by the Velocity Processor (VP) If the input voltage is removed the VP will issue a fault or warning based on the configuration of that fault and the red LED D5 on the PLC Comm board will be illuminated When Input voltage is applied D5 will not be illuminated

3 The MOTOR THERMOGUARD (TB20 terminal 2) input allows you to tie a signal from the thermondashswitch in the motor into the 1336 FORCE that will be monitored by the Velocity Processor (VP) The red LED D9 will illuminate if an overtemp condition occurs

Chapter 4Startup

4ndash21

4 The NORMAL STOP (TB20 terminal 3) input is stop command that will stop the drive according to the specified Stop Mode The drive responds the same way it would if the STOP bit were set in any Logic Command The red LED D7 reflects the present state of the STOP input When a Stop is in effect the LED is illuminated and the Drive is not allowed to run

5 The FAULT OUT (TB20 terminals 8910) input is a Form C relay contact Red LED D4 reflects the status of relay contact If the LED is illuminated the contact is not energized

External Control Link ConfigurationThe 1336 FORCE AC Drive has been designed to accept control inputthrough the use of Adapter Boards A portion of the Drive Control hasbeen designed to act as an interface from the point of view of externaldevices In order to perform the control functions required by the specificapplication it is necessary to configure various control and referenceinformation such as logic commands speed reference and torquereference Additionally for the external control equipment to monitoroperation conditions in the drive (such as logic status actual speed actualtorque) configuration provides a way for this information to be transferredto the external device

Configuration links must be made between sink and source parameters toallow this information to transfer The source parameter provides the datato be sent to the receiving sink parameter For Example To send the information from Analog Input 1 (Parameter355) to External Velocity Reference 1 (Parameter 101) of the drivethen P101 must be linked to P355 All sink and source parameters in the1336 FORCE AC Drive are available to provide information and sinkparameters can receive information from source parameters The drive isshipped with prendashconfigured links between the Standard Adapter board orPLC Comm board and the Main Control board The user has the flexibilityto reconfigure the drive for a particular application For more informationon how to use a particular programming device to configure the 1336FORCE AC Drive refer to the instruction manual for that particulardevice

Figure 46 shows the as shipped prendashconfiguration links for a 1336FORCE AC Drive equipped with a Standard Adapter board Refer to thePLC Communications Adapter User Manual (1336 FORCE 513) forinformation on prendashconfigured links for PLC Comm equipped drives

PLC COMM Adapter Board Equipped Drives

For PLC Comm Adapter Board Equipped Drives refer to the 1336 FORCEPLC Communication Adapter User Manual (1336 FORCE 513) forconfiguration information

Chapter 4Startup

4ndash22

Figure 47Standard Adapter Links

369

5ndash12V Pulse Input Unidirectional

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

Proc Trim Fdbk

OFFSET

Standard Adapter

355356

SCALE

357 28

Vel Ref 2 Hi

OFFSET

358359

SCALE

360 104

OFFSET

361362

SCALE

363

ndash10V Ref

Motor Control Board

Common

+ndash

+ndash 10V In

TE

TB6

1 2 3 4 5 6 7 8

OFFSET

371

SCALE

372

OFFSET

374

SCALE

375

OFFSET

377

SCALE

378

370

373

376

146 Vel Fdbk

182 Computed Power

TB7

+ndash

Pot In 1

TE+ndash

4ndash20mA Input

TE+ndash

CcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedilCcedil

1 2 3 4 5 6 7 8 9101112

NCComm

NOFAULT

NCComm

NOALARM

TETE

Not Used

LOGIC STATUS

Logic Status LO

From VP Enable Light

ProgrammableComm

Run

57

55 (Bit 9) Local Output Status

56 Logic Status Lo

+ndash 10V Analog Out 1

+ndash

TE+ndash 10V Analog Out 2

TE

4ndash20mA Output+ndash

+ndash

395396397398

399

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

Vel Ref 1 Hi101

1 2 3 4 5

379

SP Analog Out (Par 379)

269 FilteredVel Fdbk

HIM

384

Pulse PPRPulse Edge

PulseScalePulse Offset

Logic Status HI56

1 2 3 4 5

SP Analog In Select 2 (Par 367)

368

SP Analog In 2 (Par 368)Scale

Scale

366

Chapter 4Startup

4ndash23

Analog IO Parameter ConfigurationWhen you have accomplished the hard wiring of the Analog IO to theStandard Adapter Board terminals as was detailed in Chapter 2 it is stillnecessary to set up the parameters in the Drive to allow for data flowbetween the Adapter Board and the Drive Each InputOutput hasparameters associated with it as shown in Figure 47 Set-Up parametersare used to program the Standard Adapter Board functions such as Scaleand Offset Configuration parameters allow the Standard Adapter Board tocommunicate with the Drive and must be linked to analog inputs andoutputs

Each analog input and output is associated with a scaling and offset set-upparameter These parameters must be adjusted for each analog device

The Drive works with internal drive units Each parameter is a 16 bit wordwhich allows a range of plusmn 32767 internal units The Drive is scaled so that4096 is equal to one unit of the quantity being regulated A plusmn 10V DCsignal applied to an analog input is converted to a digital value of plusmn 2048providing a total range of 4096 When calibrating analog inputs a scalefactor is applied to this value to provide an effective range of plusmn 32767 16 times 2048 The offset parameter determines the offset in volts applied tothe raw analog value before the scale factor is applied This allows you toshift the range of the analog input by plusmn 4096 drive units (plusmn20 volts)

Figure 47Analog IO Links

5ndash12V Pulse Input

+10V RefTB5 1 2 3 4 5 6 7 8 91011121314

355356 Offset357 Scale

358

361

ndash10V RefCommon

+ndash

In1

TE

TB6

1 2 3 4 5 6 7 8

370

373

376

+ndashPot In put

TEMain+Main ndash

4ndash20mA Input

TE+ndash

Analog + Out 1

+ndash

TE

TE+ndash

+ndash

395 PPR396 Edge397 Scale398 Offset

399

Standard Adapter

PowerSupply

In1

359 Offset360 Scale

10V Input 10V Input

In1 In1

362 Offset363 Scale

Pot Input

mA Input

Pulse Value In1 In1

371 Offset372 Scale

Analog Output 1

Analog Output 2 Analog + Out 2

mA Output

374 Offset375 Scale

mA Out +

377 Offset378 Scale

Chapter 4Startup

4ndash24

A 10V Input and a Pot Input will be used in detailing the scaling and offsetparameters At Pot Input between TB5 terminals 7 and 8 a potentiometerwith a range of plusmn10V DC has been connected Parameter 358 has been linkedto Parameter 104 (Velocity Reference 2 HI) in the Drive which gives thepotentiometer control of the external velocity reference To calibrate the potto control 100 base speed in both directions the scaling parameter must beadjusted The default value of the scale parameters allows a total range of4096 ndash2048 to +2048 This allows only 50 base speed in each directionBy setting a scale factor of 2 in Parameter 360 (An In 1 Scale) the digitalinput is multiplied by 2 providing a range of ndash 4096 to + 4096 or 100 basespeed in both directions If the user wanted a range of plusmn 2 times base speedthe scale factor would have to be 4 (Base Speed = 4096 2 times Base Speed= 8192 2048 times 4 = 8192) Parameter 359 (Offset) will remain at thedefault value of zero allowing the input range to be ndash10V to +10V Therange of the offset parameter is plusmn 20V DC as shown in Figure 48

Figure 48Potentiometer with a +10V Range to Control 0 to +100 Base Speed

10V POT

0ndash10V

A

D

SCALE

+20480

ndash2048

+20480

ndash2048

+40960

ndash4096

OFFSETPAR 359 = 0

RANGE OF 20V

0

000

ndash10Vndash2048X 2

ndash4096

+10V+2048X 2

+4096

PAR 360X 2

plusmn

+10V

POTENTIOMETER DIGITAL VALUESCALEFINAL VALUE PAR 401

PAR 104plusmn 2048(= plusmn10V)

Par 358

Pot Input

VELOCITYREFERENCE 2

HIMULTIPLEXER

For 10V Input a 0 to 10 volt potentiometer will be used to adjust the TorqueReference from ndash100 to +100 To accomplish this both the scale andoffset parameters will need to be adjusted By linking Parameter 355 toParameter 162 Torque Reference the potentiometer connected to AnalogInput becomes the Torque Reference Signal This signal must be scaled andoffset in order to get the entire plusmn 100 in the 0-10 volt range A digitalrange of 8192 (plusmn 4096) must now be scaled for an analog range of 10 voltsand must be offset so 5 volts on the potentiometer will indicate 0 Torque

Chapter 4Startup

4ndash25

As shown in Figure 49 the offset voltage adds the corresponding digitalvalue to the range In this case an offset of ndash5 volts adds a digital value ofndash1024 to the range This causes 0 volts on the potentiometer to register asndash1024 digital internal to the drive and 10 volts on the potentiometer will be+1024 to the drive This can then be scaled by a factor of 4 (8192 drive units) so that 0 volts sends a digital value of ndash4096 for ndash100torque and 10 volts sends a digital value of +4096 for +100 torque

Figure 49Potentiometer 0ndash10V Range to Control +ndash 100 Torque Reference

0ndash10V POT

010v

A

D

SCALE

0to

2048

ndash1024+1024

+4096+4096

RANGE OF 20V

0

00

ndash10Vndash2048

+10V+2048

PAR 357X 4

+0v

POTENTIOMETER DIGITAL VALUEOFFSET BY ndash5V

10Vndash10V

5V1024

00

ndash1024ndash4096

+1024+4096ADDING ndash1024

SCALE BY 4

PAR 162plusmn 2048(= plusmn10V)

OFFSETPar 356 = ndash5V

Par 355MULTIPLEXER

10V Input

Analog outputs are set up similar to analog inputs Each output has a scaleand offset parameter along with a specific variable parameter used forlinking Differences occur because of the direction of information flow Thedrive sends a digital value in drive units which must be matched to thevoltage of the monitoring device Similar to analog inputs the analog outputconverts a plusmn2048 to plusmn10VDC Thus when the drive sends plusmn100 BaseSpeed (equal to plusmn4096) it must be scaled by 05 to be in the proper range(plusmn4096 times 05 = plusmn2048) Offset can be plusmn 20VDC even though the physicallimit is plusmn10VDC This allows you to offset the signal anywhere within theentire range

Chapter 4Startup

4ndash26

In Figure 410 Analog Output 1 is used as an example to detail the scalingand offset parameters At Analog Output 1 a meter with a range of 0-10 VDC has been connected Parameter 370 has been linked to Parameter 146(Velocity Feedback) In order for the meter to indicate speed in bothdirections the scale and offset parameters must be adjusted as shown inFigure 410 Working in the opposite direction as the analog inputs apply thescale factor first The drive sends a plusmn4096 digital value to indicate plusmn100velocity feedback for a total digital range of 8192 The meter having ananalog range of 0-10V DC requires a digital range of 2048 This isaccomplished by applying a scale factor of 025 (8192 times 025 = 2048)In order to have the 0-10V DC meter indicate plusmn100 feedback an offsetmust be applied Offset parameters for analog outputs will again add thecorresponding digital value to the range In this case an offset of 5 volts addsa digital value of 1024 to the range This will allow full range deflection onthe 0 to 10 volt meter with 5 volts indicating zero speed

Figure 410Analog Output 1 +ndash 100 Speed Indication

ndash100B SPD 0 SPD

+100B SPD

5V

0V 10V

+4096 (+100 SPEED)0

ndash4096 (ndash100 SPEED)

+10240

ndash1024

+2048+1024

0

+10V = + 100 BASE SPEED+5V = 0 SPEED

SCALEPAR 372X 025

OFFSETPAR 371

5V = 1024

D

A

SCALED BY 025

0V = ndash100

OFFSET BY 5V ADDING 1024DIGITAL VALUE

METER VOLTAGE BASE SPEED

ndash 4096

ndash 1024+ 1024

00 VOLTS

ndash 100

0

0+ 1024

05 VOLTS

0

4096

+ 1024+ 1024

204810 VOLTS

+ 100

(plusmn 2048 = plusmn10V)

PAR 146 PAR 370

VELOCITYFEEDBACK ANALOG OUT 1

DIGITAL RANGEFROM DRIVE

Chapter 4Startup

4ndash27

SCANport Analog IO Parameter Configuration

SCANport analog IO is what is received from and sent to the SCANportdevices

Figure 411SCANport IO Parameter Configuration

1 2 3 4 5

SP Analog In Select (Par 364)

365

SP Analog In (Par 365)

1 2 3 4 5

379

SP Analog Out (Par 379)

HIMDefault setting of Drive Parameter 364 = 1

1 2 3 4 5

SP Analog In Select (Par 367)

368

SP Analog In (Par 368)

Default setting of Drive Parameter 367 = 1

Scale

366

Scale

369

To receive analog input from a device the SCANport Analog Input Selectparameter 364 must be set to the SCANport device port number and theSCANport Analog Input parameter 365 must be linked to a sink Set thescale as needed For example if the HIM is plugged into Port 1 and it is tocontrol external velocity you would then enter 1 for SCANport Analog InputSelect (364) and link External Velocity (101) to SCANport Analog Input(365) You may scale the velocity through External Velocity Scale (102) orthrough SP Analog Scale (366)

The Drive sends SCANport Analog Output parameter 379 to all devicesconnected to SCANport To send data out to the SCANport devices youmust link SCANport Analog Output (379) to a source For example If theHIM is to receive Velocity Feedback you would link SCANport AnalogOutput (379) to Velocity Feedback (269)

Output Relay ConfigurationThe outputs consist of three (3) permanently configured and one (1)programmable output

The three permanently configured relays are Run Warning and Fault Runis a normally open contact that closes when current is applied to the motor It follows the enable LED on the Motor Control Board Warning has anormally open and close contact that energizes when there is no warningsand dendashenergizes when there is a warning Fault has a normally open andclose contact that energizes when there are no faults and dendashenergizes whenthere is a fault

Chapter 4Startup

4ndash28

The programmable relay is a normally open contact and is configuredthrough the Output Select parameter 384 It allows the relay to follow asingle bit within the Logic Status parameters 56 and 57 The relay can beconfigured to follow the bit function or the not of the bit function ForExample When the motor is at set speed and you wish the contact to closeyou must enter AT SET SPEED (8) When the motor is at set speed and youwish to have the contact open you must enter NOT AT SET SPEED (40)into Output Select (384)

Pulse Input Configuration

The pulse input allows an external source to provide the drive with a digitalreference or trim signal (Fig 412) It is a differential input with a maximumfrequency of 100khz The pulse input parameters consist of PPR (395)Scale (397) Edges (396) and Offset (398) The PPR is the number of pulsesper one revolution The scale determines the RPM at 1 per unit (4096) Theedges are either one edge ndash rising edge of the pulse or two edges ndash the risingand falling edge of the pulse Two edges provide better resolution Theoffset sets the minimum speed For example You have a lead drive with a1024 PPR encoder with a base speed of 1750 The follower uses the leaddriversquos encoder but runs at half the speed The followerrsquos ppr should be1024 scale should be set to 3500 offset should be 0 and a link should bemade from external reference (101) to Pulse Value (399)

Figure 412Pulse Input Configuration

399

MOTOR CONTROL BOARD

LeadDrive

396

EDGE

395

PPR

397

SCALE

398

OFFSET

AumlAuml AumlAuml

AumlAuml

101PulseValue

Ext Speed Ref

To calculate ScaleFollower Base Speed xLead RPM

Follower RPM

MOP Configuration

The MOP function is controlled by the L Option IO modes 5 9 and 15The MOP up and MOP down increment and decrement the MOP valueparameter 394 based on the MOP increment parameter 393 which is in RPMper second

SCANport Image Configuration

The SCANport image is a mechanism for transferring data to and fromSCANport devices It operates the same way as a PLC image with its 1412 34 and full racks The SCANport image is setup by a SCANportdevice such as a GD1 module or a RIO to SCANport gateway

Chapter 4Startup

4ndash29

SCANport Control Configuration

The SCANport controls are the functions that control the motor like startstop jog etc The control can come from up to 6 SCANport devices and LOption Inputs at the same time The control is based on a ownershipmechanism which allows certain functions to have only one owner and otherfunctions to have multiple owners Speed reference direction and localfunctions are the only one owner functions The other functions like startstop jog etc are considered multiple owner functions Ownership is when aSCANport device or L option Input commands a function As long as thatfunction is commanded that device will be the owner of that function ForExample Device 1 is commanding a forward direction this is a one ownerfunction No other device can change the direction until Device 1 stopscommanding the forward direction If Device 1 is commanding a start whichis a multiple owner function other devices can also command a start Ifdevice 1 stops commanding a start the drive will continue to run if anotherdevice is still commanding a startNOTE A rising edge is required for start and jog functions If jog iscommanded and the drive has been stopped Start and Jog functions will notoperate from any device until the Jog command is stopped The same holdstrue if a Start is commanded while the drive is stopped

The parameters in the range from 340 to 350 indicate the owner of eachfunction The owner is identified by the bit in the parameter as follows

Bit 0 ndash L Option InputsBit 1 ndash SCANport device 1 SCANport device number isBit 2 ndash SCANport device 2 determined by the SCANportBit 3 ndash SCANport device 3 connectionBit 4 ndash SCANport device 4Bit 5 ndash SCANport device 5Bit 6 ndash Internal GatewayBit 7 ndash Not Used

This is very useful for determining who may own a function

Masking of the control functions allows control functions to be enabled ordisabled for all or some of the devices The parameter bit configuration isthe same as the example detailed above with 0 indicating disable and 1indicating enable The masking control starts with the port enable maskwhich enables or disables all of the devices control functions then the localcontrol mask which allows a device to take full control of the drive to theindividual masks like start jog direction speed reference clear faults andreset

Control Interface OptionThe Control Interface Option Modes configure the Control Interface OptionThe different modes are explained in Chapter 2 The modes allow the user tosetup the inputs to meet the requirements of their application The InputMode parameter 385 sets the mode and takes effect on a power cycle or resetThe Input Status parameter 386 indicates the status of the input except for theenable input which can be seen in parameter 54 bit 1 The Stop Selectparameters 387 amp 388 select the way the stop input will function on the L

Chapter 4Startup

4ndash30

option only based on the stop type in modes 3 13 and 16 Stop fromSCANport devices follow parameter 59 bits 4 amp 5 The Accel Rates (389 amp390) and Decel Rates (391 amp 392) are selected by modes 4 11 and 14

NOTE Mode 2 3 4 5 and 6 take permanent ownership of the directionfunction

NOTE If the Control Interface Option is other than 1 the Control InterfaceOption speed reference will take ownership of the speed reference To allowother devices to control speed reference disable the Control Interface Optionspeed reference with the speed reference mask (334)

Using the SCANport ImageYou can view the values in the SCANport image table by using parameters310 through 317 for input and 320 through 327 for output

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data In A1 (Par 310)

Data In A2 (Par 311)

Data In B1 (Par 312)

Data In B2 (Par 313)

Data In C1 (Par 314)

Data In C2 (Par 315)

Data In D1 (Par 316)

Data In D2 (Par 317)

SCANport Image In

SCANport Device 1

SCANport Device 2

SCANport Device 3

SCANport Device 4

SCANport Device 5

Data Out A1 (Par 320)

Data Out A2 (Par 321)

Data Out B1 (Par 322)

Data Out B2 (Par 323)

Data Out C1 (Par 324)

Data Out C2 (Par 325)

Data Out D1 (Par 326)

Data Out D2 (Par 327)

SCANport Image Out

SCANport Device 6 SCANport Device 6

1336 FORCE

Logic Command

Reference

Logic Status

Feedback

SCANport gateways or adapters to RIO DF1DH485 DeviceNet SLCand Flex IO are some of the devices that can transfer data between theSCANport IO image and another device

Refer to the appropriate manual for your specific adapter

Chapter 4Startup

4ndash31

Within the 1336 FORCE drive the IO image table resembles thefollowing

Logic Command Word Logic Status LOW(parameter 52) (parameter 56)Bit 0 Normal Stop Bit 0 Run ReadyBit 1 Start➀ Bit 1 RunningBit 2 Jog 1➀ Bit 2 Command DirBit 3 Clear Fault Bit 3 Rotating DirBit 4 Forward Bit 4 AcceleratingBit 5 Reverse Bit 5 DeceleratingBit 6 Jog 2➀ Bit 6 WarningBit 7 Cur Lim Stop Bit 7 FaultedBit 8 Coast Stop Bit 8 At Set SpeedBit 9 Spd Ramp Dis Bit 9 Local ABit 10 Flux Enable Bit 10 Local BBit 11 Process Trim Bit 11 Local CBit 12 Speed Ref A Bit 12 At Zero SpdBit 13 Speed Ref B Bit 13 Speed Ref ABit 14 Speed Ref C Bit 14 Speed Ref BBit 15 Reset Drive Bit 15 Speed Ref C

Logic Status HI(parameter 57)Bit 0 Flux ReadyBit 1 Flux UpBit 2 Not UsedBit 3 Not UsedBit 4 Bus RidethruBit 5 JoggingBit 6 Not UsedBit 7 Not UsedBit 8 At LimitBit 9 Not UsedBit 10 At Setpoint 1Bit 11 At Setpoint 2

➀ These functions require an edge in order to take effect

1336 FORCE DriveController

Logic Evaluation Block Logic Command Wrd (p 52)SP An 2 Sel (p 367) SP An 2 Scale (p 369) SP An In2 Value (p 368)Data In A1 (p 310) Preset Speed 1 (p 119)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314) Speed Ref 1 (p 101)Data In C2 (p 315) Vel Scale Factor (p 102)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOWHI (param 5657) SP An Output (p 379) Velocity Feedback (p 146)Data Out A1 (p 320) Motor Current Magnitude Feedback (p 264)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

Link Link

Link

Link

The following examples are provided to show how the 1336 FORCE driveinterfaces with some of the available adapters These are only examplesYou should also refer to the appropriate manual for your gateway foradditional information

Chapter 4Startup

4ndash32

SLC to SCANport ModuleThe following figure shows how the IO image table for the SLCprogrammable controller relates to the 1336 FORCE drive In thisexample the drive is connected to channel 1 of the SLC module inenhanced mode If this were an example of basic mode only the O12O13 I12 and I13 entries would be used

1336 FORCE DriveController

SLCIO Image

Output Image

O12O13

O18➀

O19➀

O110➀

O111➀

O112➀

O113➀

O114➀

O115➀

I12I13

I18➀

I19➀

I110➀

I111➀

I112➀

I113➀

I114➀

I115➀

Input Image

Logic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Logic Status LOW (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

SLC toSCANport

Module

Logic CommandReference

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Logic StatusFeedback

Datalink A1➁

Datalink A2➁

Datalink B1➁

Datalink B2➁

Datalink C1➁

Datalink C2➁

Datalink D1➁

Datalink D2➁

Backplane SCANport

➀ Available only in enhanced mode

➁ Optionally enabled viaG file in SLC processor

M Files Message HandlerMessageBuffers

Chapter 4Startup

4ndash33

Serial Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Serial CommunicationsModule is used

1203ndashGx2DF1DH485 to SCANport

N400ndash63 BTW EmulationN410➀ Logic CommandN411➀ ReferenceN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

1336 FORCE DrivePLC SLCor PC

DF1DH485Serial Messages

(Write)

DF1DH485Serial Messages

(Read)

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status Low (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

N400ndash63 BTR EmulationN410➀ Logic StatusN411➀ FeedbackN412➀ Datalink A1N413➀ Datalink A2N414➀ Datalink B1N415➀ Datalink B2N416➀ Datalink C1N417➀ Datalink C2N418➀ Datalink D1N419➀ Datalink D2

SCANport

➀ Optionally enabled usingDIP switches on the adapter

Chapter 4Startup

4ndash34

Remote IO Communications ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Remote IOCommunications Module is used

Remote IOCommunications

Module

Block TransferLogic Command

ReferenceDatalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

Block TransferLogic StatusFeedback

Datalink A1➀

Datalink A2➀

Datalink B1➀

Datalink B2➀

Datalink C1➀

Datalink C2➀

Datalink D1➀

Datalink D2➀

1336 FORCE DriveController

PLC IO Image

Output Image

O010O011O012O013O014O015O016O017

I010I011I012I013I014I015I016I017

Input Image

Message HandlerLogic Evaluation BlockSP An 2 Sel (p 367)Data In A1 (p 310)Data In A2 (p 311)Data In B1 (p 312)Data In B2 (p 313)Data In C1 (p 314)Data In C2 (p 315)Data In D1 (p 316)Data In D2 (p 317)

Message HandlerLogic Status LO (p 56)SP An Output (p 379)Data Out A1 (p 320)Data Out A2 (p 321)Data Out B1 (p 322)Data Out B2 (p 323)Data Out C1 (p 324)Data Out C2 (p 325)Data Out D1 (p 326)Data Out D2 (p 327)

RIO SCANport

➀ Optionally enabled usingDIP switches on the module

8 words maximum

8 words maximum

Flex IO ModuleThe following figure shows how the IO image table for the programmablecontroller relates to the 1336 FORCE drive when a Flex IO Module isused

1203ndashFM1and 1203ndashFB1

Modules

Logic CommandReference➀

Logic StatusFeedback

1336 FORCE DriveFlex Adapter

Logic Evaluation BlockSP An 2 Sel (p 367)

Logic Status Low (p 56)SP An Output (p 379)

SCANport

RIODeviceNetControlNetOthers

Chapter 4Startup

4ndash35

This Page Intentionally Blank

Chapter 5

5ndash1

Programming Parameters

Introduction This chapter contains the information required to assist you inprogramming the 1336 FORCE AC Drive for a specific application afterinitial startndashup Drives are shipped programmed with default values andare preconfigured for the options installed

Parameters 0 thru 288 are the parameters for the 1336 FORCE MotorControl Board Parameters 300 and above cover the Adapter Board ofthe 1336 FORCE DRIVE The 1336 FORCE parameter table has beenbroken down into three different table types as follows

Table 5A lists parameters in numeric order with page referencesTable 5B lists parameters alphabetically with page referencesFigures 52 amp 53 list Standard Adapter and PLC Comm Adapter parameters by file and group

Parameters are divided into 4 Files to help ease programming andoperator access as follows

1 Startup File2 Communications IO File3 Velocity Torque File4 Diagnostics File

These four Files are then divided into Groups with each parametermaking up an Element in a specific group Parameters may be used asElements in more than one group Refer to Table 5A for a numericalbreakdown of the FileGroupElement designations

NOTE Parameters that appear in more than one group in Table 5A arelisted after the initial entry in italics

Terminology The definition of terms related to the parameter table include

Configuration ndash The process of linking Sink to Source parameters

Configuration Parameters ndash Parameters used to transfer data betweenthe drive control and external devices The Configuration Parameters arecategorized into two types

1 Source Parameters ndash Parameter used as a source of data2 Sink Parameters ndash Parameter used to receive data input

All parameters in the 1336 FORCE AC Drive can be used for evaluation(sink or source) and some can be modified dynamically (sink only) tomeet application requirements

Drive Units ndash The actual value of the parameter as it is stored within theDrive parameter table The drive units may be converted to engineeringunits or to hexidecimal for display using the Programming Terminal ormay be displayed directly in drive units All internal values in the driveare in terms of Per Unit numbering

Chapter 5Programming Parameters

5ndash2

Engineering Units ndash A label given to parameter data which specifieswhat units are to be used to display the parameter value on theProgramming Terminal Examples of engineering units include RPM etc

NonndashVolatile Memory ndash Data memory in the drive which retains thevalues of all data even when power is disconnected from the drivecontrol BRAM (Battery Backed Random Access Memory) chips areused for the nonndashvolatile memory to store some of the drive parameters

Parameter Table ndash Table of parameter entries for all configuration andsetup parameters used in the drive

Parameter Entry ndash Information stored in the drive which contains theparameter number parameter data and all other information related to thespecific parameter

Parameter ndash Memory location used to store drive data Each parameteris given a number called the parameter number The parameter valuemay be specified in decimal or in hexadecimal When specified inhexadecimal the word ldquoHexrdquo will appear after the parameter value

Per Unit Numbering ndash Per Unit numbering is a numbering systemwhich defines a specific numeric value as representing 100 of aparticular quantity being measured The number 4096 is used in manyplaces in the drive to represent 1 Per Unit (100) [pu]

Parameter Table Structure All data used to perform the Drive functions is stored in the ParameterTable Each parameter entry in the parameter table contains thefollowing information

No ndash The parameter number in decimal

Name ndash Parameter text as it appears on the Programming Terminal

Display Units ndash Specifies what engineering units will be used to displaythe parameter value on the Programming Terminal (RPM etc) Thisis specified first in the Units column of the Parameter Table

Drive Units ndash Specifies the Conversion Units as seen in the Drive

Figure 51 Drive Units Example

4096DriveUnits

Drive Units

Conversion Formula

1750RPM

Engineering Units

Factory Default ndash Parameter value as it will appear after the DriveInitialize (Init) command has been sent from the Programming TerminalThe Init values are the same as the default values listed in the ParameterDescriptions section of this chapter

Min ndash Minimum allowable value for the parameter If no min value isgiven the parameter has not been assigned a minimum limit

Max ndash Maximum allowable value for the parameter If no max value isgiven the parameter has not been assigned a maximum limit

Enum ndash Allows numbers or bits to be represented by text

Chapter 5Programming Parameters

5ndash3

Parameter Table (Standard Adapter Equipped Drives)Note For PLC Comm equipped drives refer to your PLC Comm User Manual for parameter descriptions For ControlNet Adapter equippeddrives refer to your ControlNet Adapter Manual for parameter descriptions

Table 5A ndash 1336 FORCE Numerical Parameter Table

Param No Parameter Name (Element) Group01050809101112131415161718192021222324252627282930313233343536373840

41

43

44

45

46

47

48

52

Drive Software VersionDrive Power Structure TypeMotor Control CounterDrive Comm Task IntervalDrive Comm Baud RateDrive Comm Transmit AddrDrive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Comm Receive 1 Indirect 1Drive Comm Receive 1 Indirect 2Drive Comm Receive 2 Indirect 1Drive Comm Receive 2 Indirect 2Drive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Process Trim OutputProcess Trim ReferenceProcess Trim FeedbackProcess Trim SelectProcess Trim Filter BandwidthProcess Trim DataProcess Trim KI GainProcess Trim KP GainProcess Trim Low LimitProcess Trim High LimitProcess Trim Output GainProcess Trim TestpointProcess Trim Setpoint Select

InfoInfoMonitorDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveDrive to DriveProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimProcess TrimVelocity AutotuneTorque AutotuneVelocity AutotuneTorque AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneDrive TuneVelocity AutotuneTestpointsVelocity AutotuneTestpointsLogicLogic

Auto Tune Torque Limit

Auto Tune Speed

VP Desired Bandwidth

Autotune Status

VP Damping Factor

Total Inertia

Auto Tune Testpoint Data

Auto Tune Testpoint Select

Logic Command Word

File (File No)

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Communications IO (2)

Param DescrptSee Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash31See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash32See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash33See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash34See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash35See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash36See Page 5ndash37See Page 5ndash37See Page 5ndash37See Page 5ndash37

Chapter 5Programming Parameters

5ndash4

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

77787980

81

82

83

84

Torque RefDrive DataLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTransistor DiagLimitsLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicTestpointsLogicLogicTestpointsLogicLogicFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Torque Mode Select

Local Input Status

Local Output Status

Logic Status LOW

Logic Status HI

Torque Stop Configuration

Logic Options

At Setpoint 1

At Setpoint 2

Over Setpoint 1

Over Setpoint 2

Over Setpoint 3

Over Setpoint 4

Setpoint Select

Speed Setpoint Tolerance

Current Setpoint Tolerance

Zero Speed Tolerance

Logic Testpoint Data

Logic Testpoint Select

Stop Dwell

Maximum Dynamic Brake PowerMaximum Dynamic Brake TempDynamic Brake Time ConstantPowerupDiagnostic Fault Status

NonndashConfigurable Fault Status

CP Configurable Fault Status

VP Configurable Fault Status

CP Configurable Warning Status

File (File No)

Velocity Torque (3)Startup File (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Communications IO (2)Velocity Torque (3)Velocity Torque (3)Communications IO (2)Diagnostics (4)Startup (1)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Comm IO (2)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Velocity Torque (3)Communications IO (2)Diagnostics (4)Diagnostics (4)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)Communications IO (2)Diagnostics (4)

Param DescrptSee Page 5ndash37See Page 5ndash37See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash38See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39 See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash39See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40 See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash40See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash41See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash42See Page 5ndash43See Page 5ndash43

Chapter 5Programming Parameters

5ndash5

Table 5A ndash 1336T Numerical Parameter Table (Cont)

86

87

88

89

909192

94

95

96

97

9899100101102103104105106107108

109

110

117118119120121122123125126127

128129

CP Fault Configuration

CP Warning Configuration Select

VP Fault Configuration Select

VP Warning Configuration Select

Absolute Overspeed ThresholdStall DelayMotor Overload Limit

Service Factor

Motor Overload Speed 1

Motor Overload Speed 2

Minimum Overload Limit

Fault Testpoint DataFault Testpoint SelectVelocity Reference 1 LOW (FRACTION)Velocity Reference 1 HI (WHOLE 32 bit)Velocity Scale Factor 1Velocity Reference 2 LOW (FRACTION)Velocity Reference 2 HI (WHOLE 32 bit)Velocity Scale Factor 2Velocity Trim LOWVelocity Trim HI (32 bit)Velocity Reference Testpoint Data LOW

Velocity Reference Testpoint Data HI

Velocity Reference Testpoint Select

Jog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeReverse Motor Speed Limit

Forward Motor Speed LimitMaximum Reverse Speed Trim

Param No Parameter Name (Element) Group File (File No)

Fault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SelectStatusFault SetupFault SelectStatusFault SetupFault SetupFault SetupMotor OverloadMotor OverloadLimitsFault SetupMotor OverloadFault SetupMotor OverloadFault SetupMotor OverloadTestpointsTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefTestpointsVelocity RefTestpointsVelocity RefTestpointsVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefVelocity RefLimitsVelocity RefVelocity Ref

Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Communications IO (2)Startup (1)Diagnostics (4)Startup (1)Startup (1)Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)

85 VP Configurable Warning Status Fault SelectStatusFault SelectStatus

Communications IO (2)Diagnostics (4)

Param Descrpt

See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash43See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44See Page 5ndash44 See Page 5ndash44See Page 5ndash44See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash45See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash47See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash48See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49See Page 5ndash49

Can be viewed only with PLC Comm Board installed

Chapter 5Programming Parameters

5ndash6

Table 5A ndash 1336T Numerical Parameter Table (Cont)

130131132133

Maximum Forward Speed TrimDroop PercentVelocity Reference Output LOWVelocity Reference Output HI (32 bit)

Param No Parameter Name (Element) Group File (File No)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Param DescrptSee Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50

Velocity RefVelocity RefVelocity RefVelocity Ref

136

137

138139

140

141

142143

144

145

146

147

148

149

150151152153154155156157161162163164165166167

168

134135

Velocity Regulator Testpoint Data HI

Velocity Regulator Testpoint Select

Velocity ErrorKI ndash Velocity Loop

KP ndash Velocity Loop

KF ndash Velocity Loop

KF Error Filter BandwidthVelocity Feedback Testpoint Data LOW

Velocity Feedback Testpoint Data HI

Velocity Feedback Testpoint Select

Velocity Feedback

Scaled Velocity Feedback

Encoder Position Feedback LOW

Encoder Position Feedback HI

Fdbk Device TypeFdbk Tracker GainFdbk Filter SelectKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityNotch Filter FreqNotch Filter QExternal Iq ReferenceExternal Torque Reference 1Slave Torque Percent 1External Torque Reference 2Slave Torque Percent 2External Torque StepInternal Torque Reference

Internal Iq Reference

Velocity Regulator OutputVelocity Regulator Testpoint Data LOW

Velocity RegTestpointsVelocity RegTestpointsVelocity RegVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity RegDrive TuneVelocity AutotuneVelocity FdbkVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkTestpointsVelocity FdbkDrive TuneVelocity FdbkMonitorVelocity FdbkMonitorMonitorVelocity FdbkMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefTorque RefMonitorTorque RefMonitor

Velocity RegVelocity RegTestpoints

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity TorqueStartup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)

Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash50See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51See Page 5ndash51 See Page 5ndash46 See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash46See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash53See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash54See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55

Chapter 5Programming Parameters

5ndash7

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No)

Torque RefTestpointsTorque RefTestpointsTorque RefLimit

Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Diagnostics (4)Velocity Torque (3)Startup (1)

172

173

174

Param Descrpt

See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash55See Page 5ndash56See Page 5ndash56

Torque Reference Testpoint Data

Torque Reference Testpoint Select

Minimum Flux Level

176

177

178

179

180

181

182

183184185

186

220221222223224225226227228229230231232233234

235236237238240241242243244245246

175

Neg Torque Reference Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current Reference Limit

Negative Motor Current Reference Limit

DIDT Limit

Computed Power

Torque Limit StatusTorque Mode StatusPerunit Motor Current

Perunit Motor Voltage

Rated Inverter Output AmpsRated Inverter Input VoltageInverter Carrier FrequencyPrechargeRidethru SelectionUndervoltage SetpointBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsBase Motor HorsepowerBase Motor SpeedBase Motor CurrentBase Motor VoltsBase Motor FrequencyMotor PolesMotor Inertia

Encoder PPRRs Tune (Stator Resistance)Leakage InductanceId Tune (Base Flux Current)Iq Tune (Base Torque Current)Vde Tune (Base Torque Voltage)Vqe Tune (Base Flux Voltage)Vde Maximum (Peak HP)Vqe Maximum (Constant HP)Vde MinimumK Slip (Base Slip Frequency)

Pos Torque Reference Limit

Torque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefLimitsTorque RefMonitorMonitorTorque RefTorque RefMonitorMonitorMonitorMonitorInfoInfoTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockTorque BlockDrive DataDrive DataDrive DataDrive DataDrive DataDrive DataDrive TuneVelocity AutotuneDrive DataTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Torque RefLimits

Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics Diagnostics (4)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Velocity Torque (3)Startup (1)

See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash56See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57See Page 5ndash57 See Page 5ndash57 See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash58See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash59See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash60See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash61See Page 5ndash62See Page 5ndash62See Page 5ndash62

Chapter 5Programming Parameters

5ndash8

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

246247248249250251252256

Base Slip FrequencyBase Slip Freq MaxBase Slip Freq MinKp ndash Slip RegulatorKi ndash Slip RegulatorKp ndash Flux RegulatorKi ndash Flux RegulatorAutotuneDiagnostics Selection

Torque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneDrive TuneTorque AutotuneVelocity AutotuneTransistor Diag

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Velocity Torque (3)Velocity Torque (3)Diagnostics (4)

See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash62See Page 5ndash63See Page 5ndash63See Page 5ndash63See Page 5ndash63

259260261262

263

264

265

266

267268

269

270

271

273

274

275276277278279280281282283284285286287288289290

257258

Inverter Diagnostics Result 2Iq OffsetId OffsetPhase Rotation Current Reference

Phase Rotation Frequency Reference

Motor Current Magnitude Feedback

Motor Voltage Magnitude

Stator Frequency

Calculated TorqueDC Bus Voltage

Filtered Motor Velocity Feedback

Inverter Temperature Feedback

Limited Motor Flux

Testpoint Selection

Testpoint Data

Testpoint Selection 2Testpoint Data 2Testpoint Selection 3Testpoint Data 3Testpoint Selection 4Testpoint Data 4Testpoint Selection 5Testpoint Data 5Testpoint Selection 6Testpoint Data 6Selection for Test DAC 1Selection for Test DAC 2Ki Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency Regulator

Transistor Diagnostics ConfigurationInverter Diagnostics Result 1

Transistor DiagTransistor DiagTransistor DiagTorque AutotuneDrive TuneTorque AutotuneDrivetuneMonitorMonitorMonitorMonitorMonitorMonitor

MonitorMonitorMonitorMonitorVelocity FdbkMonitorMonitorMonitorMonitorTestpointsTorque AutotuneTestpointsTorque AutotuneFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyFactory Use OnlyTorque BlockTorque BlockTorque BlockTorque Block

Transistor DiagTransistor Diag

Diagnostics (4)Diagnostics (4)Diagnostics (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)

Startup (1)Diagnostics (4)Diagnostics (4)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Startup (1)Diagnostics (4)Diagnostics (4)Velocity Torque (4)Diagnostics (4)Velocity Torque (4)DO NOT USE DO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEDO NOT USEVelocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

Diagnostics (4)Diagnostics (4)

See Page 5ndash63See Page 5ndash63See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash64See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65 See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash65See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash66See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash67See Page 5ndash68See Page 5ndash68See Page 5ndash68

Chapter 5Programming Parameters

5ndash9

Table 5A ndash 1336T Numerical Parameter Table (Cont)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash68See Page 5ndash69See Page 5ndash69See Page 5ndash69See Page 5ndash69

291292293294295296297298

Frequency Tracking FilterTracking Filter TypeFreq Trim FilterMotor Phase Rot ErrorsMotor Inductance Test ErrorsStator Resistance Test ErrorsMotor Flux (Id) Test ErrorsTorq Block Calc Errors

Torque BlockTorque BlockTorque BlockTorque AutotuneTorque AutotuneTorque AutotuneTorque AutotuneTorque Autotune

Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)

300301302304

310

Diagnostics (4)Diagnostics (4)Startup (1)Communications IO (2)

Adapter IDAdapter Version

InfoInfo

Adapter ConfigLanguage Select

Data In A1

InfoInfoDrive DataSCANport IO

Diagnostics (4)Diagnostics (4)

See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash70See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash71See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72See Page 5ndash72 See Page 5ndash72See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash73See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash74See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash75See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash76See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77See Page 5ndash77

311312313314315316317320321322323324325326327330331332333334335336337340341342343344345346347348349350352353354355356357358359

Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal MaskStop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner10 Volt In FltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot Offset

SCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport IOSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport MasksSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersSCANport OwnersAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog Input

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)Communication IO (2)

See Page 5ndash70See Page 5ndash70

Chapter 5Programming Parameters

5ndash10

Table 5A ndash 1336T Numerical Parameter Table (Standard Adapter Parameters)

Param No Parameter Name (Element) Group File (File No) Param Descrpt

See Page 5ndash77See Page 5ndash77See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash78See Page 5ndash79See Page 5ndash79See Page 5ndash79See Page 5ndash79

360361362363364365366367368369370371

Pot ScaleMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleSP Analog Sel SP Analog InSP Analog 1 ScaleSP Analog 2 SelectSP Analog 2 InSP Analog 2 ScaleAnalog Output 1Analog Output 1 Offset

Analog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog InputAnalog OutputAnalog Output

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

384

385

386

387

388

389

390

391

392

393394

395396397398399

404405

406

407

408

372373374375376377378379

Output Select

Input Mode

Input Status

Stop Select 1

Stop Select 2

Accel Rate 1

Accel Rate 2

Decel Rate 1

Decel Rate 2

Mop IncrementMop Value

Pulse PPRPulse EdgePulse ScalePulse OffsetPulse Value

SP Comm RetriesFault Select

Warning Select

Fault Status

Warning Status

Analog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScalemA OutputmA Output OffsetmA Output ScaleSB Analog Out

LogicLogicLogicLogicDrive DataMonitorMonitorLogicLogicLogicLogicVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefLimitsVelocity RefMonitorMonitorVelocity FdbkVelocity FdbkVelocity FdbkVelocity FdbkMonitorMonitorInfoFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatusFault SelectStatus

Analog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog OutputAnalog Output

Communication IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Startup (1)Diagnostics (4)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Communications IO (2)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Velocity Torque (3)Startup (1)Diagnostics (4)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Velocity Torque (3)Startup (1)Diagnostics (4)Diagnostics Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)Diagnostics FileCommunications IO (2)

Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)Communications IO (2)

See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash80See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash81See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash82See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83 See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash83See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash84See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85See Page 5ndash85

Chapter 5Programming Parameters

5ndash11

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

90389390125302300301370371372373374375606125641444748402292472482252263353501828284862278768310311312313314315316317320321322323324325326327268391392126341

Absolute Overspeed ThresholdAccel Rate 1Accel Rate 2Accel TimeAdapter ConfigAdapter IDAdapter VersionAnalog Output 1Analog Output 1 OffsetAnalog Output 1 ScaleAnalog Output 2Analog Output 2 OffsetAnalog Output 2 ScaleAt Setpoint 1At Setpoint 2Autotune Diagnostics SelectionAutotune SpeedAutotune StatusAutotune Testpoint DataAutotune Testpoint SelectAutotune Torque LimitBase Motor SpeedBase Slip Freq MaxBase Slip Freq MinBus Precharge TimeoutBus Ridethru TimeoutClear Fault MaskClear Fault OwnerComputed PowerCP Configurable Fault StatusCP Configurable Warning StatusCP Fault Configuration SelectCP Operating OptionsCP Warning Configuration SelectCurrent Setpoint ToleranceData In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2DC Bus VoltageDecel Rate 1Decel Rate 2Decel TimeDirection Owner

5ndash455ndash835ndash835ndash495ndash705ndash705ndash705ndash795ndash795ndash805ndash805ndash805ndash805ndash395ndash395ndash635ndash365ndash365ndash365ndash375ndash355ndash385ndash385ndash385ndash595ndash595ndash735ndash765ndash575ndash425ndash435ndash435ndash605ndash445ndash405ndash705ndash705ndash705ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash715ndash725ndash655ndash835ndash835ndash495ndash74

Chapter 5Programming Parameters

5ndash12

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref1022232425121309112021141505011311481492351611621641654074059899150152151269347128291293261238385386167168222260240333343344117118141289252287250139153251

Drive Comm Baud RateDrive Comm Receive 1 Data 1Drive Comm Receive 1 Data 2Drive Comm Receive 2 Data 1Drive Comm Receive 2 Data 2Drive Comm Receive 1 AddressDrive Comm Receive 2 AddressDrive Comm Task IntervalDrive Comm Transmit AddressDrive Comm Transmit Data 1Drive Comm Transmit Data 2Drive Comm Transmit Indirect 1Drive Comm Transmit Indirect 2Drive Power Structure TypeDrive Software VersionDroop PercentEncoder Position Feedback LOWEncoder Position Feedback HIEncoder PPRExternal IQ ReferenceExternal Torque Reference 1External Torque Reference 2External Torque StepFault StatusFault SelectFault Testpoint DataFault Testpoint SelectFeedback Device TypeFeedback Filter SelectFeedback Tracker GainFiltered Vel FdbkFlux OwnerForward Motor Speed LimitFrequency Tracker FilterFrequency Trim FilterId OFFSETId Tune (Base Flux Current)Input ModeInput StatusInternal Torque ReferenceInternal Iq ReferenceInverter Carrier FrequencyIq OffsetIq Tune (Base Torque Current)Jog MaskJog 1 OwnerJog 2 OwnerJog Speed 1Jog Speed 2Kf Velocity LoopKff Freq RegulatorKi Flux RegulatorKi Frequency RegulatorKi Slip RegulatorKi Velocity LoopKn Feedback Filter GainKP Flux Regulator

5ndash315ndash335ndash335ndash335ndash335ndash315ndash315ndash315ndash315ndash345ndash345ndash335ndash335ndash335ndash505ndash505ndash505ndash505ndash385ndash545ndash545ndash545ndash545ndash425ndash425ndash465ndash465ndash535ndash535ndash535ndash655ndash755ndash495ndash685ndash685ndash645ndash615ndash825ndash825ndash555ndash555ndash585ndash645ndash615ndash735ndash755ndash755ndash485ndash485ndash515ndash685ndash625ndash675ndash625ndash515ndash535ndash62

Chapter 5Programming Parameters

5ndash13

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

28824914029024630423729534633754565259565770713547778130129361362363376378174972640829723423023223323192951772651798115615762636465185186294263358353

Kp Frequency RegulatorKp Slip RegulatorKp Velocity LoopKsel Freq RegulatorK Slip Language SelectLeakage InductanceLo Test ErrorsLocal OwnerLocal MaskLocal Input StatusLocal Output StatusLogic Command WordLogic OptionsLogic Status LowLogic Status HiLogic Testpoint DataLogic Testpoint SelectmA In FiltrMaximum Dynamic Brake PowerMaximum Dynamic Brake TempMaximum Forward Speed TrimMaximum Reverse Speed TrimMilli Amp InputMilli Amp Input OffsetMilli Amp Input ScaleMilliAmp OutputMilliAmp Output ScaleMinimum Flux LevelMinimum Overload LimitMotor Current Magnitude FeedbackMotor Control CounterMotor Flux (Id) Test ErrorsMotor InertiaMotor Nameplate AmpsMotor Nameplate FrequencyMotor Nameplate PolesMotor Nameplate VoltsMotor Overload LimitMotor Overload Speed 2Motoring Power LimitMotor Voltage MagnitudeNegative Motor Current Reference LimitNonndashConfigurable Fault StatusNotch Filter FreqNotch Filter QOver Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Perunit Motor CurrentPerunit Motor VoltagePhase Rotation ErrorsPhase Rotation Frequency ReferencePot InputPot In Filtr

5ndash685ndash625ndash515ndash685ndash625ndash705ndash615ndash695ndash755ndash745ndash385ndash385ndash375ndash395ndash385ndash385ndash405ndash415ndash765ndash415ndash415ndash505ndash495ndash775ndash785ndash785ndash805ndash815ndash565ndash455ndash645ndash315ndash695ndash605ndash605ndash605ndash605ndash605ndash455ndash455ndash565ndash645ndash565ndash425ndash545ndash545ndash395ndash395ndash405ndash405ndash575ndash575ndash685ndash645ndash775ndash76

Chapter 5Programming Parameters

5ndash14

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

35936080179175

Pot OffsetPot ScalePowerupDiagnostic Fault StatusPositive Motor Current Reference LimitPositive Torque Ref Limit

5ndash775ndash775ndash425ndash565ndash56

2231191201211221233128303233353426362938372739639539839739934922024133417833612736537936436636836736940434514766285286163165677291332342236

PrechargeRidethru SelectionPreset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Process Trim DataProcess Trim FeedbackProcess Trim Filter BandwidthProcess Trim KI GainProcess Trim KP GainProcess Trim High LimitProcess Trim Low LimitProcess Trim OutputProcess Trim Output GainProcess Trim SelectProcess Trim Setpoint SelectProcess Trim TestpointProcess Trim ReferencePulse EdgePulse PPRPulse OffsetPulse ScalePulse ValueRamp OwnerRated Inverter Output AmpsRated Torque VoltageReference MaskRegen Power LimitReset Drive MaskReverse Motor Speed LimitSP Analog 1 InSP Analog OutSP Analog 1 SelectSP Analog 1 ScaleSP Analog 2 InSP Analog 2 SelectSP Analog 2 ScaleSP Comm RetriesSet Ref OwnerScaled Velocity FeedbackSetpoint SelectSelection for Test DAC 1Selection for Test DAC 2Slave Torque Percent 1Slave Torque Percent 2Speed Setpoint ToleranceStop DwellStall DelayStart MaskStart OwnerStator Resistance

5ndash595ndash485ndash485ndash485ndash495ndash495ndash345ndash345ndash345ndash345ndash355ndash355ndash355ndash345ndash345ndash345ndash355ndash355ndash345ndash845ndash845ndash845ndash845ndash845ndash765ndash585ndash615ndash735ndash565ndash745ndash495ndash785ndash815ndash785ndash785ndash795ndash795ndash795ndash845ndash755ndash525ndash405ndash675ndash675ndash545ndash545ndash405ndash415ndash455ndash735ndash745ndash61

Chapter 5Programming Parameters

5ndash15

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

340387388155274276

Stop OwnerStop Select 1Stop Select 2Tach VelocityTestpoint DataTestpoint Data 2

5ndash745ndash825ndash835ndash545ndash665ndash66

278280284286273275277279281283298183184172173257348224245241138146144143145109108110101100104103133132134136135137134136135137102105107106838545438889

Testpoint Data 3Testpoint Data 4Testpoint Data 5Testpoint Data 6Testpoint SelectionTestpoint Selection 2Testpoint Selection 3Testpoint Selection 4Testpoint Selection 5Testpoint Selection 6Torque Calc ErrorsTorque Limit StatusTorque Mode StatusTorque Reference Testpoint DataTorque Reference Testpoint SelectTransistor Diagnostics ConfigurationTrim OwnerUndervoltage SetpointVde MinimumVde Tune (Base Torque Voltage)Velocity ErrorVelocity FeedbackVelocity Feedback Testpoint Data HIVelocity Feedback Testpoint Data LOWVelocity Feedback Testpoint SelectVelocity Reference Testpoint Data HIVelocity Reference Testpoint Data LOWVelocity Reference Testpoint SelectVelocity Reference 1 HIVelocity Reference 1 LOWVelocity Reference 2 HIVelocity Reference 2 LOWVelocity Reference Output HIVelocity Reference Output LOWVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Regulator OutputVelocity Regulator Testpoint Data HIVelocity Regulator Testpoint Data LOWVelocity Regulator Testpoint SelectVelocity Scale Factor 1Velocity Scale Factor 2Velocity Trim HIVelocity Trim LOWVP Configurable Fault StatusVP Configurable Warning StatusVP Damping FactorVP Desired BandwidthVP Fault Configuration SelectVP Warning Configuration Select

5ndash665ndash665ndash615ndash675ndash655ndash655ndash665ndash665ndash675ndash675ndash695ndash575ndash575ndash555ndash555ndash635ndash765ndash595ndash625ndash615ndash515ndash525ndash525ndash525ndash525ndash475ndash475ndash485ndash465ndash465ndash475ndash475ndash505ndash505ndash505ndash505ndash505ndash515ndash505ndash505ndash505ndash515ndash465ndash475ndash475ndash475ndash425ndash435ndash365ndash365ndash445ndash44

Chapter 5Programming Parameters

5ndash16

Table 5B ndash 1336T Alphabetical Parameter Table

Param NoParameter Name (Element) Page Ref

40615469352355356357

Warning SelectWnndashFeedback Filter BandwidthZero Speed Tolerance10 Volt In Filtr10 Volt Input10 Volt Offset10 Volt Scale

5ndash855ndash545ndash405ndash765ndash775ndash775ndash77

Standard Adapter Parameters If your 1336 FORCE Drive is equipped with a Standard Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the the Standard Adapter Board Standard Adapter Parameters are divided into four files The complete parameter table for a Standard Adapter equipped 1336 Force is detailed in Figure 52 The table has been divided into Files Groups and Elements for ease of reference

FILE 1 ndash Startup

Drive Data

53228229230231232233235267275276277278279280281282283284285286304385

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRCalc TorqueTorq TP Sel 2Torq TP Data 2Torq TP Sel 3Torq TP Data 3Torq TP Sel 4Torq TP Data 4Torq TP Sel 5Torq TP Data 5Torq TP Sel 6Torq TP Data 6Test DAC 1 Se1Test DAC 2 SelLanguage SelectInput Mode

Figure 52 1336 FORCE Drive Equipped with Standard Adapter Board

Drive Tune

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKi Velocity LoopKp Velocity LoopKf Velocity LoopVel FeedbackMotor InertiaAutotune Diag SelPh Rot Cur RefPhas Rot Freq Ref

Limits Group

5994127128174175176177178179180181389390391392

Logic OptionsService FactorRev Speed LimitFwd Speed LimitMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Motor Cur LimitD1Dt LimitAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2

Fault Setup Group Monitor

86878889909192959697

CP Faukt SelectVP Fault SelectCP Warn SelectVP Warn SelectAbsolute OverspdStall DelayMtr Overload LimMtr Overload Spd 1Motor Overload Spd 2Min Overload Lmt

8148149182184185186264265266

MCB CounterEnc Pos Fdbk LowEnc Pos Fdbk HiComputed PowerPerunit Motor CurrentPerunit Motor VoltageTorque Mode StatusMotor Cur FdbkMotor Volt MagnFreq Command

268269270271386394399

DC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Accessible only while using Drive Tools

Chapter 5Programming Parameters

5ndash17

FILE 2 ndash Communications IO

Figure 52 Standard Adapter Parameters (cont)

Logic

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Over Setpoint 5Speed Setpoint TolCur Setpoint TolZero Speed TolLogic Tstpt DataLogic Testpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

Fault SelectStatus SCANport Owners

80818283848586878889405406407408

340341342343344345346347348349350

Stop OwnerDirection OwnerStart OwnerJog1 OwnerJog2 OwnerReference OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Fault Owner

5254555657585960616263646566676869707172384385387388

Analog Input

352353354355356357358359360361362363364365366367368369

10 Volt in F1ltrPot In FiltrmA In Filtr10 Volt Input10 Volt Offset10 Volt ScalePot InputPot OffsetPot ScalemA InputmA Input OffsetmA Input ScaleSB Analog SelSB Analog InSP Analog 1 ScaleSP Analog 2 SetSP Analog 2 InSP Analog 2 Scale

Analog Output

370371372373374375376377378379

Analog Out 1An Out 1 OffsetAn Out 1 ScaleAnalog Out 2An Out 2 OffsetAn Out 2 ScalemA OutputmA Output OffsetmA Output ScaleSP Analog Out

Pwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

SCANport Masks

330331332333334335336337

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drive MaskLocal Mask

SCANport IO

310311312313314315316317320321322323324325326327

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive to Drive

910111213141516171819202122232425

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv1 AddrD2D Rcv2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv1 Ind1D2D Rcv1 Ind2D2D Rcv2 Ind1D2D Rcv2 Ind2D2D Xmit Data 1D2D Xmit Data 2D2D Rcv1 Data 1D2D Rcv1 Data 2D2D Rcv2 Data 1D2D Rcv2 Data 2

Std Adapter 4xx equipped

Chapter 5Programming Parameters

5ndash18

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123127128129130131132133389390391392393

Vel Ref 1 LowVel Ref 1 HiVel Scale Fctr 1Vel Ref 2 LowVel Ref 2 HiVel Scale Fctr 2Vel Trim LowVel Trim HiVel Ref TP LoVel Ref TP HiVel Ref TP SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Rev Speed LimitFwd Speed LimitMax Rev Spd TrimMax Fwd Spd TrimDroop PercentVel Ref Out LowVel Ref Out HiAccel Rate 1Accel Rate 2Decel Rate 1Decel Rate 2Mop Increment

Figure 52 Standard Adapter Parameters (cont)

Velocity Fdbk

Error Filter BWVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelVel FeedbackScaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiFdbk Device TypeFdbk Track GainFdbk Filter Sel Fdbk Filter GainFdbk Filter BWTach VelocityFilt Vel FdbkPulse PPRPulse EdgePulse ScalePulse Offset

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filt FreqNotch Filt QExternal Iq RefExt Torq Ref 1Slave Torque 1Ext Torq Ref 2Slave Torque 2Ext Torque StepInt Torque RefInternal Ig RefTorque Ref TPTorq Ref TP SelMin Flux LevelPos Mtr Tor LmtNeg Mtr Tor LmtMotor Power LmtRegen Power LmtPos Mtr Cur LmtNeg Mtr Cur LmtDiDt LimitComputed PowerTorq Lmt StatTorq Mode Stat

Logic

5254555657585960616263646566676869707172384385387388

Logic CommandLocal In StatusLocal Out StatusLogic Status LowLogic Status HiTorq Stop ConfigLogic OptionsAt Setpoint 1At Setpoint 2Over Setpoint 1Over Setpoint 2Over Setpoint 3Over Setpoint 4Setpoint SelectSpeed Setpnt TolCur Setpt TolZero Speed TolLogic Tstpt DataLogic Tstpt SelStop DwellOutput SelectInput ModeStop Select 1Stop Select 2

142143144145146147148149150151152153154155269395396397398

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

Auto Tune Torque Auto Tune SpeedStator ResLeakage IndBase Flux CurBase Torque CurBase Torque VoltBase Flux VoltVde MaxVqe MaxVde MinBase Slip FreqBase Slip Fr MaxBase Slip Fr MinKp Slip Ki Slip Kp Flux Ki Flux Autotun Diag SelPh Rot Cur RefPh Rot Freq RefTorq TP Sel 1Torq TP Data 1Phs Test Rot ErrLo Test ErrorRs Test ErrorId Test ErrorTorq Calc Error

Vel Reg OutputVel Reg TP LowVel Reg TP HiVel Reg TP SelVelocity ErrorKi Velocity LoopKp Velocity LoopKf Velocity Loop

Torque Block

222223224225226227287288289290291292293

PWM FrequencyPrechRdthru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP OptionsKi Freq RegKp Freq RegKff Freq RegKsel Freq RegFreq Track FiltTrack Filt TypeFreq Trim Filt

Vel Autotune

4041434445464748139140141234256

Auto Tune Torque Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaAuto Tune TPAuto Tune TP SelKi Velocity LoopKp Velocity LoopKf Velocity LoopMotor InertiaAutotun Diag Select

Process Trim

26272829303132333435363738

Proc Trim OutputProc Trim RefProc Trim FdbkProc Trim SelectProc Trim Filtr WProc Trim DataProc Trim KiProc Trim KpProc Trim Lo LmtProc Trim Hi LmtProc Trim Out KProc Trim TPProc Trim TP Sel

Chapter 5Programming Parameters

5ndash19

FILE 4 ndash Diagnostics

Monitor

147148149167168182185186264265266268269270271386394399

Scaled Vel FdbkEnc Pos Fdbk LowEnc Pos Fdbk HiInt Torque RefInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor Cur FdbkMotor Volt FdbkFreq CommandDC Bus VoltageFilt Vel FdbkInv Temp FdbkLim Motor FluxInput StatusMop ValuePulse Value

Figure 52 Standard Adapter Parameters (cont)

Testpoints

Auto Tune TPAuto Tune TP Sel Logic Tstpt DataLogic Tstpt SelFault TPFault TP SelVel Ref TP LowVel Ref TP HiVel Ref TP SelVel Reg TP LoVel Reg TP HiVel Reg TP SelVel Fdbk TP LowVel Fdbk TP HiVel Fdbk TP SelTorq Ref TP SelTorque Ref TPTorque TP Sel 1Torque TP Data 1

Transistor Diag Info

59256257258259260261

15220221300301302304404

Drive SW VersionDrive TypeBase Drive CurrBase Line VoltAdapter IDAdapter VersionAdapter ConfigLanguage SelectSP Comm Retries

474870719899108109110135136137143144145172173273274

Fault SelSts

77787980818283848586878889405406407408

Max DB PowerMax DB TempDB Time ConstPwrup Flt StatusNcfg Flt StatusCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Fault SelectCP Warn SelectVP Fault SelectVP Warn SelectSA Fault SelectSA Warn SelectSA Fault StatusSA Warn Status

Logic OptionsAutotune Diag SelTrans Diag DisableInverter Diag 1Inverter Diag 2Iq OffsetId Offset

Motor Overload

Mtr Overload Lim Service FactorMtr Overld Spd 1Mtr Overld Spd 2Min Overload Lmt

9294959697

Chapter 5Programming Parameters

5ndash20

PLC Comm Adapter Parameters If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board the parameters in the range from 300 to 500 are dedicated exclusively to the PLC Comm Adapter Board rather than the Standard Adapter Board PLC Comm Adapter Parameters are divided into four files as they are with a Standard Adapter Board equipped Drive The complete parameter table for aPLC Comm Adapter equipped 1336 Force is detailed in Figure 53 The table has been divided into Files Groups and Elements for ease of referenceFor a detailed description of PLC Comm Adapter parameters refer to the PLC Comm Adapter Reference Manual

FILE 1 ndash Startup

Drive Data Group

53228229230231232233235309

Torque Mode SelBase Motor HPBase Motor SpeedBase Motor CurrBase Motor VoltBase Motor FreqMotor PolesEncoder PPRLanguage Select

Figure 53 1336 FORCE equipped with a PLC Comm Adapter Board

Drive Tune Group

4143444546139140141146234256262263

Auto Tune SpeedVel Desired BWAuto Tune StatusVel Damp FactorTotal InertiaKI Vel LoopKP Vel LoopKF Vel LoopVelocity FeedbackMotor InertiaAT Diag SelPhase Rot I RefPhas Rot Req Ref

Limits Group

59125126127128174175176177178179180181

Logic OptionsAccel TimeDecel TimeRev Speed LimitFwd Speed LimitMin Flux LevelPos Motor Tor LimitNeg Motor Tor LimitMotoring Power LimitRegen Power LimitPos Motor Cur LimNeg Motor Cur LimitdIdT Limit

Fault Setup Group Monitor Group

8687888990919294959697

CPFltWarn ConfigVPFltWarn ConfigCP Warn ConfigVP Warn ConfigAbsolute OverspeedStall DelayMotor Ovload LimService FactorMotor Ovload Speed 1Motor Ovload Speed 2Min Overload Lim

8147148149167168182184185186264265266268269270271

Motor Control CntrScaled Velocity FeedbackEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerTorq Mode StatPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt FdbkStator FrequencyDC Bus VoltageFiltered Velocity FdbkInverter Temp FdbkLimited Motor Flux

Chapter 5Programming Parameters

5ndash21

FILE 2 ndash Communications IO

Channel A Group

322323324325326327328329351352353354355356357358427

ChA RIO In 0ChA RIO In 1ChA RIO In 2ChA RIO In 3ChA RIO In 4ChA RIO In 5ChA RIO In 6ChA RIO In 7ChA RIO Out 0ChA RIO Out 1ChA RIO Out 2ChA RIO Out 3ChA RIO Out 4ChA RIO Out 5ChA RIO Out 6ChA RIO Out 7Redund Chan

Figure 53 PLC Comm Adapter Parameters (cont)

Logic Group

Logic CmdLogic Sts LoLogic Sts HiLogic OptionschA Logic CmdchB Logic Cmd

Fault SelectStatus Group SCANport Owners Group

77787980818283848586878889425426430431436437438439440441442443

369370371372373374375376377378379

Stop OwnerDir OwnerStart OwnerJog 1 OwnerJog 2 OwnerSet Ref OwnerLocal OwnerFlux OwnerTrim OwnerRamp OwnerClr Flt Owner

Channel B Group

330331332333334335336337359360361362363364365366432

ChB RIO In 0ChB RIO In 1ChB RIO In 2ChB RIO In 3ChB RIO In 4ChB RIO In 5ChB RIO In 6ChB RIO In 7ChB RIO Out 0ChB RIO Out 1ChB RIO Out 2ChB RIO Out 3ChB RIO Out 4ChB RIO Out 5ChB RIO Out 6ChB RIO Out 7ChB RIO

52565759367368

Analog Input Group

338339340341342392393394395396397398399

SB Analog InAnalog In 1Analog In 2Analog In 3Analog In 4Analog In 1 OffAnalog In 1 ScaleAnalog In 2 OffAnalog In 2 ScaleAnalog In 3 OffAnalog In 3 ScaleAnalog In 4 OffAnalog In 4 Scale

Analog Output Group

386387388389390400401402403404405406407

SP Analog OutAnalog Out 1Analog Out 2Analog Out 3Analog Out 4Analog Out 1Analog Out 1 OffAnalog Out 1 ScaleAnalog Out 2 ScaleAnalog Out 3 OffAnalog Out 3 ScaleAnalog Out 4 OffAnalog Out 4 Scale

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt StatusNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusCP Flt StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StsSP Flt SelectSP Warn SelSP Flt StatusSP Warn Sts

SCANport Masks

408409410411412413414415

Port Enable MaskDirection MaskStart MaskJog MaskReference MaskClear Fault MaskReset Drv MaskLocal Mask

SCANport IO

314315316317318319320321343344345346347348349350

Data In A1Data In A2Data In B1Data In B2Data In C1Data In C2Data In D1Data In D2Data Out A1Data Out A2Data Out B1Data Out B2Data Out C1Data Out C2Data Out D1Data Out D2

Drive To Drive

91011121314151617181920

D2D Tsk IntervalD2D Baud RateD2D Xmit AddrD2D Rcv 1 AddrD2D Rcv 2 AddrD2D Xmit Ind 1D2D Xmit Ind 2D2D Rcv 1 Ind 1D2D Rcv 1 Ind 2D2D Rcv 2 Ind 1D2D Rcv 2 Ind 2D2D Xmit Data 1

2122232425

D2D Xmit Data 2D2D Rcv 1 Data 1D2D Rcv 1 Data 2D2D Rcv 2 Data 1D2D Rcv 2 Data 2

Chapter 5Programming Parameters

5ndash22

FILE 3 ndash Velocity Torque

Velocity Ref

100101102103104105106107108109110117118119120121122123125126127128129130131132133

Vel Ref 1 LoVeL Ref 2 HiVel Scale Factor 1Vel Ref 2 LoVel Ref 2 HiVel Scale Factor 2Vel Trim LoVel Trim HiVel Ref Testpt LoVel Ref Testpt HiVel Ref Testpt SelJog Speed 1Jog Speed 2Preset Speed 1Preset Speed 2Preset Speed 3Preset Speed 4Preset Speed 5Accel TimeDecel TimeRev Speed LimitFwd Speed LimitMax Rev Speed TrimMax Fwd Speed TrimDroop PercentVel Ref Out LoVel Ref Out Hi

Figure 53 PLC Comm Adapter Parameters (cont)

Velocity Fdbk

KF Err Filt BWVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Tesetpt SelVelocity FdbkScaled Vel FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiFdbk Device TypeFdbk Tracker GainFdbk Filter SelKnndashFdbk Filter GainWnndashFdbk Filter BWTach VelocityFiltered Vel Fdbk

Velocity Reg Torque Ref

134135136137138139140141

53156157161162163164165166167168172173174175176177178179180181182183184

Torque Mode SelNotch Filter FreqNotch Filter QueExternal Iq RefExt Torque Ref 1Slave Torque Percent 1Ext Torque Ref 2Slave Torque Percent 2External Torque StepInt Torque RefInt Iq RefTorque Ref Testpoint DataTorque Ref Testpnt SelMin Flux LevelPos Torque Ref LimitNeg Torque Ref LimitMotor Power LimitRegen Power LimitPos Motor Cur LimitNeg Motor Cur LimitdIdT LimitComputed PwrTorque Limit StatusTorque Mode Status

Logic

5254555657585960616263646566676869707172367368

Logic CmdLocal Input StsLocal Output StsLocal Sts LoLocal Sts HiTorq Stop ConfigLogic OptionsAt Setpt 1At Setpt 2Over Setpt 1Over Setpt 2Over Setpt 3Over Setpt 4Setpt SelectSpeed Stpt TolCur Setpt TolZero Speed TolLogic Testpt DataLogic Testpt SelStop DwellPt6 Logic CmdPt7 Logic Cmd

142143144145146147148149150151152153154155269

Torque Autotune

4041236237238240241242243244245246247248249250251252256262263273274294295296297298

AT Torque LimitAT SpeedStator ResistanceLeakage InductanceRated Flux CurrentRated Torque CurrentRated Torque VoltRated Flux VoltageVde MaxVqe MaxVde MinimumBase Slip FreqBase Slip Freq MaxBase Slip Freq MinKp Slip RegulatorKi Slip RegulatorKp Flux RegulatorKi Flux RegulatorAT Diag SelectPhase Rot Cur RefPhase Rot Freq RefTorque Testpoint SelTorque Testpoint DataPhase Rot ErrorsLo Test ErrorsRs Test ErrorsId Test ErrorsTorque Calc Errors

Vel Regulator OutVelocity Reg Testpt LoVelocity Reg Testpt HiVelocity Reg Testpt SelVelocity ErrorKI Vel LoopKP Vel LoopKF Vel Loop

Torque Block

222223224225226227287288289290291292293

Inverter Carrier FreqPrecharge Ridethru SelUndervoltage SetptBus Precharge TimeoutBus Ridethru TimeoutCP Operating OptionsKi Frequency RegulatorKp Frequency RegulatorKff Frequency RegulatorKsel Frequency RegulatorFrequency Track FilterTrack Filter TypeFrequency Trim Filter

Velocity Autotune

4041434445464748139140141234256

AT Torque LimAT SpeedVP Desired BWAuto Tune StatusVP Damping FactorTotal InertiaAT Testpt DataAT Tespt SelKI Vel LoopKP Vel LoopKF Vel LoopMotor InertiaAT Diag Select

Process Trim

26272829303132333435363738

Process Trim OutputProcess Trim RefProc Trim FdbkProc Trim SelectProc Trim Filt BWProc Trim DataProc Trim KIProc Trim KPProc Trim Lo LimProc Trim Hi LimProc Trim Out GainProc Trim TestptProc Trim Testpt Sel

Chapter 5Programming Parameters

5ndash23

FILE 4 ndash Diagnostics

Monitor

8147148149167168182185186264265266268269270271

Motor Control CounterScaled Velocity FdbkEnc Pos Fdbk LoEnc Pos Fdbk HiInternal Torque FdbkInternal Iq RefComputed PowerPerunit Motor CurrentPerunit Motor VoltageMotor I Magn FdbkMotor Volt MagnStator FrequencyDC Bus VoltageFiltered Vel FdbkInverter Temp FdbkLimited Motor Flux

Figure 53 PLC Comm Adapter Parameters (cont)

Testpoints

AT Testpt DataAT Testpt SelLogic Testpt DataLogic Testpt SelFault Testpt DataFault Testpt SelVelocity Ref Testpt LoVelocity Ref Testpt HiVelocity Ref Testpt SelVelocity Reg Testpnt LoVelocity Reg Testpnt HiVelocity Reg Testpt SelVel Fdbk Testpt LoVel Fdbk Testpt HiVel Fdbk Testpt SelTorque Ref Tespt DataTorque Ref Testpt SelTorque Testpt SelectTorque Testpt Data

Transistor Diag Info

59256257258259260261

15220221300301302303304305306307309

Drive Software VerPower Structure TypeRated Inverter Out AmpsRated Inverter In VoltsAdapter IDAdapter VersionAdapter ConfigChA Dip SwitchChB Dip SwitchChA LED StateCHB LED StatePLC Comm Bd StsLanguage Select

474870719899108109110135136137143144145172173273274

Fault SelectStatus

77787980818283848586878889425426430431436437438439440441442443

Max Dyn Brake PwrMax Dyn Brake TempMax Dyn Time ConstPwrup Flt stsNonndashconfig stsCP Flt StatusVP Flt StatusCP Warn StatusVP Warn StatusCP Flt SelectCP Warn SelectVP Flt SelectVP Warn SelectChA Flt SelChA Warn SelChB Flt SelChB Warn SelChA Flt StatusChA Warn StatusChB Flt StatusChB Warn StatusSP Flt SelectSP Warn SelectSP Warn StsSP Warn Sts

Logic OptionsAT Diag SelectTrans Diag ConfigInv Dig Result 1Inv Diag Result2Iq OffsetId Offset

Trend IO

454462463464472473474482483484492493

Trend In 1Trend In 1 StatusTrend Out 1Trend In 2Trend In 2 StatusTrend Out 2 StatusTrend In 3Trend In 3 StatusTrend Out 3Trend In 4Trend In 4 StatusTrend Out 4

Trend Setup

455456457458459460461465466467468469470471475476477478479480481485486487488489490491

Trend 1 Operand XTrend 1 Operand YTrend 1 OperatorTrend 1 RateTrend 1 Post SamplesTrend 1 Continuous TrigTrend 1 SelectTrend 2 Operand XTrend 2 Operand YTrend 2 OperatorTrend 2 RateTrend 2 Post SamplesTr2 Cont TriggerTrend 2 SelectTrend 3 Operand XTrend 3 Operand Parm YTrend 3 OperatorTrend 3 RateTrend 3 Post SamplesTrend 3 Continuous TrigTrend 3 SelectTrend 4 Operand XTrend 4 Operand YTrend 4 OperatorTrend 4 RateTrend 4 Post SamplesTrend 4 Continuous TrigTrend 4 Select

Note Trending Functions are NOT implemented in Version 2xx software

Chapter 5Programming Parameters

5ndash24

The complete parameter table for a ControlNet Adapter Board equipped1336 FORCE is detailed in Figure 54 The table has been divided intoFiles Groups amp Elements for ease of reference For a detaileddescription of ControlNet parameters refer to the ControlNet AdapterReference Manual

Figure 54 1336 FORCE equipped with a ControlNet Adapter Board

File 1 ndash Startup➀

Drive Data Group Drive Tune Group Limits Group

Language Sel 309 Autotun Diag Sel 256 Accel Time 125

Encoder PPR 235 Vel Feedback 146 Decel Time 126

Base Motor Speed 229 Vel Desired BW 43 Logic Options 59

Base Motor HP 228 Auto Tune Status 44 Fwd Speed Limit 128

Base Motor Curr 230 Motor Inertia 234 Rev Speed Limit 127

Base Motor Volt 231 Total Inertia 46 Pos Mtr Cur Lmt 179

Base Motor Freq 232 Ki Velocity Loop 139 Neg Mtr Cur Lmt 180

Motor Poles 233 Kp Velocity Loop 140 Pos Mtr Tor Lmt 175

Torque Mode Sel 53 Kf Velocity Loop 141 Neg Mtr Tor Lmt 176

Vel Damp Factor 45 Motor Power Lmt 177

Auto Tune Speed 41 Regen Power Lmt 178

Ph Rot Cur Ref 262 DiDt Limit 181

Ph Rot Freq Ref 263 Min Flux Level 174

Fault Setup Group Monitor Group

CP FltWarn Cfg 86 Filt Vel Fdbk 269

CP WarnNone Cfg 88 Scaled Vel Fdbk 147

VP FltWarn Cfg 87 Int Torque Ref 167

VP WarnNone Cfg 89 Internal Iq Ref 168

Absolute Overspd 90 Computed Power 182

Stall Delay 91 DC Bus Voltage 268

Mtr Overload Lim 92 Motor Volt Fdbk 265

Mtr Overload Spd1 95 Motor Curr Fdbk 264

Mtr Overload Spd2 96 Freq Command 266

Min Overload Lmt 97 Inv Temp Fdbk 270

Service Factor 94 Torque Mode Stat 184

Lim Motor Flux 271

Enc Pos Fdbk Low 148

Enc Pos Fdbk Hi 149

MCB Counter 8

➀ Shaded parameters are Standard 1336 FORCE parameters

ControlNet Parameters

Chapter 5Programming Parameters

5ndash25

File 2 ndash Communications IO

Channel A Group Logic Group Analog Input Group Analog Output Group

CntrlNet In 0 322 ChA Logic Cmd In 367 Analog In 1 339 Analog Out 1 387

CntrlNet In 1 323 Logic Command 52 An In 1 Offset 392 An Out 1 Offset 400

CntrlNet In 2 324 Logic Status Low 56 An In 1 Scale 393 An Out 1 Scale 401

CntrlNet In 3 325 Logic Status Hi 57 Analog In 2 340 Analog Out 2 388

CntrlNet In 4 326 Logic Options 59 An In 2 Offset 394 An Out 2 Offset 402

CntrlNet In 5 327 An In 2 Scale 395 An Out 2 Scale 403

CntrlNet In 6 328 Analog In 3 341 Analog Out 3 389

CntrlNet In 7 329 An In 3 Offset 396 An Out 3 Offset 404

CntrlNet Out 0 351 An In 3 Scale 397 An Out 3 Scale 405

CntrlNet Out 1 352 Analog In 4 342 Analog Out 4 390

CntrlNet Out 2 353 An In 4 Offset 398 An Out 4 Offset 406

CntrlNet Out 3 354 An In 4 Scale 399 An Out 4 Scale 407

CntrlNet Out 4 355 SP Analog In 338 SP Analog Out 386

CntrlNet Out 5 356 SP Analog Sel 391

CntrlNet Out 6 357

CntrlNet Out 7 358

Drv ndash Drv Fault SelSts➂ SCANport Owners SCANport Masks SCANport IO

D2D Tsk Interval 9 SP Fault Sts 442 Stop Owner 369 Port Enable Mask 408 Data In A1 314

D2D Baud Rate 10 SP Warn Sts 443 Start Owner 371 Start Mask 410 Data In A2 315

D2D Xmit Addr 11 SP Fault Sel 440 Jog1 Owner 372 Jog Mask 411 Data In B1 316

D2D Xmit Ind 1 14 SP Warn Sel 441 Jog2 Owner 373 Direction Mask 409 Data In B2 317

D2D Xmit Data 1 20 ICN Fault Sel 425 Direction Owner 370 Reference Mask 412 Data In C1 318

D2D Xmit Ind 2 15 ICN Warn Sel 426 Set Ref Owner 374 Local Mask 415 Data In C2 319

D2D Xmit Data 2 21 CP Flt Status 82 Local Owner 375 Clear Fault Mask 413 Data In D1 320

D2D Rcv 1 Addr 12 VP Flt Status 83 Flux Owner 376 Reset Drive Mask 414 Data In D2 321

D2D Rcv 1 Ind 1 16 CP Warn Status 84 Trim Owner 377 Data Out A1 343

D2D Rcv 1 Data 1 22 VP Warn Status 85 Ramp Owner 378 Data Out A2 344

D2D Rcv 1 Ind 2 17 CP Fault Select 86 Clr Fault Owner 379 Data Out B1 345

D2D Rcv 2 Data 2 23 CP Warn Select 87 Data Out B2 346

D2D Rcv 2 Addr 13 VP Fault Select 88 Data Out C1 347

D2D Rcv 2 Ind 1 18 VP Warn Select 89 Data Out C2 348

D2D Rcv 2 Data 1 24 Ncfg Flt Status 81 Data Out D1 349

D2D Rcv 2 Ind 2 19 PwrUp Flt Status 80 Data Out D2 350

D2D Rcv 2 Data 2 25 Max DB Power 77

Max DB Temp 78

DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash26

File 3 ndash Velocity Torque➀

Velocity Ref Logic Velocity Fdbk Velocity Reg Torque Ref

Preset Speed 1 119 ChA Logic Cmd In 367 Filt Vel Fdbk 269 Vel Reg Output 134 Torque Mode Sel 53

Preset Speed 2 120 Logic Command 52 Vel Feedback 146 Ki Velocity Loop 139 Torq Mode Stat 184

Preset Speed 3 121 Torq Stop Confg 58 Scaled Vel Fdbk 147 Kp Velocity Loop 140 Pos Mtr Cur Lmt 179

Preset Speed 4 122 Logic Options 59 Enc Pos Fdbk Low 148 Kf Velocity Loop 141 Neg Mtr Cur Lmt 180

Preset Speed 5 123 Logic Status Low 56 Enc Pos Fdbk Hi 149 Velocity Error 138 Int Torque Ref 167

Jog Speed 1 117 Logic Status Hi 57 Fdbk Track Gain 151 Vel Reg TP Sel 137 Internal Iq Ref 168

Jog Speed 2 118 At Setpoint 1 60 Fdbk Filter Gain 153 Vel Reg TP Low 135 Computed Power 182

Vel Ref 1 Low 100 At Setpoint 2 61 Fdbk Filter BW 154 Vel Reg TP Hi 136 Torq Lmt Stat 183

Vel Ref 1 Hi 101 Over Setpoint 1 62 Fdbk Device Type 150 External Iq Ref 161

Vel Ref 2 Low 103 Over Setpoint 2 63 Fdbk Filter Sel 152 Ext Torq Ref 1 162

Vel Ref 2 Hi 104 Over Setpoint 3 64 Tach Velocity 155 Ext Torq Ref 2 164

Vel Scale Fctr 1 102 Over Setpoint 4 65 Error Filter BW 142 Slave Torque 1 163

Vel Scale Fctr 2 105 Setpoint Select 66 Vel Fdbk TP Sel 145 Slave Torque 2 165

Vel Trim Low 106 Speed Setpnt Tol 67 Vel Fdbk TP Low 143 Ext Torque Step 166

Vel Trim Hi 107 Cur Setpoint Tol 68 Vel Fdbk TP Hi 144 Notch Filter Freq 156

Vel Ref Out Low 132 Zero Speed Tol 69 Notch Filter Q 157

Vel Ref Out Hi 133 Local In Status 54 Min Flux Level 174

Accel Time 125 Stop Dwell 72 Pos Mtr Tor Lmt 175

Decel Time 126 Local Out Status 55 Neg Mtr Tor Lmt 176

Fwd Speed Limit 128 Logic Tstpt Sel 71 Motor Power Lmt 177

Rev Speed Limit 127 Regen Power Lmt 178

Max Rev Spd Trim 129 DiDt Limit 181

Max Fwd Spd Trim 130 Torq Ref TP Sel 173

Droop Percent 131 Torque Ref TP 172

Vel Ref TP Sel 110

Vel Ref TP Low 108

Vel Ref TP Hi 109

SP Default Ref 416

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash27

Torque Block➀ Process Trim Torque Autotune Velocity Autotune

PWM Frequency 222 Proc Trim Ref 27 Autotun Diag Sel 256 Autotun Diag Sel 256

Prech Rdthru Sel 223 Proc Trim Fdbk 28 Ph Rot Cur Ref 262 Auto Tune Torque 40

Under Volt Stpnt 224 Proc Trim Output 26 Auto Tune Torque 40 Auto Tune Speed 41

Prechrg Timeout 225 Proc Trim Select 29 Auto Tune Speed 41 Total Inertia 46

Ridethru Timeout 226 Proc Trim Ki 32 Ph Rot Freq Ref 263 Motor Inertia 234

CP Options 227 Proc Trim Kp 33 Phs Test Rot Error 294 Auto Tune Status 44

Ki Freq Reg 287 Proc Trim Lo Lmt 34 Lo Test Error 295 Vel Desired BW 43

Kp Freq Reg 288 Proc Trim Hi Lmt 35 Rs Test Error 296 Vel Damp Factor 45

Kff Freq Reg 289 Proc Trim Fltr W 30 Id Test Error 297 Ki Velocity Loop 139

Ksel Freq Reg 290 Proc Trim Data 31 Torq Calc Error 298 Kp Velocity Loop 140

Freq Track Filt 291 Proc Trim Out K 36 Stator Res 236 Kf Velocity Loop 141

Track Filt Type 292 Proc Trim TP Sel 38 Leakage Ind 237 Auto Tune TP Sel 48

Freq Trim Filter 293 Proc Trim TP 37 Base Flux Cur 238 Auto Tune TP 47

Base Torque Cur 240

Base Torque Volt 241

Base Flux Volt 242

Vde Max 243

Vqe Max 244

Vde Min 245

Base Slip Freq 246

Base Slip Fr Max 247

Base Slip Fr Min 248

Kp Slip 249

Ki Slip 250

Kp Flux 251

Ki Flux 252

Torq TP Sel 1 273

Torq TP Data 1 274

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash28

File 4 ndash Diagnostics➀

Monitor Testpoints Fault SelSts Motor Overload

Filt Vel Fdbk 269 Vel Fdbk TP Sel 145 SP Fault Sts 442 Mtr Overload Lim 92

Scaled Vel Fdbk 147 Vel Fdbk TP Low 143 SP Warn Sts 443 Mtr Overld Spd 1 95

Int Torque Ref 167 Vel Fdbk TP Hi 144 SP Fault Sel 440 Mtr Overld Spd 2 96

Internal Iq Ref 168 Vel Reg TP Sel 137 SP Warn Sel 441 Min Overload Lmt 97

Computed Power 182 Vel Reg TP Low 135 ICN Flt Sel 425 Service Factor 94

DC Bus Voltage 268 Vel Reg TP Hi 136 ICN Warn Sel 426

Motor Volt Fdbk 265 Vel Ref TP Sel 110 CP Flt Status 82

Motor Curr Fdbk 264 Vel Ref TP Low 108 VP Flt Status 83

Freq Command 266 Vel Ref TP Hi 109 CP Warn Status 84

Inv Temp Fdbk 270 Auto Tune TP Sel 48 VP Warn Status 85

Torq Mode Stat 184 Auto Tune TP 47 CP Fault Select 86

Lim Motor Flux 271 Logic Tstpt Sel 71 CP Warn Select 87

Enc Pos Fdbk Low 148 Logic Tstpt Data 70 VP Fault Select 88

Enc Pos Fdbk Hi 149 Fault TP Sel 99 VP Warn Select 89

MCB Counter 8 Fault TP 98 Ncfg Flt Status 81

Torq Ref TP Sel 173 PwrUp Flt Status 80

Torque Ref TP 172 Max DB Power 77

Torq TP Sel 1 273 Max DB Temp 78

Torq TP Data 1 274 DB Time Const 79

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash29

Transistor Diag➀ Trend IO Trend Setup Info

Autotun Diag Sel 256 Tr1 Status 462 Tr1 Opnd Parm X 455 Drive SW Version 1

Logic Options 59 Tr2 Status 472 Tr1 Opnd Parm Y 456 Drive Type 5

Tran Diag Disabl 257 Tr3 Status 482 Tr1 Operator 457 Base Drive Curr 220

Inverter Diag 1 258 Tr4 Status 492 Tr1 Sample Rate 458 Base Line Volt 221

Inverter Diag 2 259 Trend In 1 454 Tr1 Post Samples 459 Adapter Version 301

Iq Offset 260 Trend In 2 464 Tr1 Cont Trigger 460 Adapter ID 300

Id Offset 261 Trend In 3 474 Tr1 Select 461 Language Sel 309

Trend In 4 484 Tr2 Opnd Parm X 465 SP Comm Retries 302

Trend Out 1 463 Tr2 Opnd Parm Y 466 ICN Status 307

Trend Out 2 473 Tr2 Operator 467 ChA LED State 305

Trend Out 3 483 Tr2 Sample Rate 468 DIP Switch ChA 303

Trend Out 4 493 Tr2 Post Samples 469

Tr2 Cont Trigger 470

Tr2 Select 471

Tr3 Opnd Parm X 475

Tr3 Opnd Parm Y 476

Tr3 Operator 477

Tr3 Sample Rate 478

Tr3 Post Samples 479

Tr3 Cont Trigger 480

Tr3 Select 481

Tr4 Opnd Parm X 485

Tr4 Opnd Parm Y 486

Tr4 Operator 487

Tr4 Sample Rate 488

Tr4 Post Samples 489

Tr4 Cont Trigger 490

Tr4 Select 491

➀ Shaded parameters are Standard 1336 FORCE parameters

Chapter 5Programming Parameters

5ndash30

Parameter Descriptions A detailed description of each 1336 FORCE Parameter is contained inthe following listing The parameters are listed in numerical order

Take note that some parameters are used more than once in the 1336FORCE and may be located in more than one File and Group Todetermine if a parameter is used in more than one application refer to thenumerical list which begins on Page 5-3

NOTE The following parameter descriptions in the range from 300 to500 cover the Standard Adapter Only If you have a PLC CommAdapter equipped drive and wish to refer to PLC Comm parameterdescriptions refer to the PLC Comm User Manual If you have aControlNet Adapter equipped drive parameter descriptions are providedat the end of this chapter

NOTE If you wish to record parameter values and links that have beenset for your particular application a User Parameter Sheet is provided inAppendix C

Chapter 5Programming Parameters

5ndash31

Drive Software Version[Drive SIO Version]

Parameter Number 01Parameter Type SourceDisplay Units xxxDrive Units Display units x 100Factory Default 101Minimum Value 000Maximum Value 999

Power Structure Type[Drive Type]

Parameter Number 05Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65635

This parameter stores the present softwarerevision for the firmware productThe firmware value represents the soft-ware version in the range 000 to 999

This number is a unique code that identi-fies the driversquos current and voltage ratingsThis number originates from a serial EEmemory located on the Driversquos Base DriveBoard

Motor Control Counter[MCB Counter]

Parameter Number 08Parameter Type SourceDisplay Units xx secDrive Units NoneFactory Default x 10 secMinimum Value 00 secMaximum Value 655355 sec

This parameter contains a counter thatincrements by 1 every 01 seconds It isintended to be a monitor parameter toindicate that the Motor Control BoardVelocity Processor firmware is executing

Drive Link Task Interval[D2D Tsk Interval]

Parameter Number 09Parameter Type SinkDisplay Units x msDrive Units x2Factory Default 2Minimum Value 1Maximum Value 10

Drive Link Baud Rate[D2D Baud Rate]

Parameter Number 10Parameter Type SinkDisplay Units KbaudDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2

Drive Link Transmit Address[D2D Xmit Addr]

Parameter Number 11Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the interval at which drive to drive data will be transmittedand received The intervals are 2 ms intervals up to 20 ms

1 = 2 ms scan2 = 4 ms scan 5 = 10 ms scan 8 = 16 ms scan3 = 6 ms scan 6 = 12 ms scan 9 = 18 ms scan4 = 8 ms scan 7 = 14 ms scan 10 = 20 ms scan

This word parameter specifies the baudrate used on the drive-to-drive link (CAN)communication interface as follows00H = 125K baud01H = 250K baud02H = 500K baud

This parameter specifies the node addressat which two words of data will be trans-mitted A value of zero disables the trans-mit function

Drive Link Receive 1 Address[D2D Rcv 1 Addr]

Parameter Number 12Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

This parameter specifies the node addressat which two words of data will be received A value of zero disables the receive function

Chapter 5Programming Parameters

5ndash32

Drive Link Receive 2 Address[D2D Rcv 2 Addr]

Parameter Number 13Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 64

Drive Link Transmit Indirect 1[D2D Xmit Ind 1]

Drive Link Transmit Indirect 2[D2D Xmit Ind 2]

Parameter Number 15Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 21Minimum Value 1Maximum Value 219

Parameter Number 14Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 20Minimum Value 1Maximum Value 219

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the firstword location of the transmitted message

This is a word parameter defining the pa-rameter number which data will be fetchedfrom to be transmitted in the high speedcommunication network (CAN) for the 2ndword location of the transmitted message

This parameter specifies the node addressat which two words of data will bereceived A value of zero disables thereceive function

Drive Link Receive 1 Indirect 1[D2D Rcv 1 Ind 1]

Parameter Number 16Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 22Minimum Value 1Maximum Value 219

Drive Link Receive 1 Indirect 2[D2D Rcv 1 Ind 2]

Parameter Number 17Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 23Minimum Value 1Maximum Value 219

Drive Link Receive 2 Indirect 1[D2D Rcv 2 Ind 1]

Drive Link Receive 2 Indirect 2[D2D Rcv 2 Ind 2]

Parameter Number 19Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 25Minimum Value 1Maximum Value 219

Parameter Number 18Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 24Minimum Value 1Maximum Value 219

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the first word of data will beput after it has been received from thedrive to drive communication

This parameter specifies the parameternumber where the second word of data willbe put after it has been received from thedrive to drive communication

Chapter 5Programming Parameters

5ndash33

Drive Link Transmit Data 1[D2D Xmit Data1]

Parameter Number 20Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Drive Link Transmit Data 2[D2D Xmit Data2]

Drive Link Receive 1 Data 1[D2D Rcv 1 Data1]

Parameter Number 22Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Parameter Number 21Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the first word of data for transmit

This parameter is the default data locationof the second word of data for transmit

This parameter is the default data locationof the first word of data for receive 1

Drive Link Receive 1 Data 2[D2D Rcv 1 Data 2]

Parameter Number 23Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 1[D2D Rcv 2 Data 1]

Parameter Number 24Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Drive Link Receive 2 Data 2[D2D Rcv 2 Data 2]

Parameter Number 25Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter is the default data locationof the second word of data for receive 1

This parameter is the default data locationof the first word of data for receive 2

This parameter is the default data locationof the second word of data for receive 2

Process Trim Output[Proc Trim Output]

Parameter Number 26Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter represents the scaled andlimited output of the process trimfunction Process Trim consists of a general purpose PI regulator that uses unspecified reference and feedback inputs

Chapter 5Programming Parameters

5ndash34

Process Trim Reference[Proc Trim Ref]

Process Trim Feedback[Proc Trim Fdbk]

Process Trim Select[Proc Trim Sel]

Parameter Number 29Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 1111Enums

Parameter Number 28Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default + 00Minimum Value ndash 8000Maximum Value + 8000

Process Trim Filter Bandwidth[Proc Trim Fltr W]

Parameter Number 30Parameter Type SinkDisplay Units x radianssecDrive Units 1 = radianssecFactory Default 0 radianssecMinimum Value 0 radianssecMaximum Value 240 radianssec

Parameter Number 31Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 preloadFactory Default +00Minimum Value ndash8000Maximum Value +8000

Parameter Number 27Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default +00Minimum Value ndash8000Maximum Value +8000

Process Trim Data[Proc Trim Data]

This is the reference input value for pro-cess trim The Process Trim Output is up-dated based on the value of this input

This is the feedback input value for pro-cess trim The Process Trim Output pa-rameter is updated based on the value ofthis input

This is a bit coded word of data containingseveral selection options for the processtrim regulator as follows

Bit 0 Trim the Velocity ReferenceBit 1 Trim the Torque ReferenceBit 2 Select Velocity InputsBit 3 Set Output OptionBit 4 Preset Integrator OptionBit 5 Force ON Trim Limit option

This parameter is used to preset the outputof the process trim regulator when eitherthe ldquoSet Output Optionrdquo or ldquoPreset Integra-tor Optionrdquo is selected in parameter 29

This parameter determines the bandwidthof a single pole filter used with the errorinput for process trim The output of thisfilter is used as the input to the processtrim regulator

Process Trim KI Gain[Proc Trim Ki]

Parameter Number 32Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 1000 Ki gainFactory Default 1000Minimum Value 0000Maximum Value 16000

This parameter controls the integral gain ofthe process trim regulator If process trimequals 10 then the process trim PI regula-tor output will equal 1 pu in 1 second for 1pu process trim error

Chapter 5Programming Parameters

5ndash35

Process Trim KP Gain[Proc Trim Kp ]

Process Trim Low Limit[Proc Trim Lo Lmt]

Process Trim High Limit[Proc Trim Hi Lmt]

Parameter Number 35Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash 100Minimum Value ndash 800Maximum Value + 800

Parameter Number 34Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 trimFactory Default ndash1000Minimum Value ndash8000Maximum Value +8000

Process Trim Output Gain[Proc Trim Out K]

Parameter Number 36Parameter Type SinkDisplay Units +ndash xxxDrive Units 2048 = +100 gainFactory Default + 100Minimum Value ndash 1600Maximum Value + 1600

Parameter Number 37Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Parameter Number 33Parameter Type SinkDisplay Units xxxxDrive Units 4096 = 10000 Kp gainFactory Default 1000Minimum Value 0000Maximum Value 16000

Process Trim Testpoint[Proc Trim TP]

This parameter controls the proportionalgain of the process trim regulator If theKP process trim is equal to 10 then theprocess trim PI regulator output will equal 1pu for 1 pu process trim error

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the low limit of theprocess trim output value

The output of the process trim regulator islimited by adjustable high and low limitsThis parameter specifies the high limit ofthe process trim output value

This parameter selects which location ofthe Process Trim Controller will becomethe testpoint value as followsValue Process Trim Access Point 0 Zero 1 Process Trim Error 2 Process Trim Filter Output 3 Process Trim Control Word

The output of the process trim regulator isscaled by a gain factor This occurs justbefore the upper and lower limit This pa-rameter specifies the gain value to use

Process Trim Testpoint Select[Proc Trim TP Sel]

This parameter indicates the value of theinternal location selected by the ProcessTrim Testpoint Select parameter

Parameter Number 38Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3Enums

Auto Tune Torque Limit[Auto Tune Torque]

Parameter Number 40Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 500 Minimum Value 250 Maximum Value 1000

This parameter specifies the motor torquethat is applied to the motor during theVelocity motor test and the Velocity systemtest 4096 = 100 rated motor torque

Chapter 5Programming Parameters

5ndash36

Auto Tune Speed[Auto Tune Speed]

Parameter Number 41Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default 085 x Base Motor SpeedMinimum Value 03 x Base Motor SpeedMaximum Value Base Motor Speed

This parameter is the speed of the motorduring an auto tune velocity motor testsystem test and system ID measure4096 is base speed

VP Desired Bandwidth[Vel Desired BW]

Parameter Number 43Parameter Type SinkDisplay Units xxx radsecDrive Units Display units x 100Factory Default 500 radsecMinimum Value 001 radsecMaximum Value 10000 radsec

Autotune Status[Auto Tune Status]

Parameter Number 44Parameter Type SourceDisplay Units bitsDrive Units value (of bits)Factory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 00110000011111111Enums

This parameter specifies the velocity loopbandwidth requested by the User anddetermines the dynamic behavior of thevelocity loop The maximum value for thisparameter is changed by the drive when arequest is made to update the the velocityloop gains The vel loop becomes moreresponsive and is able to track a fasterchanging vel ref as bandwidth is increasedSystem and noise limitations will establisha practical upper limit however

This parameter indicates the status of certain conditions related to the autotunefunction This is a bitndashcoded parameterthat is not changeable by the user

VP Damping Factor[Vel Damp Factor]

Parameter Number 45Parameter Type SinkDisplay Units xxDrive Units 2048 = 10 dampingFactory Default 10Minimum Value 05Maximum Value 30

Total Inertia[Total Inertia]

Parameter Number 46Parameter Type SinkDisplay Units xxx secDrive Units Display units x 100Factory Default 200 secMinimum Value 001 secMaximum Value 65500 sec

This parameter determines the dynamicbehavior of the velocity loop The dampingfactor influences the amount of overshootthe velocity loop will exhibit during a tran-sient

This parameter represents the time in se-conds for a motor coupled to a load to ac-celerate from zero to base speed at ratedmotor torque This parameter is calculatedby the Autotune System Inverter Test

Bit 8 ndash 11 = Not UsedBit 12 = TimeoutBit 13 = No Trq Lim

Bit 0 = ExecutingBit 1 = CompleteBit 2 = FailBit 3 = AbortBit 4 = Flux ActiveBit 5 = Not ReadyBit 6 = Not Zero SpdBit 7 = Running

Autotune Testpoint Data[Auto Tune TP]

Parameter Number 47Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates the value of theinternal location selected by the AutotuneTP Sel parameter 48

Chapter 5Programming Parameters

5ndash37

Auto Tune Testpoint Select[Auto Tune TP Sel]

This parameter selects what internal loca-tion of the Velocity Auto Tune Controllerwill become the testpoint value shown inP47 The internal locations available are

Select Value Autotune Access Point

Parameter Number 48Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 10Enums

01234

ZeroAutotune Status BitsAutotune Inhibit Word (all zero = OK)Autotune Error Word (all zero = OK)Calculated Friction (4096 1 pu)

Torque Limit for autotuneAutotune State Word 1Autotune State Word 2Autotune Control BitsMinimum Limit for didt to acheive requested bandwidthMinimum error filter bandwidth

Select Value Autotune Access Point5678910

Logic Command Word[Logic Command]

Parameter Number 52Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This word parameter contains data used toControl Drive logic operation If a bit is setthe function is enabled otherwise it is disabled (inactive)

C B A00001111

00110011

01010101

ndash Zerondash External Ref ndash Preset Speed 1ndash Preset Speed 2ndash Preset Speed 3ndash Preset Speed 4ndash Preset Speed 5ndash External Ref 2

BITS

0123456789101112131415

ndash Ramp Stopndash Start ndash Jog 1ndash Clear Faultndash Forwardndash Reversendash Jog 2ndash Current Limit Stopndash Coast Stopndash Ramp Disablendash Flux Enablendash Process Trim Enablendash Velocity Ref Select Andash Velocity Ref Select Bndash Velocity Ref Select Cndash Reset Drive

Torque Mode Select[Torque Mode Sel]

This is a word parameter used to select thesource for the drive torque reference Theoperation of this parameter functions as aselector switch The position of theselector determines the torque referenceselection as follows

Value Description 0 Zero Torque 1 Velocity Regulate 2 External Torque

Parameter Number 53Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 0Maximum Value 5

Value Description 3 Min Select SpeedTorque (Selects the smallest value when the torque

reference and the torque generated from the speed are compared) 4 Max Select SpeedTorque (Selects the largest value when the torque

reference and the torque generated from the speed are compared 5 Sum Speed and Torque (selects the sum of the torque reference and the

torque generated from the speed)

Chapter 5Programming Parameters

5ndash38

Local Input Status[Local In Status]

Parameter Number 54Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean input sta-tus conditions for the Velocity ProcessorWhen a bit is set to 1 the correspondinginput signal is true

Local Output Status[Local Out Status]

Parameter Number 55Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates boolean outputstatus conditions for the Velocity Proces-sor When a bit is set to 1 the correspond-ing input signal is true

Value Description 0 Brake Request 1 Drive Enable 2 Motor Overtemp Thermoguard 3 Discrete Stop

Value Description 4 External Fault 5 RMS Fault 6 0 = Parall Inv 7 Single Lang

Value Description 8 Test Diag 9 Inverter Status10 Contactor Verify11 Not Used

Value Description12 Not Used13 Not Used14 Not Used15 Not Used

Value Description 0 Brake Enable 1 Turn On Delay Select 2 Not Used 3 Not Used

Value Description 4 Not Used 5 Not Used 6 Not Used 7 Not Used

Value Description 8 Not Used 9 VP Enable10 Pilot Relay11 Not Used

Value Description12 VP Green LED13 VP Red LED14 Not Used15 Not Used

Logic Status Low[Logic Status Low]

Parameter Number 56Parameter Type SourceDisplay Units BitsDrive Units BitsFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter is the Low part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Logic Status Hi[Logic Status Hi]

Parameter Number 57Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 11111 1111 Enums

This parameter is the Hi part of a doubleword that indicates boolean logic condi-tions within the Drive When a bit is set to1 the corresponding condition in the Driveis true

Value Description 0 Ready to Run 1 Drive Running 2 Cmd Direction (1=FWD 0=Rev) 3 Rotation Direction (1=FWD 0=Rev)

Value Description 4 Accelerating (1=Accel) 5 Decelerating (1=Decel) 6 Warning 7 Faulted

Value Description 8 At Set Speed 9 Local A10 Local B11 Local C

Value Description12 At Zero Speed13 Reference A14 Reference B15 Reference C

Value Description 0 Flux Ready 1 Flux Up 2 Not Used 3 Not Used

Value Description 4 Bus Ridethru 5 Jogging 6 Not Used 7 Not Used

Value Description 8 At Limit 9 Not Used10 At Setpoint 111 At Setpoint 2

Value Description12 Over Setpoint 113 Over Setpoint 214 Over Setpoint 315 Over Setpoint 4

C B A0 0 0 No Change0 0 1 Ref 10 1 0 Ref 20 1 1 Ref 31 0 0 Ref 41 0 1 Ref 51 1 0 Ref 61 1 1 Ref 7

Chapter 5Programming Parameters

5ndash39

Torque Stop Configuration[Torq Stop Config]

Parameter Number 58Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 2Enums

This parameter selects how the drive willreact to a stop command when it occurs ina nonndashspeed mode (ex torque mode)Possible selections are0 = Normal Mode ndash Switch to speed modethen perform a controlled stop1 = Stay in selected torque mode until zerospeed is reached2 = Stay in selected torque mode until zerotorque is reached

At Setpoint 1[At Setpoint 1]

Parameter Number 60Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

At Setpoint 2[At Setpoint 2]

Parameter Number 61Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the At Setpoint 1 bit in Logic Status Hi

This parameter is used to specify the setpoint threshold for the At Setpoint2 bit in Logic Status Hi

Logic Options[Logic Options]

Parameter Number 59Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 0010Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter selects the options for logicoperation of the drive as follows

bit Option 0 Start Type A 1 Start Type B 2 Jog Ramp Enable 3 = 1 Jog Coast

= 0 Regen Stop 4 STOP Input Type A 5 STOP Input Type B 6 Do Power Up Diag 7 Do Flux Up Diag

8 Do Start Diag 9 Not Used 10 Not Used 11 = 1 AC Motor Contactor Present 12 = 1 Bipolar Ref +ref value = Forward Dir

ndash ref value = Reverse Dir= 0 Unipolar Bit 4 of P52 = 1 Forward Direction Bit 5 of P52 = 1 Reverse Direction

Over Setpoint 2[Over Setpoint 2]

Parameter Number 63Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the set-point threshold for the Over Setpoint 2 bitin Logic Status Hi

Over Setpoint 1[Over Setpoint 1]

Parameter Number 62Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 100 setpointFactory Default +0Minimum Value ndash8000Maximum Value +8000

This parameter is used to specify the setpoint threshold for the Over Setpoint 1bit in Logic Status Hi

Start TypeB A0 0 Maint Start Rgen Stop0 1 Maint Start Coast Stop1 0 Momentary Start1 1 Maint Start Rgen Stop

Stop TypeB A0 0 Coast0 1 Normal (RampndashRegen)1 0 I - Limit1 1 Coast

This parameter has no effect if the drive isalready in speed mode when a stop com-mand occurs Coast stop1 commands arealso unaffected by this parameter

1NOTE Coast indicates that the Inverter power has been disabled but actual rotationalstoppage of the motor is dependent on the friction of the connected load

Chapter 5Programming Parameters

5ndash40

Over Setpoint 3[Over Setpoint 3]

Parameter Number 64Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = 1000 setpointFactory Default +00 Minimum Value ndash8000Maximum Value +8000

Over Setpoint 4[Over Setpoint 4]

Parameter Number 65Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 setpointFactory Default +00 Minimum Value ndash800Maximum Value +800

This parameter is used to specify the set-point threshold for the Over Setpoint 3 bitin Logic Status Hi

This parameter is used to specify the set-point threshold for the Over Setpoint 4 bitin Logic Status Hi

Current Setpoint Tolerance[Cur Setpoint Tol]

Parameter Number 68Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 IqFactory Default 20Minimum Value 00Maximum Value 200

This parameter establishes a hysteresisband around the Setpoints It will be usedto determine when to update the SetpointBits in Logic Status Hi (P57) when config-ured for commanded current option

Speed Setpoint Tolerance[Speed Setpnt Tol]

Parameter Number 67Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = base speedFactory Default base sp 100Minimum Value 00 rpmMaximum Value base speed 10

This parameter establishes a hysteresisband around the At Setpoints It will beused to determine when to update the Set-point Bits in the Logic Status Hi (P57)when configured for actual speed option

Zero Speed Tolerance[Zero Speed Tol]

Parameter Number 69Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = base speedFactory Default base speed 100Minimum Value 00 rpmMaximum Value 8 x base speed

This parameter establishes a band aroundzero speed that will be used to determinewhen to update the At Zero Speed bit inthe Logic Status Low (P56)

Setpoint Select[Setpoint Select]

Parameter Number 66Parameter Type SinkDisplay Units BitsDrive Units bit clear = speed set = currentFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 1111 1111Enums

This parameter makes a selection betweenactual speed or internal Iq current refer-ence for the AtOver Setpoint parametersEach Setpoint Status bit can be set for ei-ther option ( 0 = Actual Speed 1 = Iq Ref-erence)

Bit 0 = At Setpoint 1Bit 1 = At Setpoint 2Bit 2 = Over Setpoint 1Bit 3 = Over Setpoint 2

Bit 4 = Over Setpoint 3Bit 5 = Over Setpoint 4

Logic Testpoint Data[Logic Tstpt Data]

This parameter contains the logic controltestpoint data that has been selected bythe Logic Tstpt Sel parameter P71

Parameter Number 70Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Chapter 5Programming Parameters

5ndash41

Logic Testpoint Select[Logic Tstpt Sel]

Parameter Number 71Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 30Enums

This parameter selects which internal loca-tion in the logic control software will be-come the testpoint value shown in P70The value based upon the select will bestored in the Logic Tstpnt Data parameterThe internal locations of the logic controlsoftware accessible based on the selectvalue are

Select Value Logic Access Point 0 Zero 1 Logic State 2 Edge Filtered Logic Command 3 Logic Control Word 4 Flux Inhibit Conditions 5 Run Inhibit Conditions 6 Current Processor Command Word 7 Current Processor Status Word 8 Diagnostic Request Flag 9 Requested Torque Mode 10 Contactor Fault Flag 11 Monitor Sample 12 Sys Status 13 Loss of CP Enable Acknowledge 14 Last Stop 15 Stop Event

Select Value Logic Access Point 16 Diagnostic Inhibit bits 17 Common Bus Precharge States 18 Contactor Trip Condition 19 Adapter handshake counter 20 Longest handshake count 21 Stop event ndash LED state 22 Stop event ndash System mode register 23 Stop event ndash Fault stop command 24 Stop event ndash Powerup diagnostic status 25 Stop event ndash Nonconfigurable fault status 26 Stop event ndash Current Processor Config Fault Status 27 Stop event ndash Velocity Processor Config Fault Status 28 Stop event ndash Adapter fault status 29 Stop event ndash Logic Command (parameter 52) 30 Stop event ndash Local Inputs (parameter 54)

Stop Dwell[Stop Dwell]

Parameter Number 72Parameter Type SinkDisplay Units xx secDrive Units Display units x 10Factory Default 00 secMinimum Value 00 secMaximum Value 100 sec

This sets an adjustable dwell time beforethe drive disables speed and torque regu-lators when a stop has occurred

Maximum Dynamic Brake Power[Max DB Power]

Parameter Number 77Parameter Type SinkDisplay Units x WattsDrive Units NoneFactory Default 0 WattsMinimum Value 0 WattsMaximum Value 30000 Watts

Maximum Dynamic Brake Temperature[Max DB Temp]

Parameter Number 78Parameter Type SinkDisplay Units x degDrive Units NoneFactory Default 50 deg Minimum Value 50 deg Maximum Value 700 deg

Dynamic Brake Time Constant[DB Time Const]

Parameter Number 79Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 10 secMinimum Value 10 secMaximum Value 600 sec

This parameter defines the power ratingfor the optional Dynamic Brake resistorThis value is used to calculate the per unitR theta for the resistor

This parameter defines the Maximum Tem-perature Rating for the optional DynamicBrake resistor This value is used to estab-lish setpoints for setting and clearing aBrake Overtemperature fault condition

This parameter defines the thermal timeconstant for the Optional Dynamic Brakeresistor This value is used in the brakeresistor thermal model to predict braketemperature as a function of regenerativepower

NOTE Caution should be usedwhen changing the dwell timefrom the factory settingExtended dwell times may not bedesirable from a safety standpointin some applications

Chapter 5Programming Parameters

5ndash42

PowerupDiagnostic Fault Status[PwrUp Flt Status]

Parameter Number 80Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates a faultcondition which has been detected duringpower up or reset of the drive When a bitis ldquo1rdquo the condition is true otherwise thecondition is false

Bit Condition 0 CP PROM Failure 1 CP Internal RAM Failure 2 CP External RAM Failure 3 CP Stack RAM Failure 4 VP Dualport RAM Failure detected by CP 5 Not Used 6 Not Used 7 Not Used 8 VP EPROM Failure

Bit Condition 9 VP Internal RAM Failure 10 VP External RAM Failure 11 VP Stack RAM Failure 12 CP Dualport RAM Failure detected by VP 13 AP Dualport Ram Failure detected by VP 14 Base Drive EE Failure 15 Reserved Leave Zero

CP Configurable Fault Status[CP Flt Status]

Parameter Number 82Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Current Processor (CP)that has been configured to report as aDrive fault condition Each configurationbit matches the bit definitions of Parameter84 86 and 87 When a bit is ldquo1rdquo thecondition is true otherwise the condition isfalse

Nonndashconfigurable Fault Status[Ncfg Flt Status]

Parameter Number 81Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates fault condi-tions in the drive that Cannot be configuredas warnings When a bit is ldquo1rdquo the condi-tion is true otherwise the condition is falseBits 0 ndash 3 are detected by hardware Bits4ndash15 are detected by software

Bit Condition 0 DC Bus Overvoltage Trip 1 Transistor Desaturation 2 Ground Fault 3 Instantaneous Overcurrent 4 Adapter Comm Loss detected by CP 5 MasterSlave Cable Loss

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts)

Bit Condition 10 Analog Power Supply Tolerance 11 Autocommisioning or Transistor Diagnostic Failure 12 Inverter Temperature Trip 13 Software Malfunction detected by VP 14 Not Used 15 Reserved Leave Zero

Bit Condition 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Fluxup Current lt 50

Bit Condition 6 MasterSlave Enable Timeout 7 Not Used 8 Handshake Timeout VP 9 Absolute Overspeed

VP Configurable Fault Status[VP Flt Status]

Parameter Number 83Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as faultconditions Each configuration bit matchesthe definitions of Parameter 85 88 and 89When a bit is ldquo1rdquo the condition is trueotherwise the condition is false

Bit Condition 0 Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending 4 Motor Overload Trip

Bit Condition 10 Math Limit 11 Dynamic Brake Overtemperature 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Trip (IT)

Bit Condition 5 Motor stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit

Chapter 5Programming Parameters

5ndash43

CP Configurable Warning Status[CP Warn Status]

Parameter Number 84Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

VP Configurable Warning Status (bits)[VP Warn Status]

Parameter Number 85Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates conditionsdetected by the current processor (CP) thathave been configured to report as a DriveWarning condition Each configuration bitmatches the bit definitions of parameters82 86 and 87 When a bit is set to ldquo1rdquo thecorresponding condition in the Drive istrue otherwise it is false

This word parameter indicates conditionsdetected by the Velocity Processor (VP)that have been configured to report as aDrive warning condition Each configura-tion bit matches the bit definitions ofparameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition inthe Drive is true otherwise it is false

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Not Used 9 Parameter Limit 10 Math Limit

Bit Condition 11 Dynamic Brake Resistor Overtemperature 12 Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Communication Fault 15 Inverter Overload Foldback

CP FaultWarning Configuration Select[CP Fault Select]

Parameter Number 86Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0010 0011Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definitions ofparameters 82 84 and 87 When a bit isset to rdquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise it will be reported as a WARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop 3 Bus Undervoltage 4 Bus Drop Cycles gt 5 5 Fast Flux Up Current lt 50

Chapter 5Programming Parameters

5ndash44

CP WarningNone Configuration Select[CP Warn Select]

Parameter Number 87Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0001 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Current Processor (CP)that will be reported as either a drive faultor drive warning condition Each configu-ration bit matches the bit definition of Pa-rameter 82 84 and 86 When a bit is set toldquo1rdquo the corresponding condition in theDrive will be reported as a FAULT other-wise the condition is reported as aWARNING

VP FaultWarning Configuration Select[VP Fault Select]

Parameter Number 88Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter determines conditionsdetected by the Velocity Processor (VP)that will be reported as either a driveFAULT or drive WARNING condition Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 89 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as a FAULTotherwise the condition is reported as aWARNING

Bit Condition 0 Bus Ridethrough Timeout 1 Bus Precharge Timeout 2 Bus Drop (150 volts) 3 Bus Undervoltage 4 Bus Drop Cycles 5 Fast Flux Up Current lt 50

Bit Condition 0 Encoder Feedback Loss 1 Inverter Overemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault 8 Reserved Leave Zero

Bit Condition 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Trip (IT)

VP WarningNone Configuration Select[VP Warn Select]

Parameter Number 89Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 1111 1111 1111 1111 Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enum

This parameter determines conditions de-tected by the Velocity Processor (VP) thatwill be reported as either a drive FAULT orWARNING or not reported (ignored) Eachconfiguration bit matches the bit definitionsof Parameters 83 85 and 88 When a bitis set to ldquo1rdquo the corresponding condition inthe Drive will be reported as configured byparameter 88 If the bit is set to ldquo0rdquo thecondition is not reported Bit Condition 0 Encoder Feedback Loss 1 Inverter Overtemp Pending 2 Motor Overtemperature Tripped 3 Motor Overload Pending (I2T) 4 Motor Overload Trip (I2T) 5 Motor Stalled 6 External Fault 7 RMS Fault

Bit Condition 8 Not Used 9 Parameter Limit 10 Math Limit 11 Dynamic brake overtemp 12 AC Motor Contactor Failure 13 Inverter Overload Pending (IT) 14 Drive to Drive Fault 15 Inverter Overload Foldback (IT)

Chapter 5Programming Parameters

5ndash45

Absolute Overspeed Threshold[Absolute Overspd]

Parameter Number 90Parameter Type SinkDisplay Units xx rpmDrive Units 4096 = 1000 overspeedFactory Default 01 x base speedMinimum Value 00 rpmMaximum Value base speed

This parameter indicates the incrementalspeed above Forward Speed Limit or be-low Reverse Speed Limit that is allowablebefore an Absolute Overspeed Fault isindicated

Stall Delay[Stall Delay]

Parameter Number 91Parameter Type SinkDisplay Units xx secDrive Units sec x 100Factory Default 10 secMinimum Value 01 secMaximum Value 32767 sec

This parameter specifies the amount oftime that the Drive must be in current limitand at zero speed before a Stall Fault willbe indicated

Motor Overload Limit[Mtr Overload Lim]

Parameter Number 92Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Iq for 60 secFactory Default 2000Minimum Value 1100Maximum Value 4000

This parameter specifies the level of Iq current that will cause a Motor OverloadTrip after 60 seconds

Service Factor[Service Factor]

Parameter Number 94Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100Factory Default 100Minimum Value 100Maximum Value 200

This parameter specifies the minimum lev-el of Iq current that will cause a motor over-load (IIT) trip under continuous operationCurrent levels below this value will neverresult in an overload tripExample ndash a service factor of 115 impliescontinuous operation up to 115 of name-plate motor current

Overload Speed 1[Mtr Overld Spd 1]

Parameter Number 95Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use the MinOverload Lmt (parameter 97) as its mini-mum current trip level

Motor Overload Speed 2[Mtr Overld Spd 2]

Parameter Number 96Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 08 x Base SpeedMinimum Value 00 rpmMaximum Value 2 x Base Speed

If the absolute value of motor speed is at orbelow the speed specified in this parame-ter the motor overload will use 100 as itsminimum current trip level

Minimum Overload Limit[Min Overload Lmt]

Parameter Number 97Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 currentFactory Default 1000Minimum Value 00 Maximum Value 1000

This is the minimum motor overload triplevel that will be in effect when the motorspeed is at or below Mtr Overld Spd 2(P96)

Chapter 5Programming Parameters

5ndash46

Fault Testpoint Data [Fault TP]

Parameter Number 98Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This parameter contains the fault controltestpoint data that has been selected bythe Fault TP Sel parameter(P99) See thedescription for the Fault TP Sel parameter99 for a list of possible testpoints

Select Value Velocity Reference Access Point 0 Zero 1 Adapter Processor Faulted 2 Actual Velocity when Overspeed occurred 3 Motor Overload Calibration Constant (K) 4 Heatsink NTC Analog Input Voltage 5 Heatsink NTC Foldback Current Limit 6 Negative Analog Supply andor input voltage 7 Positive Analog Supply andor input Voltage 8 Zero 9 Motor Overload Integrator(I2T) level 10 Dynamic Brake Resistor Temperature Degrees C 11 Parameter Limit Status Word 1 12 Parameter Limit Status Word 2 13 Velocity Reference Math Overflow Status 14 Velocity Feedback Math Overflow Status 15 Velocity Regulator Math Overflow Status 16 Torque Reference Math Overflow Status 17 Process Trim Math Overflow Status

VELOCITY Feedback Error Conditions 18 Acceleration Error 19 Illegal State Edge Samples 20 Illegal State Level 21 Encoder Loss Edge Samples

Fault Testpoint Select[Fault TP Sel]

Parameter Number 99Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 32Enums

This parameter selects which internal loca-tion in the fault control software will be-come the testpoint value The value basedupon the selection will be stored in theFault TP parameter 98 The internal loca-tions of the logic control software that areaccessible based on the selected value arelisted below

Select Value Velocity Ref Access Point 22 Encoder Loss Level 23 Iq Reference in per unit Inverter Units 24 Motor Overload Integrator Output Level (IT) 25 Motor Temperature Degrees C 26 Drive to Drive fault status 27 Base Drive EE fault status 28 Base Drive EE drive type address 29 Base Drive EE drive type data 30 Heatsink Warn Temp deg C 31 Heatsink Trip Temp deg C 32 Zero

Velocity Reference 1 LOW (Fraction)[Vel Ref 1 Low]

Parameter Number 100Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This word supplies the fractional part of theexternal velocity reference 1 when external velocity control has been selectedin Logic Command (P52)

Velocity Reference 1 HI (Whole 32 bit)[Velocity Ref 1 Hi]

Parameter Number 101Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

Velocity Scale Factor 1[Vel Scale Fctr 1]

Parameter Number 102Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 10000 gainFactory Default + 10000Minimum Value ndash 40000Maximum Value + 40000

This word supplies the whole number partof external velocity reference 1 when theexternal velocity control has been selectedin Logic Command (P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 1

Chapter 5Programming Parameters

5ndash47

Velocity Reference 2 LOW (Fraction)[Vel Ref 2 Low]

Parameter Number 103Parameter Type SinkDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference 2 HI (Whole 32 bit)[Vel Ref 2 Hi]

Parameter Number 104Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

Velocity Scale Factor 2[Vel Scale Fctr 2]

Velocity Trim LOW[Vel Trim Low]

Parameter Number 106Parameter Type SinkDisplay Units x SecDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Parameter Number 105Parameter Type SinkDisplay Units +ndash xxxxxDrive Units 8192 = 1000 gainFactory Default +10000Minimum Value ndash40000Maximum Value +40000

This word supplies the fractional part of theexternal velocity reference 2 when the ex-ternal velocity control has been selected inLogic Command (P52)

This word supplies the whole number refer-ence 2 when the external velocity controlhas been selected in Logic Command(P52)

This parameter sets the gain multiplier thatwill be used to scale velocity reference 2

This word supplies the fractional numberpart of a 32 bit velocity reference trim

Velocity Trim Hi (32 bit)[Vel Trim Hi]

Parameter Number 107Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This word supplies the whole number partof a 32 bit velocity reference trim

Velocity Reference Testpoint Data LOW[Vel Ref TP Low]

Parameter Number 108Parameter Type SourceDisplay Units xDrive Units 1 = 2 128 Base Motor SpeedFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Testpoint Data HI(32 bit)[Vel Ref TP Hi]

This parameter indicates the LOW of the32 bit value of the internal location selectedby the Vel Ref TP Sel (P110)

Parameter Number 109Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base Speed Maximum Value +8 x Base Speed

This parameter indicates the HI 32 bit value of the internal location selected bythe Vel Ref TP Sel (P110)

Chapter 5Programming Parameters

5ndash48

Parameter Number 110Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 12Enums

This parameter selects which internallocation of the velocity reference will be-come the testpoint value shown in P108and 109 The following are the internallocations based upon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Limit Status (HI) Reference Selection (LOW) 2 Selected Reference (HI LOW) 3 Limited Reference (HI LOW) 4 Direction Selected Ref (HI LOW) 5 Fwd Speed Limit (HI)

Rev Speed Limit (LOW) 6 Ramp Input (HI LOW) 7 Ramp Output (HI LOW) 8 Velocity Trim Sum (HI LOW)

Select Value Velocity Reference Access Point 9 Internal Velocity Trim (HI LOW) 10 Trimmed Velocity Reference (HI LOW) 11 Maximum Frequency Limit (HI) Zero (LOW) 12 Reference after Trim Limit (HI LOW) 13 Deadband In (HI LOW) 14 Encoderless On Freq (Low)

Encoderless Off Freq (High) 15 Encoderless Status (Low) 16 Zero

Velocity Reference Testpoint Select[Vel Ref TP Sel]

Jog Speed 1[Jog Speed 1]

Parameter Number 117Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 1 has been selected inthe Logic Command (P52)

Jog Speed 2[Jog Speed 2]

Parameter Number 118Parameter Type SinkDisplay Units +ndash xDrive Units 4096 = Base Motor SpeedFactory Default + 00 rpmMinimum Value ndash8 x rpmMaximum Value +8 x rpm

This will be the velocity reference used bythe Drive when Jog 2 has been selected inthe Logic Command (P52)

Preset Speed 1[Preset Speed 1]

Parameter Number 119Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Preset Speed 2[Preset Speed 2]

Parameter Number 120Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 1 has been selectedin Logic Command (P52)

This will be the velocity reference used bythe Drive when preset 2 has been selectedin Logic Command (P52)

Preset Speed 3[Preset Speed 3]

Parameter Number 121Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 3 has been selectedin Logic Command (P52)

Chapter 5Programming Parameters

5ndash49

Preset Speed 4[Preset Speed 4]

Parameter Number 122Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

This will be the velocity reference used bythe Drive when preset 4 has been selectedin the Logic Command (P52)

Preset Speed 5[Preset Speed 5]

This will be the velocity reference used bythe Drive when preset 5 has been selectedin Logic Command (P52)

Parameter Number 123Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash8 x Base SpeedMaximum Value +8 x Base Speed

Reverse Motor Speed Limit[Rev Speed Limit]

Parameter Number 127Parameter Type SinkDisplay Units ndash xx rpmDrive Units ndash 4096 Base Motor SpeedFactory Default ndash Base Motor SpeedMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 00 rpm

This parameter sets a limit on velocity inthe negative direction The value enteredmust be Negative or Zero The numericrange of this parameter is 0 to ndash 6 timesbase motor speed

Accel Time[Accel Time]

Parameter Number 125Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the ramp rate timefor the velocity reference ramp Time isseconds from zero to base motor speedZero will disable accel ramp See Param389 amp 390 to set this rate Note This parameter not used with a Standard Adapter Board Equipped Drive

Decel Time[Decel Time]

Parameter Number 126Parameter Type SinkDisplay Units xx SecDrive Units display units x 10Factory Default 100 secondsMinimum Value 00 secondsMaximum Value 65535 seconds

This parameter displays the decelerationramp time Similar to the parameterabove zero will disable the decel rampSee param 391 amp 392 to set this rateNote This parameter not used with a Standard Adapter Board Equipped Drive

Forward Motor Speed Limit[Fwd Speed Limit]

Parameter Number 128Parameter Type SinkDisplay Units xx rpmDrive Units + 4096 Base Motor SpeedFactory Default Base Motor SpeedMinimum Value + 00 rpmMaximum Value 8 x Base Motor Speed

This parameter sets a limit on velocity inthe positive direction The value enteredmust be Positive or Zero The numericrange of this parameter is +6 x base speedrpm

Maximum Reverse Speed Trim[Max Rev Spd Trim]

Parameter Number 129Parameter Type SinkDisplay Units +ndash xx rpmDrive Units ndash4096 = Base Motor SpeedFactory Default ndash Base SpeedMinimum Value ndash 6 x Base SpeedMaximum Value + 6 x Base Speed

This parameter limits the minimum value ofthe velocity reference after the process trimoutput and the external velocity trim hasbeen added

Chapter 5Programming Parameters

5ndash50

Maximum Forward Speed Trim[Max Fwd Spd Trim]

Parameter Number 130Parameter Type SinkDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default + Base SpeedMinimum Value + 00 rpmMaximum Value + 6 x Base Speed

This parameter limits the maximum valueof the velocity reference after the processtrim

Droop Percent[Droop Percent]

Parameter Number 131Parameter Type SinkDisplay Units xxDrive Units Display units x 10Factory Default 0Minimum Value 0Maximum Value 255

This parameter specifies the percent ofbase speed that the velocity reference willbe reduced when at full load torque Thisfeature can be used to cause motor veloc-ity to droop with an increase in load

Velocity Reference Output LOW[Vel Ref Out Low]

Parameter Number 132Parameter Type SourceDisplay Units x Drive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Reference Output HI (32 bit)[Vel Ref Out High]

Parameter Number 133Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value + 8 x Base Speed

This is the low word portion of a 32 bit velocity reference quantity It is the inputterm for the Velocity PI Regulator

This is the high word portion of a 32 bit ve-locity reference quantity It is the inputterm for the Velocity PI Regulator

Velocity Regulator Output[Vel Reg Output]

Parameter Number 134Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = 1000 Iq motorFactory Default + 00 Minimum Value ndash 3000Maximum Value +3000

This parameter represents the torque refer-ence value that appears at the output ofthe Velocity PI Regulator It is the input tothe torque mode selector and is used asthe driversquos torque reference value when intorque mode 1

Velocity Regulator Testpoint DataLOW[Vel Reg TP Low]

Parameter Number 135Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

Velocity Regulator Testpoint Data HI(32 bit)[Vel Reg TP Hi]

Parameter Number 136Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter indicates the value of theinternal location selected by the VelocityRegulator Testpoint Select parameterP137 The select allows this parameter tobe used as a testpoint for the velocity regulator

This parameter indicates the value of theinternal location selected by the Vel RegTP Sel parameter P137 The select allowsthis parameter to be used as a testpoint forthe velocityregulator

Chapter 5Programming Parameters

5ndash51

Velocity Regulator Testpoint Select[Vel Reg TP Sel]

Velocity Error [Velocity Error]

Parameter Number 138Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 = Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Speed rpmMaximum Value +8 x Base Speed rpm

Parameter Number 137Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 15

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in Vel Reg TPLow P135 amp Vel Reg TP Hi P136 The fol-lowing are the internal locations basedupon the select value

Select Value Velocity Reference Access Point 0 Zero 1 Droop Speed Offset (32bit) 2 Drooped Velocity Reference (32 bit) 3 Kf Term (Low) Kf Err (High) 4 Kf Error Filter Output 1 (Low) Kf Error Filter Output 2 (High) 5 Kp Term (32 bit) 6 Or ndash 1st 16 bit (Low) 2nd 16 bit (High) 7 Or ndash 3rd 16 bit (Low) 4th 16 bit (High) 8 Of ndash 1st 16 bit (Low) 2nd 16 bit (High) 9 Of ndash 3rd 16 bit (Low) 4th 16 bit (High) 10 Oe ndash 1st 16 bit (Low) 2nd 16 bit (High) 11 Oe ndash 3rd 16 bit (Low) Not Used (High) 12 Oec1 ndash 1st 16 bit (Low) 2nd 16 bit (High) 13 Oec1 ndash 3rd 16 bit (Low) 4th 16 bit (High) 14 Ki Term (32 bit) 15 Logic Control Word (LOW) Integrator Enable Flag (HIGH)

This parameter contains a value that is thedifference between the whole number por-tion of the velocity regulatorrsquos referenceinput and the velocity feedback

KI ndash Velocity Loop[Ki ndash Velocity Loop]

Parameter Number 139Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 320Minimum Value 00Maximum Value 40960

KP ndash Velocity Loop[Kp ndash Velocity Loop]

Parameter Number 140Parameter Type SinkDisplay Units xxDrive Units Display units x 8Factory Default 80Minimum Value 00Maximum Value 2000

This parameter controls the integral errorgain of the velocity regulator Gain has aresolution of 18 therefore a Ki gain of 10is converted to internal drive units as a val-ue of 8

This parameter controls the proportionalerror gain of the velocity regulator Gainhas a resolution of 18 therefore a gain of10 is converted to internal drive units as avalue of 8

KF ndash Velocity Loop[Kf ndash Velocity Loop]

Parameter Number 141Parameter Type SinkDisplay Units xxxDrive Units Display units x 65535Factory Default 100Minimum Value 050Maximum Value 100

This parameter controls the feed forwardgain of the velocity regulator Setting theKf gain to less than one reduces velocityfeedback overshoot in response to a stepchange in velocity reference

KF Error Filter Bandwidth[Error Filter BW]

Parameter Number 142Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 500 RadianSecondsMinimum Value 0Maximum Value 1500 RadianSeconds

This parameter sets the bandwidths of twocascaded low pass filters in the Kf errorpath of the Velocity PI Regulator Band-width is entered in units of radians per second

Chapter 5Programming Parameters

5ndash52

Velocity Feedback Testpoint Data LOW[Vel Fdbk TP Low)

Parameter Number 143Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0uMinimum Value 0uMaximum Value 65535u

Parameter Number 144Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash32767Maximum Value +32767

Velocity Feedback Testpoint Data HI(32 bit)[Vel Fdbk TP Hi]

This parameter contains the LOW part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter P145

This parameter contains the HIGH part ofthe 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parame-ter P145

Velocity Feedback Testpoint Select[Vel Fdbk TP Sel]

Parameter Number 145Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 16Enums

This parameter selects which internal loca-tion of the velocity reference will becomethe testpoint value shown in P143 amp P144The value based upon the select will bestored in the Vel Fdbk TP Low amp Vel FdbkTP Hi parameter

Select Value Feedback Access Point 0 Zero 1 Encoder Velocity edge (Hi) Diff (Low) 2 Selected Velocity (Low) Difference Velocity (High) 3 2 msec Scan Interval (Low) Zero (High) 4 Edge Pulse Count (Low) Zero (High) 5 Acceleration (Low) Acceleration Error (High) 6 Edges Moved Count (Low) Zero (High) 7 Delta Theta (32 bit) 8 Count Direction (Low) Status Bits (High) 9 Edge to Edge Time (Low) Zero (High) 10 Equal Area Intervals (Low) Zero (High) 11 Empty Intervals (Low) Zero (High) 12 Active Feedback Device 13 Limit Status (Low) Zero (High) 14 Qf ndash 1st 16 bit (Low) 2nd 16 bit (High) 15 Qf ndash 3rd 16 bit (Low) Not Used (High) 16 Zero

Velocity Feedback[Vel Feedback]

Parameter Number 146Parameter Type SourceDisplay Units +ndash xx rpmDrive Units 4096 Base Motor SpeedFactory Default +00 rpmMinimum Value ndash 8 x Base Motor SpeedMaximum Value + 8 x Base Motor Speed

This parameter indicates the latestmeasured motor velocity information froma feedback device (Tach encoder etc)The value is taken at the output of the selectable feedback filters

Scaled Velocity Feedback[Scaled Vel Fdbk]

Parameter Number 147Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter is a rescaled version of ve-locity feedback from parameter 146 Theinverse of either Velocity Scale Factor 1 or2 is used

Chapter 5Programming Parameters

5ndash53

Feedback Device Type[Fdbk Device Type]

Parameter Number 150Parameter Type SinkDisplay Units xDrive Units NoneFactory Default EncoderMinimum Value 0Maximum Value 7

This parameter selects the source for motor velocity feedback0 ndash Encoder Feedback1 ndash Encoder Feedback2 ndash Encoder Feedback wtracker filter3 ndash Motor Simulator4 ndash External Feedback5 ndash Encoderless velocity estimate with deadband6 ndash Encoderless velocity estimate without deadband7 ndash Encoderless without deadband and low bandwidth

Feedback Tracker Gain[Fdbk Track Gain]

Parameter Number 151Parameter Type SinkDisplay Units xxxxDrive Units 1024 1000 gainFactory Default 1000Minimum Value 0043Maximum Value 1000

Affects gain of the alphandashbeta tracker filterused when Fdbk Device Type = 2Smaller gains result in increased filteringTypical Value = 015 to 07Use 10 to disable

Feedback Filter Select[Fdbk Filt Sel]

Parameter Number 152Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 4

0 = No Filter1 = ldquolightrdquo 3549 radian feedback filter2 = ldquoheavyrdquo 2040 radian feedback filter3 = Single pole Lead Lag feedback filter4 = Notch

Encoder Position Feedback LOW[Enc Pos Fdbk Low]

Parameter Number 148Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the LOW word portion of a 32 bitencoder pulse accumulator Each encoderquadrature edge will be counted resultingin a 4X multiplication As a result this pa-rameter will be scaled such that the posi-tion change per motor revolution is equal to4 times the encoder PPR

Encoder Position Feedback HI[Enc Pos Fdbk HI]

Parameter Number 149Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 65535

This is the HI word portion of a 32 bit en-coder pulse accumulator that was de-scribed for the previous parameter Thisword will change by 1 count for everychange in low count of 65536 4X encoderpulses

Kn ndash Feedback Filter Gain[Fdbk Filt Gain]

Parameter Number 153Parameter Type SinkDisplay Units plusmnxxxDrive Units 256 = 100 gainFactory Default + 100Minimum Value ndash 500Maximum Value +500

Wn ndash Feedback Filter Bandwidth[Fdbk Filt BW]

Parameter Number 154Parameter Type SinkDisplay Units x RadianSecondsDrive Units NoneFactory Default 100 RadianSecondsMinimum Value 1 RadianSecondsMaximum Value 900 RadianSeconds

This is the Kn term of the single pole leadlag feedback filter Kn greater than 10 willproduce a lead filter and less than 10 alag filter Kn equal to 10 will disable thefeedback filter

This parameter establishes the breakpointradian frequency for the velocity feedbacklead-lag filter

Chapter 5Programming Parameters

5ndash54

Tach Velocity[Tach Velocity]

Parameter Number 155Parameter Type SinkDisplay Units +ndash xxx rpmDrive Units 4096 = Base Motor SpeedFactory Default 0000 rpmMinimum Value ndash 8 x base speedMaximum Value + 8 x base speed

This word supplies a motor velocity feed-back signal when a source other than anencoder is used This input will typically belinked to an analog input parameter fromthe adapter board

Notch Filter Frequency[Notch Filt Freq]

Parameter Number 156Parameter Type SinkDisplay Units xx HzDrive Units 8 = 10HzFactory Default 135 HzMinimum Value 5 HzMaximum Value 135 Hz

Notch Filter Q[Notch Filter Q]

Parameter Number 157Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 50Minimum Value 2Maximum Value 500

External Iq Reference[External Iq Ref]

Parameter Number 161Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 100 Iq motorFactory Default +00Minimum Value ndash 8000Maximum Value + 8000

External Torque Reference 1[External Torque Ref 1]

Parameter Number 162Parameter Type SinkDisplay Units xDrive Units NoneFactory Default + 00Minimum Value ndash 800Maximum Value + 800

Slave Torque Percent 1[Slave Torque 1]

Parameter Number 163Parameter Type SinkDisplay Units +ndash xxxDrive Units 4096 = 10 gainFactory Default + 100Minimum Value ndash 200Maximum Value + 200

This parameter supplies an external Iq ref-erence to the Drive The external Iq refer-ence is summed with the internal Iq refer-ence just prior to the current limiter

This word supplies an external motortorque reference to the Drive The externaltorque reference can be selected by settingthe Torque Mode Select parameter (Parm53) to a value of ldquo2rdquo

Ext Torq Ref 1 (P162) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

This parameter sets the center frequencyfor an optional 2ndashpole notch filter The-notch filter is enabled by selecting a valueof lsquo4rsquo in parameter 152

This parameter sets the Quality Factor orQ for the 2ndashpole notch filter described inparameter 156

External Torque Reference 2[Ext Torq Ref 2]

Parameter Number 164Parameter Type SinkDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default + 00Minimum Value ndash8000Maximum Value +8000

This word supplies an external motortorque reference to the Drive The Exter-nal Torque Reference can be selected bysetting the Torque Mode Select parameter(Parm 53) to a value of ldquo2rdquo

Slave Torque Percent 2[Slave Torque 2]

Parameter Number 165Parameter Type SinkDisplay Units +ndash xx Drive Units 4096 = 10 gainFactory Default +100Minimum Value ndash 2000Maximum Value + 2000

Ext Torq Ref 2 (P164) is multiplied by again that is specified by this parameterThis multiplier is scaled so that 4096 repre-sents a gain of 10 (100)

Chapter 5Programming Parameters

5ndash55

External Torque Step[Ext Torque Step]

Parameter Number 166Parameter Type SinkDisplay Units xx Drive Units 4096 rated motor torqueFactory Default 00Minimum Value ndash 8000Maximum Value + 8000

This parameter supplies an external torqueoffset to the Drive The Ext Torque Step issummed with the Torque Mode Sel (P53)output prior to the Torque Limiter

Internal Torque Reference[Int Torque Ref]

Parameter Number 167Parameter Type SourceDisplay Units +ndash xx Drive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash8000Maximum Value +8000

This parameter shows the value of torquereference that is present at the output ofthe torque limiter

Internal Iq Reference[Internal Iq Ref]

Parameter Number 168Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = rated torqueFactory Default +00 Minimum Value ndash 8000Maximum Value + 8000

This parameter shows the value of the Iqreference that is present at the output ofthe Iq rate limiter 4096 is 100 Iq motorcurrent

Torque Reference Testpoint Data[Torque Ref TP]

Parameter Number 172Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 100 (10 pu)Factory Default + 00Minimum Value ndash 8000Maximum Value + 8000

This parameter indicates the value of theinternal location selected by the Torq RefTP Sel parameter P173 The select willallow this parameter to be used as a test-point for the torquereference input

Torque Reference Testpoint Select[Torq Ref TP Sel]

Parameter Number 173Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 31Enums

This parameter selects which internal loca-tion of the torque reference will become thetestpoint value The value based on theselect will be stored in the Torque Ref TP(P172)

Select Value Torque Reference Access Point Select Value Torque Reference Access Point 0 Zero 17 Torque Reference Status 1 NTC Limit 18 Torque Reference Math Overflow Status 2 Inverter Current Limit 19 Active Torque Mode 3 Overload Current Limit 20 Positive Torque Power Limit 4 Positive IQ Limit 21 Negative Torque Power Limit 5 Negative Iq Limit 22 Rated Inverter Current 6 Zero (Not Used) 23 Averaged Motor Flux 7 Torque Limit (Low) 24 lq Current Reference Adjusted for Motor Range 8 Torque Limit (High) 25 lq Sum 9 Scaled External Torque Reference 1 26 Torque Mode Select lq Ref 10 Scaled External Torque Reference 2 27 Inverter Gain 11 Torque Sum 28 Motor Range 12 Torque Command 29 Motor to Inverter Current Ratio 13 Filtered Torque Reference 30 DC Bus Ride-Thru Latch 14 Unlimited Iq Reference 31 Current Processor Regulation Active Flag 15 Current Limited Iq Reference 16 Filtered Iq Reference

Chapter 5Programming Parameters

5ndash56

Minimum Flux Level[Min Flux Level]

Parameter Number 174Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 FluxFactory Default 1000Minimum Value 125Maximum Value 1000

This parameter sets the smallest level offlux that will be used to convert a torque toa current reference Setting the parameterto 4096 will prevent flux reduction and by-pass the torque to current conversion

Pos Torque Reference Limit[Pos Mtr Tor Lmt]

Parameter Number 175Parameter Type SinkDisplay Units xxDrive Units 4096 rated motor torqueFactory Default 2000Minimum Value 00Maximum Value 8000

This parameter provides a user settabletorque limit for positive torque referencevalues Positive motor torque referencewill not be allowed to exceed this value

Neg Torque Reference Limit[Neg Mtr Tor Lmt]

Parameter Number 176Parameter Type SinkDisplay Units ndash xxDrive Units ndash 4096 rated motor torqueFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

Motoring Power Limit[Motoring Power Lmt]

Parameter Number 177Parameter Type SinkDisplay Units xxDrive Units 4096 rated motoring powerFactory Default 2000Minimum Value 00 Maximum Value 8000

This parameter provides for a user entry ofthe maximum power level that will be sup-plied to the motor from the DC bus Themotoring power limit is used in a calcula-tion that results in an internal torque limit

This parameter provides a user settabletorque limit for negative torque referencevalues Negative motor torque referencewill not be allowed to exceed this value

Regen Power Limit[Regen Power Lmt]

Parameter Number 178Parameter Type SinkDisplay Units ndash xxDrive Units 4096 rated regen powerFactory Default ndash 2000Minimum Value ndash 8000Maximum Value 00

This parameter provides a user entry forthe maximum power level that will be transferred from the motor to the DC bus

Positive Motor Current Reference Limit[Pos Mtr Cur Lmt]

Parameter Number 179Parameter Type SinkDisplay Units xx Drive Units 4096 100 Motor Current (I2)Factory Default 1000Minimum Value 00 Maximum Value 2000

Negative Motor Current ReferenceLimit[Neg Mtr Cur Lmt]

Parameter Number 180Parameter Type SinkDisplay Units ndash xx Drive Units 4096 100 Motor Current (I2)Factory Default ndash 1000Minimum Value ndash 2000Maximum Value + 00

This parameter specifies the largest allow-able positive motor Iq axis current that willbe commanded Bit 0 in Parm 183 indi-cates when this parameter is activelyrestricting Iq current

This parameter determines the largestallowable negative motor Iq axis currentthat will be commanded Bit 8 in Parm 183indicates when this parameter is activelyrestricting Iq current

Chapter 5Programming Parameters

5ndash57

DiDT Limit[DiDt Limit]This parameter determines the largest al-lowable rate of change for the Iq referencesignal This number is scaled in units ofmaximum per unit Iq every 2 msec

Parameter Number 181Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Iq per 2msecFactory Default 200Minimum Value 00Maximum Value 300

Torque Limit Status[Torq Lmt Stat]

Parameter Number 183Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded sum-mary of any condition that may be limitingeither the IQ current or torque reference

0 = Positive Motor IQ Limit1 = Positive NTC Inverter Foldback2 = Positive IT Inverter Foldback3 = Positive Maximum Inverter Current4 = Positive Torque Limit5 = Positive Torque Power Limit6 = Positive Autotune Torque7 = Not Used8 = Negative Motor Iq Limit

9 = Negative NTC Inverter Protection Foldback10 = Negative IT Inverter Protection Foldback11 = Negative Maximum Inverter Current12 = Negative Torque Limit13 = Negative Torque Power Limit14 = Negative Autotune Torque Limit15 = Reserved Leave Zero

Computed Power[Computed Power]Calculated product of Torque Referencetime motor velocity feedback A 125 msecfilter is applied to this result Positive values indicate motoring power negative regenerative power

Parameter Number 182Parameter Type SourceDisplay Units +ndashxxDrive Units 4096 1000 powerFactory Default +00Minimum Value ndash8000Maximum Value +8000

Torque Mode Status[Torq Mode Stat]

Parameter Number 184Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a bit coded indica-tion of the currently active torque mode Ifthe drive is running this parameter reflectsthe Torque Mode selected in Torque ModeSel (P 53) If the drive is coasting orstopped this parameter will indicate the ac-tive torque mode is zero If in min or maxmode then the corresponding minmax bitwill be set along with the appropriate speedor torque mode bit as determined by theoutcome of the minmax selectorBits are defined as

Bit 0 ndash Zero Torque (Iq = 0)Bit 1 ndash Speed ModeBit 2 ndash Torque ModeBit 3 ndash Minimum SpeedTorqueBit 4 ndash Maximum SpeedTorqueBit 5 ndash Sum Speed + TorqueBit 6 to Bit 15 ndash Reserved Leave Zero

Perunit Motor Current[Motor Cur Fdbk]

Parameter Number 185Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 motor currentFactory Default 00Minimum Value 00Maximum Value 8000

Displays the perunit value of motor currentas determined from the LEM current sen-sors This data is scaled to read 10 pu atrated motor current This is a version ofparameter 264 that has been scaled to becompatible with analog outputs This datais averaged and updated on a 50 millisec-ond basis

Chapter 5Programming Parameters

5ndash58

Perunit Motor Voltage[Motor Volt Fdbk]Displays the perunit value of motor voltageas determined from an analogndashtondashdigitalconverter input This data is scaled to read10 pu at rated motor voltage This is aversion of parameter 265 that has beenscaled to perunit to be compatible withanalog outputs This data is averaged andupdated on a 50 millisecond basis

Parameter Number 186Parameter Type SourceDisplay Units xxDrive Units 4096 = 1000 motor voltageFactory Default 00Minimum Value 00Maximum Value 8000

Rated Inverter Output Amps[Base Drive Curr]

Parameter Number 220Parameter Type SourceDisplay Units xx ampsDrive Units Display units x 10Factory Default 200 ampsMinimum Value 01 ampsMaximum Value 32767 amps

Current rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type Used forcurrent ref scaling and current processorfeedback scaling

Rated Inverter Input Voltage[Base Line Volt]

Parameter Number 221Parameter Type SourceDisplay Units x voltDrive Units NonFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Drive Nameplate Voltage rating of inverterAutomatically set by drive at powerup as afunction of Power Structure Type

Inverter Carrier Frequency[PWM Frequency]

Parameter Number 222Parameter Type SinkDisplay Units x HzDrive Units NoneFactory Default 4000 HzMinimum Value 1000 HzMaximum Value 12000 Hz

This parameter defines the drive carrierfrequency in Hz

Chapter 5Programming Parameters

5ndash59

PrechargeRidethru Selection[PrechRdethru Sel]

Parameter Number 223Filegroup ApplicationBus RegControlParameter Type linkable destinationDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111 Conversion 1 = 1

Parameter 223 lets you choose options forthe bus filter reference prechargeride-through conditions and brakingUse bits 0 through 4 to set the slew rate forthe bus voltage tracker The bus voltagetracker slowly tracks changes in the actualbus voltage If none of the bits (0 through4) are set the slew rate is 005Vsecond

The precharge function of the drive limitsthe current to the bus capacitors whenpower is initially applied to the drive Theprecharge function is completed after aminimum 300 millisecond time delay andbus voltage at least 30 volts greater thanthe undervoltage setpoint and a stable busvoltage Ridethrough provides extendedlogic operating time if the power lines dropout while the drive is running If the pre-charge function is enabled ridethroughalso provides inrush current protection bystarting a precharge in case the incomingpower returns

The bits are defined as follows

Bit Description0 Slew Rate 1

Set to choose a slew rate of 10Vsecond Bit1 Slew Rate 2

Set to choose a slew rate of 5Vsecond2 Slew Rate 3

Set to choose a slew rate of 05Vsecond3 Slew Rate 4

Set to choose a slew rate of 005Vsecond4 Slew Rate 5

Set to choose a slew rate of 0005Vsecond5 Reserved

Leave 0

Undervoltage Setpoint[Under Volt Stpnt]

Parameter Number 224Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 615Minimum Value 100Maximum Value 900

Bus Precharge Timeout[Prechrg Timeout]

Parameter Number 225Parameter Type SinkDisplay Units xx SecDrive Units Display units x 10Factory Default 300 SecMinimum Value 100 SecMaximum Value 65535 Sec

This sets the minimum threshold voltageas a percent of line voltage that will becompared with the DC Bus Voltage as acheck for a Bus Undervoltage condition

This parameter establishes a time delayperiod for DC Bus Precharge If the Drivefails to finish a DC Bus Precharge in thistime a Precharge Timeout will occur

Bus Ridethru Timeout[Ridethru Timeout]

Parameter Number 226Parameter Type SinkDisplay Units xxxx SecDrive Units Display units x 1000Factory Default 2000 SecMinimum Value 0000 SecMaximum Value 65535 Sec

This parameter establishes a time delayperiod for DC Bus Ridethrough If the busremains in a low bus ridethru conditionlonger than this time a Bus ridethru timeout condition will occur

For additional information about PrechargeRidethrough Selectionrefer to Chapter 12 Troubleshooting

Bit Description6 Reserved

Leave 07 Reserved

Leave 08 Fast Fluxup

Set to enable fast flux up9 Reserved

Leave 010 Reserved

Leave 011 Prech Exit

Set to force an exit from precharge after the precharge timeout12 En Comm Bus

Set to enable common bus precharge External fault input is used as precharge enable

13 Dis Prech TmSet to disable bus precharge and undervoltage faults while the drive is disabled

14 Dis Mult PreSet to disable all precharges after the first power up

15 Dis RidethruSet to disable all ridethroughs

Chapter 5Programming Parameters

5ndash60

CP Operating Options[CP Options]

Parameter Number 227Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0000 0011 0000

For proper operation bits 0 to 6 must beleft at zeroIf bit 7 = 0 this allows the motor to coast toa stop after the flux test is completedIf bit 7 = 1 this brings the motor to a con-trolled stop after the flux test is completed

Parameter Number 228Parameter Type SinkDisplay Units xx HPDrive Units Display units x 10Factory Default 300 HPMinimum Value 10 HPMaximum Value HP

Base Motor Speed[Base Motor Speed]

Motor Nameplate Horsepower[Base Motor HP]

Parameter Number 229Parameter Type SinkDisplay Units x RPMDrive Units xFactory Default 1750 RPMMinimum Value 1 RPMMaximum Value 15000 RPM

Motor Nameplate AMPS[Base Motor Curr]

Parameter Number 230Parameter Type SinkDisplay Units xx ampsDrive Units Display units x 10Factory Default 02 ampsMinimum Value 01 ampsMaximum Value Based on parameter 220

Drive nameplate current rating of themotor Used for current reference scalingand current processor feedback scaling

User entered value of nameplate motorhorsepower The drive uses this informa-tion in the Dynamic Brake Resistortemperature calculation

User entered value of nameplate motorspeed in RPM The drive uses thisinformation to convert motor velocity RPMtofrom drive per unit

Motor Nameplate VOLTS[Base Motor Volt]

Parameter Number 231Parameter Type SinkDisplay Units x VoltDrive Units NoneFactory Default 460 voltMinimum Value 75 voltMaximum Value 575 volt

Motor Nameplate Frequency[Base Motor Freq]

Parameter Number 232Parameter Type SinkDisplay Units xx HzDrive Units display units x 10Factory Default 60 HzMinimum Value 1 HzMaximum Value 250 Hz

Drive nameplate voltage rating of themotor

Total number of motor poles in motor

Motor Nameplate Poles[Motor Poles]

Parameter Number 233Parameter Type SinkDisplay Units x polesDrive Units NoneFactory Default 4 polesMinimum Value 2 polesMaximum Value 40 poles

Motor Inertia[Motor Inertia]

Parameter Number 234Parameter Type SinkDisplay Units xxx SecDrive Units Display units x 100Factory Default 060 SecMinimum Value 001 SecMaximum Value 655 Sec

Time taken to acceleratean uncoupled motor from zero to basespeed at rated torque

Drive nameplate frequency rating of themotor

Chapter 5Programming Parameters

5ndash61

Encoder PPR[Encoder PPR]

Parameter Number 235Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024 pprMinimum Value 500 pprMaximum Value 20000 ppr

User entered pulse per revolution rating ofthe feedback device when using anencoder to determine motor velocity

RS Tune[Stator Res]

Parameter Number 236Parameter Type SinkDisplay Units xxx Drive Units 4096 = 10000 Stator ResFactory Default 150Minimum Value 000Maximum Value 10000

Lsigma Tune [Leakage Inductance][Leakage Ind]

Parameter Number 237Parameter Type SinkDisplay Units xxxDrive Units 4096 = 100 Leakage IndFactory Default 1800Minimum Value 000Maximum Value 10000

Id Tune [Base Flux Current][Base Flux Cur]

Parameter Number 238Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 motor ampsFactory Default 300Minimum Value 00Maximum Value 750

Sum of the stator and cable resistances ofthe motor in a per unit (percent representa-tion) This parameter is determined by theautocommissioning routine

Sum of the motor stator and rotor leakageinductances and the motor cable induc-tance in a per unit base impedance Thisparameter is determined by the autocom-missioning routine

Magnetizing current which produces ratedflux in the motor in a per unit (percent)representation This parameter is deter-mined by the autocommissioning routinebut can be entered manually

Iq Tune (Rated Torque Current)[Base Torque Cur]

Parameter Number 240Parameter Type SinkDisplay Units xxxDrive Units 1024 = 10000 Iq MotorFactory Default 9540 Minimum Value 000Maximum Value 10000

Current which produces rated torque in themotor in a per unit (percent) representa-tion This parameter is determined by theautocommissioning routine but can be en-tered manually

Vde Tune (Base Torque Voltage)[Base Torque Volt]

Parameter Number 241Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default ndash750 voltsMinimum Value ndash4680 voltsMaximum Value 00 volts

D axis voltage command to the motor atrated speed and rated current Parametercalculated by autocommissioning routineand MUST NOT BE CHANGED Datarepresented as XX volts

Vde Maximum (Peak HP)[Vde Max]

Parameter Number 243Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt line to neutral peakFactory Default 1125 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Maximum D axis voltage allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as XXvolts

Vqe Tune (Rated Flux Voltage)[Base Flux Volt]

Parameter Number 242Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4680 volts

Q axis voltage command to the motor atrated speed and rated current if motor isnot in field weakening Parameter calcu-lated by autocommissioning routine andMUST NOT BE CHANGED Data repre-sented as XX volts

Chapter 5Programming Parameters

5ndash62

Vqe Maximum (Constant HP)[Vqe Max]

Parameter Number 244Parameter Type SinkDisplay Units xx voltsDrive Units 16 = 1 volt (LndashN)Factory Default 3670 voltsMinimum Value 00 voltsMaximum Value 4688 volts

Vde Minimum (Constant HP)[Vde Min]

Parameter Number 245Parameter Type SinkDisplay Units xx VoltsDrive Units 16 = 1 volt line to neutral peakFactory Default 30 voltsMinimum Value 00 voltsMaximum Value 500 volts

Kslip (Base Slip Frequency)[Base Slip Freq]

Parameter Number 246Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 0832 HzMinimum Value 0000 HzMaximum Value 10000 Hz

Q axis voltage at which the motor entersfield weakening Parameter calculated byautocommissioning routine and MUSTNOT BE CHANGED Data represented asxx volts

D axis voltage below which the adaption tomotor changes in the torque control is dis-abled Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx volts

Base slip frequency of the motor Parameter calculated by autocommission-ing routine Data represented as xx Hz

Kslip Maximum [Base Slip Fr Max]

Parameter Number 247Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hzunit torqueFactory Default 200 HzMinimum Value 000 HzMaximum Value 3000 Hz

Maximum slip frequency allowed on themotor Parameter calculated by autocom-missioning routine and MUST NOT BECHANGED Data represented as xx Hz

Kslip Minimum[Base Slip Fr Min]

Parameter Number 248Parameter Type SinkDisplay Units xxx HzDrive Units 256 = 1Hz unit torqueFactory Default 050 HzMinimum Value 000 HzMaximum Value 1000 Hz

Minimum slip frequency allowed on themotor Calculated by autocommissioningroutine and MUST NOT BE CHANGEDData represented as xx Hz

Ki ndash Slip Regulator [Ki Slip]

Kp ndash Flux Regulator[Kp Flux]

Kp ndash Slip Regulator [Kp Slip]

Parameter Number 251Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Parameter Number 250Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 306Minimum Value 0Maximum Value 32767

Parameter Number 249Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 153Minimum Value 0Maximum Value 32767

Proportional Gain of the slip regulatorThis parameter MUST NOT BECHANGEDData represented as x

Integral Gain of the slip regulator Thisparameter MUST NOT BE CHANGEDData represented as x

Proportional Gain of the Flux regulatorThis parameter MUST NOT BECHANGEDData represented as x

Chapter 5Programming Parameters

5ndash63

Ki ndash Regulator[Ki Flux]

Parameter Number 252Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 125Minimum Value 0Maximum Value 32767

Integral gain of the slip regulator This pa-rameter MUST NOT BE CHANGEDData represented as x

AutotuneDiagnostics Selection[Autotun Diag Sel]

Parameter Number 256Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 1111 1111Enums

This parameter allows selection of drivediagnostic and commisioning tests by set-ting individual bits in this parameter

Bit 0 = Inverter transistor DiagnosticsBit 1 = Motor Phase Rotation TestBit 2 = Lsigma Measure TestBit 3 = Rs Measure TestBit 4 = Id Measure TestBit 5 = Torque Block Calc TestBit 6 = Motor Inertia TestBit 7 = System Inertia TestBit 8 = Velocity Loop Gain

Transistor Diagnostics Configuration[Tran Diag Disabl]

Parameter Number 257Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter provides a means of disab-ling certain transistor diagnostic tests bysetting the following bits

Bit 9 = Disable Power Trans V Lower for all testsBit 10 = Disable Power Trans W Upper for all testsBit 11 = Disable Power Trans W Lower for all testsBit 12 = High InductBit 13 = Reserved (Always leave 0)Bit 14 = Reserved (Always leave 0)Bit 15 = Reserved (Always leave 0)High Inductance motors may need extended test time to de-termine opens Setting bit 12 increases the test time

Inverter Diagnostics Result 1[Inverter Diag 1]

Parameter Number 258Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameter 258 amp259

Bit 0 = Software FaultBit 1 = No motor connected or open bus fuse Bit 2 = Phase U and W ShortedBit 3 = Phase U and V shortedBit 4 = Phase V and W shortedBit 5 = Shorted modulesBit 6 = Ground faultBit 7 = Fault before shorted module ranBit 8 = Hardware overvoltage fault occurred

Bit 9 = Hardware desaturation fault occurredBit 10 = Hardware ground fault occurredBit 11 = Hardware phase overcurrent fault occurredBit 12 = Open power transistor(s) See bit 12 in parameter 257Bit 13 = Current feedback fault(s)Bit 14 = Reserved Leave ZeroBit 15 = Reserved Leave Zero

Bit 0 = Disable I feedback phase U offsetBit 1 = Disable I feedback phase W offsetBit 2 = Disable Shorted Transistor TestsBit 3 = Disable Ground Fault TestsBit 4 = Disable Open device testsBit 5 = Not UsedBit 6 = Disable Power Trans U Upper for all testsBit 7 = Disable Power Trans U Lower for all testsBit 8 = Disable Power Trans V Upper for all tests

Chapter 5Programming Parameters

5ndash64

Inverter Diagnostics Result 2[Inverter Diag 2]

Parameter Number 259Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

The results of the Transistor DiagnosticTests are given in parameters 258 amp 259If any of the bits shown below are set thena problem with the associated test isindicated

0 = Transistor U upper shorted 1 = Transistor U lower shorted2 = Transistor V upper shorted3 = Transistor V lower shorted4 = Transistor W upper shorted5 = Transistor W lower shorted

6 = Current fdbk ph U offset too big7 = Current fdbk ph W offset too big8 = Transistor U upper open9 = Transistor U lower open10 = Transistor V upper openSee Parameter 257 bit 12

11 = Transistor V lower open12 = Transistor W upper open13 = Transistor W lower open14 = Current feedback phase U open15 = Current feedback phase W open

Id OFFSET[Id Offset]

Parameter Number 261Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Parameter Number 260Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default +0Minimum Value ndash100Maximum Value +100

Iq OFFSET[Iq Offset]

This parameter contains the LEM U offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

This parameter contains the LEM W offsetrequired to null the current error (no motorcurrent flowing) This offset is set automati-cally by running the transistor diagnostics

Phase Rotation Current Reference[Ph Rot Curr Ref]

Parameter Number 262Parameter Type SinkDisplay Units xxDrive Units 4096 = 1000 Motor CurrentFactory Default 500Minimum Value 00Maximum Value 1000

This parameter sets the current referencethat will be used when the Phase Rotationtest is run (Parm 256 bit 1)

Phase Rotation Frequency Reference[Phase Rot Freq Ref]

Parameter Number 263Parameter Type SinkDisplay Units xx HzDrive Units 128 1 HzFactory Default 30 HzMinimum Value ndash 300 HzMaximum Value +300 Hz

This parameter sets the frequency refer-ence that will be used when the PhaseRotation test is run (Parm 256 bit 1)

Motor Current Magnitude Feedback[Motor Cur Fdbk]

Parameter Number 264Parameter Type SourceDisplay Units xx AmpDrive Units Display units x 10Factory Default 00 ampsMinimum Value 00 ampsMaximum Value 65535 amps

Displays the actual RMS value of the motorcurrent as determined from the LEM cur-rent sensors This data is averaged andupdated on a 50 millisecond basis

Motor Voltage Magnitude[Motor Volt Fdbk]

Parameter Number 265Parameter Type SourceDisplay Units x VoltDrive Units NoneFactory Default + 0 VoltMinimum Value ndash 3000 VoltMaximum Value +3000 Volt

Displays the actual LinendashtondashLine RMS val-ue of motor voltage This data is averagedand updated on a 50 millisecondbasis

Chapter 5Programming Parameters

5ndash65

Stator Frequency[Freq Command]

Parameter Number 266Parameter Type SourceDisplay Units x xxx HzDrive Units 128 1HzFactory Default 0 000 HzMinimum Value ndash255992 HzMaximum Value +255922 Hz

Displays the actual value of motor statorfrequency Units are in Hz times 128 (128 1 Hz)

Parameter Number 268Parameter Type SourceDisplay Units x VltDrive Units NoneFactory Default 0 voltsMinimum Value 0 voltsMaximum Value 1000 volts

DC Bus Voltage[DC Bus Voltage]

Inverter Temperature Feedback[Inv Temp Fdbk]

Parameter Number 270Parameter Type SourceDisplay Units +ndash x degDrive Units NoneFactory Default 0 deg Minimum Value ndash 50 deg Maximum Value +255 deg

This is the actual Bus Voltage as read bythe software from an analog input portUnits are in volts

Inverter temperature determined by NTCdevice on heatsink power structureCan be configured to generate either awarning or fault when heatsink reaches 80degrees C

Filtered Velocity Feedback[Filt Vel Fdbk]

Parameter Number 269Parameter Type SourceDisplay Units xx rpmDrive Units 4096 = base motor speedFactory Default 00 rpmMinimum Value ndash 8 x Base SpeedMaximum Value +8 x Base Speed

This parameter contains a filtered versionof velocity feedback The value containedin this parameter is not meant to be usedfor control only for display and monitoringpurposes

Limited Motor Flux[Lim Motor Flux]

Parameter Number 271Parameter Type SourceDisplay Units xxDrive Units 4096 = 100 fluxFactory Default 100Minimum Value 125Maximum Value 100

This parameter displays the level of motorfield flux calculated by the current proces-sor and limited by the Min Flux Levelparameter (Param 174)

Parameter Number 267Parameter Type SourceDisplay Units +ndash xxDrive Units 4096 = 1000 Factory Default 00Minimum Value ndash8000Maximum Value +8000

Calculated Torque[Calc Torque]

This parameter will display the calculatedvalue of motor torque as determined by theVelocity Processor The actual value ofmotor torque will be within 5 of this valueScaling is 4096 at rated motor torque Thisdata is updated on a 2 millisecond basis

Testpoint Selection 1[Torq TP Sel 1]

Parameter Number 273Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

This parameter selects a torque block testpoint The value of that test point can beread from Torq TP Data 1 (Parm 274)

Chapter 5Programming Parameters

5ndash66

Testpoint Data 1[Torq TP Sel 1]

Parameter Number 274Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 2[Torq TP Sel 2]

Parameter Number 275Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 2[Torq TP Data 2]

Parameter Number 276Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 3[Torq TP Sel 3]

Parameter Number 277Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 3[Torq TP Data 3]

Parameter Number 278Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 4[Torq TP Select 4]

Parameter Number 279Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 4[Torq TP Data 4]

Parameter Number 280Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

This parameter contains the data selectedby Testpoint Selection 1 (param 273)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 2 (Parm 276)

This parameter contains the data selectedby Testpoint Selection 1 (param 275)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 3 (Parm 278)

This parameter contains the data selectedby Testpoint Selection 3 (param 277)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 4 (Parm 280)

This parameter contains the data selectedby Testpoint Selection 4 (param 279)

Chapter 5Programming Parameters

5ndash67

Testpoint Selection 5[Torq TP Sel 5]

Parameter Number 281Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 5[Torq TP Data 5]

Parameter Number 282Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Testpoint Selection 6[Torq TP Sel 6]

Parameter Number 283Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 100

Testpoint Data 6[Torq TP Data 6]

Parameter Number 284Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value 32767

Selection for Test DAC 1[Test DAC1 Sel]

Parameter Number 285Parameter TypeDisplay UnitsDrive UnitsFactory Default 1Minimum Value 0Maximum Value 256

Selection for Test DAC 2[Test DAC2 Sel]

Parameter Number 286Parameter TypeDisplay UnitsDrive UnitsFactory Default 4Minimum Value 0Maximum Value 256

This parameter is for factory use only DONOT ATTEMPT TO USE

Ki Frequency Regulator[Ki Freq Reg]

Parameter Number 287Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 300Minimum Value 0Maximum Value 32767

Integral gain of the frequency regulator insensorless mode This parameter mustnot be changed

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 5 (Parm 282)

This parameter contains the data selectedby Testpoint Selection 5 (param 281)

This parameter selects a torque block testpoint The value of that test point can beread from Testpoint Data 6 (Parm 284)

This parameter contains the data selectedby Testpoint Selection 6 (param 283)

This parameter is for factory use only DONOT ATTEMPT TO USE

Chapter 5Programming Parameters

5ndash68

Kp Frequency Regulator[Kp Freq Reg]

Parameter Number 288Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 800Minimum Value 0Maximum Value 32767

Proportional gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Kff Freq Regulator[Kff Freq Reg]

Parameter Number 289Parameter Type SinkDisplay Units xDrive Units 1 = 256Factory Default 1Minimum Value 0Maximum Value 128

Ksel Freq Regulator[Ksel Freq Reg]

Feedforward gain of the frequency regula-tor in sensorless mode This parametermust not be changed

Parameter Number 290Parameter Type SinkDisplay Units xxDrive Units NoneFactory Default 67Minimum Value 00Maximum Value 32767

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Frequency Tracker Filter[Freq Track Filt]

Parameter Number 291Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Rotor frequency regulator filter in sensor-less mode This parameter must not bechanged

Tracking Filter Type[Track Filt Type]

Parameter Number 292Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1 (Self Adjust)Minimum Value 0 (Fixed)Maximum Value 128

Frequency Trim Filter[Freq Trim Filt]

Low frequency filter select of the frequencyregulator in sensorless mode This param-eter must not be changed by nonndashfactorypersonnel

Parameter Number 293Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 5000Minimum Value 0Maximum Value 32767

Slip frequency regulator filter in sensorlessmode This parameter must not bechanged

Motor Phase Rotation Errors[Phs Test Rot Err]

Parameter Number 294Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This parameter indicates an error conditiondetected during the motor phase rotationtest1 = Drive condition true0 = Drive condition false

Bits are defined asBit Condition0 1 to 15

Enable Drop OutReserved

Chapter 5Programming Parameters

5ndash69

Motor Inductance Test Errors[Lo Test Error]

Parameter Number 295Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor inductance test1 = Drive condition true0 = Drive condition false

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Zero Current3 AD Overflow at min gain4 Enable drop out5 Sign errorOverflow6 to 15 Reserved

Motor Stator Resistance Test Errors[Rs Test Error]

Parameter Number 296Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

Low frequency gain boost of the frequencyregulator in sensorless mode This param-eter must not be changed

Bits are defined as followsBit Condition0 Motor Not at Zero Speed1 Sign Error2 Not Used3 Zero Current4 Not Used5 Software Error6 Not Used7 Enable Drop Out8ndash15 Reserved

Motor Flux (Id) Test Errors[Id Test Error]

Parameter Number 297Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111

This parameter indicates an error conditiondetected during the motor flux (Id) test If abit is set to ldquo1rdquo the Drive condition is trueotherwise the condition is false

Torque Block Calculation Errors[Torq Calc Error]

Parameter Number 298Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1111 1111 1111 1111Enums

This word parameter indicates an errorcondition which has been detected duringthe torque block calculations If a bit is setto ldquo1rdquo the Drive condition is true otherwisethe condition is false

Bits are defined as

Bit Condition0 1 to 15

Negative or Zero SlipReserved

Bits are defined as followsBit Condition0 Autotune Speed Low (30 min)1 Identified Id lt zero2 Identified Id gt 100 motor current3 Enable drop out4ndash15 Reserved

Chapter 5Programming Parameters

5ndash70

Adapter Identification Number[Adapter ID]

Parameter Number 300Parameter Type SourceDisplay Units xDrive Units NoneFactory Default 2Minimum Value 2Maximum Value 2

Adapter Software Version[Adapter Version]

Parameter Number 301Parameter Type SourceDisplay Units xxxDrive Units NoneFactory Default xxxMinimum Value 000Maximum Value 999

This parameter displays the StandardAdapter ID

This parameter displays the softwareversion number

Adapter Config[Adapter Config]

Parameter Number 302Parameter Type SourceDisplay UnitsDrive UnitsFactory DefaultMinimum ValueMaximum Value

(Not Used In Present Release)

Language Select[Language Select]

Parameter Number 304Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 1

This parameter makes the selectionbetween two languages0 ndash Primary Language1 ndash Alternate Language

Parameter Number 310Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In A1[Data In A1]

Data In A2[Data In A2]

Data In B1[Data In B1]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 311Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 312Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

NOTE The Parameters shown here in the range from 300 to 500 are Standard Adapter Parameters OnlyParameter descriptions for PLC Comm Adapter Parameters are covered in the PLC Comm Adapter User Manual

Chapter 5Programming Parameters

5ndash71

Data In B2[Data In B2]

Data In C1[Data In C1]

Data In C2[Data In C2]

Data In D1[Data In D2]

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 313Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 314Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 315Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

Parameter Number 316Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 317Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data In D2[Data In D2]

Data Out A1[Data Out A1]

Data Out A2[Data Out A2]

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

This parameter displays the SCANport todrive image which is received from somedevice on SCANport

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 321Parameter Type SourceDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 320Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out B1[Data Out B1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 322Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Chapter 5Programming Parameters

5ndash72

Data Out C1[Data Out C1]

Data Out B2[Data Out B2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 323Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Parameter Number 324Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D1[Data Out D1]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 326Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

Data Out C2[Data Out C2]

Parameter Number 325Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Data Out D2[Data Out D2]This parameter displays the drive toSCANport image which is sent to somedevice on SCANport

Parameter Number 327Parameter Type SinkDisplay Units ndashndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

SCANport Port Enable Mask[Port Enable Mask]

Parameter Number 330Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can control the Drive1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash73

SCANport Start Mask[Start Mask]

Parameter Number 332Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a start command1 = Permit Control0 = Deny Control

SCANport Jog Mask[Jog Mask]

Parameter Number 333Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Jog command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Clear Fault Mask[Clear Fault Mask]

Parameter Number 335Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Clear Faults command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Reference Mask[Reference Mask]

Parameter Number 334Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevice can issue a reference command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

SCANport Direction Mask[Direction Mask]

Parameter Number 331Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a forwardreversecommand1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved

Chapter 5Programming Parameters

5ndash74

SCANport Reset Drive Mask[Reset Drive Mask]

Parameter Number 336Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can issue a Reset Drive command1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Local Control Mask[Local Mask]

Parameter Number 337Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0111 1111Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter selects which SCANportdevices can take local control1 = Permit Control0 = Deny Control

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Stop Owner[Stop Owner]

Parameter Number 340Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid stopcommand1 = Stop Input Present0 = Stop Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Direction Owner[Direction Owner]

Parameter Number 341Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofdirection changes1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Start Owner[Start Owner]

Parameter Number 342Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid startcommand1 ndash Start Input Present0 ndash Start Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash75

SCANport Jog 1 Owner[Jog 1 Owner]

Parameter Number 343Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 1command1 = Jog 1 Input present0 = Jog 1 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Reference Owner[Reference Owner]

Parameter Number 345Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe reference changes1 = Current Owner0 = Non Owner

SCANport Jog 2 Owner[Jog 2 Owner]

Parameter Number 344Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid jog 2command1 = Jog 2 Input Present0 = Jog 2 Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leavc Zero

SCANport Local Control Owner[Local Owner]

Parameter Number 346Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevice currently has exclusive control ofthe drive1 = Current Owner0 = Non Owner

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Flux Owner[Flux Owner]

Parameter Number 347Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid fluxcommand1 = Flux Input Present0 = Flux Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Chapter 5Programming Parameters

5ndash76

SCANport Ramp Owner[Ramp Owner]

Parameter Number 349Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid rampcommand1 = Ramp Input Present0 = Ramp Input Not Present

SCANport Clear Fault Owner[Clr Fault Owner]

Parameter Number 350Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are presently issuing a valid ClearFault Command1 = Clear Fault Input Present0 = Clear Fault Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

SCANport Process Trim Owner[Trim Owner]

Parameter Number 348Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 0111 1111Enums

This parameter displays which SCANportdevices are currently issuing a valid process trim command1 = Process Trim Input Present0 = Process Trim Input Not Present

Bit 0 ndash TB3Bit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2

Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6 (Int Gateway)Bit 7 ndash Reserved Leave Zero

10 Volt In Filtr[10 Volt In Filtr]

Parameter Number 352Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequency for the 10 Volt Input

Pot In Filtr[Pot In Filter]

Parameter Number 353Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointradian frequecy for the Pot Input

mA In Filtr[mA In Filter]

Parameter Number 354Parameter TypeDisplay Units xx rsDrive Units eng x 10 radiansecFactory Default 00 rsMinimum Value 00 rsMaximum Value 2000 rs

This parameter establishes the breakpointfor the mA Input

Chapter 5Programming Parameters

5ndash77

10 Volt Input[10 Volt Input]

Parameter Number 355Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the +ndash 10 volt input

10 Volt Offset[10 Volt Offset]

Parameter Number 356Parameter Type SinkDisplay Units +ndash xxx voltDrive Units 205 = 1 voltFactory Default +000 voltMinimum Value ndash2000 voltMaximum Value +2000 volt

This parameter determines the offset ap-plied to the raw analog value of the +ndash 10volt input before the scale factor is appliedThis allows the user to shift the range ofthe analog input

10 Volt Scale[10 Volt Scale]

Parameter Number 357Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the +ndash 10 volt input The +ndash 10volt input is converted to +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

Pot Input[Pot Input]

Parameter Number 358Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the convertedanalog value of the pot input

Pot Offset[Pot Offset]

Parameter Number 359Parameter Type SinkDisplay Units +ndash xxx voltsDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog value of the potinput before the scale factor is appliedThis allows the user to shift the range ofthe of the analog input

Pot Scale[Pot Scale]

Parameter Number 360Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +1000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the pot input The pot input isconverted to a +ndash 2048 and then the scaleis applied allowing an effective digital rangeof +ndash 32767

Milli Amp Input[mA Input]

Parameter Number 361Parameter Type SourceDisplay Units xDrive Units NoneFactory Default +0Minimum Value 0Maximum Value +32767

This parameter displays the convertedanalog value of the milli amp input

Chapter 5Programming Parameters

5ndash78

Milli Amp Input Offset[mA Input Offset]

Parameter Number 362Parameter Type SinkDisplay Units + xxxx mADrive Units 128 = 1mAFactory Default +0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw analog value of the milliamp input before the scale factor is ap-plied This allows the user to shift therange of the analog input

Milli Amp Input Scale[mA Input Scale]

Parameter Number 363Parameter Type SinkDisplay Units +ndash xxxxDrive Units 2048 = 1Factory Default +2000Minimum Value ndash16000Maximum Value +16000

This parameter determines the scale factoror gain for the milli amp input The milliamp input is converted to a +ndash 2048 andthen the scale is applied which allows aneffective digital range of +ndash 32767

SCANport Analog1 Select[SB Analog Sel]

Parameter Number 364Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 365lsquoSP Analog Inrsquo

1 SCANport 12 SCANport 23 SCANport 3

4 SCANport 45 SCANport 56 SCANport 6

SCANport Analog1 In[SB Analog1 In]

Parameter Number 365Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 364 lsquoSP Analog Selrsquo

SP Analog1 Scale[SB Analog1 Scale]

Parameter Number 366Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 365

Chapter 5Programming Parameters

5ndash79

SCANport Analog2 Select[SB Analog2 Sel]

Parameter Number 367Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 6Enums

This parameter selects which SCANportanalog device is used in parameter 368lsquoSB Analog In 2rsquo

1 Scanport 12 Scanport 23 Scanport 3

4 Scanport 45 Scanport 56 Scanport 6

SCANport Analog2 In[SB Analog2 In]

Parameter Number 368Parameter Type SourceDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valueof the SCANport device selected inparameter 367 lsquoSP Analog2 Selrsquo

SP Analog2 Scale[SB Analog2 Scale]

Parameter Number 369Parameter Type SinkDisplay Units +ndashxDrive Units +ndash 1 1 = 32767Factory Default 1 (32767)Minimum Value ndash1 (ndash32767)Maximum Value 1 (32767)

This parameter can be used to scale thevalue in Parameter 368

Analog Output 1[Analog Out 1]

Parameter Number 370Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 1 Offset [An Out 1 Offset]

Parameter Number 371Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000 voltMinimum Value ndash20000 voltMaximum Value +20000 volt

This parameter determines the offsetapplied to the raw analog output 1 Theoffset is applied after the scale factor

Chapter 5Programming Parameters

5ndash80

Analog Output 1 Scale[An Out 1 Scale]

Parameter Number 372Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 1 A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Analog Output 2[Analog Out 2]

Parameter Number 373Parameter Type SinkDisplay Units +ndash xDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter converts a +ndash 32767digital value to a +ndash 10 volt output

Analog Output 2 Offset[An Out 2 Offset]

Parameter Number 374Parameter Type SinkDisplay Units +ndash xxxx voltDrive Units 205 = 1 voltFactory Default +0000Minimum Value ndash20000Maximum Value +20000

This parameter determines the offset ap-plied to the raw analog output 2 The offsetis applied after the scale factor

Analog Output 2 Scale[An Out 2 Scale]

Parameter Number 375Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value +1000

This parameter determines the scale factoror gain for Analog Output 2 A +ndash 32767digital value is converted by the scale fac-tor which allows abn effective digital rangeof +ndash 2048 which is then offset to providea +ndash 10 volt range

Milli Amp Output[mA Output]

Parameter Number 376Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value +32767

This parameter converts a +ndash 32767digital value to a 4ndash20 mA output

Milli Amp Output Offset[mA Output Offset]

Parameter Number 377Parameter Type SinkDisplay Units +ndash xxxx mADrive Units 128 = 1mAFactory Default 0000 mAMinimum Value ndash32000 mAMaximum Value +32000 mA

This parameter determines the offset ap-plied to the raw milli amp output The off-set is applied after the scale factor

Chapter 5Programming Parameters

5ndash81

Milli Amp Output Scale[mA Output Scale]

Parameter Number 378Parameter Type SinkDisplay Units +ndash xxxxDrive Units 32767 = 1Factory Default +0500Minimum Value ndash1000Maximum Value 1000

This parameter determines the scale factoror gain for milli amp output A +ndash 32767digital value is converted by the scale fac-tor which allows an effective digital rangeof +ndash 2048 which is then offset to providea +ndash 20 mA range

SCANport Analog Output[SP Analog Out]

Parameter Number 379Parameter Type SinkDisplay Units +ndashxDrive Units NoneFactory Default 0Minimum Value ndash32767Maximum Value +32767

This parameter displays the analog valuethat is sent to all SCANports

Programmable Output Select[Output Select]

Parameter Number 384Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 8Minimum Value 0Maximum Value 63

This parameter selects the function ofTB7ndash1 Output The NOT column in thefollowing table indicates the value for theinverse condition For example Enteringa value of 0 will result in a Run Readycondition while a value of 32 results in a NOT Run Ready condition

NOT EN 32 0 RUN READY 33 1 RUNNING 34 2 COMMAND DIRECTION 35 3 ROTATING DIRECTION 36 4 ACCELERATING 37 5 DECELERATING 38 6 WARNING 39 7 FAULTED 40 8 AT SET SPEED 41 9 LOCAL A 42 10 LOCAL B 43 11 LOCAL C 44 12 AT ZERO SPEED 45 13 REF A 46 14 REF B 47 15 REF C

NOT EN 48 16 FLUX READY 49 17 FLUX UP 50 18 DIAGNOSTIC COMPLETED 51 19 DIAGNOSTIC ABORTED 52 20 BUS RIDETHRU 53 21 JOGGING 54 22 AUTOTUNE STAT A 55 23 AUTOTUNE STAT B 56 24 AT LIMIT 57 25 NOT USED 58 26 AT SETPOINT 1 59 27 AT SETPOINT 2 60 28 OVER SETPOINT 1 61 29 OVER SETPOINT 2 62 30 OVER SETPOINT 3 63 31 OVER SETPOINT 4

Set P66 to the type of Set Point desiredCurrent or SpeedThen set the appropriate parameter (P60 ndashP65) to monitor your desired SetPoint

Chapter 5Programming Parameters

5ndash82

IO Stop Select 1[Stop Select 1]

Parameter Number 387Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 5 2 = Current limit stop1 = Ramp Stop0 = Coast Stop

Input Status[Input Status]

Parameter Number 386Parameter Type SourceDisplay Units BitDrive Units NoneFactory Default 0000 0000Minimum Value 0000 0000Maximum Value 1111 1111Enums

This parameter displays the onoff status ofinputs 1-8 at TB31 = ON0 = Off

Bit Condition0 12

Input 1Input 2Input 3

Bit Condition345

Input 4Input 5Input 6

Bit Condition67

Input 7Input 8

Input Mode[Input Mode]

Parameter Number 385Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 30Enums

This parameter selects the functions of theinputs 1-9 at TB3

Mode 1 2 3 4 5 27 6 7 8 9 2810 291112131415 301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2StopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevPot UpRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3RevSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type12 AccPot UpJogFwdFwdPot OnFwd2nd AccLocRemStop Type12 AccPot upLocRemProc TrimFlux EnSpdTrq2SpdTrq2FwdSpdTrq2Proc TrimFlux EnProc TrimJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd 3Spd 312 DecPot DnLocRemJogSpd 3Spd 3Pot Up1st DecSpd 3Spd 312 DecPot DnStop TypeRampResetSpdTrq1SpdTrq2RampSpdTrq1ResetResetRampSpd 3

Input 7StatusSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Pot Dn2nd DecSpd 2Spd 2Spd 2Spd 2Spd 2Spd 2Spd 2Proc TrimFlux EnResetSpd 2Spd 2Spd 2Spd 2Spd 2

Input 8StatusSpd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1Spd 1

Chapter 5Programming Parameters

5ndash83

MOP Value[Mop Value]

Parameter Number 394Parameter Type SourceDisplay Units x RPMDrive Units 4096 = Base SpeedFactory Default 00Minimum Value Negative Speed LimitMaximum Value Positive Speed Limit

This parameter displays the MOP value

IO Deceleration Rate 2[Decel Rate 2]

Parameter Number 392Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

Mop Increment[Mop Increment]

Parameter Number 393Parameter Type SinkDisplay Units xx RPM (RPM per sec)Drive Units 4096= Base SpeedFactory Default 10 of base speedMinimum Value 00 RPMMaximum Value Base Speed

This parameter determines the rate ofincrease or decrease to the MOP valueper time

IO Deceleration Rate 1[Decel Rate 1]

Parameter Number 391Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the base speedto 0 rpm ramp rate

IO Acceleration Rate 2[Accel Rate 2]

Parameter Number 390Parameter Type SinkDisplay Units xx secDrive Units 10 = 1 secFactory Default 100 secMinimum Value 00 secMaximum Value 65535 sec

This parameter determines the 0 rpm tobase speed ramp rate

IO Stop Select 2[Stop Select 2]

Parameter Number 388Parameter Type SinkDisplay Units xDrive Units NoneFactory Default 0Minimum Value 0Maximum Value 3

This parameter selects the stopping modefor a valid stop command3 = Param 59 Bits 4 or 52 = Current limit stop1 = Ramp Stop0 = Coast Stop

IO Acceleration Rate 1[Accel Rate 1]

This parameter determines the 0 rpm tobase speed ramp rate

Parameter Number 389Parameter Type SinkDisplay Units xx SecDrive Units 10 = 1 secFactory Default 10 secMinimum Value 00 secMaximum Value 65535 sec

Chapter 5Programming Parameters

5ndash84

Pulse Value[Pulse Value]

Parameter Number 399Parameter Type SourceDisplay Units xx RPMDrive Units 4096 = Pulse ScaleFactory Default 00Minimum Value ndash8 x Pulse ScaleMaximum Value +8 x Pulse Scale

This parameter displays the pulse inputvalue

Pulse Offset[Pulse Offset]

Parameter Number 398Parameter Type SinkDisplay Units xx RPMDrive Units NoneFactory Default 00Minimum Value ndash Pulse ScaleMaximum Value + Pulse Scale

This parameter determines the minimumspeed the pulse input will go to

This parameter determines the pulse inputspeed that is equal to 4096 drive units

Pulse Scale[Pulse Scale]

Parameter Number 397Parameter Type SinkDisplay Units x RPMDrive Units 4096Factory Default 1750Minimum Value ndash6000Maximum Value +6000

SP Comm Retries[SP Comm Retries]

Parameter Number 404Parameter Type SourceDisplay Units xDrive UnitsFactory Default 00Minimum Value 0Maximum Value 65535

This parameter monitors the amount ofSCANport communications errorsthat have occurred since power up

Pulse PPR[Pulse PPR]

Parameter Number 395Parameter Type SinkDisplay Units x PPRDrive Units NoneFactory Default 1024Minimum Value 500Maximum Value 20000

This parameter determines the pulse inputpulses per revolution

Pulse Single or Double Edge[Pulse Edge]

Parameter Number 396Parameter Type SinkDisplay Units NoneDrive Units NoneFactory Default 1Minimum Value 1Maximum Value 2Enums1 = 1 Edge2 = 2 Edges

This parameter determines if rising (single)or rising and falling (double) edges arecounted for the pulse input

Chapter 5Programming Parameters

5ndash85

Fault Status[SA Fault Status]

Parameter Number 407Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 1110 0001 0111 1111Enums

This parameter displays the fault status ofthe SCANport device1 = Fault0 = No Fault

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5

Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4 ndash 20 mA LossBit 9 ndash Not UsedBit 10 ndash Not UsedBit 11 ndash Not Used

Bit 12 ndash Not UsedBit 13 ndash Illegal Drive Type (Not Configurable)Bit 14 ndash Diff Drive Type (Not Configurable)Bit 15 ndash SCANport error (Not configurable)

Warning Status[SA Warn Status]This parameter displays the warning statusof the SCANport device timeouts1 = Warning0 = No Warning

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3

Bit 4 ndash SCANport Device 4Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6

Parameter Number 408Parameter Type SourceDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0000 0000Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

Bit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Fault Select[SA Fault Select]

Parameter Number 405Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter chooses whether a SCAN-port device causes a drive fault a warningbased on lsquoSA Warn Selrsquo (P406) or doesnothing1 = Fault0 = WarningNothing

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Warning Select[SA Warn Select]

Parameter Number 406Parameter Type SinkDisplay Units BitsDrive Units NoneFactory Default 0000 0000 0111 1111Minimum Value 0000 0000 0000 0000Maximum Value 0000 0001 0111 1111Enums

This parameter selects whether a SCAN-port device timeout causes a warning ordoes nothing1 = Warning0 = Does Nothing

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Bit 5 ndash SCANport Device 5Bit 6 ndash SCANport Device 6Bit 7 ndash Not UsedBit 8 ndash 4ndash20 mA LossBit 9ndash15 ndash Not Used

Bit 0 ndash Not UsedBit 1 ndash SCANport Device 1Bit 2 ndash SCANport Device 2Bit 3 ndash SCANport Device 3Bit 4 ndash SCANport Device 4

Chapter 5Programming Parameters

5ndash86

This Page Intentionally Blank

Chapter 6

6ndash1

Troubleshooting

General Chapter 6 provides information to guide you in troubleshooting The 1336FORCE Drive employs extensive diagnostics to aid in correcting manymalfunctions that may occur in the system This guide is designed to helpyou interpret the diagnostic response of the Drive when a malfunctionoccurs Possible corrective measures will be explained to help you get theDrive repaired or functional as quickly as possible for most types ofmalfunctions

ATTENTION Only qualified personnel familiar with the1336 FORCE drive system and the associated machinery shouldperform troubleshooting or maintenance functions on the DriveFailure to comply may result in personal injury andorequipment damage

During Start-up you should have recorded board jumper settings for eachboard board software version numbers and the drive and motor nameplate data in Table 4A If it was not record it at this time before beginningany troubleshooting sequences

Required Equipment For initial troubleshooting a programming device is required to read faultcodes In addition to a programming device the following should beavailable before initiating any troubleshooting procedures

Digital Multimeter (DMM) capable of 1000V DC750VAC with one megohm minimum input impedance

Clamp on Ammeter (ACDC) with current ratings to 2X rated current output of 1336 FORCE AC Drive

Dual trace oscilliscope with differential capability digital storage two X10 and one X100 calibrated probes (optional but recommended)

ATTENTION Potentially fatal voltages may result from improp-er useage of an oscilliscope and other test equipment The oscilli-scope chassis may be at potentially fatal voltage if not properlygrounded AllenndashBradley does not recommend use of an oscilli-scope to directly measure high voltages Use an isolated measur-ing device with a high voltage probe Contact AllenndashBradley forrecommendations

Hand tachometer used to monitor motor velocities Programming Device Instruction Manual and Adapter Board

Reference Manuals

Chapter 6Troubleshooting

6ndash2

Fault Descriptions Fault Display ndash Faults are indicated by showing a decimal number of up to5 characters relating to the fault (Figure 61) or by flashing LED sequenceson the Main Control Board The fault will be displayed until a Drive resetor Clear Faults is initiated A Drive Reset will clear all faults but a ClearFaults Command will only clear soft and warning faults Refer to Tables6A amp 6B for a listing and description of the various faults Whenapplicable a possible solution will also be provided

Figure 61Typical Fault Description Display

5500 2

Fault Code Definition ndash The fault code is a 5 character decimal numberthat is defined as follows

SAXXX S = Source DesignatorA = Area DesignatorXXX = Internal Fault Code (0 thru 999)

The Source Designator (S) is the 1st digit of the number0 = Main Board Velocity Processor (VP)1 = Main Board Current Processor (CP)2 = Adapter Processor (PLC Comm Standard Adapter etc)3 = Domino Processor (DP)4 = Reserved

Area Designator (A) is the 2nd digit of a number0 = General1 = Motor2 = Inverter3 = Mtr Control4 = Adapter5 = External Device6 = Communications7 = Reserved8 = Reserved9 = ConverterBrake

Internal Fault Code (XXX)The internal fault codes (last three digits of number) are identified in Table6A thru 6C

Chapter 6Troubleshooting

6ndash3

Table 6A1336 FORCE Main Control Fault Descriptions

Fault Fault Text Parameter

1300013001130021300313004

03008030090301003011030120301302014

12016120171201812019140201602116022

040240302503026120270202803029

120321203312034120351203612037

050480204901050010510105201053050540205503057030580905902060020610606202063

CP EPROM FltCP Int RAM FltCP Ext RAM FltCP Stack RAM FltVP MBI Failure (Dual Port)

VP EPROM FltVP Int RAM FltVP Ext RAM FltVP Stack RAM FltCP MBI Failure AP MBI Failure Power EEPROM Flt

Bus OvervoltageTransistor DesatGround FaultIOC FaultSW Malfunction MS Cable LossMS Ena Timeout

AP Handshake ErrorAbsolute OverspdAnalog Spply TolAtuneDiag FailInv Temperature VP ndash SW Error

Ridethrough TimePrecharge TimeBus DropBus UndervoltBus Drop Cycles gt5Open Circuit

Vel FB LossInv Overtemp PndMtr TemperatureMotor Overld PndMotor Overld TrpMotor StalledExternal Flt InRMS FaultParameter LimitMath LimitDB OvertempAC Contactor Inv Overld PndDrv to Drv ErrorInverter Overload

Bit

8080808080

80808080808080

81818181818181

818181818181

828282828282

838383838383838383838383838383

0001020304

08091011121314

00010203040506

080910111213

000102030405

000102030405060709101112131415

LED

CP Red 1 blinkCP Red 2 blinkCP Red 3 blinkCP Red 4 blinkCP Red 5 blink

VP Red 1 blinkVP Red 2 blinkVP Red 3 blinkVP Red 4 blinkVP Red 5 blinkVP Red 6 blinkVP Red Flashing

CP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid RedCP Solid Red

VP Solid RedVP Flashing RedVP Flashing RedCP VP Flash RedVP Solid RedVP Solid Red

CP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing RedCP Flashing Red

VP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Flashing RedVP Solid RedVP Flashing RedVP Flashing RedVP Flashing Red

Fault Type

SoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftHard

HardHardHardHardHardHardHard

HardSoftSoftSoftHardHard

SoftSoftSoftSoftSoftSoft

SoftSoftSoftSoftSoftSoftSoftSoftSoftSoftSoftHardSoftSoftSoft

Chapter 6Troubleshooting

6ndash4

The first digit in the 5 character fault number for Standard Adapter Boardfaults is always 2 indicating the source is an Adapter Processor

0 = Velocity Processor (VP)1 = Current Processor (CP)2 = Adapter Processor (Standard Adapter or PLC Comm)3 = Domino Processor (DP)

The Area Designator (2nd digit) and internal fault codes (last three digits)remain the same as described under the Fault Code Definition on page 6ndash2Listed below are the fault codes for the Standard Adapter Board For aPLC Comm Adapter fault codes refer to the PLC Comm Adapter manual

Table 6B1336 FORCE Standard Adapter Fault Descriptions

Fault Description Type24001240022400324004240052400624007

24017240182401924020240212402224024

240292403024031

MBI FailureBRAM FailureVP Handshake FailureCP Handshake FailureVP Mode FailureCP Mode FailureSA Language Failure

SP Port 1 FailureSP Port 2 FailureSP Port 3 FailureSP Port 4 FailureSP Port 5 FailureSP Port 6 Failure4 ndash 20Ma Loss

Drive Type DifferenceIllegal Drive TypeSP Internal Failure

Hard FaultHard FaultHard FaultHard FaultHard FaultHard FaultHard Fault

FaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNoneFaultWarningNone

Soft FaultHard FaultSoft Fault

Fault TextHW MalfunctionHW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionSW MalfunctionHW Malfunction

SP PT1 TimeoutSP PT2 TimeoutSP PT3 TimeoutSP PT4 TimeoutSP PT5 TimeoutSP PT6 Timeout4 ndash 20Ma Loss

Diff Drv TypeIllegal Drv TypeSW Malfunction

Chapter 6Troubleshooting

6ndash5

FaultWarning Handling The lights on the motor control board indicate the status of the Current andVelocity processors Both the Current and Velocity processors have bothGreen and Red LEDrsquos associated with their status Table 6C explains themeaning of the CP and VP status lights

Table 6CCP and VP Status

Status Meaning

Solid GreenFlashing GreenFlashing RedSolid Red

No FaultDrive WarningDrive Soft FaultDrive Hard Fault

VP LED CP LED

D2D2D3D3

D4D4D5D5

Hard Fault ndash A Drive hard fault is a fault that trips the Drive causing it tocome to a stop This type of fault requires the user to perform a DriveReset to remove the fault

Soft Fault ndash A Drive soft fault will also cause the drive to trip and cometo a stop This type of fault can be removed by doing a Clear Faultscommand after the condition that caused the Drive to trip has beenremoved

Drive Warning ndash A Drive Warning is simply an undesirable conditionthat exists within the Drive It will not cause the Drive to trip A ClearFaults command after the warning condition has been alleviated willremove the warningEverytime the Drive has any of the faults or warnings decribed above afaultwarning message is logged in either the fault or warning queue Thisis designed to aid in troubleshooting

Motor Control Board Faults amp Warnings ndash There are two types of faultand warning queues for the Main Control Board configurable andnonconfigurable

Configurable Faults amp Warnings ndash The configurable fault queuecontains faults that can be set up to either trip the drive or provide only avisual warning while the drive continues to operate

Nonconfigurable Faults amp Warnings ndash The nonconfigurable fault queuecontains faults that you canrsquot disable These faults are the result of acondition that could damage the Drive if allowed to persist The non ndashconfigurable fault queue faults can be viewed in parameter 81 (Fig 62)

In addition to configurable amp nonndashconfigurable faults there are theldquopowerup faultsrdquo

Powerup Faults ndash The powerup faults appear in parameter 80 (Fig 63)These faults primarily consist of problems that could occur with powerupof both the current and velocity processors

Adapter Board Faults ndash Adapter board faults are setup and displayed inseparate parameters from the Main Control Board

Chapter 6Troubleshooting

6ndash6

Figure 62Parameter 81 (Nonndashconfigurable Fault Status)

DC Bus Overvoltage Trip

Transistor Desaturation Trip

Groundfault Trip

Instantaneous Overcurrent Trip

Adapter Comm Loss detected by CP

MasterSlave Cable Loss

MasterSlave Enable Timeout

Not Used

Adapter Comm Loss detected by VP

Absolute Overspeed

Analog Power Supply Tolerance

Autocommission or Transistor Diagnostic Fail

Inverter Temperature Trip

Software Malfunction detected by VP (Task Overrun)

Software Malfunction detected by VP (Illegal Interrupt)

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 63Parameter 80 (PowerupDiagnostic Fault Status)

CP PROM Failure

CP Internal RAM Failure

CP External RAM Failure

CP Stack RAM Failure

CPVP Dualport RAM Failure

NOT USED

NOT USED

NOT USED

VP Prom Failure

VP Internal RAM Failure

VP External RAM Failure

VP Stack RAM Failure

VPCP Dualport RAM Failure

VPAP Dualport RAM Failure

Base Drive EE Failure

NOT USED

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates fault conditions in the Drive that CANNOT be configured as warnings When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false Bit 0ndash3 are detected by hardwareand 4ndash15 are detected by software

This word parameter indicates a fault condition which has been detected during power up or reset of the drive Wherethe bit is set to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash7

Current Processor Faults amp Warnings ndash Both the fault and warningqueues are configurable for either the Current or the Velocity processorYou can configure which Current processor faults you want to trip theDrive by setting Parameter 86 When the Drive trips on one of the faultsset in parameter 86 the CP light on the Main Control board will turn redWhen the drive trips it will coast the motor to a stop Parameter 87 hasthe same bit definitions as parameter 86 but instead of tripping the Drivewill display a warning fault which in turn causes the CP light to flashgreen indicating a warning The Drive will continue to run when there is aCP warning Parameter 82 displays which CP fault caused the Drive totrip while parameter 84 displays any CP warnings that have occurred

Most of the setup for the current processor FaultWarning configurationdeals with DC Bus conditions These Bus conditions deal with the Busprecharge and any type of ride through conditions

Configuring CP Faults and Warnings ndash You can configure which of thefollowing faults you want to trip the drive by using CP FaultWarningConfiguration Select (parameter 86) and CP WarningNone ConfigurationSelect (parameter 87) Parameters 86 and 87 both have the following bitdefinitions

Thisbit

With this text Is defined as

0 RidethruTime A bus ridethrough timeout occurred

1 Prechrg Time A precharge timeout occurred

2 Bus DropA bus voltage drop of 150V below the bus trackervoltage This is covered in detail later in thischapter

3 Bus UndervltA bus voltage drop to a level below the value setin Undervoltage Setpoint (parameter 224)

4 Bus Cyclesgt5More than 5 ridethroughs occurred within a 20second period

5 Open CircuitThe fast flux up current is less than 50 ofcommanded

6ndash15 RESERVED Always leave zero

For each condition that you want the drive to fault on set thecorresponding bit in Fault Select 1 When the drive trips on a conditionthat you set to fault the drive how the drive reacts depends on whichcondition occurred

For bits 0 through 5

bull The red CP light turns on

bull The motor coasts to a stop

Chapter 6Troubleshooting

6ndash8

For each condition that you want the drive to display a warning fault onyou need to

1 Set the corresponding bit in CP Warning None Configuration Select

2 Make sure the corresponding bit in CP Fault Warning ConfigurationSelect is set to 0

When the drive trips on a condition that you set to display a warning

bull The CP light flashes green

bull The drive continues to run

If a particular bit is not set in either CP Fault Warning ConfigurationSelect or CP Warning None Configuration Select the drive ignores thecondition when it occurs

Most of the faultwarning configuration options deal with DC busconditions These bus conditions deal with the bus precharge and anytype of ridethrough conditions The bus precharge and ridethroughconditions are covered later in this chapter

bit = 1

bit = 0

Trips Drive

Fault

Fault Select

Reports as Warning

bit = 1

bit = 0

Reports as Warning

Warning Select

No Report Ignored

Chapter 6Troubleshooting

6ndash9

To understand the precharge and ridethrough faults you need a basicunderstanding of how these functions work as well as the options thatyou can use to alter the way precharge and ridethrough operate in the1336 FORCE drive

Understanding Precharge

The precharge of the drive has different circuits depending on drive sizeFor the precharge operation for large horsepower (40 hp and larger)standalone drives the precharge starts the SCR phase advance andcompletes precharge when the bus is stable For all other drive typesprecharge is completed after a stable bus voltage is achieved and theprecharge device (SCR or relay) byndashpasses the precharge resistor Forcommon bus operation set bit 12 in Precharge Ridethrough Selection(parameter 223) The drive current and voltage ratings stored in EEPromdetermine the standalone operation

With the default configuration the following conditions are needed tocomplete precharge

bull a stable bus voltage for a minimum of 300 milliseconds

bull a bus voltage greater than the value set in Undervoltage Setpoint (parameter 224)

bull a valid control status from the precharge board if present

You can modify the default configuration for common bus drives byusing the external fault (input) and the precharge exit option

bull You can use the external fault input with a cabinet disconnect switchto force precharge when the disconnect is opened and the drive is dis-abled This may reduce current stress when the disconnect is closedagain

bull You can use the exit precharge option to let the precharge completeafter the precharge timeout period (30 seconds) when the bus voltageis not stable All other conditions must be met This is often used inthe case of common or shared bus configurations where other drive(s)may be causing bus voltage variations Only use this option whereneeded otherwise excessive inrush current could open or weaken theline fusesNOTE The precharge timeout fault (Parameter 86) must be disabledto use this option

Before you can enable the inverter all drive types must complete a firsttime precharge This is required even if you have set the disableprecharge function by setting bit 14 of PrechargeRidethrough Selection(parameter 223)

Understanding Prechargeand Ridethrough Faults

Chapter 6Troubleshooting

6ndash10

A filtered or slow average of the bus voltage is developed as areference or bus voltage tracker to determine if a line drop out hasoccurred If a 150 volt (or greater) drop in present bus voltage comparedto the filtered bus voltage occurs the drive can start a ridethrough Theridethrough function

bull disables the drive

bull restarts a precharge

bull waits for the bus to return to within 75 volts of the bus voltage track-errsquos voltage value before starting again

You can use bits 0ndash4 of BusBrake Opts to control the slew rate of thebus voltage tracker Refer to the section on the bus voltage tracker laterin this chapter for additional information

Understanding Ridethrough

Ridethrough provides current inrush protection and extended logicoperating time if the power lines drop out while the drive is runningThe drive is immediately disabled when it senses that the incomingpower lines dropped out (bus capacitor voltage drop) The energy storedin the bus capacitors keeps the logic supplies running for an extendedtime If the power lines return before the logic power supplies losepower you can configure the drive to resume operation without systemintervention (default) The ridethrough timeout is set for two secondsThis means that the drive is configured to fault (default setting) and notautondashrestart if the dropout lasts more than two seconds

ATTENTION You must determine safe autondashrestart andfault configurations at the system and user level Incorrectselection(s) may result in safety concerns andor drivedamage

CP Fault Warning Configuration Select 1 (parameter 86) and CPWarning None Configuration Select (parameter 87) let you specify howyou want the drive to report specific precharge and ridethroughinformation

Ridethrough also protects the drive from excessive inrush current whenthe power returns by entering a precharge mode when ridethrough isinitiated After precharge has finished the drive can completeridethrough and resume normal drive operation The drive is enabledagain after the bus rises to within 75 volts of the bus voltage trackervalue

Chapter 6Troubleshooting

6ndash11

ATTENTION If you are using an external logic powersupply the drive may be able to stay in an indefiniteridethrough state If the power returns to the drive (muchlater) the drive automatically restarts You must thereforehandle the control of enable faults timendashouts driveconfiguration and safety issues at the system level

Use the following parameters to configure the precharge and ridethroughfunctions

bull CP Fault Warning Configuration Select (parameter 86)

bull CP Warning None Configuration Select (parameter 87)

bull Precharge Ridethrough Selection (parameter 223)

bull Undervoltage Setpoint (parameter 224)

In addition Test Select 1 (parameter 93) and Test Data 1 (parameter 92)contain software testpoints that provide additional precharge information

Configuring the Faults and Warnings for Precharge

You can use CP Fault Warning Configuration Select and CP Warning None Configuration Select to enable faultwarning conditions when theappropriate bit is set (1) If a bit is clear (0) in CP Fault WarningConfiguration Select you can choose to have the condition reported as awarning by setting the bit in CP Warning None Configuration SelectThe following are the bits that pertain to precharge

Thisbit

With this text When set generates a fault when

0 RidethruTimeThe ridethrough time exceeds 2 seconds(default see P226)

1 Prechrg TimeThe precharge time exceeds 30 seconds(default see P225)

2 Bus DropThe bus voltage drops 150 volts below thebus tracker voltage This is the level wherethe drive would normally enter ridethrough

3 Bus Undervlt

The bus voltage drops below the level set inUndervoltage Setpoint (parameter 224) Thisis the level where the drive would enterridethrough if it occurs before a 150 volt dropin bus voltage

4 Bus Cyclesgt5

At least 5 ridethrough cycles have occurredwithin a 20 second period This indicates aconverter problem or a problem withincoming power Consider checking theincoming power for a phase loss

Chapter 6Troubleshooting

6ndash12

Using Precharge Ridethrough Selection to ChangePrechargeRidethrough Options

You can use Precharge Ridethrough Selection (parameter 223) tochange how precharge and ridethrough work Precharge RidethroughSelection is a bit encoded word that disables the following functionswhen the appropriate bit is set (1)

Thisbit

Has this definition

0 Sets the bus voltage tracker slew rate to 10 voltssecond

1 Sets the bus voltage tracker slew rate to 5 voltssecond

2 Sets the bus voltage tracker slew rate to 05 voltssecond

3 Sets the bus voltage tracker slew rate to 005 voltssecond

4 Sets the bus voltage tracker slew rate to 0005 voltssecond

5 Reserved Leave zero

6 Reserved Leave zero

7Setting this bit selects the slave drive of a MasterndashSlavecombination to use the master drive analog frequency referencein place of the slave encoder input

8Enables fast flux up This is covered in more detail later in thischapter

9 Reserved Leave zero

10 Reserved Leave zero

11 Forces an exit from precharge after the precharge timeout

12 Identifies the drive as a common bus converter

13

Disables faults or warnings while the drive is disabled Thisallows power up and down the bus for a common bus systemwithout faulting even if the faults or warnings are enabled Forexample faults or warnings only occur if the drive is runningThis may be desirable when external power supplies are used

14

Disables the precharge function after initial power up Any busdrop or undervoltage will not result in precharge This maydestroy the drive if power returns to the system This should beused where you control the input impedance or with a front endconverter that is current limited

15

Disables the ridethrough and precharge functions If the powerlines drop out the drive attempts to continue operation as longas any power is available This may destroy the drive if powerreturns to the system This should be used only where youcontrol the systemrsquos incoming power

Chapter 6Troubleshooting

6ndash13

Using Undervoltage Setpoint

You can use Undervoltage Setpoint (parameter 224) to set the level ofbus voltage that must be present to complete precharge and a level whereridethrough can be initiated If configured as a faultwarningUndervoltage Setpoint sets the bus voltage level that faultswarns thedrive The bus voltage level that is used is determined as follows

Undervoltage Setpoint Rated Inverter Input Voltage (parameter 221) sqrt(2) = bus voltage level for ridethroughs faults or warnings

Using Testpoint Select 1 and Testpoint Data 1 to View SoftwareTestpoints

Additional information concerning precharges and ridethroughs isavailable through Testpoint Select 1 (parameter 273) and Testpoint Data1 (parameter 274)

Viewing the Calculated Undervoltage Value of Bus Voltage

To view the value of the calculated undervoltage

1 Enter a value of 24 into Testpoint Select 1

2 Monitor Testpoint Data 1

You can use this to check the actual bus voltage that causes anundervoltage condition

Checking the Status of the Precharge

To view the precharge status enter a value of 12 into Testpoint Select 1and then monitor Test Data 1 for the precharge status The prechargestatus is bit encoded as follows

Thisbit

When set indicates that

0The precharge function has been completed and the prechargedevice should be on The drive can be enabled only after thisbit is set

1The drive is in ridethrough Precharge must be completed andthe bus must return to within 75 volts of the bus voltage trackerbefore normal drive operation can resume

2 A prechargendashinitiated condition is in ridethrough

3A precharge has been requested due to an external fault (input)Common Bus Configuration only

4The converter is ready for precharge and the controller maystart its precharge function The external precharge board is okif present

Chapter 6Troubleshooting

6ndash14

5The measured bus voltage is not stable (there is a variation ofgreater than plusmn25 volts) and the precharge cannot finish

6 The DC bus voltage is less than line undervolts

7The precharge function cannot complete because the measuredbus voltage is less than 75 volts below the bus voltage trackerThis only applies to precharging after a ridethrough

8 The precharge device has been commanded ON

9 Not used

10 An exit from precharge was requested

11 Precharge was skipped due to an enable dropout

12 An initial (first) precharge is executed

13 A high horsepower drive type is being used

Enabling Fast Flux Up

You can use fast flux up to achieve rated flux conditions andconsequently high torque as fast as possible after an enable Underdefault conditions (no fast flux up) the drive brings the motor to ratedflux conditions in a time proportional to the rotor time constant of themotor These times range from 50 milliseconds for small motors toseveral seconds for large motors If a high load is attempting to bestarted no acceleration occurs until that time has elapsed Enabling fastflux up can decrease that time by a factor of 5 to 10

You can enable the fast flux up function of the drive by setting bit 8 ofPrecharge Ridethrough Selection (parameter 223) In this case

Use Testpoint Select 1 (parameter 273) to check the approximatefluxing time Enter a value of 86 into Testpoint Select 1 to display thefluxing time in Testpoint Data 1 (parameter 274) The time delay isgiven in seconds x 0000977 If the flux time is 0 no fast flux up occursand the drive starts normally If at least 50 of the commanded currentis not measured you can configure the drive to fault at this time usingCP Fault Warning Configuration Select (P86)

Chapter 6Troubleshooting

6ndash15

Forcing the Drive to Complete a Precharge

In some cases the precharge may not complete due to external busdisturbances Setting bit 11 in BusBrake Opts forces the precharge tocomplete at the precharge interval (default 30 seconds) This may causeprecharge damage and should only be used when large inrush currentscannot occur

PrechargeRidethrough Selection (parameter 223) also lets you select arate called a slew rate for the bus voltage tracker The bus voltagetracker slowly tracks changes in the actual bus voltage If the actual busvoltage drops 150 volts or greater below the current value of the busvoltage tracker the drive automatically disables modulation and entersprecharge

Important You should only use the bus voltage tracker if you arehaving ridethrough problems The bus voltage trackeradjusts the bus sensitivity to ridethrough for cases wherethere is an unstable bus

By changing the rate used for the bus voltage tracker you can make yoursystem more or less sensitive to changes in the actual bus voltage Forexample if your drive currently enters precharge after the motor exitsregeneration you may need to change your slew rate

Figure 64 shows an example of the filtered bus voltage reference

Figure 64 Example Bus Voltage Line

Volts

Time

150V

Bus voltage tracker

A

B

CActual bus voltage

At point A the motor was in regeneration so the value of the bus voltagetracker slowly increased

Understanding the BusVoltage Tracker

Chapter 6Troubleshooting

6ndash16

At point B the motor was no longer in regeneration and the bus voltagehad dipped below the nominal range If the drive compared point B withpoint A the drive would have seen a bus drop of 150V and enteredprecharge However because the drive compared point B with the busvoltage tracker the bus drop was less than 150V and the drive continuedoperating

At point C the bus voltage had dropped 150V and the drive entered aprecharge state

Precharge Ridethrough Selection provides the following options forchanging the slew rate

Thisbit

With thistext

Sets the slew rate to

0 Slew Rate 110Vsecond This option is the most sensitive tochanges in the actual bus voltage

1 Slew Rate 2 5Vsecond

2 Slew Rate 3 05Vsecond

3 Slew Rate 4 005Vsecond

4 Slew Rate 50005Vsecond This option is the leastsensitive to changes in the actual bus voltage

If all bits are clear (0) the slew rate is 005Vsecond If more than onebit is set the first bit that is set is used for the slew rate For mostapplications the default slew rate of 005Vsecond which is 1 volt in 20seconds should be appropriate

Chapter 6Troubleshooting

6ndash17

Velocity Processor Faults amp Warnings ndash You can configure whichvelocity processor faults you want to trip the drive by setting Parameter 88(Figure 65) When there is a velocity processor fault the VP light on theMain Control board will blink red (soft fault) for configurable VP faultsWhen this happens the drive will shut off and coast the motor to a stopVP faults can be viewed in parameter 83 (Figure 66) Configurable VPwarnings can be setup in Parameter 89 (Figure 67) and viewed inparameter 85 When a configurable VP warning exists the VP light willbe flashing green but the drive will continue to run Velocity processorwarning faults can be viewed in parameter 85 (Figure 68)

Figure 65 Parameter 88 (VP FaultWarning Configuration Select (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 85 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive will be reported as a FAULT otherwise the condition is reported as aWARNING

Chapter 6Troubleshooting

6ndash18

Figure 66Parameter 83 (VP Configurable Fault Status)

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Trip (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 67Parameter 89 (VP WarningNone Configuration Select (bits))

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive fault condition Each configuration bit matches the bit definitions of Parameters 85 88 and 89 When a bit is setto ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive Communication Fault

Inverter Overload Foldback (IT)This word parameter indicates conditions detected by the Velocity Processor (VP) that will be reported as either a drivefault or warning or not reported at all (ignored) Each configuration bit matches the bit definitions of Parameters 83 85and 88 When a bit is set to ldquo1rdquo the corresponding condition in the Drive will be reported as configured by parameter 88When the bit is set to ldquo0rdquo the condition is not reported

Chapter 6Troubleshooting

6ndash19

Figure 68Parameter 85 (VP Configurable Warning Status (bits))

Feedback Loss

Inverter Overtemp Pending

Motor Overtemperature Tripped

Motor Overload Pending ndash IIT

Motor Overload Trip ndash IIT

Motor Stalled

External Fault

RMS Fault

NOT USED

Parameter Limit

Math Limit

Dynamic Brake Resistor Overtemperature

AC Motor Contactor Failure

Inverter Overload Pending (IT)

DrivendashtondashDrive communication fault

Inverter Overload Foldback (IT)

O O O O O O O O O O O O O O O O

Bit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report asa Drive warning condition Each configuration bit matches the bit definitions of Parameters 83 88 and 89 When a bit isset to ldquo1rdquo the corresponding condition in the Drive is true otherwise the condition is false

Chapter 6Troubleshooting

6ndash20

AutondashTuning Test Procedure AutondashTuning is a procedure which involves the running of a group of testson the motordrive combination Some of these tests check the Drivehardware and others configure Drive parameters for torque control with theattached motorNOTE The Quickstart procedure in Chapter 4 will take you stepndashbyndashstepthrought the Autotuning Procedure The information presented hereexplains how to manually tune specific areas

ATTENTION Power must be applied to the Drive and themotor must be connected for some of the following tests Someof the voltages present are at incoming line potential To avoidelectrical shock hazard or damage to equipment only qualifiedservice personnel should perform the following procedures

Test Overview AutondashTuning includes 6 tests all of which can beperformed on a motor which is either coupled or decoupled from loadThese tests include

The power structure and transistor diagnostics routines let you determine ifany problems exist in the power structure of the drive and determine theprobable cause of these problems

The diagnostic software determines hardware problems through a series ofsystem tests These tests are parameter dependent The test results dependon drive size motor size system wiring and other factors that affectsystem voltage and load impedance

In most cases the software can properly determine if faults exist howeverthere may be some installations where some faults cannot be properlychecked In general test results are listed as failed if a questionable case isfound You must review test results with respect to the whole drive systemto properly interpret whether a real problem exists

You can run the transistor diagnostics before a start by setting bits 6ndash8 ofLogic Options (parameter 59) Transistor diagnostics require motor currentso a userndashstart transition is required to run the tests

To run the transistor diagnostics independently

1 In AutotuneDgn Sel (parameter 256) set bit 0 to 1

2 Enable the drive

The green enable light (D1) turns on very briefly (approximately 300 ms)and then turns off This runs only the transistor diagnostics and leaves thedrive disabled after the diagnostics are complete AutotuneDiagnosticsSelection is automatically cleared to zero after the diagnostics have run

Power Structure andTransistor DiagnosticsTests

Chapter 6Troubleshooting

6ndash21

Because the test results depend on your particular system you candisable tests that may give questionable or nuisance faults UseTransistor Diagnostics Configuration (parameter 257) to disableindividual tests

If you want to disableThen setthis bit

Current feedback phase U offset tests 0

Current feedback phase W offset tests 1

Shorted power transistor tests 2

Ground fault tests 3

Open transistor open motor open current feedbackopen gate drive and open bus fuse tests

4

Power transistor U upper for all tests 6

Power transistor U lower for all tests 7

Power transistor V upper for all tests 8

Power transistor V lower for all tests 9

Power transistor W upper for all tests 10

Power transistor W lower for all tests 11

Bits 5 and 13 through 15 are reserved You must leave these bits 0

Even though you set bits 6 through 11 to disable the individual tests youwill still get a fault with the other tests if there is an open in an individualsection

To test specific modules within the power structure you can disable anytransistor or any combination of transistors You must leave alltransistors enabled under most conditions Use sound judgement toverify that power transistor fault conditions do not exist before disablingtests

Chapter 6Troubleshooting

6ndash22

Inverter Diagnostics Result 1 (parameter 258) and Inverter DiagnosticsResult 2 (parameter 259) contain the results of the transistor diagnostictests

Important Serious component failures may occur if unverified powertransistor fault conditions are ignored or tests are disabledbefore you proceed to run the drive under load

Inverter Diagnostics Result 1 (parameter 258) is defined as follows

When thisbit is set (1)

Then

0 A software fault occurred

1 No motor is connected or a bus fuse is open

2 Phase U and W shorted

3 Phase U and V shorted

4 Phase V and W shorted

5 There are shorted modules

6 A ground fault occurred

7 A fault occurred before the short module ran

8 A hardware overvoltage fault occurred

9 A hardware desat fault occurred

10 A hardware ground fault occurred

11 A hardware phase overcurrent fault occurred

12 There are open power transistor(s)

13 There are current feedback faults

Bits 14 and 15 are reserved

Chapter 6Troubleshooting

6ndash23

Inverter Diagnostics Result 2 (parameter 259) is defined as follows

When thisbit is set (1)

Then

0 Transistor U upper shorted

1 Transistor U lower shorted

2 Transistor V upper shorted

3 Transistor V lower shorted

4 Transistor W upper shorted

5 Transistor W lower shorted

6 The current feedback phase U offset is too large

7 The current feedback phase W offset is too large

8 Transistor U upper open

9 Transistor U lower open

10 Transistor V upper open

11 Transistor V lower open

12 Transistor W upper open

13 Transistor W lower open

14 Current feedback phase U open

15 Current feedback phase W open

If any hardware fault occurs during the open transistor testing then thefollowing occur

bull The hardware fault is saved

bull A phasendashtondashphase fault is set

bull All subsequent testing is stopped

bull Some untested devices may be set as open

Typically you should fix the hardware faults and run open tests again todetermine if any opens exist

What Do Open Transistor Faults Indicate

Open transistor faults could indicate an open anywhere in the control orpower section that turns on a given transistor You should check thepower transistor gate drive signal from the control board through thecabling to the optondashisolators continuing through the gate drives andfinally through the cabling to the power transistor This includes thepower wiring to the motor terminals and the motor If the bus voltage istoo low opens could occur bus voltage should be greater than 85 ofnominal line

Chapter 6Troubleshooting

6ndash24

For proper drive operation it is necessary to have

A A specific phase sequence of the motor leads (M1 M2 M3 M1 M3 M2 etc)

B A specific sequence of encoder leads (pulse A leads B etc)These sequences determine the direction of rotation of the motor shaft on application of torque An improper sequence can result in either the motor rotating the wrong direction or no production of torque This test is used to ensure the above conditions by applying a positive torque and manually checking motor rotation and velocity feedback

Set parameter 256 (Autotune Diagnostics Selection) Bit 3 to a value of 1

Running the Inductance Test

A measurement of the motor inductance is required to determine thereferences for the regulators that control torque This test measures themotor inductance and displays it in Lsigma Tune [Leakage Inductance](parameter 237)

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the inductance test make sure that you have entered thecorrect motor nameplate information

To run the inductance test

1 Set bit 2 in AutotuneDiagnostics Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete Theinductance test runs for approximately 1 minute When a reading isobtained in Lsigma Tune perform the resistance test

Typical values for per unit inductance are in the range of 15 to 25motor impedance The value shown in Lsigma Tune is a percent valueIf you are using long wiring runs the typical value for per unitinductance should increase by the ratio of wiring inductance to motorinductance

Phase Rotation Tests

Sequential Torque BlockTuning

Chapter 6Troubleshooting

6ndash25

The motor inductance measuring routine contains several special faultsIf the drive trips during the inductance test check bits 0 through 5 ofMotor Inductance Test Errors (parameter 295)

If this bitis set (1)

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error you need to1 Run the test again2 Consider replacing the circuit boards

2

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

3

AD Overflow at Min gainThe motor terminal voltage measuring circuit is not working properlyYou need to1 Determine if the motor is connected2 Check cable connections between the gate drive and control boards3 Consider replacing the circuit boards4 Investigate any noise problems

4

Enable Dropout The drive enable was lost during the inductance test Consider runningthe test again and monitor the drive enable (bit 9 of Inverter Status(parameter 54) andor the Inv En LED on the main control board

5

Sign error Overflow The calculated inductance is negative1 Run the test again2 Consider replacing the circuit boards

Chapter 6Troubleshooting

6ndash26

The drive requires a motor resistance measurement to determine thereferences for the regulators that control torque The motor resistancetest measures the motor resistance and displays it in Rs Tune (parameter236) The test runs for approximately 10 ndash 30 seconds

When running this test you should be aware of the following

bull The motor should not rotate during this test although rated voltagesand currents are present and the possibility of rotation exists For en-coderless systems you must visually verify that the motor does notrotate

bull This test is run at rated motor current and byndashpasses the normal cur-rent limit functions

Before running the resistance test make sure that you have entered thecorrect motor nameplate information

To run the motor resistance test

1 Set bit 3 in AutotuneDiagnostic Selection (parameter 256)

2 Enable the drive

The drive enable light turns off when the test is complete When areading is obtained in RS Tune perform the flux test

Typical values for per unit motor resistance are in the range of 1 to 3as displayed in RS Tune The value in RS Tune increases as the length ofwiring runs increase

Running the ResistanceTest

Chapter 6Troubleshooting

6ndash27

Several faults have been included to identify some problems that canoccur in the resistance measuring routine If the drive trips during theresistance test check bits 0 through 7 of Motor Stator Resistance TestErrors (parameter 296)

If this bitis set

Then

0

Motor Not at Zero SpeedThe motor is not at zero speed Generally this bit is set in two cases

bull If the motor rotates during this test an improper result is likely Makesure the motor (decoupled from load or process) is not rotating justbefore or during the test

bull If the motor is not rotating during this test then investigate electricalnoise creating encoder transitions Improper encoder grounding or anoisy encoder power supply could cause noise

This fault cannot be determined for encoderless applications You mustvisually check for this condition on encoderless systemsIf your motor does rotate during this test consult the factory

1

Sign ErrorA sign error fault occurs when the average voltage is negative If youreceive a sign error run the test again because the value returned is notreliable

2Not Used

4Not Used

6Not Used

8

Zero CurrentIf this bit is set you need to1 Set the rated motor current in Nameplate Amps (parameter 4) to the

correct value2 Run the test again3 Consider replacing the control board

9Software ErrorA software fault is generated when an improper sequence of events hasoccurred Consider running the test again

10

Enable DropoutThe drive enable was lost during the resistance test Consider running thetest again and monitor the drive enable (bit 9 of Inverter Status (parameter54) andor the Inv En LED on the main control board)

Chapter 6Troubleshooting

6ndash28

What Happens If Multiple Opens OccurIf multiple opens occur several additional faults may be indicated Forexample if transistor U upper and U lower are open the test alsoindicates that current feedback U phase is open Because current cannotrun through phase U the current feedback device cannot be checked andtherefore is listed as a malfunction The type of installation oftendetermines which parts of the transistor diagnostics may or may notwork As a result treat the software only as an aid for testing the powerstructure

What Do I Do If I Get a Software Fault

If bit 0 of Inverter Diagnostics Result 1 (P 258) is set to 1 an impropersequence of events has occurred Either the software cannot distinguishwhat is occurring or there is noise in the system If a fault occursrepeatedly the problem may be a fault that the software cannot directlyidentify (for example a voltage breakdown in a snubber) If this is thecase you need to determine through external measurements if theproblem is real or if there is a noise problem In cases where a specifictest continually results in nuisance faults use Transistor DiagnosticsConfiguration (parameter 257) to disable that test

Chapter 6Troubleshooting

6ndash29

Rated motor flux is required in order to produce rated torque at ratedcurrent

Set Parameter 256 Bit 4 to a value of 1 This selects the Motor FluxTest This test measures the amount of current required to produce ratedmotor flux and displays it in Parameter 238 The motor will accelerateto approximately twondashthirds base speed and then coast for severalseconds This cycle may repeat several times The motor will thendecelerate to a low speed before disabling If the motor will notaccelerate increase parameter 40 (Torque Limit) until the motoraccelerates Parameter 41 (Speed Limit) will change the speed the motoraccelerates to

The Transistor Diagnostics Phase Rotation Inductance and Resistance Tests MUST be run before this test can be performed

Toggle the start bit in the logic command to start the test The Driveenable light will go out when the test is complete When a reading isobtained in Parameter 238 record it and then update the torque blockgains If the test still faults refer to the flux test faults

Flux Test Faults Typical values for rated motor flux range from 20 to 50 Several faults have been added to identify some problemsthat can occur in the flux test Should the drive trip while the flux test isbeing performed the cause can be found using parameter 297 Thepossible faults are detailed in Table 6D

Table 6DFlux Test Fault Descriptions

Bit Fault

0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set

Parameter 41 set to less than 33 speedParm 238 lt 0 CurrentParm 238 gt 100 Drive currentMaster_Slave enable dropout faultNot UsedNot UsedNot UsedNot Used

Responses for faultsParm 41 set to less than 33 speed The Autotune speed must be set higher in order to get a meaningful result out of the flux test

Parm 238 lt 0 Current This indicates that either 1 or some of the parameters are incorrectly set electrical noise iswas present motor phasing could be incorrect or other problems exist

Parm 238 gt 100 Drive Current This identifies flux current greater than the drive rated current This may be due to incorrect parameter settings an undersized drive for the motor or a problem motor

MasterndashSlave Enable Dropout This cable interlock between the Master and Slave drive was opened during the test

Running the Flux Test

Chapter 6Troubleshooting

6ndash30

If you experience problems while running the Flux Test it may be necessary to verify that parameters are set properly The parameters listed in Table 6E are the parameters that directly effect the Flux Test

Table 6EFlux Test Parameters

Parameter Number Description

4041

Autotune Torque LimitAutotune Speed

Reverse Speed Limit

Forward Speed Limit

Positive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitCp Operating Options

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high you may trip out on a BusOvervolts (see note)Set this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet to 0 to allow the motor to coast to stoponce the flux test is completed Set to 128to regen to stop even without a brake oncethe flux test is completed

Note The option to regenerate to stop following identification of flux producing current shouldfunction properly with or without a brake or regeneration unit However if a bus overvoltagefault occurs during the regen to stop the identified value of flux producing current can be retrievedand placed in P238 without rendashrunning the flux identification test with the regen to stopdisabled The identified value of flux can be found by using Software Testpoint Parameter 273 andplacing 67 into it The value of flux can be read by the user in the corresponding testpoint dataparameter 274 The value of 274 is the identified flux current and must then be entered intoparameter 238

127

128

175

176

177

178

179

180

227

100 allows 1 pu torque during accel+ndash 68 is the max for the flux test limitedinternally by the software

Chapter 6Troubleshooting

6ndash31

To update the Torque Block gains bit 5 in Parameter 256 must be set to1 and then a Start command must be given to the drive Bit 5 ofparameter 256 will automatically be set back to zero The values inparameters 240 thru 248 will now to be updated

Calculations This procedure takes the motor parameter information from Parameters 236 237 and 238 along with the inverter and motor nameplate data and calculates the proper regulator references for torque control (Fig 69)

Inductance Test Parameter 237

Calculations

Parameter 240

Parameter 241

Parameter 247

Parameter 248

Resistance Test Parameter 236

Flux Test Parameter 238

MOTOR NP DATA

Figure 69Calculations Test

(Parm 228ndash235)

INVERTER DATA(Parm 220ndash227)

Torque Block Update

Chapter 6Troubleshooting

6ndash32

Velocity Loop Autotune The Velocity Loop Autotune procedure for the 1336 FORCE is designed tolet you determine the maximum bandwidth for a particular system Youcan select operation at any bandwidth at or below the maximum bandwidththat has been calculated

The velocity regulator is a PI regulator with a Velocity Feed Forward term(KF Parm 141) The KF term is user chosen and describes the systemresponse to a change in velocity reference only By decreasing the value ofKF the overshoot of the system will be reduced When KF is 10 thevelocity loop behaves like a normal PI loop with the overshoot equalingapproximately 10 If KF is reduced to 07 (the recommended operatingpoint) then the overshoot is typically less than 1 if KF is reduced evenfurther to 05 (the lowest recommended value) the response becomesunderdamped with no overshoot

The velocity loop KI term (parm 139) is the integral term of the PIregulator The KI term is adjusted to remove any steady state instabilities

The velocity loop KP term (Parm 140) is the proportional term of the PIregulator The KP term is adjusted to determine how the drive responds toa step change in load

IMPORTANT If the velocity regulator is tuned too responsive the motorand load could potentially chatter If tuned nonndashresponsive the regulatorwill seem sluggish The value for Kp will increase as the system inertiaincreases For High inertia systems Kp may be greater than for KI Forlow inertia systems (systems with inertias under 1 Sec) KI will typicallybe larger than KP

Figure 610Velocity Regulator Functional Diagram

Veloc-ity

Time

0

50

KP

KFKI

The list of parameters that must be set to achieve proper velocity looptuning is detailed in Table 6F

Chapter 6Troubleshooting

6ndash33

Table 6FVelocity Loop Parameters

Parameter Number Description

4041

53

Autotune Torque LimitAutotune Speed

Torq Mode Select

ValueComments

Set this to the limit of the application if setto 0 the motor may not accelerateSet this to the limit of the application if setto 0 the motor may not accelerateSet to Value of 1 for encoder fdbkSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not accelerateIf set too high may trip on a Bus OvervoltagefaultSet this to the limit of the application if settoo low the motor may not accelerateSet this to the limit of the application if settoo low the motor may not acceleratePulses Per Revolution

127

128

150175

176

177

178

179

180

235

75 allows 75 rated torque during accel75 allows Autotune velocity to go to 75Percent base motor velocitySet to Value of 1 for encoder fdbk

Reverse Speed Limit

Forward Speed Limit

Feedback Device TypePositive Torque Ref Limit

Negative Torque Ref Limit

Motoring Power Limit

Regen Power Limit

Positive Motor Current RefLimitNegative Motor Current RefLimitEncoder PPR

Chapter 6Troubleshooting

6ndash34

Hardware Testpoints The Hardware Testpoints on the Series B 1336 FORCE Control Board areillustrated in Figure 611 The accompanying table details the expectedoutput from each testpoint

Figure 611Main Control Board Test Points

BaseDriverBoardControlSignals

J7

TE

1

Drive to DriveInterface

J5

SHUNT +

Adapter Board Interface

+15V

TB10

D1 TP1

10

D2 D3 D5

VP Indicator

TP2 TP3 TP5 TP4

AGND ndash15V+5VDGND

D4

Enable

SHUNT ndash

SHIELD

ENC A

ENC A

ENC B

ENC B

ENC +

ENC ndash

SHIELD

TP24 TP23

12V ISO ISO COM

TP8

J1

V ndash

C_L

J3

J4

5V 12V

5V 12V

Encoder Feedback(J3 amp J4 must be setfor same voltage)

CP Indicator

TP1TP2TP3TP4TP5TP6TP7TP8TP9

TP10TP11TP12TP13

TP14TP15

DGND+5V+15VAGNDndash15Vndash25 to 25 V0 to 25V+5V when faultedCHA Encoder Fdbk 0 to 5 Square Wave with respect to TP1 or TP25 DGNDTest DAC2 (Development Use Only)Square Wave (Follows Carrier Frequency)Test DAC1 (Development Use Only)CHB Encoder Fdbk 0 to 5V Square Wave with respect to TP1 or TP25 DGNDBus Voltage FDBK (4V = 650 vdc)Feed Forward Voltage (0 to +ndash 75V sine wave)

Flt Trp

1 2 3

1 2 3

SHD TB11

C_H

V+

D43

D47

TP25

STS PWR

D2D

DGND

TP13

TP9

TP14

DC BusFDBK

TP16

TP17

IA FDBK

Ic FDBK TP18

Iq CMD TP19

Id CMD

Testpoint Application

TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

Ia FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIc FDBK (0 to =ndash 5V sine wave) same as Iq feedbackIqs Command (0 to +ndash 10V sine wave)Ids Command (0 to +ndash 10V sine wave)Master Reset (5V = Reset)Id FDBK (0 to +ndash 5V sine wave)Feed Forward Voltage (0 to +ndash75V sine wave)ISO 12V for TachometerEncoderISO RTN for TachometerEncoderDGND

Application

Chapter 6Troubleshooting

6ndash35

The Hardware Testpoints on the PLC Comm Adapter Board are illustrated inFigure 612 The accompanying table details the expected output from eachtestpoint

Figure 612PLC Comm Board Test Points

AP Status

LANGUAGE MODULE

DP Status

1

CH A High

J5

TP1

Port 1

DOMINOADAPTER RIO

Channel A

Communication Modes

U2 U3 U4 U5

10TB20 TB211 19

CH A Low CH B LowCH B High

D3

D6

D8

D10

D12

D13

D14

D15

CH AStatus

CH BStatus

J7

D1

D2

Port 2

TP2

TP3

TP4

TP5

ADC InputsDAC Inputs

J1Main Control Interface

Drive Permissives

J4

J3

120 V

RIOChannel B

BRAMEnable

Ref

D4

D5

Fault Out

Ext Fault

D7Norm Stop

Motor Thermo D9Drive Enable D11

24 V

120 V 24 V

120 V 24 V

120 V 24 V

J11

J10

J9

J8Drive En

M Therm

N Stop

X Flt

EN DIS

Fuse1 ndash 4

TP24

+10V Ref

TP25

ndash10V Ref

uarr ON uarr ON uarr ON uarr ON

DGND +5V +15V ndash15VAGND

TP9 TP10 TP11 TP12 TP13 TP14

TP19

TP20 TP21 TP22 TP23 TP15 TP16 TP17 TP18

TP1TP2TP3TP4TP5TP9TP10TP11TP12TP13TP14

TestpointDGND+5V+15VAGNDndash15VNot UsedNot UsedISO +12 VDCISO ndash5VISO GNDIGND

Application

TP15TP16TP17TP18TP19TP20TP21TP22TP23TP24TP25

Testpoint

AIN ndash 1AIN ndash 2AIN ndash 3AIN ndash 4+12VAOUT ndash 1AOUT ndash 2AOUT ndash 3AOUT ndash 4+10V Refndash10V Ref

Application

Chapter 6Troubleshooting

6ndash36

This Page Intentionally Blank

AppendixA

Andash1

Appendix

Motor Cables A variety of cable types are acceptable for 1336 FORCE driveinstallations For many installations unshielded cable is adequateprovided it can be separated from sensitive circuits As an approximateguide allow a spacing of 1 meter (33 feet) for every 10 meters (33 feet)of length In all cases long parallel runs must be avoided

The cable should be 4ndashconductor with the ground lead being connecteddirectly to the drive ground terminal (PE) and the motor frame groundterminal

Shielded Cable ndash Shielded cable is recommended if sensitive circuitsor devices are connected or mounted to the machinery driven by themotor The shield must be connected to the drive ground terminal (PE)and the motor frame ground terminal It is important that the connectionbe made at both ends to minimize the external magnetic field

If cable trays or large conduits are used to distribute the motor leads formultiple drives shielded cable is recommended to reduce or capture thenoise from the motor leads and minimize ldquocross couplingrdquo of noisebetween the leads of different drives The shield should be connected tothe ground (PE) connections at both the motor and drive end

Armored cable also provides effective shielding Ideally it should begrounded only at the the drive (PE) and motor frame Some armoredcable has a PVC coating over the armor to prevent incidental contactwith grounded structure If due to the type of connector the armor mustbe grounded at the cabinet entrance shielded cable should be used withinthe cabinet to continue as far as possible to the coaxial arrangement ofpower cable and ground

In some hazardous environments it is not permissible to ground bothends of the cable armor This is because of the possibility of high currentcirculating at the input frequency if the ground loop is cut by a strongmagnetic field This only applies in the proximity of powerful electricalmachines In this case the ground connection at one end may be madethrough a capacitance which will block the frequency current but presenta low impedance to RF Because of the highly pulsed nature of thecirculating current the capacitor type used must be rated forACndashtondashground voltage Consult factory for specific guidelines

Conduit ndash If metal conduit is preferred for cable distribution thefollowing guidelines must be followed

1 Drives are normally mounted in cabinets and ground connections are made at a common ground point in the cabinet If the conduit is connected to the motor junction box and the drive end no further conduit connections are necessary

Appendix A

Andash2

2 No more than three sets of motor leads can be routed through a single conduit This will minimize ldquocross talkrdquo that could reduce the effectiveness of the noise reduction methods described If more than three drivemotor connections per conduit are required shielded cableas described above must be used If practical each conduit should contain only one set of motor leads

ATTENTION To avoid a possible shock hazard caused byinduced voltages unused wires in the conduit must be grounded atboth ends For the same reason if a drive sharing a conduit isbeing serviced or installed all drives using this conduit should bedisabled This will eliminate the possible shock hazard fromldquocross coupledrdquo drive motor leads

Motor Lead Length ndash Installations with long cables to the motor mayrequire the addition of output reactors or cable terminators to limitvoltage reflections at the motor Refer to the following tables for themaximum length cable allowed for various installation techniques

Appendix A

Andash3

Table A1Maximum Motor Cable Length Restrictions in meters (feet) ndash 380V-480V Drives 1

No External Devices w 1204-TFB2 Term w 1204-TFA1 Terminator Reactor at Drive2

Motor Motor Motor Motor

r e W Motor WA B 1329 1329R HR L A or B 1329 A B 1329 A B or 1329

r e rameDrive kW Motor kW Any

ableAny

ableAny

ableAny

ableCable Type Any

ableCable Type Cable Type Any

ableAny

ableAny

ableDrive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable Shld 3 Unshld

AnyCable Shld3 Unshld Shld3 Unshld

AnyCable

AnyCable

AnyCable

A1 037 (05) 037 (05) 122(40)

335(110)

1143(375)

305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 075 (1) 122(40)

335(110)

1143(375)

305(100)

305(100)

305(100)

305(100)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

Use 1204-TFA1 305(100)

610(200)

305(100)

610(200)

1829(600)

229(75)

1829(600)

A2 12 (15) 12 (15) 122(40)

335(110)

1143(375) Unlimited 305

(100)305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 122(40)

335(110)

1143(375)

Applies tonew installa-

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 122(40)

335(110)

1143(375)

new installa-tions usingnew motors

d e

305(100)

305(100)

610(200)

610(200)

1829(600)

229(75)

1829(600)

15 (2) 15 (2) 76(25)

122(40)

1143(375)

e rsand newdrives

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

12 (15) 76(25)

122(40)

1143(375)

For retrofits u s

914(300)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

situationscheck withthe motor

u ur

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

the motormanufactur-er for insula-

r

1829(600)

1829(600)

1829(600)

305(100)

305(100)

914(300)

610(200)

1829(600)

229(75)

1829(600)

22 (3) 22 (3) 76(25)

122(40)

1143(375)

er r sution rating 1829

(600)1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

A3 37 (5) 37 (5) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

22 (3) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

15 (2) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

229(75)

1829(600)

075 (1) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 12 4 T 2

229(75)

1829(600)

037 (05) 76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

Use 1204-TFB2229(75)

1829(600)

A4 55-75(75-10)

55-75(75-10)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

B 55-22(75-30)

55-22(75-30)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

244(80)

1829(600)

C 30-45(X40-X60)

30-45(40-60)

76(25)

122(40)

1143(375)

1829(600)

1829(600)

1829(600)

762(250)

1829(600)

D 45-112(60-X150)

45-112(60-150)

122(40)

305(100)

1143(375)

1829(600)

1829(600)

1829(600)

610(200)

914(300)

E 112-187(150-250)

112-224(150-300)

122(40)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

G 187-448(X250-600)

187-448(250-600)

183(60)

533(175)

1143(375)

1829(600)

1829(600)

1829(600)

1829(600)

1829(600)

Type A Motor Characteristics No phase paper or misplaced phase paper lower quality insulation systems corona inception voltages between 850 and 1000 voltsType B Motor Characteristics Properly placed phase paper medium quality insulation systems corona inception voltages between 1000 and 1200 volts1329R Motors These AC Variable Speed motors are ldquoPower Matchedrdquo for use with Allen-Bradley Drives Each motor is energy efficient and designed to

meet or exceed the requirements of the Federal Energy Act of 1992 All 1329R motors are optimized for variable speed operation andinclude premium inverter grade insulation systems which meet or exceed NEMA MG1 Part 314042

Appendix A

Andash4

Table A2Maximum Motor Cable Length Restrictions in meters (feet) ndash 500V-600V Drives 4

No External Devices w 1204-TFB2 Terminator w 1204-TFA1 Terminator Reactor at Drive 2

Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP Motor w Insulation V PndashP1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6 1000V 1200V 1600V 6

Drive FrameDrive kW(HP)

Motor kW(HP)

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

AnyCable

A4 075 (1) 075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) 15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

12 (15) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) 22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

NotRecommended

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

Recommended

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

37 (5) 37 (5) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

22 (3) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

15 (2) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

075 (1) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

037 (05) NR NR 152(50)

NR 1829(600)

3353(1100)

NR 610(200)

1829(600)

B 55-15(75-20)

55-15(75-20)

NR 91(30)

152(50)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

C 185-45(25-60)

185-45(25-60)

NR 91(30)

122(40)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

305(100)

914(300)

1829(600)

D 56-93(75-125)

56-93(75-125)

NR 91(30)

335(110)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

610(200)

914(300)

1829(600)

E 112-224(150-X300)

112-224(150-X300)

NR 91(30)

213(70)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

F 187-336(250-450)

187-336(250-450)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

G 224-448(300-600)

224-448(300-600)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

H 522-597(700-800)

522-597(700-800)

NR 91(30)

411(135)

914(300)

1829(600)

1829(600)

NR 610(200)

1829(600)

1829(600)

1829(600)

1829(600)

NR = Not Recommended1 Values shown are for 480V nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply

values by 085 for high line conditions For input voltages of 380 400 or 415V AC multiply the table values by 125 120 or 115 respectively2 A 3 reactor reduces motor and cable stress but may cause a degradation of motor waveform quality Reactors must have a turnndashturn insulation rating of 2100 volts or

higher3 Includes wire in conduit4 Values shown are for nominal input voltage and drive carrier frequency of 2 kHz Consult factory regarding operation at carrier frequencies above 2 kHz Multiply values

by 085 for high line conditions5 Information not available at time of printing6 1329R only

Appendix A

Andash5

Cable Termination Optional Cable Terminator

Voltage doubling at motor terminals known as reflected wavephenomenon standing wave or transmission line effect can occur whenusing drives with long motor cables

Inverter duty motors with phasendashtondashphase insulation ratings of 1600 voltsor higher should be used to minimize effects of reflected wave on motorinsulation life

Applications with nonndashinverter duty motors or any motor withexceptionally long leads may require an output inductor or cableterminator An inductor or terminator will help limit reflection to themotor to levels which are less than the motor insulation value

Tables 2A amp 2B list the maximum recommended cable length forunterminated cables since the voltage doubling phenomenon occurs atdifferent lengths for different drive ratings If your installation requireslonger motor cable lengths a reactor or cable terminator is recommended

Optional Output Reactor

The reactors listed in the 1336 FORCE price list can be used for drive inputand output These reactors are specifically constructed to accomodateIGBT inverter applications with switching frequencies up to 20 KHz Theyhave a UL approved dielectric strength of 4000 volts opposed to a normalrating of 2500 volts The first two and last two turns of each coil are tripleinsulated to guard against insulation breakdown resulting from high dvdtWhen using motor line reactors it is recommended that the drive PWMfrequency be set to its lowest value to minimize losses in the reactorsImportant By using an output reactor the effective motor voltage will belower because of the voltage drop across the reactors ndash this may also meana reduction of the motor torque

Common Mode Cores ndash Common Mode cores will help reduce thecommon mode noise at the drive output and guard against tripping of thedrive caused by capacitive leakage effects The capacitive currents arelarger at higher PWM frequencies

Enclosures Customer Supplied Enclosure Requirements ndash 1336 FORCE drivesinstalled in customer supplied enclosures may be mounted within anenclosure or may be mounted to allow the heatsink to extend outside theenclosure Use the information in Table A3 in combination with theenclosure manufacturerrsquos guidelines for sizing

Appendix A

Andash6

Table A3 ndash Enclosure Requirements

380 ndash 460 VDrives

200 ndash240 VDrives

Catalog NoBase DerateAmps1

A001A003A007A010A015A020A025A030A040A050A060A075A100A125

B001B003B007B010B015B020B025B030BX040B040B050BX060B060B075B100B125BX150B150B200B250B300BP300B350BP350B400BP400B450BP450B500B600

500 ndash 600 VDrives

C001C003C007C010C015C020C025C030C040C050C060C075C100C125C150C200C250C3005

C3505

C4005

C4505

C5005

C6005

C6505

4512273448657880120149180240291327

256142127344248596578789712015018018024029132740640645945950548157053259967325610121924303545576286109138160252284298354406460505600673

DerateCurve23

NoneNoneNoneFig 1Fig 2Fig 3Fig 44

Fig 5Fig 6Fig 7Fig 8Fig 9Fig 16

NoneNoneNoneNoneFig 10 Fig 1Fig 11Fig 2Fig 12Fig 3Fig 4Fig 44

Fig 13Fig 14Fig 15Fig 15Fig 8Fig 9Fig 16NoneFig 33NoneFig 34NoneFig 35NoneFig 36Fig 17Fig1844444444444

Fig 19Fig 20Fig 21Fig 22Fig 23Fig 24NoneNoneFig 25Fig 26Fig 27Fig 28Fig 29

Heat DissipationDrive Watts 234

1733156200205210215220361426522606755902

152391103117140141141175175193193361361426522606606755902100561910557331295793133593113951485

44

911031171401411411751931933614265224

755890926100014301465150016101700

HeatsinkWatts 2

327248672181993311101110170819442664276937004100

205427039448662872082093393311101110170817081944266427692769370041004805534254556039617563296875700078008767

44

2172513604674925266788999811553197821624

30653625501559357120802089251076712000

TotalWatts 2

491056429211024114313251330206923703186337544555002

35773614976037688619611108110813031303206920692370318633753375445550025810596165106772747071228210793192001025244

308354477607633667853109211741894250426834

38204515594169358550948510425123771400

Base Derate Amps are based onnominal voltage (240 480 or 600V)If input voltage exceeds Drive Rat-ing Drive Output must be derated Refer to Figure 31

1

2Drive Ambient Temperature Rating is40degC If ambient exceeds 40degC thedrive must be derated Refer to Fig-ures 1ndash29

3DriveRating is based on altitudes of1000m (3000 ft) or less If installedat a higher altitude Drive must bederatedRefer to Figure 30

4

Important Two (2) 725 CFM fansare required if an open type drive ismounted in a user supplied enclo-sure

5

Not available at time of publication

Appendix A

Andash7

Derating Guidelines

Drive ratings can be affected by a number of factors If more than onefactor exists consult AllenndashBradley Co

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 21336TndashA015 and B030

75

80

70

85

90

of DriveRated Amps 95

100

65

60

50

55

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 31336TndashA020 and B040

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 41336TndashA025 B050 and BX060

75

80

70

85

90 of Drive

Rated Amps

95

100

65

60

55

45

50

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 11336TndashA010 and B020

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Appendix A

Andash8

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 51336TndashA040

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 61336TndashA050

75

80

70

85

90

of DriveRated Amps 95

100

65

4 52 31 6 8 10 1197 12

Carrier Frequency in kHz

Figure 71336TndashA060

75

80

70

85

90

of DriveRated Amps 95

100

60

65

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 81336TndashA075 and B150

Carrier Frequency in kHz2 43 5 6

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Appendix A

Andash9

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

65

75

80

70

85

90

of DriveRated Amps 95

100Figure 101336TndashB015

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 91336TndashA100 and B200

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 111336TndashB025

75

80

70

85

90

of DriveRated Amps 95

100

55

65

60

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 121336TndashBX040

65

75

80

70

85

90

of DriveRated Amps 95

100

Carrier Frequency in kHz4 52 31 6 8 10 1197 12

Figure 131336TndashB075

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Appendix A

Andash10

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 141336TndashB100

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 151336TndashB125 and BX150

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 161336TndashB250

70

85

75

65

80

90

95

100 of DriveRated Amps

60

Carrier Frequency in kHz1 4 532 6

Figure 171336TndashB500

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 181336TndashB600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz1 432

Appendix A

Andash11

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 191336TndashC075

Carrier Frequency in kHz4 62 3 5

70

85

75

65

80

90

95

100 of DriveRated Amps

1

Figure 201336TndashC100

70

85

75

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz

60

1 42 53 6

Figure 211336TndashC125

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

60

1 42 53 6

Figure 221336TndashC150

70

85

75

65

80

90

95

100 of DriveRated Amps

Carrier Frequency in kHz1 432 65

Figure 231336TndashC200

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

45

60

Carrier Frequency in kHz1 4 532 6

Appendix A

Andash12

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 241336TndashC250

Carrier Frequency in kHz2

70

85

75

80

90

95

100 of DriveRated Amps

50

65

55

60

45

40

1 4 53 6

Figure 251336TndashC400

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 261336TndashC450

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Figure 271336TndashC500

Carrier Frequency in kHz

70

85

75

80

90

95

100 of DriveRated Amps

65

1 432

Appendix A

Andash13

Standard Rating for Enclosed Drive in 40degC Ambient amp Open Drive in 50degC Ambient

Derating Factor for Enclosed Drive in Ambient between 41degC amp 50degC

Figure 281336TndashC600

70

85

75

80

90

95

100 of DriveRated Amps

65

Carrier Frequency in kHz

60

55

1 432

Figure 291336TndashC650

70

85

75

80

90

95

100 of DriveRated Amps

65

60

55

Carrier Frequency in kHz

50

1 432

of DriveRated Amps

Altitude

m(ft)

100

80

90

0 4000(13200)

3000(9900)

2000(6600)

1000(3300)

Figure 30All Drive Ratings

of DriveRated Amps

Input Voltage

100

80

90

240 480 or 600V Nominal +6+4+2 +10+8

Figure 31Required Only for the following drives1336TndashABCndash025 185 kW (25 HP) at 8 kHz1336TndashABC 22 kW (30 HP) at 6ndash8 kHz1336TndashABC 45 kW (60 HP) at 6 kHz

Appendix A

Andash14

of DriveRated Amps

Figure D-321336E-BP250

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 32BP 250

of DriveRated Amps

Figure D-331336E-BP300

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 33BP 300

Figure 34BP 350

of DriveRated Amps

Figure D-341336E-BP350

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

of DriveRated Amps

Figure D-351336E-BP400

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 35BP 400

Appendix A

Andash15

Figure 36BP 450

of DriveRated Amps

Figure D-361336E-BP450

Carrier Frequency in kHz

2

60

90

70

80

100

4 650

Figure 37B700C ampB800C

of DriveRated Amps

Figure D-361336E-B700C and B800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

of DriveRated Amps

Figure D-371336E-C700C and C800C

Carrier Frequency in Hz

10000 2000 3000

60

90

70

50

80

100

4000 5000 6000

40

30

20

10

0

of Drive Rating 700 HP of Drive Rating 800 HP

Figure 38C700C ampC800C

Appendix A

Andash16

Drive Hardware Overview ndash The following illustrations are functionalblock diagrams of the 1336 FORCE Drive detailing the difference inhardware between the various ratings These are basic overviews of the1336 FORCE hardware and should be used as reference material only

Appendix A

Andash17

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

C1

CAPBANK

MOV

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

141312

111098

Schematic Diagram ndash 3 ndash 15 HP 230V 3 ndash 15 HP 460V 3 ndash 20 HP 575V

S

R

TB1

T

CTL

+GND

FAULT

DET

P1P2

UP

P7P8

UN

E2

C1

P3P4

VP

P9P10

VN

E2

E1C2

C1

P5P6

WP

P12

P11

WN

E2

E1C2

U

W

V

E1C2

13

13

GATE DRIVERS

+

ndash

+24V

BRIDGE FAN

BRIDGETERMINALSENSOR (NTC)

To Main Control J1

E1

F3F1

Appendix A

Andash18

Schematic Diagram ndash 20ndash30 HP 230 VAC40ndash60 HP 460 VAC25ndash60 HP 575 VAC

L1

SEETABLE 1

FR

RndashL1

SndashL2

TndashL3FS

FT

TB1ndash5

TB1ndash6

TB1ndash7

PMC1CONV+

DC+

TB1ndash3

DCndash

TB1ndash4

3

2

1

CONVndash

BC

A

SCR4

SCR1SCR3 SCR5

SCR6 SCR5

C1 C2 C2

R1 R2 R321 22 23

SCR5

C4 C5 C6

R4 R5 R611 12 13

E14 E13 E12 E15

STANDARD PRECHARGE BOARD

F1 F2 F3

A

PCB SNUBBER STD

Appendix A

Andash19

Schematic Diagram ndash 20ndash30 HP 230 VAC 40ndash60 HP 460VAC25ndash60 HP 575 VAC

Q1

B1

PMI3

E1B2

E2

C3

B1

PMI2

C1B1

E2

C5

B1

PMI1

C1B1

E2

CAP+

E12CAPPCB

E13CAPPCB

SEETABLE 1

F1

Q4 Q6 Q2

C1

E1

C2

E2

C1

E1

C2

E2

C1

E1

C2

E2

U V W

C7 C8 C9 C11

C10

TB1ndash8 TB1ndash9 TB1ndash10

UndashM1 VndashM2 WndashM3

E5 E9E7

E11

INV+

INVndash

PCB SNUBBER STD74101ndash101ndashXXndashASSrsquoY

74101ndash099ndashSCH

TO CONTROL BOARDINTERFACE

NTC1

PCB MOUNT COMPONENTPCB ARTWORK

ndasht

J11 2 3 4 5 6

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1

TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1VP

3

2

7

6

5

4

1

11

10

9

8

1

ndash12V

1

2

4

1

3

2

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOMRTN

ENCA

ENCA

ENCB

ENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+

SHUNTndash

SHD

TE

PWR

RTN

HILO

1413

12

Y

VELOCITYPROC

R G

CPINVEN

IQS

IDS

VCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1

RTD SEN

RTD2

SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

CAPBANK

F1 F3

A

Appendix A

Andash20

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

CUSTOMERFUSING

CF2

CF3

PE

PE

MOV1

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

DC+

DCndash

CFI

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE TABLE 1SHEET 2

M1

M2

M3

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

To Precharge Board A10

Schematic Diagram ndash 75 amp 100 HP 230 VAC

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash21

F1

GATE DRIVERS

+24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

MOV1

ACOUTPUTPOWER

DC+

DCndash

(4) (3)

F1

(1) (2)

L1

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

CM1

CM2

PE

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DC+

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

TE

PE

CNVndash

111098

+INV

ndashINV

SEE TABLE 2

SEE SHEET 2

PE

UndashM1

VndashM2

WndashM3

CUSTOMERFUSING

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

13 13 13 13 13 13

1313

Schematic Diagram ndash 150ndash250 HP 380460V 150 ndash 300 HP 575V

F1 F3STD PRECHARGEBD

F1 F2 F3

Appendix A

Andash22

Schematic Diagram ndash X250 ndash 650 HP

CONVSNUBBER

A11

DC+

DCndash

CONVSNUBBER

A12

CONVSNUBBER

A13

ACINPUT

CUSTOMERFUSING

CF1

CF2

CF3

PE

SEETABLE 1SHEET 2

RndashL1

SndashL2

TndashL3

PE

MOV1

PM1

CNVndash

CNV+

K1

G1

TO BLOWERCIRCUIT

SEE SHEET 2

SCR1

SCR4

SCR3

SCR6

SCR5

SCR2

PM2 PM3

(1) (2)

(4) (3)

L1

DC+

DCndash

K1

G1

K1

G1

K2

G2

K2

G2

K2

G2

STANDARD PRECHARGE BOARD

F1 F2 F3

A

Appendix A

Andash23

Schematic Diagram ndash X250ndash650 HP

A

THS1

PE PE PE

INV+

INVndash

C40

C41

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TB6

TB4

F1

GATE DRIVERS

+24V

TP3

MAIN CONTROL BOARD

+24V

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

AUXBUS+

AUXBUSndash

AUX 24V

J1TO NTC

NTCIF

DRIVEndashDRIVE

IF

J5J7

TB11

J1

VP 3276541

111098

1

ndash12V

12

4132

3

24VDC ndash DC

CONVERTER

TP5

+15V

TP6

ndash15V

TP4

+5V

TP8

+12V

P1 TB10

TB10

PWR+12V

TP12TP17

ICOM RTNENCAENCAENCBENCB

SHD

TE

TP11

ndash12V

BRAKECONTROL

TB10SHUNT+SHUNTndash

SHD

TE

PWRRTNHILO

141312

Y

VELOCITYPROC

R G

CPINVEN

IQSIDSVCAR

ENCAENCB

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

ENCODERIF

GR GDndashDCOMM

RTD1RTD SEN

RTD2SHD

RTDIF

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

CAPBANK

F1 F3

Appendix A

Andash24

F1 +24V

MAIN CONTROL BOARD

+15V ndash15V +5V+12V

MAIN BUSDC ndash DC

CONVERTER1A

TP1 TP2

J1

TO NTC

NTCIF

DRIVEndashDRIVE IF

J5J7

TB11

J1

VP

ndash12V

24VDC ndash DC

CONVERTER

P1

TB10

PWRRTNHILO

Y

VELOCITYPROC

R G

CPINVEN

TP13

TP15VAFF

TP19TP20TP10

TP22VBFF

TP25VCFF

CURRENTPROC

SYNCHCURRENT

REG

GR GDndashDCOMM

TP27

COMISO

TP26

+12VISO

TP5

ndash15V

TP4

GND

TP3

+15V

TP1

DGND

TP2

+5V

TP9

DAC2

TP11

DAC1

TP18

IC

TP16

IA

TP14

VBUS

TP23

ID

R22

Q2

Q5G1

Ck

EkG

C

E4

1

5

A25

GATEINTERFACE

K1

G1

CO

NV

SN

UB

BE

R

A11

G1

Ck

EkG

C

E4

1

5

A28

GATEINTERFACE

R21

Q6

Q3G1

Ck

EkG

C

E4

1

5

A24

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A27

GATEINTERFACEIN

VE

RT

ER

SN

UB

BE

R

A20

R20

Q4

Q1G1

Ck

EkG

C

E4

1

5

A23

GATEINTERFACE

G1

Ck

EkG

C

E4

1

5

A26

GATEINTERFACE

K2

G2

K1

G1

K2

G2

K1

G1

K2

G2

CAPBANK

TO BLOWERCIRCUIT

PE

ACOUTPUTPOWER

DC+

DCndash

4132

SHUNT+SHUNTndashSHD

BRAKECONTROL

TE

IQSIDSVCAR

TB10RTD1RTD SENRTD2

RTD IF

SHD

TP12 ENCAENCBENCB

ENCODER IF

SHD

TB10PWRRTNENCA

3276541

TE

+12VICOM

TP17

ENCAENCB

1

3

TB6AUXBUS+

AUXBUSndash

12

AUX 24VTB4 TP11TP8TP4TP6TP5TP3

ndash12V+12V+5Vndash15V+15V+24V

INV

ER

TE

RS

NU

BB

ER

A21

INV

ER

TE

RS

NU

BB

ER

A22

DCndash

PM1 PM2 PM3

CO

NV

SN

UB

BE

R

A12

CO

NV

SN

UB

BE

R

A13

CNV+

SCR1 SCR3 SCR5

SCR4 SCR6 SCR2

CJ1

J1 J1

J1

J1

J1

141312

CNVndash

111098

+INV

ndashINV

PE

UndashM1

VndashM2

WndashM3

CF2

CF3

PE

RndashL1

SndashL2

TndashL3

ACINPUT

POWER5060HZ

CFI

SEE TABLE 1SHEET 2

To Gate Driver Board A1To Gate Driver Board A1To Gate Driver Board A1

Schematic Diagram ndash 300ndash400 HP

To Precharge Board A10

GATE DRIVERS F3STD PRECHARGEBD

F1 F2 F3

F1

Appendix A

Andash25

Schematic Diagram ndash 700ndash800 HP

PE PE PE

CT3

PS+V

CUSTOMER

THS1

F410001

3

CAP BANK

INV+

X

INVndash

CNV+

R10 R12 R11 R13105061

+DC

ndashDC

FUSING

PS+V

3

1

1

PSOMPSndashVPSndashVRL1ndash5RL1ndash9

A10PrechargeCommon BusBoard

J2 J1

TB1

1 4 7 10 1 4

IN POS BUS

IN NEGndashBUS

GATE

CATHODE

1

3

OUT POS BUS

OUT NEG BUS

J3

1

4

7 8 9101112

+SMP

ndashSMP

+15V

ndash15V

COMMON

5VCHARGEAC LINE

UserSupplied120 VACor24 VDC

W1

W1

24VDC120VAC

1ndash2

2ndash3

1 2 3

Appendix A

Andash26

Schematic Diagram ndash 700 ndash 800 HP cont

3

C1

B1

E1

Q11

C1

B1

E1

Q41

A20

J1

J2

1

3

13

R20 R21

C1

B1

E1

Q31

C1

B1

E1

Q61

A21

J1

J2

1

3

13

R22 R23

C1

B1

E1

Q12

C1

B1

E1

Q42

A23 A24

C1

B1

E1

Q32

C1

B1

E1

Q62

A25 A26

C1

B1

E1

Q51

C1

B1

E1

Q21

A22

J1

J2

1

3

13

R24 R25

C1

B1

E1

Q52

C1

B1

E1

Q22

A27 A28

UndashM1

VndashM2

WndashM3

AC

OUTPUT

POWER

NTC

TOMAIN

CONTROLBOARD

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

TO GATEDRIVER

21

CT1 40001+15

ndash15U_AMPS 3

21

+15

ndash15W_Amps CT2 40001

PE

PS+V

PS+VPSCOMPSndashVPSndashVRL1ndash5RL1ndash9

GATEDRIVERBOARD

TB5

J13

A1

J6

J9

TB4 J1

+SMP

ndashSMP

+15V

ndash15V

COMMON

+5VCHARGEAC LINE

TO Main Control Board

TB71 2

12

9

654321

6

U_AMPS

W_Amps

J5

ContactorInterface

J2 J10

1 4 7 245

ndash BUS

+BUS

ACT2

ACT1

1 2

TE

24V AUX+

24V AUXndash

J7 J8

A23ndashA28Interface

A23ndashA28Interface

Appendix A

Andash27

Gate Driver Board Connections The connections on 1336 FORCE Gate Driver Boards vary by frame sizeas indicated in the following illustrations

1

J1

1

10

+ BUS

E25

MainControlBoardInterface

TB1

E26 E1

E6 E5

PE

GND

PE

GND

DC +

DC ndash

R (L1)

S (L2)

T (L3)

U (T1)

V(T2)

W(T3)

E20 E19 E21

E29 E22

50

E8

E27

E13 E15 E11

LEM2

LEM1

E16 E12 E14

E10 E9 E17

J4

E18

F1

ndash BUS Motor

To Motor

AC Input Line

RequiredInput Fusing

Required BranchCircuit Disconnect

FAN

PrechargeResistor

BusSwitcherFuse

Frame Size B Gate Driver Board Connections

Appendix A

Andash28

Frame Size C Gate Driver Board Connections

1

J1

MainControlBoardInterface

50

F1

TB4

Main Switcher(Bus Volts gt 24Vdc)

BusSwitcherFuse

J8

Connection to Upper IGBTrsquos

J7

Connection to Lower IGBTrsquos

F3

J9

Standalone or CommonbusPrecharge Board Interface

J10

J2

J6CurrentFeedbackInterface

BusDischargeFuse

Ext 24VSupplyInput

Ground Fault CT

Bus Input

Appendix A

Andash29

Frame Size D Gate Driver Board Connections

1

J1MainControlBoardInterface

50

F1

Logic Level Supply

TB4

Main Switcher(Bus Volts gt 24Vdc)

MainSwitcherBusFuse

J8 Connection to Upper IGBTrsquos

J7Connection to Lower IGBTrsquos

F3

J9

Standalone or Common BusPrecharge Board Interface

J10

J2

J6

BusInput

CurrentFeedbackInterface

GroundFaultCT

BusDischargeFuse

Ext 24VSupplyInput

Appendix A

Andash30

Sensorless Application Notes Sensorless vs Encoder Application Guidelinesndashndash Sensorless is applicable when Speed Regulation requirements are

greater than +ndash 10 of base speed Sensorless may be applicable for regulation requirements between 02 and 10 with manual adjustments Encoder operation is recommended below 02

ndash Sensorless is applicable when the minimum speed is greater than 140 of base speed (ie 45 RPM on a 60 Hz 4 pole motor) Sensorless may be applicable down to speeds of 160 of base speed (30 RPM) if high bandwidth responses are not required Encoder operation is recommended for speeds lt 160 of base speed (30 RPM)

ndash Maximum Speed is the same for sensorless and encoder operation

ndash The maximum velocity bandwidth achievable with sensorless is approximately twice the default bandwidth value Bandwidths higher than this may require an encoder because the velocity ripple may be intolerable or there may be stability problems The maximum bandwidth achievable with sensorless is half the bandwidth achievable with an encoder Note that the maximum achievable bandwidths decrease with increasing inertia for both sensorless and encoder

ndash The starting torque available is the same with sensorless or encoder Available starting torque is at least 150 motor torque and could be as high as 200 if the inverter can supply the current

ndash Minimum (current limit) acceleration and deceleration times are comparable with sensorless and encoder

ndash Torque regulation (+ndash5) is comparable with sensorless and encoder at velocities greater than approximately 25 of base speed At lower speeds sensorless torque regulation may degrade with changing motor temperature

ndash Torque response is comparable with sensorless and encoder (400Hz)

Sensorless Mode Selection ndashndash Param 150 = 5

Minimum preset speed is 160 of base speed When preset speed and actual speed are both lt160 of base speed torque is set to zero When preset speed is gt 160 of base speed torque will be developed to accelerate the motor through the min speed to the preset speed

When a motor is accelerated from a preset speed of 0 to a preset speed gt 160 of base speed the motor will accelerate at the accel rate set by the drive But if the accel rate in the drive is set to 0 or some low value and the acceleration is controlled by ramping the preset speed parameter with a PLC the motor will not accelerate until the preset speed is gt 160 base speed This will result in an accel delay until that speed is reached followed by an acceleration at the speed set by the PLC If this is a problem Mode 7 should be used

ndash Param 150 = 6Minimum preset speed is 11000 of base speed Preset speeds down to zero are permitted although it is very likely that the motor will not operate smoothly at these low speeds This mode will eliminate the problems associated with controlling the acceleration rate by ramping preset speeds from a PLC described in Mode 5 (Param 150 = 5)

ndash Param 150 = 7 (Available in 301 version)Minimum present speed is 11000 of base speed This mode is similar to mode 6 except that the motor can be expected to operate more smoothly and develop higher continuous torque at speeds lt 160 of base speed This mode will also allow operation with lower

Appendix A

Andash31

velocity bandwidths than Mode 5 and allow smoother acceleration

The disadvantage of this mode is that the response to load changes at low speeds is not as fast as mode 5 Also fast speed reversals may not work when the preset speed is ramped from a PLC and the drives acceldecel rate is set to 0

Sensorless Troubleshooting Procedures ndash

ndash Problem Motor wonrsquot accelerate or doesnrsquot start smoothlyndash Possible Solutions

Increase the bandwidth If the bandwidth is too low there is a chance the motor wonrsquot accelerate although the current will increase to current limitIf the regen power limit is 0 increase it to at least ndash5Decrease the acceleration time (faster acceleration)Change Param 150 to mode 7

ndash Problem Motor oscillates after it is up to speed

ndash Possible SolutionsDecrease the bandwidth if the process will allow If this doesnrsquot help set Param 142 to 1500If unstable in field weakening change Param 174 to 100

ndash Problem Inverter trips on absolute overspeed during starting

Increase the bandwidthIf the overspeed occurs during a reversal increase the deceleration time (slower deceleration)

Sensorless FinendashTuning Procedures ndashndash Improving Speed Regulation

Typically the speed regulation (as a function of load) in sensorless mode can be improved by adjusting Param 246 (Base Slip Frequency) after the drive has been completely autondashtuned This parameter is originally calculated during the torque calculation section of autondashtune and is dependent on the nameplate speed of the motor

Ideally this adjustment is made while the motor is fully loaded and at its normal operating temperature Adjust Param 246 until the actual speed as measured by an independent source (ie hand tach) is equal to the desired speed This should result in a minimum steady state speed deviation as load changes The proper slip for good speed regulation is also motor temperature dependent thus if the motor operating temperature normally varies between cold and hot a compromise slip must be selected

ndash Minimizing Acceleration Time from 0 Speed

After a start command is issued there is a 05 sec flux up delay before the motor will start accelerating with sensorless control This delay can be eliminated in subsequent accelerations from 0 speed by configuring the drive to decel down to a preset speed of 0 rather than decelerating to stop

ndash Increasing Speed Range

Speeds down to zero speed may be commanded when Param 150 is set to 7 As operation nears 0 speed cogging may result

Appendix A

Andash32

Software Block Diagram ndash Standard Adapter

SCANport Image In

Data In A1 (310)

SCANports1

2

3

4

5

6

SCANport Analog 1 Select (364)

1

2

3

4

5

6

Data In A2 (311)

Data In B1 (312)Data In B2 (313)Data In C1 (314)

Data In C2 (315)Data In D1 (316)

Data In D2 (317)

Fault Select (405)Warning Select (406) Fault Status (407)

Warning Status (408)Bit1 ndash SCANport 1 Timeout2 ndash SCANport 2 Timeout3 ndash SCANport 3 Timeout4 ndash SCANport 4 Timeout5 ndash SCANport 5 Timeout8 ndash 4ndash20mA Loss13 ndash Illegal Drive Type (Not Configurable) 14 ndash Different Drive Type (Not Configurable)15 ndash SCANport Error (Not Configurable)

SCANport Image Out

Data Out A1 (320)

1

2

3

4

5

6

Data Out A2 (321)Data Out B1 (322)Data Out B2 (323)

Data Out A1 (324)Data Out A2 (325)Data Out D1 (326)

Data Out D2 (327)

SCANport1

2

3

4

5

6

SCANport Analog Out (379)

Discrete IO

Input Mode (385)Input Status (386)

Mode1234

527678

9281029

11121314

15301617181920212223242526

Input 1StatusStartStartStartStartStartStartStartStartStartStartRun FwdRun FwdRun FwdRun FwdRun FwdStartStartStartStartStartStartRun FwdRun FwdRun FwdRun Fwd

Input 2NotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr FltNotndashStop (P59) Clr Flt

Input 3StatusRevFwdRevFwdRevFwdRevFwdRevFwdRevRevMOP IncRev1st AccRun RevRun RevRun RevRun RevRun RevRevFwdRevFwdSpdTrq3SpdTrq3ReverseSpdTrq3Run RevRun RevRun RevRun Rev

Input 4StatusJogStop Type1st2nd AccMOP IncJogFwdRwdMOP DecFwd2nd AccLocRemStop Type1st2nd AccMOP IncLocRemPTrim EnFlux EnableSpdTrq2SpdTrq2ForwardSpdTrq2PTrim EnFlux EnablePTrim EnJog

Input 5StatusExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt FaultExt Fault

Input 6StatusSpd Sel 3Spd Sel 31st2nd DecMOP DecLocRemJogSpd Sel 3Spd Sel 3MOP Inc1st DecSpd Sel 3Spd Sel 31st2nd DecMOP DecStop TypeRamp DisResetSpdTrq 1SpdTrq 1Ramp DisSpdTrq 1ResetResetRamp DisSpd Sel 3

Input 7StatusSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2MOP Dec2nd DecSpd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Spd Sel 2Ptrim EnFlux EnableResetSpd Set 2Spd Set 2Spd Set 2Spd Set 2Spd Set 2

Input 8StatusSpd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1Spd Sel 1

Input 9EnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnableEnable

Stop Select 1 (387)Stop Select 2 (388)Accel Rate 1 (389)Accel Rate 2 (390)Decel Rate 1 (391)Decel Rate 2 (392)

SCANport Analog 1 In (365)

TB3ndash19 TB3ndash20 TB3ndash22 TB3ndash23 TB3ndash24 TB3ndash26 TB3ndash27 TB3ndash28 TB3ndash30 TB3ndash21 TB3ndash25 TB3ndash29COMMON

Power Cycle or Reset required to take effect

A

1

2

3

4

5

6

SCANport Analog 2 Select (367)

SCANport Analog 1 Scale (366)

SCANport Analog 2 Scale (368) SCANport Analog 2 In (369)

Appendix A

Andash33

Software Block Diagram ndash Standard Adapter

0123456

MOP Inc (393) MOP Value (394)

Port Enable Mask (330)

1

2

3

4

5

6

C B A0 0 0 ndash No Change0 0 1 ndash External Ref 10 1 0 ndash Preset Speed 10 1 1 ndash Preset Speed 21 0 0 ndash Preset Speed 31 0 1 ndash Preset Speed 41 1 0 ndash Preset Speed 51 1 1 ndash External Ref 2

Local Mask (337)

Start Mask (332)Jog Mask (333)Clear Fault Mask (335)Direction Mask (331)

Reference Mask (334)

Reset Drive Mask (336)

Stop Owner (340)Direction Owner (341)Start Owner (342)Jog 1 Owner (343)Jog 2 Owner (344)Reference Owner (345)Local Owner (346)Flux Owner (347)Trim Owner (348)Ramp Owner (349)Clear Fault Owner (350)

Logic Status (56)

Bit 0 ndash Run ReadyBit 1 ndash RunningBit 2 ndash Command Direction 1 = FWD 0 = REV)Bit 3 ndash Rotating Direction (1 = FWD 0 = REV)Bit 4 ndash AcceleratingBit 5 ndash DeceleratingBit 6 ndash WarningBit 7 ndash FaultedBit 8 ndash AT Set SpeedBit 9 ndash Local ABit 10 ndash Local BBit 11 ndash Local CBit 12 ndash AT Zero SpeedBit 13 ndash Ref ABit 14 ndash Ref BBit 15 ndash Ref C

Logic Status (57)

Bit 0 ndash Flux ReadyBit 1 ndash Flux UpBit 2 ndash Diagnostic CompletedBit 3 ndash Diagnostic CompletedBit 4 ndash Bus RidethruBit 5 ndash JoggingBit 6 ndash Autotune Stat ABit 7 ndash Autotune Stat BBit 8 ndash At LimitBit 9 ndash Not UsedBit 10 ndash At Setpoint 1Bit 11 ndash At Setpoint 2Bit 12 ndash Over Setpoint 1Bit 13 ndash Over Setpoint 2Bit 14 ndash Over Setpoint 3Bit 15 ndash Over Setpoint 4

Fault

Warning

Logic Command (52) (Permanent Link)

Bit 0 ndash Ramp StopBit 1 ndash StartBit 2 ndash Jog 1Bit 3 ndash Clear FaultBit 4 ndash ForwardBit 5 ndash ReverseBit 6 ndash Jog 2Bit 7 ndash Current Limit StopBit 8 ndash Coast StopBit 9 ndash Velocity Ramp AvailableBit 10 ndash Flux EnableBit 11 ndash Process Trim EnableBit 12 ndash Vel Reference Select ABit 13 ndash Vel Reference Select BBit 14 ndash Vel Reference Select CBit 15 ndash Reset Drive

Output Select (384)

TB7ndash6

TB7ndash5

TB7ndash4

TB7ndash9

TB7ndash8

TB7ndash7

Enable (55 Bit 9)

TB7ndash1

TB7ndash2

TB7ndash3

10 Volt Offset (356) 10 Volt Scale (357)10 Volt Input+ TB5 ndash 4ndash TB5 ndash 5

10 Volt Input (355) Analog Out 1 Scale (372) 10 Volt Scale (371)AnalogOutput 1 (370)

Analog Output 1 + TB6 ndash 1 ndash TB6 ndash 2

Pot Offset (359) Pot Scale (360)Pot Input+ TB5 ndash 7ndash TB5 ndash 8

Pot Input (358) Analog Out 1 Scale (375) 10 Volt Scale (374)AnalogOutput 2 (373)

Analog Output 2+TB6 ndash 4 ndash TB6 ndash 5

mA Input Offset (362) mA Input Scale (363)mA Input+ TB5 ndash 10ndash TB5 ndash 11

mA Input (361) mA Output Scale (378) mA Output Offset (377)mA Output 3 (376)

mA Output + TB6 ndash 7 ndash TB6 ndash 8

Pulse PPR (395)Pulse Edge (396)Pulse Scale (397)

Pulse Offset (398) Pulse Value (399)+10V RefCom Refndash10V Ref

TB5ndash1TB5ndash2TB5ndash3

+TB5ndash13ndashTB5ndash14

A

Filter

Filter

354

353

Filter

352

Appendix A

Andash34

36T Firmware Function (Motor Control Board Overview)

PROCESS TRIM

VELOCITYREFERENCE CONTROL

L

B TRIMCONTROL

LC

VR

Tq

DRIVE LOGICCONTROL

VELOCITY PIREGULATOR

GAINS

LC

VELOCITY LOOPAUTOTUNE

3 LOGIC COMMANDS

2 JOGS

2 LOGIC STATUS WORDS

FLUX INHIBIT RUN INHIBIT COND

Tpt

TORQUE TRIM

TL TH

PI

TORQUE LIMIT

VELOCITYFEEDBACK CONTROL

Q

S

VF

φf

TqTORQUE COMMAND

Sheet Connection Symbols

B VELOCITY RAMP OUTPUT

C CURRENT PROCESSOR COMMAND

I f FILTERED Iq REFERENCE

Iq

VELOCITY TRIM

Iq REFERENCE

LC LOGIC CONTROL WORD

M ACTIVE TORQUE MODE

VELOCITY PI REGULATOR OUTPUT

Q

S FILTERED Iq REFERENCE

TL TORQUE LIMIT LOW

TORQUE LIMIT HIGH

TORQUE COMMAND

VELOCITY FEEDBACK

φf

PI

TH

Tq

VELOCITY REFERENCE

TORQUE TRIM

VR

Tpt

5 PRESETS

2 JOGS

2 EXTERNALVELOCITY

REFERENCES

ENCODERLESS

VF

VT

Appendix A

Andash35

36T Firmware Function (Motor Control Board Overview)

2 EXTERNALTORQUEREFERENCES

TORQUE REFERENCECONTROL

M

C

DRIVE FAULTDETECTION

TORQUE BLOCK(DC TO ACCONVERTER)

ANALOG CURRENTREGULATOR

Iq REF (AC)

LOCAL INPUTS

4 FAULT STATUS WORDS

ACMOTORIq

If

1 EXTERNAL Iq Ref

Id REF (AC)

fe

DIGITALENCODER

ENCODERLESS

Appendix A

Andash36

36T Firmware Function (Velocity Reference Overview)

PARAM 52 LOGIC COMMAND WORD

ExternalVelocity Ref 1

SCALE

AUTO TUNEREFERENCE

SELECT

DIRECTIONSELECT

AUTOTUNE

ACTIVE

A

JOGREFERENCE

SELECT

0

JOG 2SPEED

PARM52

102

100101

ExternalVelocity Ref 2

SCALE

105

103104

119

120

121

122

0

123

121314

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2 6

27

118

PROCESS TRIMREFERENCE

REFERENCECONTROL SELECT

41

STOPCOMMAND

078

P54 DISCRETESTOP INPUT

45

PARM52 128

FORWARDSPEED LIMIT

127

REVERSESPEED LIMIT

56

LINEARACCELDECEL

RAMP

LOGICSTATUSPARM

DECEL TIME

125

126

ACCEL TIME

RAMPBYPASS

2679

PARM52

B

PROCESSTRIM VEL INPUT

SELECT

+

ndashC

117JOG 1SPEED

28PROCESS TRIMFEEDBACK

146VELFBK

RAMP OUTPUT

PARM52

PARM52

3

MAXSELECT

2

Parm 59

UNIPOLAR 0

ndash32767BIPOLAR

X (ndash1)

0 0 0Scale8192

Scale8192

2

59

LOGIC OPTION

Vel Ref Type12

Appendix A

Andash37

36T Firmware Function (Trim Control Overview)

PROCESS TRIM

TRIM LIMIT OPTION

STOP

OUTPUT GAIN2048

DATA

PROCESS TRIM PIREGULATOR

RAMP OUTPUT

109HIGH

B

C

108

LOW PASSFILTER

KI4096

KP4096

31

32

33

36

35

HIGH LIMIT

232

LOW LIMIT

LOW

LIMIT

VELOCITYTRIM

29

0

+

+

SELECT VELOCITYOUTPUT

0

+

+

106

10732 Bit ExternalVelocity Trim

ZEROREFERENCE

0

VELOCITY TRIM

LIMIT

TRIMLIMIT

29 0

FREQLIMIT

VR

TO VELOCITYPI REGULATOR

TORQUETRIM

0

Tpt

TO TORQUEREFERENCE

29 1

SELECT TORQUE

29 3

34

29 4

Lc 11FROMDRIVELOGIC

P52

SET OUTPUT OPTION

PRESET INTEG OPTION

130

FWD LIMIT

129

REV LIMIT

Appendix A

Andash38

36T Firmware Function (Velocity Feedback Overview)

DIGITALENCODER

ENCODER SIGNALPROCESSING

SUM

emptyt

DIVIDE

CHAN A

CHAN B

ENCODER FEEDBACK SCALING

PULSE To PER UNIT CONVERSION

LOW SPEEDALGORITHM

A

B

Appendix A

Andash39

36T Firmware Function (Velocity Feedback Overview)

FEEDBACKDEVICESELECT

8192

0

1

3

35492

567

152

0

FILTER

FEEDBACKDEVICE

TYPE

Kn

4

34567

012

1

4

150

FILTERSELECT

3

2 2040FILTER

LeadLag

FILTER

153 154

Wn NotchFilter

2143SCALE

147102 105

Scale 1 Scale 2

VF

155

ENCODERLESSINTERNALFEEDBACK

EXTERNALFEEDBACK

VEL REFSELECT

125 msFILTER

146

VELOCITYFEEDBACK

FV

143 16

TO MOTOROVERLOADFUNCTION

I2TABSOLUTE

OVERSPEED

SELECTEDVELOCITY

TO VELOCITY PI REGULATOR

Scaled VelFeedback

SUM

Q TO VELOCITY PI REGULATOR

Alt Encoder

Motor Sim

A

B

Appendix A

Andash40

36T Firmware Function (Velocity PI Regulator Overview)

VELOCITY PI REGULATOR

INTEGRATOR

VR

SELECT

65535

Kf TERM

I

3

FEEDFORWARD

Kf Velocity Loop

133

HOLD

Q

141

VELOCITY REFERENCE

132

A

65535

Kf

LOWPASS

FILTER

135

+

ndash

14241364135

Wn

Gain

Auto Tune Active

SELECT

50

Kp Velocity Loop 140

A

Gain

Auto Tune Active

Kf ERROR

3136

FAULT TESTPOINT

1596 9

HOLD

S

+

ndash

FROM TRIMCONTROL

DROOPEDVELOCITY

REFERENCE

2136135

9815

3

MATHLIMIT

+

ndash

DROOPGAIN

VF

146

DROOPPERCENT

XX

1298

FROMFEEDBACKCONTROL

FROMFEEDBACKCONTROL

15

131

PARAMETERLIMIT

VELOCITYFEEDBACK

+ ndash

138

VELOCITY ERROR

1598 8

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

Appendix A

Andash41

36T Firmware Function (Velocity PI Regulator Overview)

INTEGRALGAIN

I

PROPORTIONALGAIN

REGULATORENABLE

8

K

SELECT

8

Kp VELOCITY LOOP 139

A

Gain

+ 300

K

8

AUTO TUNEACTIVE

+

TORQUELIMITER183

LIMIT STATUS

1598 1

MATH LIMIT

FAULT TESTPOINT

U

W

X

V

Y

Z

OR

+

2

ndash 300

0

8

PI

134

LC

TOTORQUE

REFERENCECONTROL

LOGICCONTROL

WORD

VELOCITYREGULATOR

OUTPUT

13136

OUTPUTLIMITED

p

= 0

Appendix A

Andash42

36T Firmware Function (Torque Reference Overview)

Limit Selection

TORQUE TRIM

Tpt

FromTrim Control

MINIMUM SELECTOR FOR + LIMIT

NTC LIMIT

A

AUTOTUNEACTIVE

SCALETORQSTEP

ACTIVE TORQUEMODE

M

11172

Torque Sum4096

163

EXTERNALTORQUE

REF 1

162

SLAVETORQUE 1

SCALE

4096

165

164

SLAVETORQUE 2

EXTERNALTORQUE

REF 2

+

PI

SPEED

TORQUE

134

Torque Selection

MIN

MAX

2 1 0

19172

2 1 0C B A

TORQUESELECT

LOGIC BITS

0 0 0 0

0 0 1

TORQUE LIMIT

0 1 0

+ +

+0 1 1

172

1 0 0

18172 13

TORQUE MODE SELECT

NOTCHFILTER

152 = 4 Notch

166

183

0+

1

2

3

4

5

6

0TORQUE

COMMAND

MAXIMUM SELECTOR FOR ndash LIMIT

1172

160NEGATIVE

MOTORCURRENT

LIMIT

179POSITIVEMOTOR

CURRENTLIMIT

( ndash 1)

3172

( ndash 1)

CURRENT TO TORQUE

271

LIMITEDFLUX

POSITIVEIq LIMIT

FLUX

CURRENT TO TORQUE

271

LIMITEDFLUX

FLUX

NEGATIVEIq LIMIT

FROMINVERTEROVERLOAD

PROTECTION

1 0 1

From VelocityPI Regulator

LIMITS

SUM

26

Appendix A

Andash43

36T Firmware Function (Torque Reference Overview)

Power Limits

MIN SELECT AUTOTUNE

TORQUELIMIT

LIMITEDFLUX

TORQUELIMITS

40

+

INTERNAL TORQUEREFERENCE

271

TORQUE TO CURRENT

FLUX+

167

174

8ndash

9

10

12

13

14

MIN FLUX

FULL WAVERECTIFY

Computed Power

XMultiply

Torque Ref

PositiveTorque Limit

MAX SELECT

175

172 20

NegativeTorque Limit

176 7172

Torque Limit Low

8172

Torque Limit High

21172

NEGATIVE TORQUEPOWER LIMIT

POSITIVE TORQUEPOWER LIMIT

1

Vf

1

Vf

+ndash

ndash+

177

146+

VELOCITYFEEDBACK

ndash

167

182

ComputedPower

MOTORINGPOWER

LIMIT

178REGENPOWER

LIMIT

( ndash 1)40

Autotune TorqueLimit

11

LIMIT STATUS

Iq LIMIT PARAM

NTC LIMIT

INVERTER (IT) LIMIT

INVERTER MAXIMUM

TORQUE LIM PARAM

POWER LIM PARAM

AUTOTUNE LIM PARAM

CURRENTLIMITS

MAX SELECT

CURRENTLIMIT

25172

Iq SUM

Iq RATELIMITER

I

Iq

MOTORFLUX

REFERENCETO TORQUEREFERENCE

161EXTERNALIQ

0

Appendix A

Andash44

36T Firmware Function (Torque Block Overview)

SYNCHRONOUS

TO

STATIONARY

TRANSFORMATION

CURRENT COMMAND CONDITIONING

FROMTORQUE

REF

168

Iq

172

MAX MOTORCURRENT

RANGE

172

MIN = ndash8192

MAX = 3072

MIN = 0

DRIVEENABLE

(lq)

RATED FLUX (Id)

238

LIMITER

4096^2ndash[238]^24096

MAX = 8192

DRIVEENABLE

LIMITER

Iq_CMD

Id_CMD

MOTORPOLES

233

THETA e

THETA s

2

HARDWARE

COUNTERS

1024[235]

[233]

4

ENCODERPPR

235

COUNTER 2

COUNTER 1

CHAN A

CHAN B

DIGITALENCODER

Iq_CMD1024

+

+

SLIPREGULATOR

DDT

+

+

THETA r

KSLIP

DELTA_COUNTS

fs(fslip)

fe

(eletrical or stator freq)(rotor)

41

41

R8192

R

ENCODER FEEDBACK CONDITIONING

+

ndash

fr

Appendix A

Andash45

36T Firmware Function (Torque Block Overview)

ANALOG CURRENT REGULATOR

BRIDGE GAIN IN TORQUEndash TESTPOINT 27 WHEN PAR 173=27

INVERTER GAIN

COMMAND

FEEDBACK

172

Iqs

TP18FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

VOLTAGE TP16=25V WITH PEAK RATED-MOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP1 amp TP2=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TP19

TP21

Ids

VOLTAGE TP21=5V WITH PEAK RATEDMOTOR AMPS THROUGH THE MOTOR

VOLTAGE BETWEEN TP3 amp TP4=25VWITH DRIVE PROVIDING PEAK RATED DRIVE AMPS

TOTAL CURRENT

MOTORCURRENT

MAGNITUDE

XX AMP

264

DAC

260

TP16

+

ndash TP1

TP2

INVERTER GAIN

COMMAND

FEEDBACK

172

FEEDBACK CKT

CURRENT SENSOR-BURDEN RESISTOR

DAC

261

+

ndash TP3

TP4

DAC

ADC

++

++

IdOFFSET

IqOFFSET

2048[GAIN]

2048[GAIN]

MAX

MULT

UWV

220INVERTER

AMPSPERUNITMOTOR

CURRENT

XX

185

Appendix A

Andash46

36T Firmware Function (Drive Fault Detection)

lf

91

4

98 18 ACCEL ERROR

98 19 QUAD LOSS EDGE

98 20 QUAD LOSS LEVEL

98 21 PHASE LOSS EDGE

98 22 PHASE LOSS LEVEL

54

857

1256

VELOCITY FEEDBACKTESTPOINTS

98 11 PARAM LIMIT 1

98 12 PARAM LIMIT 2

98 13 MATH LIMIT ndash VEL REF

98 14 MATH LIMIT ndash VEL FBK

98 15 MATH LIMIT ndash VEL REGULATOR

FAULT TESTPOINTS(BIT FIELDS)

FV

95

96

97

92

LC5

98 16 MATH LIMIT ndash TORQUE REF

98 17 MATH LIMIT ndash PROCESS TRIM

QUAD LOSS HSI0

PHASE LOSS HSI1

EXT FAULT

LOGIC STATUS

ENCODER

AT LIMIT

ZERO SPEED

XXX SECSTALL

STOPPED

MOTOR STALLED

BIT 6ndashFAULT CODE 5054

BIT 5ndashFAULT CODE 1053

LOGIC CONTROL WORD

150FEEDBACK DEVICE= ENCODER (1) BIT 0

FAULT CODE 5048

FILTERED

FILTERED

SPEED 1

SPEED 2

MIN

OVERLOAD

BREAKPOINT

ABS

21

ndash05

Y2lq

lq2

MAX

INTG

CALC

LIMIT

0

200

4096

A

B

A

B3891K

AgtB

AgtB

I2T TRIPBIT 4

ndashCODE 1052

I2T PENDINGBIT 3

ndashCODE 1051

MOTOR

CP CONFIGURABLE FAULTWARNING

BIT DESCRIPTION

0 BUS RIDETHROUGH TIMEOUT

1 PRECHARGE TIMEOUT

2 BUS DROP

3 BUS UNDERVOLTAGE

4 BUS DROP CYCLES gt5

5 OPEN CIRCUIT

6 RESERVED

7 RESERVED

8ndash15 NOT USED

PARAMETERS 828486 and 87

CONFIGURABLE FAULTS

lq

LIMIT

OVERLOAD

MOTOR OVERLOAD FUNCTION ldquoI2Trdquo

EDGE

DELAYAND

DELAY

LEVELDETECT

THRESH

(100)

(95)

VEL

LIMIT

94SERVICEFACTOR

Appendix A

Andash47

36T Firmware Function (Drive Fault Overview)

270

128

98 4

87

89

82

83

84

85TC

90

127

FV

LC 5

80

81

WARN

SEL

VP CONFIGURABLE FAULTWARNING

CONFIGFAULTSTATUS

CP

VP

CONFIG WARNSTATUS BITS

CP

VP

XX VOLTS

PARAMETERS 838588 and 89

BIT DESCRIPTION

0 ENCODER FEEDBACK LOSS

1 INVERTER OVERTEMPERATURE PEND

2 MOTOR OVERTEMPERATURE TRIP

3 MOTOR OVERLOAD PENDING ndash IIT

4 MOTOR OVERLOAD TRIP ndash IIT

5 STALLED

6 EXTERNAL FAULT

7 RMS FAULT

POWERTRANSISTOR

HEATSINKTEMPERATURE

(NTC) NTCLOOKndashUP gt

80C05 SEC

INVERTER OVERTEMP PENDING

BIT 1

ltndash20COR

gt100C

05 SECDELAY

INVERTER TEMPERATURE CHECK

LOGICCONTROL

WORD

NOT

RF

LIMIT CHECK

100 msec

HOLD

ABSOLUTE OVERSPEED

BIT 9FAULT CODE

3025

CODE2028

FILTEREDVELOCITYFEEDBACK

ABSOLUTEOVERSPEED

FWD MOTORSPEED LIMIT

REV MOTORSPEED LIMIT

NONndashCONFIGURABE FAULTS

0 BUS OVERVOLTAGE TRIP

1 TRANSISTOR DESATURATION

2 GROUND FAULT

3 INSTANTANEOUS OVERCURRENT

4 SOFTWARE MALFUNCTION ndash (CP)

5 MASTERSLAVE CABLE LOSS

6 MASTERSLAVE ENABLE TIMEOUT

7 RESERVED

8 ADAPTER HANDSHAKE LOSS (VP)

9 ABSOLUTE OVERSPEED

10 ANALOG SUPPLY FAILURE 13 ndash 18V RGE

11 AUTOTUNEDIAG FAIL

0ndash3 ARE HARDWARE FAULTS

12 INVERTER TEMPERATURE TRIP

13 SOFTWARE MALFUNCTION ndash (VP)

14 ILLEGAL INTERRUPT

15 RESERVED

POWERUP FAULTS

STATUSBITS

STATUSBITS

0 CP PROM FAILURE

1 CP INT RAM FAILURE

2 CP EXT RAM FAILURE

3 CP STACK RAM FAILURE

4 VP MBI FAILURE

5

6

7

8 VP PROM FAILURE

9 VP INT RAM FAILURE

10 VP EXT RAM FAILURE

11 VP STACK RAM FAILURE

12 CP MBI FAILURE

13 AP MBI FAILURE

14 EEPROM FAILURE (BASE DRIVE BRD)

15

CP

PO

WE

RU

PV

P P

OW

ER

UP

NONE POWER TRANSISTORHEAT

TEMPERATURE C

DELAY

DRIVE STOPPED

INPUTTABLE

DELAY

BIT DESCRIPTION

8

9 PARAMETER LIMIT

10 MATH LIMIT

11 DYNAMIC BRAKE OVERTEMP

12 AC MOTOR CONTACTOR

13 INVERTER OVERLOAD PENDING ndash IT

14 DRIVEndashTOndashDRIVE FAULT

15 INVERTER OVERLOAD TRIPndashIT or NTC

SELECT

86

88FAULT CP

VPCONFIGSELECT

FAULTCODE2049

BITS

98 2

Actual VelocityAt Overspeed

Appendix A

Andash48

36T Firmware Function (Inverter Overload)

98168

230

220

6172

23

2172

22172

[Iq] x MI

CONVERT MOTOR TOINVERTER UNITS

100 x IM

CONVERT INVERTERTO MOTOR UNITS

Iq x IM

MOTORNAMEPLATEAMPS

RATEDINVERTEROUTPUT AMPS

MAXIMUMINVERTERIq(6144 150)

INTERNALIq REFERENCE

M M

I

I I

M

I

M

TRANSISTORRJC

C RISE

MULT

CONVERT INVERTERTO MOTOR UNITS

30degC

Appendix A

Andash49

36T Firmware Function (Inverter Overload)

1

270

98 25

INVERTER HEATSINKTEMPERATURE C

98

120C

ERROR

ndash100S

INTEGRATOR

LIMITER

300 9

172 1LIMIT STATUS

NTCLIMIT

NTC LIMIT

TO MOTORCURRENTLIMITSELECTION

CONFIGURABLEFAULT

WARNING

83 15

172 3

183 2 10

83 13

IT

PROTECTION

A

B

A

B

LIMIT STATUS

OVERLOAD CURRENT LIMIT

(LIMITING)

(NOT PENDING)

SELECT

TOMOTOR

CURRENTLIMIT

SELECTION

CONFIGURABLEFAULTWARNING

RATED INVERTER Iq IN MOTOR PER UNIT

NTC FOLDBACK PROTECTION

DEVICE JUNCTIONTEMPERATURE C

rsquoIT INVERTER PROTECTION

INVERTER

Appendix A

Andash50

0

1

2

3

4

5

6

7

8

INVERTER TRANSISTOR DIAG

MOTOR PHASE ROTATION TEST

LO MEASURE

RS MEASURE

ID MEASURE

UPDATE TORQUE BLOCK CALC

MEASURE MOTOR INERTIA

MEASURE SYSTEM INERTIA

UPDATE VELOCITY LOOP GAINS

VELOCITY KI 139

VELOCITY KP 140

VELOCITY KF 141

DESIRED XXX RADSEC BANDWIDTH

DAMPING XX FACTOR

LC

43

45

AUTOTUNEDIAGNOSTICSELECTION

0WAIT

1START

3STOP

2MEASURE

256

AUTOTUNETORQUE

40

AUTOTUNESPEED

41

AUTOTUNE PROCEDURE

1 RUN TRANSISTOR DIAGNOSTICS ndash SET BIT 0 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

2 RUN PHASE ROTATION TEST ndash SET BIT 1 IN PARM 256 AND SET START BIT IN LOGIC COMMANDCHECK SIGN OF VELOCITY FEEDBACK (PARM 146) AGAINST FREQ REF (PARM 263)STOP DRIVE AND CLEAR PARAMETER 256SWAP ENCODER PHASES IF NECESSARY TO GET SIGNS TO MATCH

3 RUN TORQUE AUTOTUNE ndash SET BITS 2 THROUGH 5 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND

4 RUN VELOCITY AUTOTUNE ndash ENTER DESIRED BANDWIDTH IN PARM 43 SET BITS 6 THROUGH 8 IN PARM 256 AND TOGGLE START BIT IN LOGIC COMMAND CHECK DIDT LIMIT IN PARM 181

181

AUTOTUNESTATUS

AUTOTUNEINHIBIT

ERROR

TORQUELIMIT

XXX SEC 234

XXX SEC

47

47

AUTOTUNE STATES

MOTOR INERTIA

TOTAL INERTIA

I LOOPDIDT LIMIT

V LOOPERROR FILTER BW

142

46

4

5

VELOCITY

LOOP

GAIN

CALCULATIONS

FRICTION

VELOCITY LOOP AUTOTUNE

LOGIC CONTROLDRIVE STOPPED

Appendix A

Andash51

1

2

3

4

DRIVE ENABLE (NO)

MTR THERMO GUARD (NC)

STOP (NC)

EXTERNAL FAULT

VPLED

ADAPTERTERMINALS

J8

LOCALINPUT

STATUS

54

UMCIEPLD

9

TORQUE MODE SELECT

0 ndash ZERO TORQUE1 ndash SPEED REGULATOR2 ndash TORQUE REGULATOR3 ndash MIN TORQUE OR SPEED4 ndash MAX TORQUE OR SPEED5 ndash SUM SPEED amp TORQUE6 ndash ZERO TORQUE7 ndash ZERO TORQUE

50 MSEC SCAN INTERVAL

HIGH BYTE = HANDSHAKE ENABLELOW BYTE = SYSTEM MODE

53

36T Firmware Function (Logic Control)

PSIBOARD

DISCONNECT (NC)16 msec

0

1

2

3

4

5

6

7

8

9

10

BRAKE REQ

DRIVE ENABLE

MOTOR OVERTEMP

DISCRETE STOP

EXTERNAL STOP

RMS FAULT P02

0 = MASTERSLAVE DRIVE

P03

TEST DIG P05

INVERTER STATUS

CONTACTOR VERIFYP26

P24

55

0

1

8

9

10

11

12

13

14

15

LOCALOUTPUTSTATUS

P27

P13

C B A

00001111

00110011

0 ndash ZERO TORQUE1 ndash EXTERNAL REF 10 ndash PRESET SPEED 11 ndash PRESET SPEED REF 20 ndash PRESET SPEED REF 31 ndash PRESET SPEED REF 40 ndash PRESET SPEED REF 51 ndash EXTERNAL REF 2

VELOCITY REF SELECT

BUS VOLTS

52

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NORMAL STOP

START

JOG 1

CLEAR FAULT

FORWARD

REVERSE

JOG 2

CURRENT LIMIT STOP

COAST STOP

VEL RAMP DISABLE

FLUX ENABLE

PROCESS TRIM ENABLE

VEL REF SELECT A

VEL REF SELECT B

VEL REF SELECT C

RESET DRIVE

EDGE

EDGE

EDGE

EDGE

EDGE

70

258 259INVERTERDIAGRESULTS

DISCRETEINPUT

DEBOUNCE

70 12

70 11

J1750 VOLTS

BRAKEINTERFACE

P25

58

0 = NORMAL STOP1 = TORQUE TO 0 SPEED2 = TORQUE TO 0 TORQUE

TORQUE STOP CONFIGURATION

BRAKE ENABLE

TURN ON DELAY P14

ndash ndash ndash ndash ndash ndash ndash ndash ndash

VP ENABLE

PILOT RELAY

GREEN LED

RED LED

INVERTERENABLE

LED

A

B

C

P12

LOGICCOMMAND

WORD

LOCAL DRIVE IO

RequestedTorqueMode

SYMBOL

PARAMETER XXX DATA SINK

PARAMETER YYY DATA SOURCE

BIT

TESTPOINT

OFF SHEETCONNECTION

Appendix A

Andash52

0

1

2

3

FLUX ENABLED

RUN INHIBIT

MOTOR SPINNING

16

STOP EVENT

36T Firmware Function (Logic Control)

NOTUSED

DISCRETE STOP

0

1

2

3

4

5

6

7

AT SETPOINT 1

DRIVE LOGIC STATES

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

54 55

STOP DWELL

70

60

0

59 B A

LAST STOPTYPE

AUTOTUNE COAST

BUS PRECHARGE

COAST STOP (HWSW)

COMMON BUS DISCONNECT (EXT FAULT)

COAST FAULT

NO DRIVE ENABLE J8ndash1

LOSS OF FLUX UP

AC CONTACTOR FAULT

A

B

C

LOGIC OPTION BITS

LOGIC COMMAND PROCESSING

FLUXINHIBIT

BITS

70

70 70 5RUN

INHIBITBITS

START TYPE A

START TYPE B

JOG RAMP ENABLE

JOG COAST(REGEN STOP = 0)

STOP INPUT TYPE A

STOP INPUT TYPE B

DO POWERndashUP DIAG

DO FLUXndashUP DIAG

DO START DIAG

AC CONTACTOR PRESENT = 1

1 = BIPOLAR VEL REF 0 = UNIPOLAR

0011

0101

MAINT START REGEN STOPMAINT START COAST STOPMOMENTARY STARTMAINT START REGEN STOP

B A

0011

0101

COASTNORMALIndashLIMITCOAST

FLUXINHIBIT

FLUX

STOP

1

START

4

DIAG

3

STOPPING

2

RUN

START JOG RESET

8

9

10

11

12

13

14

15

SAVE

4

70 5

RUN INHIBIT

= 0

70 15

70 5

61AT SETPOINT 2

OVER SETPOINT 1 62

63OVER SETPOINT 2

OVER SETPOINT 3 64

65OVER SETPOINT 4

66

67

SETPOINT SELECT

SPD SETPOINT TOL

68

69

Iq SETPOINT TOL

ZERO SPEED TOL

71

72

14

70

D

0 = NONE1 = COAST2 = NORMAL3 = I ndash LIMIT

LOGIC TESTPOINTS

TESTPOINT SELECT

RUNINHIBIT

BITS

E

70 1

LOGIC STATE (0 ndash 4)

F

G

J

KM ACTIVE TORQUE MODE

TO TORQUE REF CONTROL

H

Appendix A

Andash53

36T Firmware Function (Logic Control)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

56

H

LOGIC OPTION BITS

LOGIC CONTROL WORDBITS TO FAULT

CONTROL

70

RUN READY

RUNNING

COMMAND DIRECTION 1= FWD 0 = REV

ROTATING DIRECTION 1 = FWD 0 = REV

ACCELERATING

DECELERATING

WARNING

FAULTED

AT SET SPEED

LOCAL A

LOCAL B

LOCAL C

AT ZERO SPEED

REF A

REF B

REF C

C B A

00001

STOPSTARTRUNSTOPPINGDIAG

STATUS

VP to CP BITS

3

0 11415

D

0 = OKNOT 0 = LOSSOF CP FLUXndashUP

7013

FG

J

LC

E

00110

01010

LOGIC STATE

59

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

57

FLUX READY

FLUX UP

BUS RIDETHRU

JOGGING

AT LIMIT lt183gt Not = to 0

NOT USED

AT SETPOINT 1

AT SETPOINT 2

OVER SETPOINT 1

OVER SETPOINT 2

OVER SETPOINT 3

OVER SETPOINT 4

LOGIC OPTION BITS

CP to VP BITS

VEL REF CONTROL A

VEL REF CONTROL B

VEL REF CONTROL C

VEL REF CONTROL D

1 = STOPPING

STOPPED

PRECHARGE REQUEST

RAMP CONTROL (1 = RAMP)

SPEED REGULATOR ENABLE

MOTOR SIMULATOR ENABLE

FLUX ENABLE

DIAGNOSTIC ENABLE

VP GAIN CALC

RESET DRIVE

CLEAR FAULT

PROCESS TRIM ENABLECP FLUX LOSS

K

70 6

0 1 2 4 515

70 7

FLUX UPDIAGNOSTIC ACKNOWLEDGEDIAGNOSTIC ERRORMASTER INVERTERSLAVE INVERTER

0 = NO REQNOT 0 = DO DIAG

DIAGNOSTIC REQUEST FLAG

708

FLUX ENABLEDIAGNOSTIC ENABLEENCODERLESS DISABLERIDETHRU ACK

C TO CURRENT PROCESSOR

FROM CURRENT PROCESSOR

LOGIC STATUS

TORQUE BLOCK INTERFACE

See VelRef Testpoint 1

Appendix A

Andash54

Battery Disposal When it becomes necessary to replace the battery that supports the realtime clock on the 1336 FORCE precautions must be taken whendisposing of the old battery The following procedure must be followedwhen disposing of lithium batteries

ATTENTION Do not incinerate or dispose of lithium batteries ingeneral trash collection Explosion or violent rupture is possibleBatteries should be collected for disposal in a manner to preventagainst short circuiting compacting or destruction of caseintegrity and hermetic seal

For disposal batteries must be packaged and shipped in accordance withFederal state local or provincial laws to an appropriate Transfer Storageand Disposal facility

The person disposing of the material is responsible for any hazardscreated in doing so as the material may be considered toxic reactive orcorrosive

AppendixB

Bndash1

CE Conformity

EMC Directive This apparatus is tested to meet Council Directive 89336Electromagnetic Compatibility (EMC) using a technical construction fileand the following standards

bull EN 50081ndash1 ndash2 ndash Generic Emission Standard

bull EN 50082ndash1 ndash2 ndash Generic Immunity Standard

Marked for all applicable directives 1

Emissions EN 50081-1EN 50081-2EN 55011 Class AEN 55011 Class B

Immunity EN 50082-1EN 50082-2IEC 801-1 2 3 4 6 8 per EN50082-1 2

Important The conformity of the drive and filter to any standard doesnot guarantee that the entire installation will conform Manyother factors can influence the total installation and onlydirect measurements can verify total conformity

The following seven items are required for CE conformance

1 Standard 1336 FORCE Drive 037-45 kW (1-60 HP) CE compatible(Series D or higher)

2 Factory installed EMC enclosure (-AE option) or field installed EMCEnclosure Kit (1336x-AEx ndash see page Bndash2)

3 Filter as called out on the following page

4 Grounding as shown on page Bndash2

5 Maximum cable length (drive to motor) of 75 meters (250 feet)

6 Input power (source to filter) and output power (filter to drive amp driveto motor) wiring must be braided shielded cable with a coverage of75 or better metal conduit or other with equivalent or better attenu-ation mounted with appropriate connectors For shielded cable it isrecommended to use a compact strain relief connector with doublesaddle clamp for filter and drive input and compact strain reliefconnector with EMI protection for motor output

7 Control (IO) and signal wiring must be in conduit or have shieldingwith equivalent attenuation

Requirements forConforming Installation

Appendix BCE Conformity

Bndash2

Filter Selection

Filter CatalogNumber

Three-PhaseVolts Used with

FrameReference

1336-RFB-30-A 200-240V 1336T-A001 - A003 A

380-480V 1336T-B001 - B003 B

1336-RFB-27-B 200-240V 1336T-A007 B

380-480V 1336T-B007 - B015 B

1336-RFB-48-B 200-240V 1336T-A010 - A015 B

380-480V 1336T-B020 - B030 B

1336-RFB-80-C 200-240V 1336T-A020 - A030 C

380-480V 1336T-BX040 - BX060 C

1336-RFB-150-D 200-240V 1336T-A040 - A050 D

380-480V 1336T-B060 - B100 D

1336-RFB-180-D 200-240V 1336T-A060 D

380-480V 1336T-B125 - BX150 D

1336-RFB-340-E 200-240V 1336T-A075 - A125 E

380-480V 1336T-B150 - B250 E

1336-RFB-475-G 380-480V 1336T-BX250 - B350 G

1336-RFB-590-G 380-480V 1336T-B400 - B450 G

1336-RFB-670-G 380-480V 1336T-B500 - B600 G

Not Available 380-480V 1336T-B700 - B800 H

EMC Enclosure Kit Selection

Frame Enclosure Kit Catalog NumberFrameReference 200-240V Rating 380-480V Rating 500-600V RatingB 1336-AE4 1336-AE4 1336-AE4C 1336-AE5 1336-AE5 1336-AE5D 1336-AE6 1336-AE6 1336-AE6E 1336-AE7 1336-AE7 1336-AE7FndashH Not Available

RFI Filter Installation

ATTENTION To prevent electrical shock disconnect thepower source before installing or servicing

Important Refer to the instructions supplied with the filter for details

The RFI filter must be connected between the incoming AC supply lineand the drive input terminals

RFI Filter Leakage Current

The RFI filter may cause ground leakage currents Therefore a solidground connection must be provided as shown in the electricalconfiguration scheme shown on the following page

Filter

Appendix BCE Conformity

Bndash3

ATTENTION To guard against possible equipment damageRFI filters can only be used with AC supplies that are nominallybalanced with respect to ground In some installationsthree-phase supplies are occasionally connected in a 3-wireconfiguration with one phase grounded (Grounded Delta) Thefilter must not be used in Grounded Delta supplies or in anungrounded wye configuration

JOG

ESC SEL

R (L1)

S (L2)

Ground RodGridor Building Structure Steel

T (L3)

PE

Conduit4ndashWire Cable

RFIFilter

Shield Terminated in CableClamp on A Frame Drives

Grounding RFI Filter Grounding

Important Using the RFI filter may result in relatively high groundleakage currents Surge suppression devices are also incorporated intothe filter Therefore the filter must be permanently installed and solidlygrounded (bonded) to the building power distribution ground Ensurethat the incoming supply neutral is solidly connected (bonded) to thesame building power distribution ground

Grounding must not rely on flexible cables and should not include anyform of plug or socket that would permit inadvertent disconnectionSome local codes may require redundant ground connections Theintegrity of all connections should be periodically checked

Electrical Configuration

Appendix BCE Conformity

Bndash4

Mechanical Configuration

1 Input power (source to filter) and output power (filter to drive amp drive to motor)wiring must be in conduit or have shieldingarmor with equivalent attenuationSee requirements on page B1

NOTE 1336 FORCE 40ndash60 HP 230V and 60HP 460V mounted in D Frames are NOT CE approved and cannot be used with the RFBndash80ndashC filter

37 ndash 45 kW (1 ndash 60 HP)Frames B amp C

Conduit 1 To Motor 1

ThreendashPhase Input 1

AccessPanel

Flat Washer

Star Washers

Bolt

Important A positive electrical bond must be maintained between drive and filter at all 4 corners Star washers can be eliminated if a positive electrical bond is assured

1336 FORCE

Appendix BCE Conformity

Bndash5

1336 FORCEThrough-the-Wall Mounting)

Frames D amp E 2

1336 FORCE (Conventional Mounting)

Frames D amp E 2

Conduit Box 1

To Motor 1

Access Panel and Input Terminal Block

Lower Access Panel

Filter MountingBracket

Filter MountingBracket

Important Drive and filter must be mounted to a common back plane with a positive electrical bond Spacing is determined by Conduit Box

Three-PhaseInput 1

To Motor 1

Three-PhaseInput 1

Conduit Box 1

NippleFitting

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash6

Filter Mounting (continued)

1336 FORCE (Typical Mounting)

Frame G 2

750(295)

Mounting Brackets

Typical Connectionto Drive

AC Input Terminals

Typical Bracketfor Stability

8310(3272)

Important This information represents the method used to mount 1336-RFB-475 590 amp 670 filters in an Allen-Bradley supplied EMC enclosure User supplied EMC enclosures must follow all of the guidelines shown Illustrations are only intended to identify structural mounting points and hardware shapes You must design and fabricate steel components based on the actual mounting configuration calculated loads and enclosure specifications Refer to Chapter 2 for drive mounting requirements

Important A positive electrical bond must be maintained between the enclosure and filter (including brackets) fans and drive To assure a positive electrical bond any paint near all mounting points must be removed

Important Cooling fans are required for proper drive operation Refer to the User-Supplied Enclosures section in Chapter 2 for CFM recommendations

All Dimensions in Millimeters and (Inches)

1 Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shieldingarmor with equivalent attenuationShieldingarmor must be bonded to the metal bottom plate See requirements 6 amp 7 on page Endash1

2 Refer to the Filter Selection table on page Bndash2 for frame references and corresponding catalog numbers

Appendix BCE Conformity

Bndash7

Required Knockout Assignments

Frames B and CFrames A1 through A4

Frame EFrame D

Control IO

Control IO

Control IOFilter Input Filter Input

Filter Input Filter Input

SCANport

Motor Output

Motor Output Motor Output

Motor Output

SCANport

SCANport

SCANport(Side of Drive)Control IO

286349 (113138) - 3 Plcs 222 (088) - 1 Plc 222 (088) - 1 Plc 222286 (088113) - 3 Plcs

8891048 (350413)2 Plcs

127 (050)3 Plcs

349 (138) - 3 Plcs 349500 (138197) - 1 Plc

627762 (247300) - 2 Plcs

Appendix BCE Conformity

Bndash8

This Page Intentionally Blank

AppendixC

Cndash1

User Parameter Values

Use the tables on the following pages to record your particular parametervalue setting for the current application

No Name Default Value No Name Default Value

1 Drive Software Ver 101 47 Autotune TP Data 0000 0000 0000 0000

5 Power Struct Type 0 48 Autotune TP Select 0

8 Motor Cntrl Counter 00 sec 52 Logic Cmd Word 0000 0000 0000 0000

9 Drv Comm Tsk Intrvl 1 53 Torque Mode Sel 1

10 Drv Comm Baud Rate 0 54 Local Input Status 0000 0000 0000 0000

11 Drv Comm Trans Addr 0 55 Local Output Status 0000 0000 0000 0000

12 Drv Comm Rcv 1 Addr 0 56 Logic Status Low 0000 0000 0000 0000

13 Drv Comm Rcv 2 Addr 0 57 Logic Status Hi 0000 0000 0000 0000

14 Dr Comm Xmit Ind 1 20 58 Torq Stop Config 0

15 Dr Comm Xmit Ind 2 21 59 Logic Options 0000 0001 1000 0010

16 Dr Comm Rcv 1 Ind 1 22 60 At Setpoint 1 +00

17 Dr Comm Rcv 1 Ind 2 23 61 At Setpoint 2 +00

18 Dr Comm Rcv 2 Ind 1 24 62 Over Setpoint 1 +00

19 Dr Comm Rcv 2 Ind 2 25 63 Over Setpoint 2 +00

20 Dr Comm Xmit Data 1 0 64 Over Setpoint 3 +00

21 Dr Comm Xmit Data 2 0 65 Over Setpoint 4 +00

22 Dr Comm Rcv1 Data 1 0 66 Setpoint Select 0000 0000 0000 0000

23 Dr Comm Rcv1 Data 2 0 67 Spd Setpoint Tol base speed100

24 Dr Comm Rcv2 Data 1 0 68 Cur Setpoint Tol 20

25 Dr Comm Rcv2 Data 2 0 69 Zero Spd Tolerance base speed100

26 Process Trim Output +000 70 Logic Testpoint Data 0000 0000 0000 0000

27 Process Trim Ref +000 71 Logic Testpoint Sel 0

28 Process Trim Fdbk +000 72 Stop Dwell 10 sec

29 Process Trim Select 0000 0000 0000 0000 77 Max Dyn Brake Pwr 0 Watts

30 Proc Trim Fltr Bdwth 0 radianseconds 78 Max Dyn Brake Tmp 50 deg

31 Proc Trim Data +00 79 Dyn Brk Time Const 10 sec

32 Proc Trim KI Gain 1000 80 Pwr Up Diag Flt Sts 0000 0000 0000 0000

33 Proc Trim KP Gain 1000 81 Non Config Flt Sts 0000 0000 0000 0000

34 Proc Trim Lo Lmt ndash1000 82 CP Config Flt Sts 0000 0000 0000 0000

35 Proc Trim Hi Lmt ndash1000 83 VP Config Flt Sts 0000 0000 0000 0000

36 Proc Trim Out Gain +100 84 CP Config Warn Sts 0000 0000 0000 0000

37 Process Trim Tstpnt +0 85 VP Config Warn Sts 0000 0000 0000 0000

38 Proc Trim TP Sel 0 86 CP FltWarn Sel 0000 0000 0000 0000

40 Auto Tune Trq Lmt 500 87 CP Warn Config Sel 0000 0000 0000 0000

41 Auto Tune Speed 085 x Base Motor Spd 88 VP Fault Select 1111 1111 1111 1111

43 VP Desired BW 500 radianseconds 89 VP Warn Config Sel 0000 0000 0000 0000

44 Autotune Status 5000 radian seconds 90 Abslte Ovrspd Thrsh 01 x base speed

45 VP Damping Factor 10 91 Stall Delay 10 sec

46 Total Inertia 200 sec 92 Mtr Overload Limit 2000

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

94 Service Factor 100 144 Vel Fdbk TP HI +0

95 Mtr Ovrld Speed 1 08 x Base Speed 145 Vel Fdbk TP Select 0

96 Motor Ovrld Speed 2 08 x Base Speed 146 Vel Fdbk +0 0 rpm

97 Min Ovrld Lim 1000 147 Scaled Vel Fdbk 0

98 Fault Tstpt Data 0 148 Enc Pos Fdbk LOW 0

99 Fault Tstpt Sel 0 149 Enc Pos Fdbk HI 0

100 Vel Ref 1 LOW 0 150 Fdbk Device Type None

101 Vel Ref 1 HI 00 rpm 151 Fdbk Tracker Gain 1000

102 Vel Scl Fctr 1 +1000 152 Fdbk Filter Sel 0

103 Vel Ref 2 LOW 0 153 Kn Fdbk Filter Gain +100

104 Vel Ref 2 HI 00 rpm 154 Wn Fdbk Filter BW 100 radianseconds

105 Vel Scl Fctr 2 +1000 155 Tach Velocity +000 rpm

106 Vel Trim LOW 0 156 Notch Filter Freq 135 Hz

107 Vel Trim HI 00 rpm 157 Notch Filter Q None

108 Vel Ref TP LOW 0 161 External Iq Ref +00

109 Vel Ref TP HI 0 162 Ext Trq Ref 1 +00

110 Vel Ref TP Sel 0 163 Slave Torque 1 +100

117 Jog Spd 1 +00 rpm 164 Ext Torq Ref 2 +00

118 Jog Spd 2 +00 rpm 165 Ext Torque 2 +00

119 Preset Speed 1 +00 rpm 166 Ext Torq Step 00

120 Preset Speed 2 +00 rpm 167 Int Torq Ref +00

121 Preset Speed 3 +000 rpm 168 Internal Iq Ref +00

122 Preset Speed 4 +00 rpm 172 Torq Ref TP Data +00

123 Preset Speed 5 +00 rpm 173 Torq Ref TP Sel 0

125 Accel Time 100 seconds 174 Min Flux Level 100

126 Decel Time 100 seconds 175 Pos Mtr Cur Ref Lmt 200

127 Rev Motor Spd Lim ndash Base Motor Speed 176 Neg Mtr Cur Ref Lmt ndash200

128 Fwd Motor Spd Lim Base Motor Speed 177 Motor Power Lmt 200

129 Max Rev Spd Trim ndash base speed 178 Regen Power Lmt ndash200

130 Max Fwd Spd Trim + Base Speed 179 Pos Mtr Cur Ref Lim 100

131 Droop Percent 0 180 Neg Mtr Cur Ref Lim ndash100

132 Vel Ref Out LOW 0 181 DiDt Limit 40

133 Vel Ref Out HI +00 rpm 182 Computed Power +00

134 Vel Reg Out 0 183 Torque Limit Status 0000 0000 0000 0000

135 Vel Reg TP LOW 0 184 Torque Mode Status 0000 0000 0000 0000

136 Vel Reg TP HI 0 185 Perunit Motor Curr 00

137 Vel Reg TP Sel 0 186 Perunit Motor Volt 00

138 Velocity Error +00 rpm 220 Rtd Inv Out Amps 200 amps

139 KI Velocity Loop 320 221 Rtd Inv Input Volts 460 volt

140 KP Velocity Loop 80 222 Inverter Carrier Freq 4000 Hz

141 KF Velocity Loop 100 223 PrechRdthru Sel 0000 0000 0000 0000

143 Vel Fdbk TP LOW 0 224 Undervolt Setpoint 400 volt

Appendix CUser Parameter Values

Cndash1

No Name Default Value No Name Default Value

225 Bus Prech Timeout 300 Sec 271 Lim Motor Flux 100

226 Bus Ridethru Timout 1750 RPM 273 TP Sel 1 0

227 CP Operat Options 0000 0000 0000 0000 274 TP Data 1 0

228 Base Motor HP 300 HP 275 TP Select 2 0

229 Base Motor Speed 1750 RPM 273 TP Sel 1 0

230 Base Motor Current 02 Amps 274 TP Data 1 0

231 Base Motor Volts 460 Volts 275 TP Select 2 0

232 Base Motor Freq 60 Hz 276 TP Data 2 0

233 Motor Poles 4 poles 277 TP Select 3 0

234 Mtr Inertia 060 sec 278 TP Data 3 0

235 Encoder PPR 1024 PPR 279 TP Select 4 0

236 RS Tune 150 280 TP Data 4 100

237 Lsigma Tune 1800 281 TP Select 5 0

238 Id Tune 300 282 TP Data 5 0

240 Iq Tune 9540 283 TP Select 6 0

241 Vde Tune ndash750 volts 284 TP Data 6 0

242 Vqe Tune 3670 volts 285 Select for Tst DAC1 0

243 Vde Maximum 3560 volts 286 Select for Tst DAC2 0

244 Vque Maximum 3670 volts 287 Ki Freq Reg 0

245 Vde Minimum 30 volts 288 Kp Freq Reg 0

246 Base Slip Freq 0469 Hz 289 Kff Freq Reg 0

247 Base Slip Freq Max 200 Hz 290 Ksel Freq Reg 0

248 Base Slip Freq Min 050 Hz 291 Freq Track Filt 0

260 Iq Offset +0 292 Track Filt Type 3

261 Id Offset +0 293 Freq Trim Filt 5000

262 Ph Rot Cur Ref 50 294 Mtr Phs Rot Err 0000 0000 0000 0000

263 Ph Rot Freq Ref 30 Hz 295 Mtr InducTest Error 0000 0000 0000 0000

264 Mtr Cur Mag Fdbk 00 Amps 296 Stator RS Test Error 0000 0000 0000 0000

265 Mtr Volt Fdbk +0 Volts 297 Id Test Errors 0000 0000 0000 0000

266 Stator Freq 0000 Hz 298 Torque Blk Calc 0000 0000 0000 0000

267 Calc Torque 00 300 Adapter ID 2

268 DC Bus Voltage 0 volts 301 Adapter Version xxx

269 Filter Mtr Vel Fdbk 00 rpm 302 Adapter Config

270 Inv Temp Fdbk 0 deg 304 Language Select 0

Appendix CUser Parameter Values

Cndash4

No Name Default Value No Name Default Value

310 Data In A1 0 359 Pot Offset +0000

311 Data In A2 0 360 Pot Scale +1000

312 Data In B1 0 361 Milli Amp Input +0

313 Data In B2 0 362 Milli Amp In Offset +0000 mA

314 Data In C1 0 363 Milli Amp In Scale +2000

315 Data In C2 0 364 SP Analog Sel 1

316 Data In D1 0 365 Sp Analog In 0

317 Data In D2 0 366 Sp An1 Scale 1 (32767)

320 Data Out A1 0 367 Sp Analog Select 1

321 Data Out A2 0 368 Sp Analog2 In 0

322 Data Out B1 0 369 SP An2 Scale 1 (32767)

323 Data Out B2 0 370 Analog Output 1 0

324 Data Out C1 0 371 Analog Out 1 Offset +0000 volt

325 Data Out C2 0 372 An Out 1 Scale +0500

326 Data Out D1 0 373 An Out 2 Scale 0

327 Data Out D2 0 374 Analog Out 2 Offset +0000

330 SP Port Enable Msk 0111 1111 375 An Out 2 Scale +0500

331 SP Direction Mask 0111 1111 376 mA Output 0

332 SP Start Mask 0111 1111 377 mA Output Offset 0000 mA

333 SP Jog Mask 0111 1111 378 Regen Power Lmt +0500

334 SP Ref Mask 0111 1111 379 Pos Mtr Cur Lim 0

335 SP Clr Flt Mask 0111 1111 384 Select for Tst DAC2 8

336 SP Reset Drv Mask 0111 1111 385 Input Mode 1

337 SP Local Cntrl Mask 0111 1111 386 Input Status 0000 0000

340 SP Stop Owner 0000 0000 387 Stop Select 1 0

341 SP Dir Owner 0000 0000 388 Stop Select 2 0

342 SP Start Owner 0000 0000 389 Accel Rate 1 10 sec

343 SP Jog 1 Owner 0000 0000 390 Accel Rate 2 3

344 SP Jog 2 Owner 0000 0000 391 Decel Rate 1 5000

345 SP Ref Owner 0000 0000 392 Decel Rate 2 0000 0000 0000 0000

346 SP Local Owner 0000 0000 393 Mop Increment 0000 0000 0000 0000

347 SP Flux Owner 0000 0000 394 Mop Value 0000 0000 0000 0000

348 SP Trim Owner 0000 0000 395 Pulse PPR 0000 0000 0000 0000

349 SP Ramp Owner 0000 0000 396 Pulse Edge 0000 0000 0000 0000

350 SP Clr Fault Owner 0000 0000 397 Pulse Scale 1750

352 10 Volt In Filtr 00 rs 398 Pulse Offset 00

353 Pot In Fltr 00 rs 399 Pulse Value 00

354 mA In Filtr 00 rs 404 SP Comm Retries 00

355 10 Volt Input 0 405 Fault Select 0000 0000 0111 1111

356 10 Volt Offset 000 Volt 406 Warning Select 0000 0000 0111 1111

357 10 Volt Scale +2000 407 Fault Status 0000 0000 0000 0000

358 Pot Input 0 408 Warning Status 0000 0000 0000 0000

AppendixD

Dndash3

Spare Parts Information

Current 1336 FORCE spare parts information including recommendedparts catalog numbers and pricing can be obtained from the followingsources

AllenndashBradley home page on the World Wide Web athttpwwwabcom

then select ldquoDrives and Motorsrdquo followed by ldquo1336 FORCErdquo from the Product Directory and ldquo Technical Supportrdquo

Select Parts List

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Appendix DSpare Parts

Dndash3

This Page Intentionally Blank

Appendix DSpare Parts

Dndash4

This Page Intentionally Blank

Index

I-1

AAC Supply Source 2ndash8AC Input Line Fuse Ratings 2ndash12Analog IO ParameterConfiguration 4ndash22Analog Inputs 2ndash30Analog Outputs 2ndash31Analog IO Links 4ndash22AutondashTuning Test Procedure6ndash20

BBattery Disposal Andash54BindashDirectional Operation 2ndash30Bit Enums 3ndash8Bus Voltage Tracker 6ndash15

CCable Termination Andash5Cable and WiringRecommendations 2ndash20CE Filter Bndash2CE Mechanical ConfigurationBndash4CE Requirements Bndash1Configuration (Standard Adapter)2ndash32Configuration (PLC CommAdapter) 2ndash46Communication Configuration4ndash17Control Link Configuration 4ndash20ControlNet Parameters 5ndash24Control Interface Option 2ndash35Control amp Signal Wiring(Standard Adapter) 2ndash28Control amp Signal Wiring (PLCComm Adapter) 2ndash42Control Specifications 1ndash2Control Status Mode 3ndash13Control Wiring 2ndash25Current Processor Faults 6ndash7

DDiscrete Inputs 2ndash44Discrete Outputs 2ndash44 2ndash31Display Mode 3ndash7Derating Guidelines Andash7Drive to Drive Communication2ndash26Drive to Drive HardwareConnection 2ndash27Drive to Drive HardwareConnection 2ndash27Drive Disconnection 2ndash11Drive Features 1ndash12Drive Hardware Overview Andash16

EEnclosure Requirements Andash6Encoder Connections 2ndash26Encoderless Speed Regulation1ndash5EMC Directive Bndash1EEPROM Mode 3ndash10EMIRFI Emission 2ndash13EMIRFI Emission 2ndash13Emmisions 2ndash13Environmental Specifications 1ndash4External Control LinkConfiguration 4ndash21

FFault Descriptions 6ndash2FaultWarning Handling 6ndash5FaultsampWarnings ndash CurrentProcessor 6ndash7Flex IO Module 4ndash34Frame D Drive Connections 2ndash45FaultsampWarnings ndash VelocityProcessor 6ndash17Feedback Devices 1ndash5Flux Test 6ndash29Frame Dimensions 2ndash2Firmware Function OverviewAndash34

Index

I-2

GGate Driver Board ConnectionsAndash27Graphic Programming Terminal3-20Graphic Programming TerminalOperation 3-22Graphic Programming TerminalKeypad Description 3ndash21Grounding Discrete Control andSignal Wiring 2ndash15Grounding Encoder Connections2ndash15Grounding Motor Cables 2ndash15Grounding Sensitive Circuits2ndash15

HHardware Testpoints 6ndash34HIM Control Panel 3ndash1HIM Key Descriptions 3ndash2HIM Module Removal 3ndash4HIM Operation 3ndash4HIM Programming Steps 3ndash6

IInput Devices 2ndash10Input Fusing 2ndash11Input Power Conditioning 2ndash11IO CommunicationConfiguration 4ndash19IO Ratings 2ndash8Immunity 2ndash13Interface Board Installation 2ndash29

LLink Option 3ndash8Lug Selection 2ndash18Lug Kits 2ndash18L4L4E Option 2ndash39L5L5E Option 2ndash40L6L6E Option 2ndash41

MMasterSlave Drive to DriveCommunication 4ndash19Motor Cables 2ndash17 amp A1Mounting Clearances 2ndash1Mounting 2ndash1Multiple Opens 6ndash28

NNuisance Faults 6ndash23

OOptions 1ndash3Option L4L4E Wiring 2ndash39Option L5L5E Wiring 2ndash40Option L6L6E Wiring 2ndash41Output Relay Configuration 4ndash27Open Transistor Faults 6ndash23

PPassword Mode 3ndash16Parameter Descriptions 5ndash24Parameter Table 5ndash3PE Safety Ground 2ndash16Performance Specs 1ndash2PLC Comm Adapter BoardControl Scheme 2ndash45PLC Comm Adapter BoardParameters 5ndash23Phase Rotation Test 6ndash24PLC Comm Adapter BoardControl amp Signal Wiring 2ndash42PLC Comm Switch Settings 2ndash43PLC Comm Adapter BoardConnections 2ndash43PrendashPower Checks 4ndash4Protective Features 1ndash3Process Mode 3ndash9Power Application 4ndash5Power Cabling 2ndash17Power Wiring 2ndash21Power Structure Tests 6ndash20Power Conditioning 2ndash11Precharge Faults 6ndash9

Pulse Input 2ndash31Program Mode 3ndash6

QQuick Start Procedure 4ndash7

RRemote IO Comm Module 4ndash34Repeated ApplicationRemoval ofInput Power 2ndash10Resistance Test 6ndash26RFI Filter 2ndash14 2ndash16 Bndash2RFI Filter Installation Bndash2 2ndash14RFI Filter Leakage Current Bndash22ndash14RFI Filter Grounding Bndash3Reference Signal Connections(PLC Comm) 2ndash43Ridethrough 6ndash10Ridethrough Faults 6ndash9

SSafety Precautions 4ndash1Safety Ground ndash PE 2ndash16SCANport Control Configuration4ndash29Schematic Diagrams Andash17Search Mode 3ndash12Serial Communication Module4ndash33Sequential Torque Block Tuning6ndash24Sensorless Application NotesAndash30Signal Ground ndash TE 2ndash16SLC to SCANport Module 4ndash32Software Block Diagram Andash32Spare Parts Dndash1Speed Regulation with EncoderFeedback 1ndash5Standard Adapter BoardConnections 2ndash28Standard Adapter Parameters5ndash16Startup Configuration 4ndash6

Index

I-3

Startup Mode 3ndash18Startup Safety Precautions 4ndash1Starting and Stopping the Motor2ndash10 2ndash45 2ndash34Switch Settings (PLC Comm)2ndash43

TTE Signal Ground 2ndash16Terminal Block Locations (MainControl Board 2ndash25Terminal Block TBWiring 2ndash21Terminology 1ndash1Test Points 6ndash34TBndash3 Control Interface Option2ndash35TBndash3 Terminal Designations2ndash36Torque Block Tuning 6ndash24Torque Block Update 6ndash31Troubleshooting 6ndash1

UUnbalanced Distribution Systems2ndash9Undervoltage Setpoint 6ndash13Ungrounded Distribution System2ndash9Unindashdirectional Operation 2ndash30

VVelocity Loop Autotune 6ndash32Velocity Processor Faults 6ndash17

WWire Types 2ndash20

Index

I-4

This Page Intentionally Blank

Index

Publication 1336 FORCE-512 September 1998 PN 74002-113-01 (02)Supersedes Publication 1336 FORCEndash512 mdash February 1997 Copyright 1995 Allen-Bradley Company Inc Printed in USA

  • Front Cover
  • Important User Information
  • Document Update
    • HIM UploadDownload Errors
    • Motor Control Board (v6xx)
      • Summary of Changes
      • Table of Contents
      • Introduction
        • Manual Objectives
        • Who Should Use This Manual
        • Terminology
        • Standard Drive Features
        • Performance Specifications
        • Control Specifications
        • Options
        • Protective Features
        • Environmental Specifications
        • Electrical Specifications
        • Feedback Devices
        • Software Compatibility
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v2xx
        • PLC COMM ADAPTER v3xx BOARD
        • v5xx
        • MOTOR CONTROL BOARD
        • v1xx v2xx v3xx v5xx
        • v1xx
        • v3xx
        • STADARD ADAPTER BOARD
        • v4xx
        • v5xx
        • This Page Intentionally Blank
          • InstallationWiring
            • Chapter Objectives
            • Mounting
            • InputOutput Ratings
            • AC Supply Source
            • Unbalanced Distribution Systems
            • Ungrounded Distribution Systems
            • Input Devices Starting and Stopping the Motor
            • Repeated ApplicationRemoval of Input Power
            • Bypass Contactors
            • Drive Output Disconnection
            • Input Power Conditioning
            • Input Fusing
            • Electrical Interference uacute EMIRFI Immunity
            • Emission
            • RFI Filtering
            • RFI Filter Installation
            • RFI Filter Leakage Current
            • Grounding
            • Sensitive Circuits
            • Motor Cable
            • Encoder Connections
            • Discrete Control and Signal Wiring
            • Signal Ground uacute TE
            • Safety Ground uacute PE
            • RFI Filter
            • Power Cabling
            • Motor Cables
            • Wire Size and Type
            • Lug Kits
            • Power Wiring
            • Control Wiring
            • Encoder Connections
            • Drive to Drive Communication
            • Drive to Drive Setup
            • Figure 214 Drive to Drive Hardware Connection
            • Standard Adapter Board
            • Discrete Outputs
            • Pulse Input
            • Configuration
            • Starting amp Stopping the Motor
            • Control Interface Option uacute TB3
            • Start Enable Stop Clear Fault Ext Flt Reverse 2 Stop Mode Selects Digital Potentiometer (MOP) Run Forward 2 Accel Decel Rates Run Reverse 3 Speed Selects Local Control
            • Option L4L4E uacute Contact Closure Interface Board Requirements
            • Option L5L5E uacute 24V ACDC Interface Board Requirements
            • Option L6L6E uacute 115V AC Interface Board Requirements
            • PLC Communication Adapter Board
            • Switch Settings uacute
            • Discrete Outputs
            • Discrete Inputs
            • Computer Connections to Frame D drives
            • ControlNet Fiber Optic Cable Connections to Frame D drives
            • Configuration
              • Programming Terminals
                • Chapter Objectives
                • HIM Description
                • Key Descriptions
                • Module Removal
                • To remove the module
                • HIM Operation
                • Important
                • GPT Description
                • Keypad Description
                • GPT Operation
                • This Page Intentionally Blank
                  • Start Up
                    • Introduction
                    • Safety Precautions
                    • Required Tools and Equipment
                    • Drive Information
                    • General
                    • PreuacutePower Checks
                    • Power On
                    • Startup Configuration Procedures
                    • Table 4B Sensorless Setup Values
                    • Communication Configuration
                    • Figure 43 D2D Communication
                    • Figure 44 Node Address Transmittal
                    • Figure 45 Master Slave Communication Example
                    • Standard Adapter Board Equipped Drives
                    • PLC Comm Adapter Board Equipped Drives
                    • This Page Intentionally Blank
                      • Programming Parameters
                        • Introduction
                        • Terminology
                        • Parameter Table Structure
                        • Parameter Table (Standard Adapter Equipped Drives)
                        • Standard Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • PLC Comm Adapter Parameters
                        • FILE 1 uacute Startup
                        • FILE 2 uacute Communications IO
                        • FILE 3 uacute Velocity Torque
                        • FILE 4 uacute Diagnostics
                        • Figure 54 1336 FORCE equipped with a ControlNet Adapter Board
                        • Parameter Descriptions
                        • This Page Intentionally Blank
                          • Troubleshooting
                            • General
                            • Required Equipment
                            • Fault Descriptions
                            • Table 6A 1336 FORCE Main Control Fault Descriptions
                            • FaultWarning Handling
                            • Hardware Testpoints
                              • Appendix A
                                • Motor Cables
                                • Cable Termination
                                • Enclosures
                                • Derating Guidelines
                                • Gate Driver Board Connections
                                • Sensorless Application Notes
                                • Software Block Diagram - Standard Adapter
                                  • Motor Control Board Overview
                                  • Velocity Reference Overview
                                  • Trim Control Overview
                                  • Velocity Feedback Overview
                                  • Velocity PI Regulator Overview
                                  • Torque Reference Overview
                                  • Torque Block Overview
                                  • Drive Fault Detection
                                  • Drive Fault Overview
                                  • Inverter Overload
                                  • Velocity Loop Autotune
                                  • Logic Control
                                    • Battery Disposal
                                      • CE Conformity
                                        • EMC Directive
                                        • Requirements for Conforming Installation
                                        • Filter
                                        • Electrical Configuration
                                        • Grounding
                                        • Mechanical Configuration
                                        • Required Knockout Assignments
                                          • User Parameter Values
                                          • Spare Parts Information
                                          • Index
                                          • Back Cover
                                            • PDF Job Options

                                              Offset Print Specs

                                              POD Print Specs

                                              1. Refer to Document Update on Page 5
                                              Print On Demand Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 20 bond
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 90 Bristol Index
                                              Ink - Cover Black (1-1-0-1)
                                              Binding Perfect bind (above 220 pages110 sheets)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Per vendor standard method
                                              Delivery Specified by Buyer
                                              Offset Print Specifications
                                              Publication
                                              Quantity Specified by Buyer
                                              Sides Double-sided
                                              Body Page Count 320
                                              Stock Weight - Body 50 smooth white offset (house stock)
                                              Ink - Body Black
                                              Cover Count 4
                                              Stock Weight - Cover 8-10 pt coated 1S (house weight amp stock)
                                              Ink - Cover Black and PMS 187 red aqueous coated (2-1-0-1)
                                              Binding Perfect bind (120 pages minimum)
                                              Drilling No
                                              Folding Based on binding method
                                              Trim Size 85 x 11 inches (Nominal)
                                              File Sent PDF
                                              Packaging Specified by Buyer
                                              Delivery Specified by Buyer
                                              PDF Job Options
                                              Tab Description
                                              General File Options
                                              Compatibility Acrobat 40
                                              3 Optimized PDF
                                              Resolution 1200 dpi
                                              Binding Left
                                              Compression Color Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Grayscale Bitmap Images
                                              3 Bicubic Downsampling at 150 dpi
                                              3 Compression Automatic
                                              Quality Medium
                                              Monochrome Bitmap Images
                                              3 Bicubic Downsampling at 300 dpi
                                              3 Compression CCITT Group 4
                                              3 Compress Text and Line Art
                                              Fonts 3 Embed All Fonts
                                              3 Subset All Embedded Fonts Below 100
                                              When Embedding Fails Warn and Continue
                                              Embedding Base 14 Fonts
                                              Color Conversion
                                              3 Leave Color Unchanged
                                              Options
                                              3 Preserve Overprint Settings
                                              3 Preserve Under Color Removal amd Black Generation
                                              3 Preserve Transfer Functions
                                              Advanced Options
                                              3 Preserve Level 2 copypage Semantics
                                              Document Structuring Convensions (DSC)
                                              3 Process DSC
                                              3 Preserve EPS Info from DSC
                                              3 Preserve OPI Comments
                                              3 Preserve Document Info from DSC
                                              Default Page Size
                                              3 Letter
Page 5: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 6: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 7: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 8: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 9: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 10: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 11: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 12: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 13: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 14: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 15: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 16: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 17: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 18: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 19: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 20: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 21: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 22: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 23: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 24: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 25: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 26: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 27: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 28: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 29: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 30: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 31: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 32: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 33: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 34: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 35: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 36: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 37: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 38: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 39: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 40: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 41: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 42: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 43: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 44: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 45: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 46: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 47: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 48: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 49: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 50: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 51: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 52: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 53: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 54: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 55: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 56: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 57: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 58: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 59: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 60: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 61: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 62: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 63: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 64: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 65: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 66: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 67: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 68: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 69: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 70: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 71: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 72: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 73: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 74: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 75: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 76: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 77: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 78: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 79: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 80: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 81: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 82: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 83: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 84: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 85: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 86: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 87: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 88: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 89: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 90: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 91: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 92: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 93: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 94: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 95: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 96: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 97: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 98: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 99: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 100: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 101: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 102: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 103: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 104: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 105: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 106: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 107: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 108: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 109: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 110: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 111: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 112: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 113: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 114: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 115: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 116: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 117: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 118: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 119: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 120: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 121: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 122: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 123: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 124: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 125: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 126: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 127: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 128: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 129: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 130: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 131: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 132: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 133: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 134: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 135: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 136: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 137: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 138: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 139: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 140: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 141: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 142: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 143: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 144: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 145: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 146: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 147: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 148: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 149: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 150: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 151: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 152: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 153: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 154: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 155: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 156: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 157: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 158: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 159: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 160: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 161: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 162: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 163: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 164: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 165: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 166: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 167: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 168: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 169: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 170: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 171: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 172: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 173: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 174: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 175: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 176: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 177: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 178: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 179: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 180: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 181: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 182: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 183: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 184: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 185: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 186: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 187: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 188: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 189: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 190: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 191: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 192: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 193: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 194: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 195: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 196: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 197: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 198: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 199: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 200: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 201: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 202: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 203: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 204: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 205: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 206: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 207: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 208: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 209: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 210: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 211: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 212: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 213: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 214: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 215: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 216: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 217: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 218: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 219: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 220: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 221: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 222: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 223: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 224: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 225: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 226: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 227: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 228: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 229: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 230: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 231: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 232: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 233: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 234: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 235: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 236: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 237: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 238: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 239: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 240: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 241: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 242: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 243: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 244: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 245: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 246: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 247: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 248: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 249: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 250: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 251: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 252: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 253: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 254: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 255: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 256: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 257: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 258: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 259: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 260: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 261: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 262: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 263: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 264: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 265: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 266: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 267: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 268: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 269: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 270: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 271: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 272: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 273: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 274: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 275: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 276: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 277: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 278: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 279: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 280: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 281: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 282: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 283: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 284: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 285: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 286: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 287: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 288: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 289: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 290: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 291: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 292: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 293: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 294: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 295: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 296: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 297: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 298: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 299: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 300: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 301: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 302: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 303: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 304: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 305: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 306: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 307: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 308: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 309: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 310: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 311: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 312: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 313: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 314: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 315: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 316: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 317: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 318: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 319: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 320: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 321: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 322: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 323: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 324: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 325: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 326: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx
Page 327: 1336 FORCE User Frequency AC Manual Drive...Service Factor #94 non–f unctional. Feedback Device Type #150 mode 7 non–f unctional. C alc ul ted Torq e #267 non–functional. v3.xx