1.3plus1.3minus1.3101.3generation and transport of liquid ......generation and transport of liquid...

97
Generation and transport of liquid water in the high-pressure ice layers of Ganymede and Titan Klára Kalousová 1 , Christophe Sotin 2 1 Department of Geophysics, Charles University, Prague 2 Jet Propulsion Laboratory - California Institute of Technology, Pasadena Ada Lovelace Workshop on Numerical Modelling of Mantle and Lithosphere Dynamics, La Certosa di Pontignano, Italy, August 26, 2019

Upload: others

Post on 01-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Generation and transport of liquidwater in the high-pressure icelayers of Ganymede and Titan

    Klára Kalousová1, Christophe Sotin2

    1 Department of Geophysics, Charles University, Prague2 Jet Propulsion Laboratory - California Institute of Technology, Pasadena

    Ada Lovelace Workshop on Numerical Modellingof Mantle and Lithosphere Dynamics,

    La Certosa di Pontignano, Italy,August 26, 2019

  • Is there life somewhere else in the Universe?

    How do we find it?

    NASA: Follow the water

  • Is there life somewhere else in the Universe?

    How do we find it?

    NASA: Follow the water

  • Is there life somewhere else in the Universe?

    How do we find it?

    NASA: Follow the water

  • Follow the waterI life might have started at the bottom of Earth’s oceans

    I water-rock interactions → rich communities of organismsI Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidenceI Ganymede:- induced magnetic field- auroral ovals oscillationI Titan:- electric signal variations- large Love numberI Enceladus:- geysers- libration of outer layer

  • Follow the waterI life might have started at the bottom of Earth’s oceansI water-rock interactions → rich communities of organisms

    I Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidenceI Ganymede:- induced magnetic field- auroral ovals oscillationI Titan:- electric signal variations- large Love numberI Enceladus:- geysers- libration of outer layer

  • Follow the waterI life might have started at the bottom of Earth’s oceansI water-rock interactions → rich communities of organismsI Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidenceI Ganymede:- induced magnetic field- auroral ovals oscillationI Titan:- electric signal variations- large Love numberI Enceladus:- geysers- libration of outer layer

  • Follow the waterI life might have started at the bottom of Earth’s oceansI water-rock interactions → rich communities of organismsI Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidence

    I Ganymede:- induced magnetic field- auroral ovals oscillationI Titan:- electric signal variations- large Love numberI Enceladus:- geysers- libration of outer layer

  • Follow the waterI life might have started at the bottom of Earth’s oceansI water-rock interactions → rich communities of organismsI Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidenceI Ganymede:- induced magnetic field- auroral ovals oscillation

    I Titan:- electric signal variations- large Love numberI Enceladus:- geysers- libration of outer layer

  • Follow the waterI life might have started at the bottom of Earth’s oceansI water-rock interactions → rich communities of organismsI Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidenceI Ganymede:- induced magnetic field- auroral ovals oscillationI Titan:- electric signal variations- large Love number

    I Enceladus:- geysers- libration of outer layer

  • Follow the waterI life might have started at the bottom of Earth’s oceansI water-rock interactions → rich communities of organismsI Galileo & Cassini: deep oceans within the icy moons → ocean worlds

    I Europa:- induced magnetic field- geologic evidenceI Ganymede:- induced magnetic field- auroral ovals oscillationI Titan:- electric signal variations- large Love numberI Enceladus:- geysers- libration of outer layer

  • Europa & EnceladusI direct contact of silicates with

    the oceanI conditions similar to the Earth

    oceans - emergence of life?

    Ganymede & TitanI thick HP ice layer between

    silicates and the oceanI is water & material exchange

    possible?

  • Europa & EnceladusI direct contact of silicates with

    the oceanI conditions similar to the Earth

    oceans - emergence of life?

    Ganymede & TitanI thick HP ice layer between

    silicates and the oceanI is water & material exchange

    possible?

  • GanymedeI full differentiation:

    MoI=0.310I tenuous O2 exosphereI intrinsic magnetic field

    TitanI partial differentiation:

    MoI=0.3414I dense N2-CH4-Ar atmosphere→ possibly ongoing exchange?

  • GanymedeI full differentiation:

    MoI=0.310I tenuous O2 exosphereI intrinsic magnetic field

    TitanI partial differentiation:

    MoI=0.3414I dense N2-CH4-Ar atmosphere→ possibly ongoing exchange?

  • GanymedeI dehydrated mantle

    + thick H2O layerI H&400 km: only ice VI

    TitanI core of hydrated silicates

    + thinner H2O layerI H∼50–300 km: ices VI, V, III?

  • GanymedeI dehydrated mantle

    + thick H2O layerI H&400 km: only ice VI

    TitanI core of hydrated silicates

    + thinner H2O layerI H∼50–300 km: ices VI, V, III?

  • Heat and material exchange

    I no direct contact between the silicates and the oceanI BUT: material exchange possible through convectionI HP ice dynamics governs heat extraction from the interior

    I 1d thermo(chemical) evolution of the whole hydrosphere:e.g. Kirk & Stevenson (1987), Grasset & Sotin (1996), Showman &Malhotra (1997), Tobie + (2005), Fortes + (2007), Grindrod +(2008), Bland + (2009), Noack + (2016)

    a) T=Tm, heat transfer through HP ice not treatedb) use of scaling laws based on the hot TBL instability

    I effect of ice phases transitions on convection:a) linear stability analysis (Bercovici +, 1986; Sotin & Parmentier,1989)b) 2d convection in ice VI and VII mantle (Journaux & Noack, 2015)

  • Heat and material exchange

    I no direct contact between the silicates and the oceanI BUT: material exchange possible through convectionI HP ice dynamics governs heat extraction from the interior

    I 1d thermo(chemical) evolution of the whole hydrosphere:e.g. Kirk & Stevenson (1987), Grasset & Sotin (1996), Showman &Malhotra (1997), Tobie + (2005), Fortes + (2007), Grindrod +(2008), Bland + (2009), Noack + (2016)

    a) T=Tm, heat transfer through HP ice not treatedb) use of scaling laws based on the hot TBL instability

    I effect of ice phases transitions on convection:a) linear stability analysis (Bercovici +, 1986; Sotin & Parmentier,1989)b) 2d convection in ice VI and VII mantle (Journaux & Noack, 2015)

  • Heat and material exchange

    I no direct contact between the silicates and the oceanI BUT: material exchange possible through convectionI HP ice dynamics governs heat extraction from the interior

    I 1d thermo(chemical) evolution of the whole hydrosphere:e.g. Kirk & Stevenson (1987), Grasset & Sotin (1996), Showman &Malhotra (1997), Tobie + (2005), Fortes + (2007), Grindrod +(2008), Bland + (2009), Noack + (2016)

    a) T=Tm, heat transfer through HP ice not treatedb) use of scaling laws based on the hot TBL instability

    I effect of ice phases transitions on convection:a) linear stability analysis (Bercovici +, 1986; Sotin & Parmentier,1989)b) 2d convection in ice VI and VII mantle (Journaux & Noack, 2015)

  • Heat and material exchange

    I no direct contact between the silicates and the oceanI BUT: material exchange possible through convectionI HP ice dynamics governs heat extraction from the interior

    I 1d thermo(chemical) evolution of the whole hydrosphere:e.g. Kirk & Stevenson (1987), Grasset & Sotin (1996), Showman &Malhotra (1997), Tobie + (2005), Fortes + (2007), Grindrod +(2008), Bland + (2009), Noack + (2016)

    a) T=Tm, heat transfer through HP ice not treatedb) use of scaling laws based on the hot TBL instability

    I effect of ice phases transitions on convection:a) linear stability analysis (Bercovici +, 1986; Sotin & Parmentier,1989)b) 2d convection in ice VI and VII mantle (Journaux & Noack, 2015)

  • Heat and material exchange

    I Choblet + (2017): solid-state thermal convection in 3d sphericalI Tmax and Tavrg > Tmelt in the upper part

    → cold thermal boundary layer cannot exist in a solid state→ two-phase mixture model (Bercovici +, 2001; Šrámek +, 2007)

  • Heat and material exchange

    I Choblet + (2017): solid-state thermal convection in 3d sphericalI Tmax and Tavrg > Tmelt in the upper part→ cold thermal boundary layer cannot exist in a solid state

    → two-phase mixture model (Bercovici +, 2001; Šrámek +, 2007)

  • Heat and material exchange

    I Choblet + (2017): solid-state thermal convection in 3d sphericalI Tmax and Tavrg > Tmelt in the upper part→ cold thermal boundary layer cannot exist in a solid state→ two-phase mixture model (Bercovici +, 2001; Šrámek +, 2007)

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Model setting

    I pure H2O system (solid ice & liquid water):

    a) TiTm: one-phase material (water only)

    I porosity φ= VwVi+Vw (vol. fraction of water in the mixture)I amount of ice: 1−φ

    I different material densities → 2 mass balancesI phase separation → 2 linear momentum balancesI thermal equilibrium between the two phases → 1 energy balance

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation

    2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of ice∇ · vi = 0

    I linear momentum balance of ice0 = −∇Π− ρiαiTg +∇ · σi

    I energy balance of ice

    ρicpi∂T∂t

    + ρicpi vi · ∇T − ρiTαivi · g = ∇ · (ki∇T ) + σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw

    3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of ice∇ · vi = 0

    I linear momentum balance of ice0 = −∇Π− ρiαiTg +∇ · σi

    I energy balance of ice

    ρicpi∂T∂t

    + ρicpi vi · ∇T − ρiTαivi · g = ∇ · (ki∇T ) + σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw

    3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− ρiαiTg +∇ · σi

    I energy balance of ice

    ρicpi∂T∂t

    + ρicpi vi · ∇T − ρiTαivi · g = ∇ · (ki∇T ) + σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw

    3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− ραTg +∇ · σ

    I energy balance of ice

    ρicpi∂T∂t

    + ρicpi vi · ∇T − ρiTαivi · g = ∇ · (ki∇T ) + σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw

    3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− ραTg +∇ · σ

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + σ : ∇v

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi

    , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− ραTg +∇ · σ

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + σ : ∇v

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi

    , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− ραTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi

    , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− ραTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi

    , ρcp → (1−φ)ρicpi → ρicpi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi

    → ρicpi4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ

    → latent heat Lm consumption/release ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρcp∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing

    → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v = 0

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixture

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture

    → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · v =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixtureρic

    pi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture

    → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixtureρic

    pi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0

    → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixtureρic

    pi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ

    → latent heat Lm consumption/release ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi

    I energy balance of mixtureρic

    pi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ

    → latent heat Lm consumption/release ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ

    → latent heat Lm consumption/release ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixtureρic

    pi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + (1−φ)σi : ∇vi +1− φφ

    µi(∇ · vi)2

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ

    → latent heat Lm consumption/release ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release

    ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release

    ; solid phase change5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm + Γs Ls = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0

    → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm + Γs Ls = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0

    → water percolation through ice

    I mass balance of mixture∇ · vi +∇ · [φ(vw−vi)] =

    ∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg − φ∆ρg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm + Γs Ls = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through iceI mass balance of mixture

    ∇ · vi +∇ · [φ(vw−vi)] =∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg − φ∆ρg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ̃ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm + Γs Ls = ∇ · (k∇T ) + Ψ̃

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through iceI mass balance of mixture

    ∇ · vi +∇ · [φ(vw−vi)] =∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg − φ∆ρg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2+

    µwφ2Kφ

    (vw−vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm + Γs Ls = ∇ · (k∇T ) + Ψ

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Governing equations1. Thermal convection in ice - incompressible extended Boussinesq approximation2. Mixture of two incompressible components: ξi → ξ := (1−φ)ξi + φξw3. µw�µi: σ → (1−φ)σi , Tw=Tm: ρα→ (1−φ)ρiαi , ρcp → (1−φ)ρicpi → ρic

    pi

    4. Melting/freezing → compressible mixture → ∇ · vi 6= 0 → ζi∼µiφ→ latent heat Lm consumption/release ; solid phase change

    5. Melt buoyancy: ∆ρ=ρi−ρw 6= 0 → water percolation through iceI mass balance of mixture

    ∇ · vi +∇ · [φ(vw−vi)] =∆ρ

    ρiρwΓm

    I linear momentum balance of ice0 = −∇Π− (1−φ)ρiαiTg − φ∆ρg +∇ · (1−φ)σi +∇

    [(1−φ)µi

    φ(∇ · vi)

    ]I energy balance of mixture (Ψ = (1−φ)σi:∇vi+ 1−φφ µi(∇·vi)2+

    µwφ2Kφ

    (vw−vi)2)

    ρicpi∂T∂t

    + ρcpv · ∇T − ρiTαv · g + Γm Lm + Γs Ls = ∇ · (k∇T ) + Ψ

    I linear momentum balance of water ∼ Darcy lawvw − vi = −

    Kφµwφ

    (1−φ)∆ρg

    I mass balance of water → advection of porosity∂φ

    ∂t+∇ · (φvw) =

    Γm

    ρw

  • Material parametersI ice permeable to water transport above a threshold porosity φc

    Kφ ={

    k0(φ−φc)2 φ ≥ φc0 φ < φc

    I temperature and depth dependent ice viscosity

    µi = µ0 exp[

    QR

    (1T−

    1Tm(z)

    )]

  • Implementation

    I FEniCS (fenicsproject.org, Logg +, 2012; Alnaes +, 2015), MPI

  • Reference simulation for Ganymede

    H=200 km, µi=1015 Pa s, qs=20 mW m−2

    I silicates: T=Tm, φ∼few %: volatiles leachingI interior: T av

  • Reference simulation for Ganymede

    H=200 km, µi=1015 Pa s, qs=20 mW m−2

    I silicates: T=Tm, φ∼few %: volatiles leachingI interior: T av

  • Reference simulation for Ganymede

    H=200 km, µi=1015 Pa s, qs=20 mW m−2

    I silicates: T=Tm, φ∼few %: volatiles leaching

    I interior: T av

  • Reference simulation for Ganymede

    H=200 km, µi=1015 Pa s, qs=20 mW m−2

    I silicates: T=Tm, φ∼few %: volatiles leachingI interior: T av

  • Reference simulation for Ganymede

    H=200 km, µi=1015 Pa s, qs=20 mW m−2

    I silicates: T=Tm, φ∼few %: volatiles leachingI interior: T av

  • Increasing HP ice layer thickness H (∼ increasing Ra)

  • Increasing HP ice layer thickness H (∼ increasing Ra)

    (1) Direct exchange ∼ small Rayleigh number

  • Increasing HP ice layer thickness H (∼ increasing Ra)

    (1) Direct exchange ∼ small Rayleigh number

    (2) Indirect exchange ∼ medium Rayleigh number

  • Increasing HP ice layer thickness H (∼ increasing Ra)

    (1) Direct exchange ∼ small Rayleigh number

    (2) Indirect exchange ∼ medium Rayleigh number

    (3) Limited exchange ∼ medium Rayleigh number

  • Increasing HP ice layer thickness H (∼ increasing Ra)

    (1) Direct exchange ∼ small Rayleigh number

    (2) Indirect exchange ∼ medium Rayleigh number

    (3) Limited exchange ∼ medium Rayleigh number

    (4) No exchange ∼ large Rayleigh number

  • Results of parametric study

    I degree of exchange decreases withI increasing ice layer thickness H (∼ time)

    I decreasing ice viscosity µiI decreasing heat flux from silicates qs

  • Results of parametric study

    I degree of exchange decreases withI increasing ice layer thickness H (∼ time)I decreasing ice viscosity µi

    I decreasing heat flux from silicates qs

  • Results of parametric study

    I degree of exchange decreases withI increasing ice layer thickness H (∼ time)I decreasing ice viscosity µiI decreasing heat flux from silicates qs

  • Long-term evolution modeling

    I 2d model: strong dependence on input parameters:- HP ice layer thickness H- ice viscosity µi- silicates heat flux qs

    I 1d thermo(-chemical) evolution model:- scaling laws for rocky interior, HP ice layer, ocean, ice I crust- qs and H are part of solution- µi remains an input parameter

  • Long-term evolution modeling

    I 2d model: strong dependence on input parameters:- HP ice layer thickness H- ice viscosity µi- silicates heat flux qs

    I 1d thermo(-chemical) evolution model:- scaling laws for rocky interior, HP ice layer, ocean, ice I crust- qs and H are part of solution- µi remains an input parameter

  • Critical heat flux for bottom melting

    I fixed viscosity µi, range of qs and H

    → critical qcs for bottom melting: qcs = αH − β

  • Critical heat flux for bottom melting

    I fixed viscosity µi, range of qs and H

    → critical qcs for bottom melting: qcs = αH − β

  • Critical heat flux for bottom melting

    I fixed viscosity µi, range of qs and H

    → critical qcs for bottom melting: qcs = αH − β

  • Critical heat flux for bottom melting

    I fixed viscosity µi, range of qs and H

    → critical qcs for bottom melting: qcs = αH − β

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ H

    I µi = 1014–1016 Pa sI scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 kmI Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ HI µi = 1014–1016 Pa s

    I scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 kmI Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ HI µi = 1014–1016 Pa sI scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 kmI Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ HI µi = 1014–1016 Pa sI scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 kmI Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ HI µi = 1014–1016 Pa sI scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 km

    I Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ HI µi = 1014–1016 Pa sI scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 kmI Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Present-day bottom melting: Ganymede vs TitanI Titan, µi = 1015 Pa s: qcs ∝ HI µi = 1014–1016 Pa sI scaling for Ganymede

    I qs∼5–15 mW m−2

    I Ganymede: H>400 kmI Titan: H∼50–300 km

    → Titan: melting at silicates interface and leaching of 40Ar?

  • Conclusions

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolutionI Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρI thermo-chemical evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • Conclusions

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolutionI Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρI thermo-chemical evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • Conclusions

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolution

    I Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρI thermo-chemical evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • Conclusions

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolutionI Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρI thermo-chemical evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • Conclusions & perspectives

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolutionI Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρ

    I thermo-chemical evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • Conclusions & perspectives

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolutionI Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρI thermo-chemical evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • Conclusions & perspectives

    I two-phase model necessary to address melt evolution

    I melting at the interface with silicates → volatiles leachingI small amount of water (φ∼few %)I volatiles transfered by upwelling plumes → extraction into ocean

    I Ganymede: exchange more likely early in its evolutionI Titan: exchange possibly ongoing: transport of 40Ar into the ocean?

    I further development: effect of salt & ammonia on Tm and ∆ρI thermal evolution model → Cassini, JUICE & Dragonfly

    Thank you for yourattention!

  • References

    - Allègre + (2016), Geophys. Res. Lett., 23, 3555–3557.

    - Alnaes + (2015), University of Cambridge.

    - Bercovici + (1986), Geophys. Res. Lett., 13, 448–451.

    - Bercovici + (2001), J. Geophys. Res., 106, 8887–8906.

    - Bland + (2009), Icarus, 200, 207–221.

    - Choblet + (2017), Icarus, 285, 252–262.

    - Fortes + (2007), Icarus, 188, 139–153.

    - Grasset & Sotin (1996), Icarus, 123, 101–112.

    - Grindrod + (2008), Icarus, 197, 137–151.

    - Jarvis (1984), Phys. Earth Planet. Inter., 36, 305–327.

    - Journaux & Noack (2015), EPSC, EPSC2015-774.

    - Kirk & Stevenson (1987), Icarus, 69, 91–134.

    - Logg + (2012), Springer-Verlag, Berlin Heidelberg.

    - Mitrovica & Jarvis (1987), Geophys. Astro. Fluid, 38, 193–224.

    - Noack + (2016), Icarus, 277, 215–236.

    - Showman & Malhotra (1997), Icarus, 127, 93–111.

    - Sotin & Parmentier (1989), Phys. Earth Planet. Inter., 55, 10–25.

    - Šrámek + (2007), Geophys. J. Int., 168, 964–982.

    - Tobie + (2005), Icarus, 175, 496–502.

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: 0.12: 0.13: 0.14: 0.15: 0.16: 0.17: 0.18: 0.19: 0.20: 0.21: 0.22: 0.23: 0.24: 0.25: 0.26: 0.27: 0.28: 0.29: 0.30: 0.31: 0.32: 0.33: 0.34: 0.35: 0.36: 0.37: 0.38: 0.39: 0.40: 0.41: 0.42: 0.43: 0.44: 0.45: 0.46: 0.47: 0.48: 0.49: anm0: 0.EndLeft: 0.StepLeft: 0.PauseLeft: 0.PlayLeft: 0.PlayPauseLeft: 0.PauseRight: 0.PlayRight: 0.PlayPauseRight: 0.StepRight: 0.EndRight: 0.Minus: 0.Reset: 0.Plus: