14: a high pitch angle structure in the sagittarius arm

12
14: A high pitch angle structure in the Sagittarius Arm M. A. Kuhn (1), R. A. Benjamin (2), C. Zucker (3), A. Krone-Martins (4,5), R. S. de Souza (6), A. Castro- Ginard (7), E. E. O. Ishida (8,9), M. S. Povich (10), L. A. Hillenbrand (1), Context: In spiral galaxies, star formation tends to trace features of the spiral pattern, including arms, spurs, feathers, and branches. However, in our own Milky Way, it has been challenging to connect individual star- forming regions to their larger Galactic environment owing to our perspective from within the disk. One feature in nearly all modern models of the Milky Way is the Sagittarius Arm, located inward of the Sun with a pitch angle of ~12 deg. Aims: We map the 3D locations and velocities of star-forming regions in a segment of the Sagittarius Arm using young stellar objects (YSOs) from the Spitzer/IRAC Candidate YSO (SPICY) catalog to compare their distribution to models of the arm. Methods: Distances and velocities for these objects are derived from Gaia EDR3 astrometry and molecular line surveys. We infer parallaxes and proper motions for spatially clustered groups of YSOs and estimate their radial velocities from the velocities of spatially associated molecular clouds. Results: We identify 25 star-forming regions in the Galactic longitude range l~4.0-18.5 deg arranged in a narrow, ~1 kpc long linear structure with a high pitch angle of ψ=56 deg and a high aspect ratio of ~7:1. This structure includes massive star-forming regions such as M8, M16, M17, and M20. The motions in the structure are remarkably coherent, with velocities in the direction of Galactic rotation of |V f |=240±3 km/s (slightly higher than average) and slight drifts toward the Galactic center (-4.3 km/s) and in the negative Z direction (V z ~-2.9 km/s). The rotational shear experienced by the structure is DW=4.6 km/s/kpc. Conclusions: The observed 56 deg pitch angle is remarkably high for a segment of the Sagittarius Arm. We discuss possible interpretations of this feature as a substructure within the lower pitch angle Sagittarius Arm, as a spur, or as an isolated structure.

Upload: others

Post on 01-Jan-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 14: A high pitch angle structure in the Sagittarius Arm

14: A high pitch angle structure in the Sagittarius ArmM. A. Kuhn (1), R. A. Benjamin (2), C. Zucker (3), A. Krone-Martins (4,5), R. S. de Souza (6), A. Castro-Ginard (7), E. E. O. Ishida (8,9), M. S. Povich (10), L. A. Hillenbrand (1), Context: In spiral galaxies, star formation tends to trace features of the spiral pattern, including arms, spurs, feathers, and branches. However, in our own Milky Way, it has been challenging to connect individual star-forming regions to their larger Galactic environment owing to our perspective from within the disk. One feature in nearly all modern models of the Milky Way is the Sagittarius Arm, located inward of the Sun with a pitch angle of ~12 deg. Aims: We map the 3D locations and velocities of star-forming regions in a segment of the Sagittarius Arm using young stellar objects (YSOs) from the Spitzer/IRAC Candidate YSO (SPICY) catalog to compare their distribution to models of the arm. Methods: Distances and velocities for these objects are derived from Gaia EDR3 astrometry and molecular line surveys. We infer parallaxes and proper motions for spatially clustered groups of YSOs and estimate their radial velocities from the velocities of spatially associated molecular clouds. Results: We identify 25 star-forming regions in the Galactic longitude range l~4.0-18.5 deg arranged in a narrow, ~1 kpc long linear structure with a high pitch angle of ψ=56 deg and a high aspect ratio of ~7:1. This structure includes massive star-forming regions such as M8, M16, M17, and M20. The motions in the structure are remarkably coherent, with velocities in the direction of Galactic rotation of |Vf|=240±3 km/s (slightly higher than average) and slight drifts toward the Galactic center (-4.3 km/s) and in the negative Z direction (Vz~-2.9 km/s). The rotational shear experienced by the structure is DW=4.6 km/s/kpc. Conclusions: The observed 56 deg pitch angle is remarkably high for a segment of the Sagittarius Arm. We discuss possible interpretations of this feature as a substructure within the lower pitch angle Sagittarius Arm, as a spur, or as an isolated structure.

Page 2: 14: A high pitch angle structure in the Sagittarius Arm

8

spiral arm の中にspurs (luminous stellar features),feathers (dust features), branches

cf.Zucker+2020

★☆YSO,●maser

pitch angle=56度

1kpc

GC

Star Formation Handbook天体

extinction

SagittariusLocal

1次元構造⻑さ950pc軸⽐=14:2:1ピッチ⾓=56°システマテックな構造

銀経

固有運動

<latexit sha1_base64="rVPvVPGFiezMkl9fJbQRDuOwBfc=">AAACjXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQto1ITFxxRkZNbEFGfmKhiZGMQU5CoYx+QmlmQU5VZn58boFMdV6xrW1sYLKBvoGYCBAibDEMpQZoCCgHyB5QwxDCkM+QzJDKUMuQypDHkMJUB2DkMiQzEQRjMYMhgwFADFYhmqgWJFQFYmWD6VoZaBC6i3FKgqFagiESiaDSTTgbxoqGgekA8ysxisOxloSw4QFwF1KjCoGlw1WGnw2eCEwWqDlwZ/cJpVDTYD5JZKIJ0E0ZtaEM/fJRH8naCuXCBdwpCB0IXXzSUMaQwWYLdmAt1eABYB+SIZor+savrnYKsg1Wo1g0UGr4HuX2hw0+Aw0Ad5ZV+SlwamBs1m4AJGgCF6cGMywoz0DM30TAJNlB2coFHBwSDNoMSgAQxvcwYHBg+GAIZQoL19DFsY9jLsY+JnMmWyYbKDKGVihOoRZkABTO4AbBqY1g==</latexit>

|V�| ⇠ 240± 3km s�1

<latexit sha1_base64="z4D/rz3Mr4LuEAC+bjfaQZS0p0Y=">AAACiXichVHLLgRBFD3aezxmsJHYTAxiQaea8YhEImwsGWZIDJPuVuhMv9JdMwltfsAPWFiRiIiNLVsbP2DhE8SSxMbCnZ5OBMGtVNWpU/fcOlWluabhC8Ye66T6hsam5pbWWFt7R2c80dWd852Sp/Os7piOt66pPjcNm2eFIUy+7npctTSTr2nFher+Wpl7vuHYq2Lf5ZuWumsbO4auCqIKiYHDXCFzODualsfzrpUclyfylir2PCsoWvkRfysYVSqVQiLFZBZG8idQIpBCFEtO4gJ5bMOBjhIscNgQhE2o8KltQAGDS9wmAuI8Qka4z1FBjLQlyuKUoRJbpHGXVhsRa9O6WtMP1TqdYlL3SJnEIHtgl+yF3bMr9sTef60VhDWqXvZp1mpa7hbiR70rb/+qLJoF9j5Vf3oW2MF06NUg727IVG+h1/Tlg+OXlZnMYDDEztgz+T9lj+yObmCXX/XzZZ45QYw+QPn+3D9BbkxWJuX0cjo1Nx99RQv60I9heu8pzGERS8jSuUe4xg1upTZJkaalmVqqVBdpevAlpIUP/iaWag==</latexit>

|VR| = �4.3± 3.5km s�1

<latexit sha1_base64="2sxqLTjm93/fK2XrJfC9n75yIM8=">AAACgnichVG7SgNBFD2u7/iK2ggiiCEiomFWxRcKoo2lrySCiWF3HXXJvtidBHRNZecPWFgpiIidfoKNP2DhJ4ilgo2FN5sF0aDeYWbOnLnnzpkZ1TF0TzD2VCPV1tU3NDY1R1pa29o7op1dKc8uuBpParZhu5uq4nFDt3hS6MLgm47LFVM1eFrNL5X300XuerptbYgDh2dNZc/Sd3VNEUTlon1Hqdzh0fzoWGImYypi3zX9vJkZ8bb9UblUykVjLMGC6K8GcghiCGPFjl4hgx3Y0FCACQ4LgrABBR61LchgcIjLwifOJaQH+xwlREhboCxOGQqxeRr3aLUVshatyzW9QK3RKQZ1l5T9iLNHds1e2QO7Yc/s49daflCj7OWAZrWi5U6u46Rn/f1flUmzwP6X6k/PAruYDrzq5N0JmPIttIq+eHj6uj67FvcH2QV7If/n7Ind0w2s4pt2ucrXzhChD5B/Pnc1SI0l5MnExOpEbGEx/Iom9GIAQ/TeU1jAMlaQpHOPcY1b3El10rAkS+OVVKkm1HTjW0hznzNAlGE=</latexit>

|Vz| = �2.9km s�1

<latexit sha1_base64="wK+2id4BFRCn1bEUfhyhs3y2lps=">AAAClnichVHLLgRBFD3aezxmsJHYiAmxGJNqmSASIkRYjscg0Uy6WzGd6Ve6ayahMz/gByysSETEN1hJ8AMWPkEsSWws3OlpEQS3UlWnTt1z61SV5pqGLxh7qJPqGxqbmltaY23tHZ3xRFf3mu+UPJ3ndMd0vA1N9blp2DwnDGHyDdfjqqWZfF0rzlX318vc8w3HXhX7Lt+y1D3b2DV0VRCVT8iKpYqCZwV+gateZSqTHlNSH1zRUlL+djAiV5RU0dVDVMknkizNwuj/CeQIJBFF1kmcQ8EOHOgowQKHDUHYhAqf2iZkMLjEbSEgziNkhPscFcRIW6IsThkqsUUa92i1GbE2ras1/VCt0ykmdY+U/Rhk9+yCPbM7dske2duvtYKwRtXLPs1aTcvdfPywd+X1X5VFs0DhU/WnZ4FdTIReDfLuhkz1FnpNXz44el6ZXB4MhtgpeyL/J+yBXdMN7PKLfrbEl48Row+Qvz/3T7A2mpbH0pmlTHJmNvqKFvRhAMP03uOYwSKyyNG5R7jCDW6lXmlampcWaqlSXaTpwZeQsu+Nl5zG</latexit>

shear = 4.6 km s�1 kpc�1

τsh~90Myr

射⼿座腕より⼤<latexit sha1_base64="la5ATrNI8tVG8oPfZvnyYxJdkPY=">AAACpHichVFBaxNBGH1ZtdaobaoXwctiaPFQw7chVvFi0YuHHtLGtIVuE3a303TIzu6yMwnUZf+Af8CDJ4Ui4s/oRfBqD/0J4rGCFw9+2SyIFvUbZubNm+9982bGT0KpDdFpxbpw8dLM5dkr1avXrs/N1xZubOp4lAaiG8RhnG77nhahjETXSBOK7SQVnvJDseUPn072t8Yi1TKOnpvDROwqbxDJfRl4hql+7XGnnzVbrhrZKne1VPZ910gltO1QL2tR7i67yjMHqcpEOnCXdS+75zA5TAJGzTzv1+rUoCLs88ApQR1ltOPaO7jYQ4wAIygIRDCMQ3jQ3HbggJAwt4uMuZSRLPYFclRZO+IswRkes0MeB7zaKdmI15OaulAHfErIPWWljUU6ofd0Rh/pA32hH3+tlRU1Jl4OefanWpH051/e6nz/r0rxbHDwS/VPzwb7eFh4lew9KZjJLYKpfvzi1Vnn0cZitkRv6Sv7f0OndMw3iMbfgqN1sfEaVf4A58/nPg82mw1npdFab9VXn5RfMYvbuIO7/N4PsIpnaKPL5x7hEz7jxFqy1qyO1Z2mWpVScxO/hdX7CfAYoYI=</latexit>

S24µm ⇠ 5⇥ 1040 erg s�1 kpc�2

予想HII knotsとして中間クラス

射⼿座腕

Gaia位置天⽂

⼤局的な腕

Page 3: 14: A high pitch angle structure in the Sagittarius Arm

La Vigne, Vogel, Ostriker 2006

成因?重⼒、速度シア、銀河衝撃波、MHD

Wada,Koda2004

Kim,Ostriker 2002

Page 4: 14: A high pitch angle structure in the Sagittarius Arm

15: The density structure of supersonic self-gravitating turbulenceShivan Khullar, Christoph Federrath, Mark R. Krumholz, Christopher D. MatznerWe conduct numerical experiments to determine the density probability distribution function (PDF) produced in supersonic, isothermal, self-gravitating turbulence of the sort that is ubiquitous in star-forming molecular clouds. Our experiments cover a wide range of turbulent Mach number and virial parameter, allowing us for the first time to determine how the PDF responds as these parameters vary, and we introduce a new diagnostic, the dimensionless star formation efficiency versus density (ϵff(s)) curve, which provides a sensitive diagnostic of the PDF shape and dynamics. We show that the PDF follows a universal functional form consisting of a log-normal at low density with two distinct power law tails at higher density; the first of these represents the onset of self-gravitation, and the second reflects the onset of rotational support. Once the star formation efficiency reaches a few percent, the PDF becomes statistically steady, with no evidence for secular time-evolution at star formation efficiencies from about five to 20 percent. We show that both the Mach number and the virial parameter influence the characteristic densities at which the log-normal gives way to the first power-law, and the first to the second, and we extend (for the former) and develop (for the latter) simple theoretical models for the relationship between these density thresholds and the global properties of the turbulent medium.

磁場なし、等温、3次元の駆動乱流、density PDF (probability distribution function)(1) 対数正規分布(2) 指数分布1(3) 指数分布2 solenoidal+compressibleの

natural mixture FederrahL2010

<latexit sha1_base64="7Ejx9cKAT77+FFy6Si5L8XQyC3c=">AAACenichVHLSgMxFD0d3/VVFUFwU1oURaipFBVBKLpxI2hrq2BlmImxBufFzLSggz/gD7hwpSCifoYbf8CFnyAuFdy48HY6ICrqDUlOTu65OUl0x5Cez9hjTGlpbWvv6OyKd/f09vUnBgbLnl1zuShx27DdLV3zhCEtUfKlb4gtxxWaqRtiUz9Ybuxv1oXrSdva8A8dsWNqVUvuSa75RKmJ4aDCNSO5erxY8WTV1NTyNFc9NZFmGRZG8ifIRiCNKNbsxBUq2IUNjhpMCFjwCRvQ4FHbRhYMDnE7CIhzCclwX+AYcdLWKEtQhkbsAY1VWm1HrEXrRk0vVHM6xaDukjKJMfbArtkLu2e37Im9/1orCGs0vBzSrDe1wlH7T0aKb/+qTJp97H+q/vTsYw/zoVdJ3p2QadyCN/X1o9OX4kJhLBhnF+yZ/J+zR3ZHN7Dqr/xyXRTOEKcPyH5/7p+gPJPJzmZy67l0fin6ik6MIoUJeu855LGCNZTo3ADnuMFt7F1JKZPKVDNViUWaIXwJJfcBNCmSNg==</latexit>

M = �V /cs<latexit sha1_base64="lDNruDstG1B2kMpOQESfn7TuvT0=">AAAClXichVHLahRBFD1pX3F8ZDQLBTfBIeJChjshRgkEQhR1ETEPZxJIJ011WTNTpF9U1wwkzfyAH6ALVwmIiL+QnST4Ay7yCZJlAm5ceKenQTSot6iqU6fuuXWqyk8CnVqiwyHnzNlz5y8MXyxdunzl6kj52vVGGneMVHUZB7FZ9UWqAh2putU2UKuJUSL0A7Xibz7q7690lUl1HL20W4laD0Ur0k0thWXKK5MrgqQtPDcUtm3CrKvNPerNuE0jZHbfTXUrFF5jY2K+l009fe7JnleuUJXyGDsNagWooIiFuPwBLl4hhkQHIRQiWMYBBFJua6iBkDC3jow5w0jn+wo9lFjb4SzFGYLZTR5bvFor2IjX/ZpprpZ8SsDdsHIM4/SVPtIxfaFP9I1+/LVWltfoe9ni2R9oVeKNvL65/P2/qpBni/Yv1T89WzTxMPeq2XuSM/1byIG+u/32eHl6aTy7Q7t0xP536JA+8w2i7ol8v6iW3qHEH1D787lPg8ZEtTZVnVycrMzOFV8xjFu4jbv83g8wi2dYQJ3PfYM97OPAueHMOI+dJ4NUZ6jQjOK3cF78BGfqnMA=</latexit>

↵vir,0 =5�2

V L

6GMc

基礎⽅程式 FLASH

Page 5: 14: A high pitch angle structure in the Sagittarius Arm

LN+PN

LN+2PN

独⽴パラメータ2個<latexit sha1_base64="YU3JuYM0blhzWUqQMDa1MXuSUdQ=">AAACd3ichVHLSgMxFD0dX7U+WutGcGGxKC6kZERUXIluXPqqClaGzBjb0HkxMy1q8Qf8AReCoCAqfoYbf8BFP0FcVhDBhbfTAVFRb0hycnLPzUmiu6b0A8bqMaWtvaOzK96d6Ont60+mBtKbvlPxDJE3HNPxtnXuC1PaIh/IwBTbrie4pZtiSy8vNfe3qsLzpWNvBIeu2LV40Zb70uABUVoqXeCmW+JacTJT8GXR4pqvpbIsx8LI/ARqBLKIYsVJXaOAPTgwUIEFARsBYRMcPrUdqGBwidtFjTiPkAz3BY6RIG2FsgRlcGLLNBZptROxNq2bNf1QbdApJnWPlBmMsUd2yxrsgd2xJ/b+a61aWKPp5ZBmvaUVrpY8GVp//Vdl0Ryg9Kn603OAfcyFXiV5d0OmeQujpa8enTbW59fGauPskj2T/wtWZ/d0A7v6YlytirUzJOgD1O/P/RNsTuXUmdz06nR2YTH6ijiGMYoJeu9ZLGAZK8jTuQc4xzVuYm/KiDKuTLRSlVikGcSXUNQPrBKRFw==</latexit>↵g,�s

独⽴パラメータ4個<latexit sha1_base64="w3+vMcTXUg4EnzBVqw4zh1hrNsY=">AAAChnichVHLSgMxFD2Or1pfVTeCm2pRXEhJRa24Krpx6asqWBky01iD82IyLdTiWvAHXLhSEBFxqx/gxh9w4SeISwU3LrydDoiKekOSk5N7bk4Sw7OkChh7bNKaW1rb2mMd8c6u7p7eRF//unLLvinypmu5/qbBlbCkI/KBDCyx6fmC24YlNoy9hfr+RkX4SrrOWlD1xLbNS47ckSYPiNITwwVuebtcL00kC0qWbK4rQg2uOJFUelFPpFiahZH8CTIRSCGKJTdxgQKKcGGiDBsCDgLCFjgUtS1kwOARt40acT4hGe4LHCBO2jJlCcrgxO7RWKLVVsQ6tK7XVKHapFMs6j4pkxhlD+ySvbB7dsWe2PuvtWphjbqXKs1GQys8vfdocPXtX5VNc4DdT9WfngPsYDb0Ksm7FzL1W5gNfWX/+GV1bmW0NsbO2DP5P2WP7I5u4FRezfNlsXKCOH1A5vtz/wTrk+nMTHpqeSqVm4++IoYhjGCc3juLHBaxhDyde4hr3OBWi2lpbVrLNlK1pkgzgC+h5T4AJtCVoQ==</latexit>↵g,�s,↵d, sd

Star Formation Efficiency<latexit sha1_base64="hbxdsCtZaBBmMqd+U8HXhbWGvxI=">AAACq3ichVHLShxBFD12Hk7GJE50E3AjDiPZZKwRSYIQkAQkG2EemVG0Zahuq8fCftFdMzA2/QP5AReuEghBzF9kk7XgQswPhCwV3LjwTk8bX6i3qKpTp+65darK8G0ZKsYOBrQHDx89Hsw8yQ49ffZ8OPdipBF67cAUddOzvWDJ4KGwpSvqSipbLPmB4I5hi0Vj42Nvf7EjglB67mfV9cWqw1uutKTJFVHN3Lwu/FDaBHWHq/XAiSwrfq9bATejc6Y2X43jaOF/RouH8ZS6LIibuTwrsiTGb4JSCvJIo+zlfkDHGjyYaMOBgAtF2AZHSG0FJTD4xK0iIi4gJJN9gRhZ0rYpS1AGJ3aDxhatVlLWpXWvZpioTTrFph6QchwFts922BH7zXbZX3Z6a60oqdHz0qXZ6GuF3xz+8rJ2cq/KoVlh/UJ1p2cFC+8Sr5K8+wnTu4XZ13c2t45qs9VCNMm+sX/k/ys7YL/oBm7n2PxeEdVtZOkDStef+yZoTBdLb4ozlZn83If0KzIYwwRe0Xu/xRw+oYw6nfsTezjEH+21VtOWNb2fqg2kmlFcCU2cAeY1qCc=</latexit>

✏↵ =SFR

Mgas/t↵<latexit sha1_base64="d59g69hM1c2WkyikO0btDZrlvGg=">AAACtHichVFNTxQxGH4YlI9F2VUvJF4IGwxe1q4hYExIiCTEixF2WSBhyKZTO0vDfGXa3QQn8wf8Ax48QWKM8ewv8OIf8EC84sFwhMSLB9+ZHTBCwLdp+/Tp+7x92jqRp7Rh7HDAGrxxc2h4ZLQ0duv2eLly5+66DruxkC0RemG86XAtPRXIllHGk5tRLLnveHLD2V3K9jd6MtYqDNbMXiS3fd4JlKsEN0S1Ky9tGWnlEbR9bnZiP3HddEY/XLDdmIvkjGwuN9I0eXGe1OE6y3pkLsjSdqXKaiyPycugXoAqilgJKx9g4xVCCHThQyKAIeyBQ1PbQh0MEXHbSIiLCal8XyJFibRdypKUwYndpbFDq62CDWid1dS5WtApHvWYlJOYZt/YR3bCvrJP7Cf7fWWtJK+Redmj2elrZdQuv5lo/vqvyqfZYOev6lrPBi6e5F4VeY9yJruF6Ot7r9+eNJ82ppMH7IAdk/99dsi+0A2C3ql4vyob71CiD6hffO7LYP1xrT5Xm12drS4+K75iBPcxhRl673ks4jlW0KJzP+M7jvDDmrNsS1iyn2oNFJp7+Ces4A/Cc6rN</latexit>

✏↵(s) =SFR

Mgas(s)/t↵(s)

<latexit sha1_base64="2uIawY7thhV/kroNBS6Yc5pUlm8=">AAACbXichVHLSsNAFD2N7/poVQRBkWKpuioTKSqCILpxqdY+sC0liWMNTZOQpAUt/oBrwYUoKIiIn+HGH3DRTxAXLiq4ceFNGhAt6h1m5syZe+6cmZFNTbUdxhoBoaOzq7unty/YPzA4FAoPj6Rto2opPKUYmmFlZcnmmqrzlKM6Gs+aFpcqssYzcnnd3c/UuGWrhr7jHJq8UJFKurqvKpJD1K69kteMUt46MIrhKIszLyLtQPRBFH5sGuFb5LEHAwqqqIBDh0NYgwSbWg4iGEziCqgTZxFSvX2OYwRJW6UsThkSsWUaS7TK+axOa7em7akVOkWjbpEyghh7YnesyR7ZPXtmH7/Wqns1XC+HNMstLTeLoZPx5Pu/qgrNDg6+VH96drCPJc+rSt5Nj3FvobT0taOzZnJ5O1afYdfshfxfsQZ7oBvotTflZotvnyNIHyD+fO52kJ6PiwvxxFYiurrmf0UvJjCNOXrvRaxiA5tI0bk6TnGBy8CrMCZMClOtVCHga0bxLYTZT1GPjdY=</latexit>

s = log ⇢ 正規分布対数分布

s以上の密度の平均⾃由落下時間

s以上の密度のガスの全質量

=

<latexit sha1_base64="GvvPHEK+j5bh939ee9/3ta6b7g4=">AAACZnichVHLSsNAFD2Nr1q1rYoouCmWiqsykaLiqujGZR/2AbWUJI41NE1CkhZq8QcEt3bhSkFE/Aw3/oCL/oHisoIbF96mAdGi3mFmzpy5586ZGdnUVNthrOsTRkbHxif8k4Gp6ZlgKDw7l7eNhqXwnGJohlWUJZtrqs5zjupovGhaXKrLGi/Itd3+fqHJLVs19H2nZfJyXarq6pGqSA5RWbtSrYSjLM7ciAwD0QNReJEywrc4wCEMKGigDg4dDmENEmxqJYhgMIkro02cRUh19zlOESBtg7I4ZUjE1mis0qrksTqt+zVtV63QKRp1i5QRxNgTu2M99sju2Qv7+LVW263R99KiWR5ouVkJnS1l3/9V1Wl2cPyl+tOzgyNsuV5V8m66TP8WykDfPOn0stuZWHuVXbNX8n/FuuyBbqA335SbNM9cIkAfIP587mGQX4+LG/FEOhFN7nhf4ccyVrBG772JJPaQQo7OreIcF+j4noWgsCAsDlIFn6eZx7cQIp/HX4rW</latexit>sgflat

<latexit sha1_base64="g5a7Ux0LpO1HZW+C9rXUfQjFLww=">AAACZnichVHLSgMxFD0dX7VqrYoouCkWxVXJSH3gqujGZR9WBRWZGdManBczaaEWf0BwaxeuFETEz3DjD7jwDxSXCm5ceDsdEBX1hiQnJ/fcnCS6awpfMvYQUTo6u7p7or2xvv6B+GBiaHjdd6qewUuGYzrepq753BQ2L0khTb7pelyzdJNv6Acrrf2NGvd84dhrsu7yHUur2KIsDE0SVVTTc7uJFEuzIJI/gRqCFMLIOYkrbGMPDgxUYYHDhiRsQoNPbQsqGFzidtAgziMkgn2OI8RIW6UsThkasQc0Vmi1FbI2rVs1/UBt0CkmdY+USUyxe3bNXtgdu2FP7P3XWo2gRstLnWa9reXu7uDxePHtX5VFs8T+p+pPzxJlLAZeBXl3A6Z1C6Otrx02X4pLhanGNLtgz+T/nD2wW7qBXXs1LvO8cIYYfYD6/bl/gvXZtDqfzuQzqexy+BVRTGASM/TeC8hiFTmU6NwKTnCKZuRRiSujylg7VYmEmhF8CSX5AXybijE=</latexit>

1.5

<latexit sha1_base64="bpaoxoJULrC/I3hm+7WWGOTJX0U=">AAACf3ichVHLSiNBFD1p39HRqBvRTTD4GAbjjYqvlehmlr6ignFCd08lNna6i+5KQEPAtT/gwpWCirgY/8HN/MAs8gniUsGNC286DaIyeouqOnXqnlunqgxpW74iqka0hsam5pbWtmh7x7fOrlh3z4bvFj1TpE3Xdr0tQ/eFbTkirSxliy3pCb1g2GLT2Fuq7W+WhOdbrrOu9qXYKeh5x8pZpq6Yysb6M9JzpXLj4ld5dGxyfOJHRrflrv7dr2RjCUpSEPGPIBWCBMJYdmOXyOA3XJgoogABB4qxDR0+t22kQJDM7aDMnMfICvYFKoiytshZgjN0Zvd4zPNqO2QdXtdq+oHa5FNs7h4r4xiif3RFD/SXrumOnv9bqxzUqHnZ59moa4XMdh31rT19qSrwrLD7qvrUs0IOs4FXi73LgKndwqzrSwfHD2vzq0PlYTqje/Z/SlW65Rs4pUfzfEWsniDKH5B6/9wfwcZEMjWdnFqZSiwshl/RigEMYpTfewYL+IllpPncQ1zgD260iDaiJTWqp2qRUNOLN6HNvQBgXZKi</latexit>

/ e(�3/2+↵)s

<latexit sha1_base64="wG+7VzICfbem3iuWVY8GkiLywDI=">AAACb3ichVHLSgMxFD0dX7W+qi4UBCkWRTc1o0XFhRTduPRVFayUzJjWwcyDmWmhFn/AD9CFCx8gIn6GG3/AhZ8grkTBjQtvpwOiot6Q5OTknpuTRHOk4fmMPUSUhsam5pZoa6ytvaOzK97ds+7ZJVcXWd2WtrupcU9IwxJZ3/Cl2HRcwU1Nig1tb6G2v1EWrmfY1ppfccS2yYuWUTB07hOVy3Hp7PJ8cW5yfCIfT7IUCyLxE6ghSCKMJTt+hRx2YENHCSYELPiEJTg8altQweAQt40qcS4hI9gXOECMtCXKEpTBid2jsUirrZC1aF2r6QVqnU6R1F1SJjDM7tk1e2F37IY9svdfa1WDGjUvFZq1ulY4+a7D/tW3f1UmzT52P1V/evZRwEzg1SDvTsDUbqHX9eX945fV2ZXh6gi7YE/k/5w9sFu6gVV+1S+XxcoJYvQB6vfn/gnWJ1LqVCq9nE5m5sOviGIAQxil955GBotYQpbOdXCEU5xFnpU+ZVBJ1FOVSKjpxZdQxj4Asj2N8Q==</latexit>

↵g > 3/2

<latexit sha1_base64="HHHpNx7uAiyAaO717YhddUk93QM=">AAACb3ichVHLSgMxFD0dX7W+qi4UBCkWRTc1o0VFXBTduPRVFayUzJjWwcyDmWmhFn/AD9CFCx8gIn6GG3/AhZ8grkTBjQtvpwOiot6Q5OTknpuTRHOk4fmMPUSUhsam5pZoa6ytvaOzK97ds+7ZJVcXWd2WtrupcU9IwxJZ3/Cl2HRcwU1Nig1tb6G2v1EWrmfY1ppfccS2yYuWUTB07hOVy3Hp7PJ8cW5yfCIfT7IUCyLxE6ghSCKMJTt+hRx2YENHCSYELPiEJTg8altQweAQt40qcS4hI9gXOECMtCXKEpTBid2jsUirrZC1aF2r6QVqnU6R1F1SJjDM7tk1e2F37IY9svdfa1WDGjUvFZq1ulY4+a7D/tW3f1UmzT52P1V/evZRwEzg1SDvTsDUbqHX9eX945fV2ZXh6gi7YE/k/5w9sFu6gVV+1S+XxcoJYvQB6vfn/gnWJ1LqVCq9nE5m5sOviGIAQxil955GBotYQpbOdXCEU5xFnpU+ZVBJ1FOVSKjpxZdQxj4ArjeN7w==</latexit>

↵g < 3/2

Page 6: 14: A high pitch angle structure in the Sagittarius Arm

<latexit sha1_base64="kAqh+fPicPYxB0hlCywH7oyYNTg=">AAACbXichVHLSgMxFD0d3/VVFUFQpFh8rEpGfCEIohs3gq8+sIrMjFEH58VMWqhDf8C14EIUFETEz3DjD7jwE8SFiwpuXHg7HRAt6g1JTk7uuTlJVMfQPcHYU0Sqq29obGpuiba2tXd0xrq6056ddzWe0mzDdrOq4nFDt3hK6MLgWcfliqkaPKMeLlb2MwXuerptbYiiw7dNZd/S93RNEURt+luaYsSXS3OTO7EES7Ig4rVADkECYazYsRtsYRc2NORhgsOCIGxAgUctBxkMDnHb8IlzCenBPkcJUdLmKYtThkLsIY37tMqFrEXrSk0vUGt0ikHdJWUcw+yR3bIye2B37Jl9/FrLD2pUvBRpVqta7ux0Hvetv/+rMmkWOPhS/elZYA8zgVedvDsBU7mFVtUXjk7L67Nrw/4Iu2Iv5P+SPbF7uoFVeNOuV/naGaL0AfLP564F6fGkPJWcWJ1IzC+EX9GMfgxhjN57GvNYwgpSdK6FE5zjIvIq9UoD0mA1VYqEmh58C2n0EzFCjUY=</latexit>

M = 5<latexit sha1_base64="YoGjqfuDjsjRgEaklkHe5+ZhdO8=">AAACfHichVHLSiQxFD1dPkbbV6sLBTdijyLoNLdEHBkQRDcufbUKtjSpMtrBelGVbnAaf2B+wIUrFRGZ8Svc+AOz8BMGlwpuROZ2dYGoqDckOTm55+YksQJHRZroJmU0NDY1f2lpTbe1d3R2Zbp71iK/HNoyb/uOH25YIpKO8mReK+3IjSCUwrUcuW7tzdf21ysyjJTvrer9QG65YtdTO8oWmqlipq8gnKAkigVX6FLoVisqHKeDGbOYyVKO4hh8C8wEZJHEop85RwHb8GGjDBcSHjRjBwIRt02YIATMbaHKXMhIxfsSB0iztsxZkjMEs3s87vJqM2E9XtdqRrHa5lMc7iErBzFMf+mC7uiaftM/eny3VjWuUfOyz7NV18qg2PWrf+XhU5XLs0bpWfWhZ40dTMdeFXsPYqZ2C7uur/w8vFv5sTxcHaETumX/x3RDV3wDr3Jvny3J5SOk+QPM18/9FqxN5Myp3OTSZHZ2LvmKFgxgCKP83t8xiwUsIh+fe4o/uEw9GV+NMeNbPdVIJZpevAhj6j+hM5NP</latexit>

↵vir,0 = 1

<latexit sha1_base64="+Hqh9HgZecj2rkbrOyjMWNfz9vs=">AAACb3ichVHLSgMxFD0dX7W+qi4UBCkWRTc1o0VFEIpuXPqqClZKZkzrYObBzLRQiz/gB+jChQ8QET/DjT/gwk8QV6LgxoW30wFRUW9IcnJyz81JojnS8HzGHiJKQ2NTc0u0NdbW3tHZFe/uWffskquLrG5L293UuCekYYmsb/hSbDqu4KYmxYa2t1Db3ygL1zNsa82vOGLb5EXLKBg694nK5bh0dnm+ODc5PpGPJ1mKBZH4CdQQJBHGkh2/Qg47sKGjBBMCFnzCEhwetS2oYHCI20aVOJeQEewLHCBG2hJlCcrgxO7RWKTVVshatK7V9AK1TqdI6i4pExhm9+yavbA7dsMe2fuvtapBjZqXCs1aXSucfNdh/+rbvyqTZh+7n6o/PfsoYCbwapB3J2Bqt9Dr+vL+8cvq7MpwdYRdsCfyf84e2C3dwCq/6pfLYuUEMfoA9ftz/wTrEyl1KpVeTicz8+FXRDGAIYzSe08jg0UsIUvnOjjCKc4iz0qfMqgk6qlKJNT04ksoYx+wOo3w</latexit>

↵g = 3/2<latexit sha1_base64="ZrYGgmV4m7KQiDpl+nkY2FnTXfE=">AAACcXichVHLSgMxFD0dX7U+WnWjuCkWRRDKrRQVQSiK4lKtVcEXM2PUwXkxkxZq6Q/4AwquKoiIn+HGH3DhJ4jLCm5ceDsdEBX1hiQnJ/fcnCSaaxq+JHqKKC2tbe0d0c5YV3dPbzzR17/hO0VPFwXdMR1vS1N9YRq2KEhDmmLL9YRqaabY1E4WGvubJeH5hmOvy7Irdi31yDYODV2VTO3tWKo89qxKfmmxOkf7iRSlKYjkT5AJQQphrDiJG+zgAA50FGFBwIZkbEKFz20bGRBc5nZRYc5jZAT7AlXEWFvkLMEZKrMnPB7xajtkbV43avqBWudTTO4eK5MYpUe6pTo90B090/uvtSpBjYaXMs9aUyvc/fjZYP7tX5XFs8Txp+pPzxKHmAm8GuzdDZjGLfSmvnR6Xs/Pro1WxuiKXth/jZ7onm9gl17161WxdokYf0Dm+3P/BBuT6cxUOruaTeXmw6+IYhgjGOf3nkYOy1hBgc/1cIEariJ1ZUhJKiPNVCUSagbwJZSJD2S3jzM=</latexit>

SFE = 0

<latexit sha1_base64="QDlWZwGhO7LcxBX7YCgKl3a+suM=">AAACdXichVHLSgMxFD0d3/U16kYQoVgrrmoq9YEgiKK47MO2gpUyM0YdOi9m0oIWf8AfcKEbBRXxM9z4Ay78BHFZoRsX3k4HREW9IcnJyT03J4nqGLonGHsOSW3tHZ1d3T3h3r7+gUF5aDjv2RVX4znNNmx3W1U8bugWzwldGHzbcbliqgYvqOW15n6hyl1Pt60tceTwXVM5sPR9XVMEUSVZLpqKOHTNWnZj/WR5rhgryVEWZ35EfoJEAKIIImXLtyhiDzY0VGCCw4IgbECBR20HCTA4xO2iRpxLSPf3OU4QJm2FsjhlKMSWaTyg1U7AWrRu1vR8tUanGNRdUkYQY0/sjtXZI7tnL+z911o1v0bTyxHNakvLndLg6Wi28a/KpFng8FP1p2eBfSz6XnXy7vhM8xZaS189PqtnlzKx2hS7Yq/k/5I9swe6gVV9067TPHOOMH1A4vtz/wT52XhiPp5MJ6Mrq8FXdGMME5im917ACjaRQo7OreIC17gJNaRxaVKaaqVKoUAzgi8hzXwATVmP/g==</latexit>

SFE = 5%

<latexit sha1_base64="c81C2H78eRWEMGVuE+kHKa70KSs=">AAACb3ichVFNSwJBGH7cvsw+tDoUBCGJURcbTSo6RNSlY1ZaoCK766iL6+6yuwom/YF+QB069AER0c/o0h/o4E+ITmHQpUOv60KUVO8wM8888z7vPDMjGapi2Yw1PUJPb1//gHfQNzQ8MuoPjI2nLL1qyjwp66puHkqixVVF40lbsVV+aJhcrEgqP5DKW+39gxo3LUXX9u26wbMVsagpBUUWbaIyGVE1SmIuv760GMsFQizCnAh2g6gLQnBjRw/cIoM8dMioogIODTZhFSIsamlEwWAQl0WDOJOQ4uxzHMNH2iplccoQiS3TWKRV2mU1WrdrWo5aplNU6iYpgwizJ3bHWuyR3bNn9vFrrYZTo+2lTrPU0XIj5z+Z2nv/V1Wh2UbpS/WnZxsFrDpeFfJuOEz7FnJHXzs6a+2t7YYbc+yavZD/K9ZkD3QDrfYm3yT47jl89AHRn8/dDVKxSHQ5Ek/EQxub7ld4MY1ZzNN7r2AD29hBks41cIoLXHpehUlhRgh2UgWPq5nAtxAWPgGsMY3u</latexit>

↵d > 3/2

1) bound system @sgnot bound

bound☆こみ

☆ぬき

mass weighted density

<latexit sha1_base64="C5iKbe8xTAX55SjCpBoh8DEfwSE=">AAACoHichVFNTxNBGH5YFbEoLXIx4bKhwXhqpk2DBC8EL9ygLaVEFpvd7bSdsF/MTiu46R/gD3DwhAkhxJ/hQY568NCfYDhCwsWD7243IUrAd7Mzz/vM+7zzzIwVOCJUjA3HtAcPH40/nniSmXz6bCqbm36+Gfo9afO67Tu+3LLMkDvC43UllMO3AslN13J4w9p9G683+lyGwvc21EHAd1yz44m2sE1FVDP3xpBdv2m4pupKN3I/tAYG3+uJvm60pWlHhvCUHpe8L+mt/cFNHmfNXJ4VWBL6bVBMQR5prPu5UxhowYeNHlxweFCEHZgI6dtGEQwBcTuIiJOERLLOMUCGtD2q4lRhErtLY4ey7ZT1KI97honapl0c+iUpdcyzn+yMXbJz9oX9Yr/v7BUlPWIvBzRbIy0PmtnDF7Xr/6pcmhW6N6p7PSu0sZh4FeQ9SJj4FPZI3/94dFlbqs5HL9lndkH+j9mQfaUTeP0r+6TCq5+QoQco/nvdt8FmqVBcKJQr5fzySvoUE5jFHF7Rfb/GMlaxjjrte4xv+I4f2py2qq1plVGpNpZqZvBXaO/+ANCVohY=</latexit>

⇢mwd ⌘R⇢2dxR⇢dx

2) rotation support scale

Page 7: 14: A high pitch angle structure in the Sagittarius Arm

16: The Transition of Polarized Dust Thermal Emission from the Protostellar Envelope to the Disk ScaleKa Ho Lam (1), Che-Yu Chen (1 and 2), Zhi-Yun Li (1), Haifeng Yang (3), Erin G. Cox (4), Leslie W. Looney (5), Ian Stephens (6 and 7) Polarized dust continuum emission has been observed with ALMA in an increasing number of deeply embedded protostellar systems. It generally shows a sharp transition going from the protostellar envelope to the disk scale, with the polarization fraction typically dropping from ~5% to ~1% and the inferred magnetic field orientations becoming more aligned with the major axis of the system. We quantitatively investigate these observational trends using a sample of protostars in the Perseus molecular cloud and compare these features with a non-ideal MHD disk formation simulation. We find that the gas density increases faster than the magnetic field strength in the transition from the envelope to the disk scale, which makes it more difficult to magnetically align the grains on the disk scale. Specifically, to produce the observed ~1% polarization at ~100au scale via grains aligned with the B-field, even relatively small grains of 1μm in size need to have their magnetic susceptibilities significantly enhanced (by a factor of ~20) over the standard value, potentially through superparamagnetic inclusions. This requirement is more stringent for larger grains, with the enhancement factor increasing linearly with the grain size, reaching ~2×104 for millimeter-sized grains. Even if the required enhancement can be achieved, the resulting inferred magnetic field orientation in the simulation does not show a preference for the major axis, which is inconsistent with the observed pattern. We thus conclude that the observed trends are best described by the model where the polarization on the envelope scale is dominated by magnetically aligned grains and that on the disk scale by scattering.

Page 8: 14: A high pitch angle structure in the Sagittarius Arm

磁気分極<latexit sha1_base64="iC7WHVNcawCWm7clA3zVdbhbAbY=">AAACoHichVG7SgNBFD2u72eiNoIIYlCs4kRERRBEGxvRqHmgK2F2HePgvtjdBDSksvMHLKwULMROwR+w8Qcs/ASxjGBj4d3Ngqiod5iZM2fuuXOGqzmG9HzGnhqUxqbmlta29o7Oru6eWLy3L+vZJVcXGd02bDevcU8Y0hIZX/qGyDuu4KZmiJx2sBTc58rC9aRtbfqHjtgxedGSe1LnPlGF+JCqmZWV6ryq78sAqqumKPLqhFrkpskL8QRLsjCGf4JUBBKIYs2O30HFLmzoKMGEgAWfsAEOj8Y2UmBwiNtBhTiXkAzvBaroIG2JsgRlcGIPaC3SaTtiLToHNb1QrdMrBk2XlMMYZY/sitXYA7tmz+z911qVsEbg5ZB2ra4VTiF2MrDx9q/KpN3H/qfqT88+9jAbepXk3QmZ4Bd6XV8+Oq1tzK2PVsbYBXsh/+fsid3TD6zyq36ZFutnf/jRyEuV2pP63oyfIDuZTE0np9JTiYXFqFFtGMQIxqkbM1jAMtaQoerHuMINbpURZVlZVdL1VKUh0vTjSyhbH8usm+c=</latexit>

M = �⌦/�χ: magnetic susceptibility

磁気モーメント: |M| 4pa3/3 = |M|V磁気トルク=|M|VBラーマー歳差時間:

常磁性体<latexit sha1_base64="ExE81/IiZagzpNmPSjBHtaykXdI=">AAACk3ichVG7SgNBFD2u7/haFUGwCYaIVZgVUdFG1MJGMGo0YELYXSfJ4L7YnQQ05Af8AQttFBTE3h+w8Qcs/ASxVLCx8GazICrGO8zMmTP33DnDNTxLBJKxpzalvaOzq7unN9bXPzA4pA6P7AZuxTd5xnQt188aesAt4fCMFNLiWc/num1YfM84XG3c71W5HwjX2ZFHHs/beskRRWHqkqiCqubKuqzlzLKo5wJhx7WCmmApFkb8N9AikEAUm656hxwO4MJEBTY4HEjCFnQENPahgcEjLo8acT4hEd5z1BEjbYWyOGXoxB7SWqLTfsQ6dG7UDEK1Sa9YNH1SxpFkj+yGvbIHdsue2ceftWphjYaXI9qNppZ7haGT8e33f1U27RLlL1VLzxJFLIReBXn3QqbxC7Oprx6fvm4vbiVrU+ySvZD/C/bE7ukHTvXNvErzrbMWfgzyUqf2aD+b8RvszqS0udRsejaxvBI1qgcTmMQ0dWMey1jHJjJUvYpzXOFaGVOWlBVlrZmqtEWaUXwLZeMTokeWSQ==</latexit>

�̂ ⇠ 1

ガスダンピング時間

磁場に整列が起こるには<latexit sha1_base64="UmaP8TUsxl3Nyr0wVd0h5T51sa4=">AAACiHichVG7TgJBFL2sL8QHqI2JDZFgrMjFEFFjQbCxsOAhjwQJ2V1G3LCv7A4kSPgBOysTqTSxMPb+gI0/YMEnGEtMbCy8LJsYJeKdzMyZM/fcOZMrmapic8SeR5iYnJqe8c765uYXFv2BpeW8bTQsmeVkQzWsoiTaTFV0luMKV1nRtJioSSorSPWDwX2hySxbMfRj3jJZWRNrunKqyCInqsArR/u8Uq0EQhhBJ4KjIOqCELiRMgKPcAJVMECGBmjAQAdOWAURbBoliAKCSVwZ2sRZhBTnnkEHfKRtUBajDJHYOq01OpVcVqfzoKbtqGV6RaVpkTIIYXzBe+zjMz7gK37+Wavt1Bh4adEuDbXMrPgvVrMf/6o02jmcfavGeuZwCjuOV4W8mw4z+IU81DfPr/rZvUy4vYG3+Eb+b7CHT/QDvfku36VZpjvGj0ReOtSe6O9mjIL8ViS6HYmlY6FE0m2UF9ZgHTapG3FIwCGkIOdUv4Rr6Ao+AYW4sDtMFTyuZgV+hJD8Aiilkjk=</latexit>

tL < td

<latexit sha1_base64="ExE81/IiZagzpNmPSjBHtaykXdI=">AAACk3ichVG7SgNBFD2u7/haFUGwCYaIVZgVUdFG1MJGMGo0YELYXSfJ4L7YnQQ05Af8AQttFBTE3h+w8Qcs/ASxVLCx8GazICrGO8zMmTP33DnDNTxLBJKxpzalvaOzq7unN9bXPzA4pA6P7AZuxTd5xnQt188aesAt4fCMFNLiWc/num1YfM84XG3c71W5HwjX2ZFHHs/beskRRWHqkqiCqubKuqzlzLKo5wJhx7WCmmApFkb8N9AikEAUm656hxwO4MJEBTY4HEjCFnQENPahgcEjLo8acT4hEd5z1BEjbYWyOGXoxB7SWqLTfsQ6dG7UDEK1Sa9YNH1SxpFkj+yGvbIHdsue2ceftWphjYaXI9qNppZ7haGT8e33f1U27RLlL1VLzxJFLIReBXn3QqbxC7Oprx6fvm4vbiVrU+ySvZD/C/bE7ukHTvXNvErzrbMWfgzyUqf2aD+b8RvszqS0udRsejaxvBI1qgcTmMQ0dWMey1jHJjJUvYpzXOFaGVOWlBVlrZmqtEWaUXwLZeMTokeWSQ==</latexit>

�̂ ⇠ 1

<x

a<1μm サブミクロンダスト

磁場整列の条件

ダストのパラメータ

<latexit sha1_base64="UlhjUhzCMsJwpvpftaTFvwHYEmQ=">AAACjnichVHLSsNAFD2Nr1pfUTeCm2CpuCpTKVVEUXTTZVutLbRFkjjq0DSJSVqspT/gD7hwo4ILce8PuPEHXPgJ4lLBjQtv04CoqHeYmTNn7rlzhqvZhnA9xh5DUk9vX/9AeDAyNDwyOiaPT2y7Vt3ReV63DMspaqrLDWHyvCc8gxdth6s1zeAFrbrRuS80uOMKy9zymjav1NR9U+wJXfWIqpQNSt1VlWWlfCR25CiLMz+UnyARgCiCyFjyLcrYhQUdddTAYcIjbECFS6OEBBhs4ipoEecQEv49RxsR0tYpi1OGSmyV1n06lQLWpHOnpuurdXrFoOmQUkGMPbBr9sLu2Q17Yu+/1mr5NTpemrRrXS23d8ZOpjbf/lXVaPdw8Kn607OHPSz6XgV5t32m8wu9q28cn75sLuVirVl2yZ7J/wV7ZHf0A7Pxql9lee7sDz8aeWlTexLfm/ETbM/HE6l4MpuMrq0HjQpjGjOYo24sYA1pZJCn6oc4xTkuJFlKSSvSajdVCgWaSXwJKf0BHwmUWQ==</latexit>

� < ⇠ の部分だけ以下を積分

成り⽴たない部分に、短軸⽅向1%の散乱偏光

Page 9: 14: A high pitch angle structure in the Sagittarius Arm

17: The link between gas and stars in the S254-S258 star-forming regionD. A. Ladeyschikov, M. S. Kirsanova, A. M. Sobolev, M. Thomasson, V. Ossenkopf-Okada, M. Juvela, S. A. Khaibrakhmanov, E. A. PopovaThe paper aims to study relation between the distributions of the young stellar objects (YSOs) of different ages and the gas-dust constituents of the S254-S258 star-formation complex. This is necessary to study the time evolution of the YSO distribution with respect to the gas and dust compounds which are responsible for the birth of the young stars. For this purpose we use correlation analysis between different gas, dust and YSOs tracers. We compared the large-scale CO, HCO+, near-IR extinction, and far-IR Herschel maps with the density of YSOs of the different evolutionary Classes. The direct correlation analysis between these maps was used together with the wavelet-based spatial correlation analysis. This analysis reveals a much tighter correlation of the gas-dust tracers with the distribution of Class I YSOs than with that of Class II YSOs. We argue that Class I YSOs which were initially born in the central bright cluster S255-IR (both N and S parts) during their evolution to Class II stage (~2 Myr) had enough time to travel through the whole S254-S258 star-formation region. Given that the region contains several isolated YSO clusters, the evolutionary link between these clusters and the bright central S255-IR (N and S) cluster can be considered. Despite the complexity of the YSO cluster formation in the non-uniform medium, the clusters of Class II YSOs in the S254-258 star-formation region can contain objects born in the different locations of the complex.

Page 10: 14: A high pitch angle structure in the Sagittarius Arm

18. SiO Outflows as Tracers of Massive Star Formation in Infrared Dark CloudsMengyao Liu, Jonathan C. Tan, Joshua Marvil, Shuo Kong, Viviana Rosero, Paola Caselli, Giuliana CosentinoTo study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to ≲0.05 pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do notsee a clear relation between the SiO luminosity and the evolutionary stage indicated by L/M. We conclude that as a protostar approaches a bolometric luminosity of ~102L⊙, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.

L (5GHz) vs Pout

low mass

high mass

SiO

1.3mm

6cm

SiO

Page 11: 14: A high pitch angle structure in the Sagittarius Arm

19: Massive Protocluster of a Periodic Maser Source G188.95+0.89M. M. Mutie, J. O. Chibueze, K. El Bouchefry, G. C. MacLeod, J. Morgan, P. BakiWe report the results of ongoing monitoring of the 6.7 GHz CH3OH masers associated with G188.95+0.89. In these observations five features are periodically varying and at least two exhibit evidence of velocity drifts. It is not clear the cause of these velocity drifts. The spectra have varied significantly since detection in 1991. The 11.45 km s-1 feature has decreased exponentially from 2003. Complementary ALMA 1.3 mm continuum and line observational results are also presented. Eight continuum cores (MM1 - MM8) were detected in G188.95+0.89. We derived the masses of the detected cores. G188.95+0.89 MM2 was resolved into 2 continuum cores (separated by 0.1 arcsec) in ALMA band 7 observations. Also CH3OH (4(2,2)-3(1,2)) thermal emission associated with MM2 is double peaked. We propose the presence of multiple (at least binary) young stellar objects in MM2. SiO emission exhibit a bow-shock morphology in MM2 while strong emission of 12CO at the east and west of MM2 suggest the presence of an east-west bipolar outflow.

395⽇

Page 12: 14: A high pitch angle structure in the Sagittarius Arm

20: Proper motions of spectrally selected structures in the HH 83 outflow

T.A. Movsessian, T.Yu. Magakian, A.V. Moiseev

We continue our program of investigation of the proper motions of spectrally separated structures in the Herbig-Haro outflows with the aid of Fabry-Perot scanning interferometry. This work mainly focuses on the physical nature of various structures in the jets. The aim of the present study is to measure the proper motions of the previously discovered kinematically separated structures in the working surface of the HH 83 collimated outflow. We used observations from two epochs separated by 15 years, which were performed on the 6m telescope with Fabry-Perot scanning interferometer. We obtained images corresponding to different radial velocities for the two separate epochs, and used them to measure proper motions. In the course of our data analysis, we discovered a counter bow-shock of HH 83 flow with positive radial velocity, which makes this flow a relatively symmetric bipolar system. The second epoch observations confirm that the working surface of the flow is split into two structures with an exceptionally large (250 km s−1) difference in radial velocity. The proper motions of these structures are almost equal, which suggests that they are physically connected. The asymmetry of the bow shock and the turning of proper motion vectors suggests a collision between the outflow and a dense cloud. The profile of the Hα line for the directly invisible infrared source HH 83 IRS, obtained by integration of the data within the reflection nebula, suggests it to be of P Cyg type with a broad absorption component characteristic of the FU Ori like objects. If this object underwent an FU Ori type outburst, which created the HH 83 working surfaces, its eruption took place about 1500 years ago according to the kinematical age of the outflow.