14. linear mixed-effects models for data from split …a model for data from the traditional...

30
14. Linear Mixed-Effects Models for Data from Split-Plot Experiments Copyright c 2019 Dan Nettleton (Iowa State University) 14. Statistics 510 1 / 30

Upload: others

Post on 07-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

14. Linear Mixed-Effects Models for

Data from Split-Plot Experiments

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 1 / 30

Page 2: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Start with a Field

Field

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 2 / 30

Page 3: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Partition the Field into Blocks

Field

Block 1

Block 2

Block 3

Block 4

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 3 / 30

Page 4: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Partition Each Block into Plots

Field

Block 1

Block 2

Block 3

Block 4

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 4 / 30

Page 5: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Randomly Assign Genotypes to Plots within Blocks

Field

Block 1

Block 2

Block 3

Block 4 Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 5 / 30

Page 6: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Partition Each Whole Plot into Split Plots

Field

Block 1

Block 2

Block 3

Block 4 Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 6 / 30

Page 7: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Randomly Assign Fertilizer Amounts within Split Plots

Field

Block 1

Block 2

Block 3

Block 4 Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

0 50 100 150 50 0 100 150 150 0 100 50

150 0 100 50 0 100 50 150 100 0 50 150

100 150 50 0 0 50 100 150 50 0 100 150

0 150 50 100 150 0 100 50 50 0 150 100

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 7 / 30

Page 8: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

An Example Split-Plot Experiment

Field

Block 1

Block 2

Block 3

Block 4 Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

Genotype A Genotype B Genotype C

0 50 100 150 50 0 100 150 150 0 100 50

150 0 100 50 0 100 50 150 100 0 50 150

100 150 50 0 0 50 100 150 50 0 100 150

0 150 50 100 150 0 100 50 50 0 150 100

Whole Plot or Main Plot

Split Plot or

Sub Plot

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 8 / 30

Page 9: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

This experiment has two factors: genotype and fertilizeramount.

Genotype has levels A, B, and C.

Fertilizer has levels 0, 50, 100, 150 lbs. N / acre.

Genotype is called the whole-plot (or main-plot) factorbecause its levels are randomly assigned to whole plots(main plots).

Fertilizer is called the split-plot factor because its levels arerandomly assigned to split plots within each whole plot.

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 9 / 30

Page 10: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Experimental Units in Split-Plot Designs

Whole plots are the whole-plot experimental units becausethe levels of the whole-plot factor (genotype) are randomlyassigned to whole plots.

The split-plots are the split-plot experimental units becausethe levels of the split-plot factor (amount of fertilizer) arerandomly assigned to split plots within each whole plot.

Thus, we have two different sizes of experimental units insplit-plot experimental designs.

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 10 / 30

Page 11: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Same Treatment Structure in an RCBD

Field

Block 1

Block 2

Block 3

Block 4

A0

A50

A150

A100

B0

B50

B100

B150

C0

C50

C100

C150

A0

A50

A100

A150

B0

B50

B100

B150

C0

C50

C100

C150

A0

A50

A100

A150

B0

B50

B100

B150

C0

C50

C100

C150

A0

A50

A100

A150

B0

B50

B100

B150

C0

C50

C100

C150

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 11 / 30

Page 12: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Same Treatment Structure in an CRD

Field

A0

A50

A150

A100

B0

B50

B100

B150

C0

C50

C100

C150

A0

A50

A100

A150

B0

B50

B100

B150

C0

C50

C100

C150

A0

A50

A100

A150

B0

B50

B100

B150

C0

C50

C100

C150

A0

A50

A100

A150

B0

B50

B100

B150

C0

C50

C100

C150

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 12 / 30

Page 13: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Why Use a Split-Plot Design?

Split-plot designs usually arise because logistical constraintsmake a CRD or RCBD impractical.

For example, it may be easier to change from one fertilizerlevel to another as a tractor drives through a field, while itmay be more difficult to change from planting one genotypeto planting another.

In the engineering literature, split-plot designs aresometimes called designs with hard-to-change factors.

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 13 / 30

Page 14: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Recognizing Designs with Split-Plot Structures

Many variations on split-plot designs are used for practicalreasons.

Examples include split-split-plot designs and split-blockdesigns, but the names of these designs are not soimportant.

Pay close attention to the experimental unit to which thelevels of each factor are randomly assigned to recognizesplit-plot-like design structures.

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 14 / 30

Page 15: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Split-plot designs may not involve plots of land.

Suppose eight pairs of mice from eight litters are housed ineight cages so that each cage holds two mice from thesame litter.

Suppose diets 1 and 2 are randomly assigned to the litterswith four litters per diet.

Within each cage, suppose drugs 1 and 2 are randomlyassigned to the mice with one mouse per drug.

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 15 / 30

Page 16: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

A Split-Plot Experimental Design

Drug 2 Drug 1Diet 1

Drug 2 Drug 1Diet 2

Drug 1 Drug 2Diet 1

Drug 1 Drug 2Diet 1

Drug 1 Drug 2Diet 2

Drug 2 Drug 1Diet 2

Drug 2 Drug 1Diet 2

Drug 2 Drug 1Diet 1

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 16 / 30

Page 17: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Diet is the whole-plot treatment factor.

Litters are the whole-plot experiment units.

Drug is the split-plot treatment factor.

Mice are the split-plot experiment units.

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 17 / 30

Page 18: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Diet i = 1, 2, Drug j = 1, 2, Litter k = 1, 2, 3, 4 (within each Diet i)

yijk = µ+ αi + βj + γij + `ik + eijk (i = 1, 2; j = 1, 2; k = 1, ..., 4)

µ+ αi + βj + γij = mean for Diet i and Drug j

`ik = random litter effect = whole-plot exp. unit random effect

eijk = random error effect = split-plot exp. unit random effect

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 18 / 30

Page 19: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

y =

y111

y121

y112

y122

y113

y123

y114

y124

y211

y221

y212

y222

y213

y223

y214

y224

β =

µ

α1

α2

β1

β2

γ11

γ12

γ21

γ22

u =

`11

`12

`13

`14

`21

`22

`23

`24

e =

e111

e121

e112

e122

e113

e123

e114

e124

e211

e221

e212

e222

e213

e223

e214

e224

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 19 / 30

Page 20: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

X =

[1

16×1, I

2×2⊗ 1

8×1, 1

8×1⊗ I

2×2, I

2×2⊗ 1

4×1⊗ I

2×2

]

Z = I8×8⊗ 1

2×1

y = Xβ + Zu + e

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 20 / 30

Page 21: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

[ue

]∼ N

([00

],

[σ2` I 00 σ2

e I

]=

[G 00 R

])

Var(Zu) = ZGZ′ = σ2`ZZ′

= σ2`

[I

8×8⊗ 1

2×1

] [I

8×8⊗ 1

2×1

]′= σ2

`

[I

8×8⊗ 11

2×2

′]

= Block Diagonal with blocks

[σ2` σ2

`

σ2` σ2

`

]

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 21 / 30

Page 22: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Var(y) = ZGZ′ + R = σ2` I

8×8⊗ 11

2×2

′+ σ2

e I

= Block Diagonal with blocks

[σ2` + σ2

e σ2`

σ2` σ2

` + σ2e

]

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 22 / 30

Page 23: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Thus, the covariance between two observations from the samelitter is σ2

` and the correlation is σ2`

σ2`+σ

2e.

These computations can also be done using the non-matrixexpression of the model.

∀ i, j, Var(yijk) = Var(µ+ αi + βj + γij + `ik + eijk)

= Var(`ik + eijk)

= σ2` + σ2

e .

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 23 / 30

Page 24: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Cov(yi1k, yi2k) = Cov(µ+ αi + β1 + γi1 + `ik + ei1k,

µ+ αi + β2 + γi2 + `ik + ei2k)

= Cov(`ik + ei1k, `ik + ei2k)

= Cov(`ik, `ik) + Cov(`ik, ei2k)

+ Cov(ei1k, `ik) + Cov(ei1k, ei2k)

= Cov(`ik, `ik) + 0 + 0 + 0

= Var(`ik) = σ2` .

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 24 / 30

Page 25: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Back to the Traditional Split-Plot Experimental Design

Field

Block 1

Block 2

Block 3

Block 4Genotype AGenotype B Genotype C

Genotype A Genotype B Genotype C

Genotype AGenotype B Genotype C

Genotype A Genotype BGenotype C

0 50100 150 50 0100 150 150 0100 50

150 0100 50 0 10050 150 100 050 150

100 15050 0 0 50100 150 50 0100 150

0 15050 100 150 0100 50 50 0150 100

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 25 / 30

Page 26: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

A Model for Data from the Traditional Split-Plot

Experiment

Genotype i = 1, 2, 3, Fertilizer j = 1, 2, 3, 4, Block k = 1, 2, 3, 4

yijk = µij + bk + wik + eijk

µij = mean for Genotype i, Fertilizer j

bk = random block effect

wik = random whole-plot exp. unit effect

eijk = random error = random split-plot exp. unit effect

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 26 / 30

Page 27: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

To express the model precisely in vector and matrix form asy = Xβ + Zu + e, we will sort the data first by Block, thenGenotype, and then Fertilizer:

y = [y111, y121, y131, y141, y211, y221, y231, y241, . . . , y314, y324, y334, y344]′

e = [e111, e121, e131, e141, e211, e221, e231, e241, . . . , e314, e324, e334, e344]′

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 27 / 30

Page 28: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

X = 14×1⊗ I

12×12, β =

µ11

µ12

µ13

µ14

µ21

µ22

µ23

µ24

µ31

µ32

µ33

µ34

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 28 / 30

Page 29: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

Z =

[I

4×4⊗ 1

12×1, I

12×12⊗ 1

4×1

]

u =

[bw

]=

b1...

b4

w11

w21...

w34

∼ N

([00

],

[σ2

b I 00 σ2

w I

])

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 29 / 30

Page 30: 14. Linear Mixed-Effects Models for Data from Split …A Model for Data from the Traditional Split-Plot Experiment Genotype i = 1;2;3, Fertilizer j = 1;2;3;4, Block k = 1;2;3;4 y ijk

bwe

∼ N

0

00

, σ2

b I 0 00 σ2

w I 00 0 σ2

e I

[ue

]∼ N

([00

],

[G 00 R

])

Copyright c©2019 Dan Nettleton (Iowa State University) 14. Statistics 510 30 / 30