1466508248transformers_2

609
ANALYSIS, DESIGN, AND MEASUREMENT EDITED BY Xose M. López-Fernández H. Bülent Ertan • Janusz Turowski TRANSFORMERS TRANSFORMERS

Upload: elshanj

Post on 24-Oct-2015

628 views

Category:

Documents


20 download

DESCRIPTION

Transformers

TRANSCRIPT

  • K14690 Cover 6/8/12 9:59 AM Page 1 C M Y CM MY CY CMY K

    Recent catastrophic blackouts have exposed major vulnerabilities in the existing generation,transmission, and distribution systems of transformers widely used for energy transfer,measurement, protection, and signal coupling. As a result, the reliability of the entire powersystem is now uncertain, and many blame severe underinvestment, aging technology, and aconservative approach to innovation.

    Composed of contributions from noted industry experts around the world, Transformers:Analysis, Design, and Measurement offers invaluable information to help designers andusers overcome these and other challenges associated with the design, construction,application, and analysis of transformers. This book is divided into three sections to addresscontemporary economic, design, diagnostic, and maintenance aspects associated with power,instrument, and high-frequency transformers.

    Power Engineering

    TOPICS COVERED INCLUDE

    Design considerations

    Capability to withstand short circuits

    Insulation problems

    Stray losses, screening, and local excessiveheating hazard

    Shell type and superconductingtransformers

    Links between design and maintenance

    Component-related diagnostics andreliability

    Economics of life-cycle cost, design review,and risk-management methods

    Parameter measurement and prediction

    This book is an essential tool for understanding and implementing solutions that will ensureimprovements in the development, maintenance, and life-cycle management of optimizedtransformers. This will lead to enhanced safety and reliability and lower costs for the electricalsupply. Illustrating the need for close cooperation between users and manufacturers oftransformers, this book outlines ways to achieve many crucial power objectives. Among these,the authors focus on the growing demand for transformer miniaturization, increased transmittedpower density, and use of advanced materials to meet the requirements of power materialsrunning under higher operational frequencies.

    Suggesting ways to redirect resources and exploit new technologiessuch as computationalmodeling softwarethis book presents relatively inexpensive, simple, ready-to-implementstrategies to advance transformers, improve power system integrity, reduce environmentalimpact, and much more.

    ANALYSIS, DESIGN, AND MEASUREMENT

    EDITED BY

    Xose M. Lpez-FernndezH. Blent Ertan Janusz Turowski

    TRANSFORMERSLpez-Fernndez

    ErtanTurowski

    TRANSFORMERS

    ANALYSIS, DESIGN, AND MEASUREMENT

    TRANSFORMERS

    ANALYSIS, DESIGN, AND MEASUREMENTK14690

    6000 Broken Sound Parkway, NWSuite 300, Boca Raton, FL 33487711 Third AvenueNew York, NY 100172 Park Square, Milton ParkAbingdon, Oxon OX14 4RN, UK

    an informa business

  • ANALYSIS, DESIGN, AND MEASUREMENT

    EDITED BY

    Xose M. Lpez-FernndezH. Blent Ertan Janusz Turowski

    TRANSFORMERS

    CRC Press is an imprint of theTaylor & Francis Group, an informa business

    Boca Raton London New York

  • MATLAB is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This books use or discussion of MATLAB software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB software.

    CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

    2013 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

    No claim to original U.S. Government worksVersion Date: 20120411

    International Standard Book Number-13: 978-1-4665-0825-5 (eBook - PDF)

    This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

    Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

    For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

    Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.comand the CRC Press Web site athttp://www.crcpress.com

  • iii

    Contents

    Preface............................................................................................................................................. viiAcknowledgments..........................................................................................................................ixEditors...............................................................................................................................................xiContributors.................................................................................................................................. xiii

    Part I Power TransformersMarceli Kazmierski and Janusz Turowski

    1 Selected Problems of Transformers Capability to Withstand Short Circuits............3Wadysaw Pewca

    2 Insulation Problems of HV Power Transformers........................................................... 31Andrey K. Lokhanin

    3 Stray Losses, Screening, and Local Excessive Heating Hazard in Large Power Transformers..........................................................................................................................45Janusz Turowski

    4 Superconducting Transformers.......................................................................................... 95Jan K. Sykulski

    5 Challenges and Strategies in Transformer Design...................................................... 109S.V. Kulkarni

    6 Large-Shell-Type Transformers: Aspects of Design.................................................... 139Xose M. Lpez-Fernndez

    7 Transformer Design Review: A Link between Design and Maintenance Stages.........................................................................................................175Ryszard Sobocki

    8 Life Management of Transformers.................................................................................. 191Marceli Kazmierski

    9 Power Transformer Acceptance Tests.............................................................................. 215Ryszard Malewski

    10 Functional and Component-Related Diagnostics for Power Transformers, a Basis for Successful Transformer Life Management............................................ 239Adolf J. Kachler and Ivanka Hhlein

  • iv Contents

    11 Sources, Measurement, and Mitigation of Sound Levels in Transformers............. 265Jeewan Puri

    12 Power Transformers Fault Diagnostics by Parks Vector Approach........................ 287A.J. Marques Cardoso and Lus M.R. Oliveira

    13 Transformer Reliability: A Key Issue for Both Manufacturers and Users.............. 311Adolf J. Kachler

    14 Economics in Transformer Management: Focus on Life Cycle Cost, Design Review, and the Use of Simple Bayesian Decision Methods to Manage Risk....... 325Kjetil Ryen

    Part II Instrument TransformersElzbieta Lesniewska

    15 Applications of Field Analysis during Design Process of Instrument Transformers..............................................................................................349Elzbieta Lesniewska

    16 CAD System-Boundary Integral Equation Method for 3D Electric Field Analysis of Voltage Transformers.................................................................................... 381Ivan Yatchev and Radoslav Miltchev

    17 Instrument Transformers Insulation Behavior to High-Voltage and High-Frequency Transients....................................................................................... 399A. Ibero

    18 Transfer of HF Disturbances through Instrument Transformers.............................409Wieslaw Jalmuzny and Andrzej Koszmider

    Part III High-Frequency TransformersH. Blent Ertan

    19 High-Frequency Transformer Materials.........................................................................429Ralph Lucke

    20 Powder Core Materials.......................................................................................................447Arcan F. Dericioglu

    21 Measurement and Prediction of Parameters of High-Frequency Transformers.....................................................................................461H. Blent Ertan, Erdal Bizkevelci, and Levent B. Yalner

    22 High-Voltage, High-Frequency Transformer Design................................................... 487Paul Lefley and Philip Devine

  • vContents

    23 Coreless PCB Transformers...............................................................................................505Jess Doval-Gandoy and Moiss Pereira Martnez

    24 Planar Transformers........................................................................................................... 557Frederick E. Bott

  • vii

    Preface

    Historically,.transformers.have.been.designed.and.widely.used.to.transfer.energy,.and.for.measurement,.protection,.electrical.isolation,.and.signal.coupling..Most.transformers.were.designed.for.low-frequency.operations,.and.despite.a.long.history.of.low-frequency.trans-former.theory.and.design,.many.stray.field.problems.have.yet.to.be.resolved..On.the.other.hand,.there.has.been.a.significant.increase.in.the.operating.frequency.of.many.switched.mode.power.supplies.to.several.hundreds.of.kilohertz.and,.in.some.cases,.even.up.to.a.few.megahertz..However,.in.the.megahertz.region,.several.problems.arise.related.to.both.the.windings.and.the.standard.core.materials..Therefore,.the.recent.use.for.some.applications.of.coreless.transformers.is.an.alternative.to.transformers.with.a.core.

    In.the.case.of.power.transformers,.which.are.key.and.costly.components.in.networks,.the.failure.of.a.single.transformer.can.have.a.major.impact.on.the.safety,.reliability,.and.cost.of.electrical.supply..Their.maintenance.or,.more.generally,.managing.their.life.cycle,.along.with. improved.reliability.and.reduction.of.scheduled.outages,.assumes.more.and.more.importance.due.to.economic.compulsions..Both.users.and.manufacturers.play.an.impor-tant.role.in.the.life.cycle.management.of.power.transformers,.and.hence.close.cooperation.between.them.is.essential..Recent.catastrophic.blackouts.have.exposed.major.vulnerabili-ties. in. existing. generation,. transmission,. and. distribution. systems.. Severe. underinvest-ment,.aging.technology,.and.a.conservative.approach.to.innovation.are.being.blamed.for.the.current.sorry.state.of.affairs..Resources.need.to.be.directed.into.technologies.that.have.the.potential.to.improve.the.integrity.of.the.system..High-temperature.superconductivity.has.such.potential;.it.also.has.a.positive.environmental.impact.as.it.reduces.the.losses.as.well.as.the.size.and.weight.of.the.power.devices.significantly.

    Interest.in.increasing.operational.frequencies.remains.alive.since.there.are.two.impor-tant.trends.influencing.the.development.of.transformers:.miniaturization.and.an.increase.in.transmitted.power.density..Therefore,.power.applications.of.high-frequency.products.comprise. transformers. in. switch-mode. power. supplies,. power. chokes,. and. electronic.lamp.ballast.devices..The.latter.includes.transformers.for.wind.power.plants,.contact-less.chargers.for.electrical.cars.(safety!),.and.contact-less.energy.transmission.to.robotic.arms.(unlimited.twisting.in.all.directions).

    The.demand.for.power.materials.running.under.higher.operating.frequencies.can.now.be.met.by.highly.advanced.materials.such.as.ferrites..Metallic.powders.and.amorphous.metals.are.also.becoming.increasingly.important.for.use.in.this.area.

    Solutions.for.measuring.currents.and.voltages.needed.for.protection.and.monitoring.in.power.systems.have.been.achieved.using.instrument.transformers..New.solutions.such.as. electronic. instrument. transformers. (sensors). are. also. being. successfully. employed..Because.of.their.superior.technical.performance,.current.and.voltage.electronic.transform-ers.(sensors).are.expected.to.play.an.important.role.in.MV.systems.in.the.future..In.this.area.of. instrument.transformers,.problems.of.propagation.of.disturbances.to.secondary.circuits.occur.depending.on.the.design.features..While.the.principle.of.operation.of.instru-ment.transformers.is.the.same.as.that.of.power.transformers,.the.problems.concerned.with.the.design.are.quite.different.

    The.advances. in.computational. tools.are.promoting.the.development.of.sophisticated.modeling.software.for.the.solution.of.3D.fields.which.is.supporting.the.design.of.transform-ers.in.the.last.few.decades..However,.these.advances.have.not.always.been.accompanied.

  • viii Preface

    by. relatively. inexpensive,. simple,. and. rapid. engineering. methods,. such. as. those. estab-lished.for.regular.industrial.design.use.

    This.book.offers.invaluable.information.for.designers.and.users.of.transformers.to.over-come. some. of. the. difficulties. highlighted. in. the. preceding. text.. The. material. has. been.compiled. by. an. international. group. of. experts. who. met. at. the. International. Advanced.Research.Workshop.on.Transformers.(ARWtr)..ARWtr.meetings.are.organized.every.third.year. to. provide. an. opportunity. for. specialists. from. industrial,. academic,. and. research.backgrounds.to.engage.in.an.intense.exchange.of.practical.knowledge.and.the.establish-ment.of.collaboration.links.on.new.trends.and.issues.of.high-frequency.instrument.and.power.transformers..The.workshop.was.initiated.in.2004.in.Vigo,.Galicia,.and.was.held.in.Baiona,.Galicia,.in.2007.and.in.Santiago.de.Compostela,.Galicia,.in.2010..The.next.work-shop.will.be.held.in.2013.

    This.book.(consisting.of.24.chapters).covers.a.wide.range.of.subjects,.including.contem-porary.economic,.design,.diagnostics,.and.maintenance.aspects.of.power,.instrument,.and.high-frequency.transformers.

    It.is.hoped.that.this.book.will.serve.as.an.invaluable.resource.material.to.those.working.with.transformers.

    Xose M. Lpez-FernndezARWtr General Chairman

    For.MATLAB.and.Simulink.product.information,.please.contact:

    The.MathWorks,.Inc.3.Apple.Hill.DriveNatick,.MA,.01760-2098.USATel:.508-647-7000Fax:.508-647-7001E-mail:[email protected]:.www.mathworks.com

  • ix

    Acknowledgments

    We.would.like.to.thank.the.CIGRE.Spanish.and.Portuguese.National.Committees,.CIGRE.Study. Committee. A2. Transformers,. and. IEEE. PES. Spanish. for. supplying. the. mate-rial.presented.in.this.monograph,.which.was.stimulated.by.the.International.Advanced.Research. Workshop. on. Transformers. (ARWtr).. We. would. also. like. to. acknowledge. the.support. provided. by. the. following. institutions. and. companies:. Universidade. de. Vigo,.Technical. University. of. Lodz,. Spanish. Ministry. of. Science. and. Technology,. Xunta. de.Galicia. Autonomous. Government,. EFACEC. Energa,. ARTECHE,. WEIDMANN,. Red.Elctrica.de.Espaa.(REE),.Rede.Nacional.de.Portugal.(REN),.Machinen.Fabrik.(MR),.Asea.Brown. Boveri. (ABB),. HSP. Hochspannungsgerte. GmbH,. ENPAY,. Gas. Natural. Fenosa,.IBERDROLA,. Doble. Engineering,. NYNAS,. OMICRON,. DuPont,. Unitronics. Electric,.Megger,.General.electric.(GE).Energy,.KELMAN,.ENERGY.Support,.Computer.Simulation.Technology.(CST),.Ingeniera.de.Diseo.Electrotcnico.(INDIELEC),.and.CEDRAT..Finally,.we.express.our.gratitude.to.Patricia.Penabad-Durn.and.Casimiro.Alvarez-Mario.from.Universidade.de.Vigo,.Spain,.for.their.invaluable.help.during.the.preparation.of.this.book.

  • xi

    Editors

    Xose M. Lpez-Fernndez.received.his.MSc.in.electrical.engineering.and.his.European.PhD.(with.first.class.honors).in.electrical.engineering.from.Vigo.University,.Vigo,.Spain,.in.1992.and.1997,.respectively..He.is.currently.a.professor.in.the.Department.of.Electrical.Engineering,.University.of.Vigo,.and.was.a.visiting.professor.at.the.University.of.Artois,.Bthune,. France.. Professor. Lpez-Fernndez. is. the. founder. and. general. chairman. of.the. International. Advanced.Research. Workshop.on.Transformers. (ARWtr)..He.has. cur-rently.been.entrusted.with.the.responsibility.of.leading.research.projects.for.Spanish.and.Portuguese.utilities.and.power.transformer.manufacturers..His.research.interests.include.the. design. aspects. of. electrical. machines.. Dr.. Lpez-Fernndez. received. the. Alfons.Hoffmanns.Medal.from.the.Polish.Power.Engineering.Society.in.2004..He.is.a.member.of.the.IEEE-PES.Transformers.Committee.as.well.as.CIGRE.

    H. Blent Ertan.received.his.BS.and.MS.in.electrical.and.electronics.engineering.(EEE).in.1971.and.1973,.respectively,.from.the.Middle.East.Technical.University.(METU).in.Ankara,.Turkey,.and.his.PhD.from.the.University.of.Leeds,.United.Kingdom,.in.1977..He.then.joined.METU.as.a.staff.member.in.1977.

    Professor. Ertan. is. currently. a. staff. member. in. the. Department. of. Electrical. and.Electronics.Engineering.at.METU..His.research.interest.is.in.the.area.of.electrical.machine.design.and.electrical.drives.

    Dr..Ertan.has.served.as.consultant.to.a.number.of.companies.manufacturing.electrical.motors.and.drives.in.Turkey..He.has.directed.more.than.20.industry-financed.research.proj-ects.and.many.other.projects.financed.by.the.Turkish.Scientific.and.Technological.Research.Institute. (TUBITAK).. He. has. served. as. the. assistant. director. of. TUBITAK. Information.Technologies.and.Electronics.Research.Institute.since.1999.and.led.the.Intelligent.Energy.Conversion.Systems.Research.Group.at.TUBITAK-SPACE.Institute.for.8.years.

    Dr..Ertan.is.one.of.the.editors.of.the.book.entitled.Modern Electrical Drives,.published.in.2000.by.Kluwer.Academic.Publishers..He.has.published.more.than.100.articles.in.technical.journals.and.conferences..Currently,.he.holds.four.international.patents.

    Dr..Ertan.is.a.member.of.IEEE.and.IET,.and.is.the.founder.of.the.International.Conference.on.Electrical.Machines.and.Power.Electronics..He.is.also.a.member.of.the.international.steering.committee.of.the.International.Conference.on.Electrical.Machines..He.is.an.edito-rial.board.member.of.Electromotion Journal.and.Advanced Technology of Electrical Engineering and Energy. (China)..He.also.served.as.the.chairman.of.the.board.of.trustees.of.Mustafa.Parlar.Education.and.Research.Foundation.and.is.currently.a.board.member.

    Janusz Turowski,.PhD,.DSc.electrical.engineering,.has.served.as. full.professor. (retired.in.2003).in.electrical.machines.and.applied.electromagnetics.at.the.Institute.of.Electrical.Machines. and. Transformers. (now. Institute. of. Mechatronics. and. Information. Systems),.Technical.University.of.Lodz. (TUL),.Poland..From.1999. to.2010,.he.was.a. full.professor.and.dean.at.the.Academy.of.Humanities.and.Economics.at.TUL..He.received.an.honor-ary.degree. from. the.University.of.Pavia,. Italy,. in.1998..He. is.also.a. full.member.of. the.International. Academy. of. Electrotechnical. Sciences,. a. member. of. CIGRE,. and. a. senior.member.of.IEEE..He.served.as.the.director.of.IEMT.from.1973.to.1992..He.has.authored.

  • xii Editors

    and.coauthored.over.300.scientific.publications,.including.20.books,.cited.over.980.times..He.has.also.supervised.18.PhD.theses.

    Dr..Turowski.served.as.a.consultant.of.Polish.ministers.and.transformer.works.in.Poland,.India,.China,.Australia,.and.Canada..He.is.the.past.president.and.an.honorary.member.of.the.Polish.Association.of.Theoretical.and.Applied.Electrotechnical.Sciences.(PTETiS)..He.is.also.a.member.(1978).and.vice-chairman.(19992003).of.the.Electrical.Committee.of.the.Polish.Academy.of.Sciences.and.the.chairman.(19792001).and.honorary.chairman.(2001).of.the.International.Symposium.on.Electromagnetic.Fields.in.Electrical.Engineering.(ISEF)..He.was.awarded.the.2004.Silver.Medal.by.the.International.Academy.of.Electrotechnical.Sciences.For.a.prominent.contribution.to.the.development.of.the.world.science,.education.technology.and.international.co-operation.

  • xiii

    Contributors

    Erdal BizkevelciInformation.Technologies.and.Electronics.

    Research.InstituteAnkara,.Turkey

    Frederick E. BottNoctiluca.Ltd.Bournemouth,.United.Kingdom

    A.J. Marques CardosoDepartment.of.Electromechanical.

    EngineeringUniversity.of.Beira.InteriorCovilh,.Portugal

    and

    Departamento.de.Engenharia.Electrotcnica.e.de.Computadores

    Instituto.de.TelecomunicaesCoimbra,.Portugal

    Arcan F. DericiogluDepartment.of.Metallurgical.and.Materials.

    EngineeringMiddle.East.Technical.UniversityAnkara,.Turkey

    Philip DevineDepartment.of.EngineeringUniversity.of.LeicesterLeicester,.United.Kingdom

    Jess Doval-GandoyDepartment.of.Electronics.TechnologyUniversity.of.VigoVigo,.Spain

    H. Blent ErtanDepartment.of.Electrical.and.Electronics.

    EngineeringMiddle.East.Technical.UniversityAnkara,.Turkey

    John FothergillDepartment.of.EngineeringUniversity.of.LeicesterLeicester,.United.Kingdom

    Ivanka HhleinSiemens.Power.TransformerandPower.Transformer.Factory.NurembergNuremberg,.Germany

    A. IberoElectrotcnica.Arteche.HermanosMungia,.Spain

    Wieslaw JalmuznyDepartment.of.Applied.Electrical.

    Engineering.and.Instrument.Transformers

    Technical.University.of.LodzLodz,.Poland

    Adolf J. KachlerTransformer.ConsultantQuality.MM,.Testing.and.DiagnosticsNuremberg,.Germany

    Marceli KazmierskiTransformer.DivisionInstitute.of.Power.EngineeringLodz,.Poland

    Andrzej KoszmiderDepartment.of.Applied.Electrical.

    Engineering.and.Instrument.Transformers

    Technical.University.of.LodzLodz,.Poland

    S.V. KulkarniDepartment.of.Electrical.EngineeringIndian.Institute.of.Technology.BombayMumbai,.India

  • xiv Contributors

    Paul LefleyDepartment.of.EngineeringUniversity.of.LeicesterLeicester,.United.Kingdom

    Elzbieta LesniewskaDepartment.of.Instrument.Transformers.

    and.Electromagnetic.CompatibilityInstitute.of.Electrical.Power.EngineeringTechnical.University.of.LodzLodz,.Poland

    Andrey K. LokhaninRussian.Electrotechnical.InstituteMoscow,.Russia

    Xose M. Lpez-FernndezDepartment.of.Electrical.EngineeringUniversidade.de.VigoVigo,.Spain

    Ralph LuckeFit-CeramicsMiesbach,.Germany

    Ryszard MalewskiMalewski.Electric,.Inc.Montreal,.Quebec,.Canada

    Radoslav MiltchevDepartment.of.Computer.Systems.and.

    InformaticsUniversity.of.ForestrySofia,.Bulgaria

    Lus M.R. OliveiraDepartamento.de.Engenharia.

    Electrotcnica.e.de.ComputadoresInstituto.de.TelecomunicaesCoimbra,.Portugal

    and

    Instituto.Superior.de.EngenhariaUniversidade.do.AlgarveFaro,.Portugal

    Moiss Pereira MartnezDepartment.of.Electronics.TechnologyUniversity.of.VigoVigo,.Spain

    Wadysaw PewcaTransformer.DivisionInstitute.of.Power.EngineeringLodz,.Poland

    Jeewan PuriTransformer.Solution.Inc.Matthews,.North.Carolina

    Kjetil RyenMulticonsult.ASSki,.Norway

    Ryszard SobockiPolish.Consultants.SocietyZabrze,.Poland

    Jan K. SykulskiSchool.of.Electronics.and.Computer.

    ScienceUniversity.of.SouthamptonSouthampton,.United.Kingdom

    Janusz TurowskiInstitute.of.Mechatronics.and.Information.

    SystemsTechnical.University.of.LodzLodz,.Poland

    Levent B. YalinerInformation.Technologies.and.Electronics.

    Research.InstituteAnkara,.Turkey

    Ivan YatchevDepartment.of.Electrical.ApparatusTechnical.University.of.SofiaSofia,.Bulgaria

  • Part I

    Power Transformers

    Marceli Kazmierski and Janusz Turowski

    Introduction

    The.history.of.power. transformers. is.part.of. the.history.of.all.phenomena.and.devices.based.on.electromagnetic.induction..An.important.step.forward.was.the.moment,.when.the.transformer.production.has.entered.on.the.energy.industry.market.

    It.all.started. in.1883.with.one.of. the.first. implementations. to. the. transmission. line.a.single-phase.15.kVA,.1500/300.V.transformer,.by.K..Zipernowski,.M..Deri,.O..Blathy.(Ganz,.Budapest).and.others.

    The.first.real.industrial.three-phase.15.kVA,.1500/300.V.power.transformer.was.built.and.patented.in.1891.by.Michal.Doliwo-Dobrowolski,.was.Polish.descent,.born.in.Petersburg.(Russia).and.worked.at.in.AEG.Berlin..The.history.of.contemporary.transformer.industry.and.science.originated.then.with.Doliwo-Dobrowolski.121.years.ago.

    The.material.presented.in.Part.I.is.probably.the.most.competent.report.on.the.state.of.the.art.in.this.field.and.will.hopefully.become.an.indispensable.manual.for.practicing.engi-neers.in.industry.and.in.the.field.of.power.generation.and.distribution.of.electric.energy..The.Part.I.is.divided.into.24.chapters.and.deals.with.design,.diagnostics.and.maintenance,.economy.and.on-site.transformer.management.

    Most.of.the.problems.discussed.are.closely.linked.and.overlapping;.hence.this.subdivi-sion.is.rather.formal,.flexible,.and.not.very.precise.

    This.book,.prepared.as.post-conference.work,.provides.one.of.the.most.contemporary.treatments.of.modern.transformers..The.scientists,.who.work.at.the.same.time.as.manufac-turers.of.large.transformers.and.consultants.of.most.outstanding.transformer.works.and.

  • 2 Power Transformers

    power.utilities,.have.also.contributed.to.this.monograph..The.contribution.are.provided.mainly.from.researchers.and.practicing,.experienced.engineers.and.should.be.useful.to.users.of.both.very.large.power.transformers.and.very.small.HF.units..It.can.also.be.con-sidered.as.a.convenient.practical.handbook,.which.deals.with.many.difficult.problems.that.have.been.resolved.successfully.

    Fifteen.outstanding.international.experts.have.contributed.to.this.part.of.the.book..They.are.in.alphabetic.order.as.follows:

    A..J..Cardoso.(with.Luis.M..R..Oliveira).on.fault.diagnotics.by.Parks.Vector.Approach..Adolf.J..Kachler.on.Transformer.reliability:.a.key.issue.for.both.manufacturers.and.users.and. (jointly. with. Ivanka. Hhlein). on. Functional. and. component-related. diagnostics.for. power. transformers,. a. basis. for. successful. transformer. life. management;. Marceli.Kazmierski. on. Life. management. of. transformers;. Andrey. K.. Lokhanin. on. Insulation.problems.of.HV.power.transformers;.Xose.M..Lopez-Fernandez.on.large-shell-type.trans-formers,.Malewski;.on.Power.transformer.acceptance.tests,.Wladyslaw.Pewca.on.Selected.problems. of. transformers. short. circuit. withstand. capability;. Jeewan. Puri. on. sources,.measurement.and.mitigation.of.sound.levels.in.transformers,.Kjetil.Ryen.on.Economics.in.transformer.management:.focus.on.life.cycle.cost,.design.review,.and.the.use.of.sim-ple.Bayesian.decision.methods.to.manage.risk;.Ryszard.Sobocki.on.Transformer.design.review:.link.between.design.and.maintenance.stages;.S..V..Kulkarni.on.Challenges.and.strategies. in. transformer. design;. Jan. Sykulski. on. Superconducting. transformers;. and.Janusz.Turowski.on.Stray.losses,.screening,.and.local.excessive.heating.hazard.in.large.power.transformers.

    The.editors.of.Part. I.would. like. to.express. their.gratitude.to. the.Authors,.Workshops.Organizers.and.to.the.Publisher.for.their.excellent.work.

  • 31Selected Problems of Transformers Capability to Withstand Short Circuits

    Wadysaw Pewca

    1.1 Introduction

    Standard.CEI.IEC.60076-5.Power Transformers Part 5: Ability to Withstand Short-Circuit.pro-vides.a.basis.for.assessing.short.circuit.withstand.capability.by.calculation.methods.that.are.considered.to.be.as.reliable.as.the.dynamic.tests..The.currently.available.Annex.A.to.the.standard.provides.information.on.the.theoretical.evaluation.of.a.transformers.ability.to.withstand.the.dynamic.effects.of.short.circuit.and.serves.as.a.guidebook.that.provides.methodologies. for. evaluating. short. circuit. withstand. ability.. It. can. be. concluded. from.Annex.A.that.the.analysis.can.be.carried.out.using.simple.methods.such.as.calculating.stresses.and.confronting.them.with.their.permissible.values,.regardless.of.deformations.and.changes.that.take.place.during.short.circuit.forces.[1].

    The.criteria. for. the.assessment.of.short.circuit.strength,. in. this.case,.are.of.a.contrac-tual. nature. and,. as. a. general. rule,. apply. only. to. the. technological. and. constructional.solutions.used.by.a.manufacturer,.taking.into.account.a.specific.power.range..Advanced..computer-assisted. methods,. which. are. available. now,. permit. more. precise. calculations.and.assessments,.taking.into.account.the.deformities.of.the.windings,.their.essential.phys-ical.properties.and.constructional.solutions,.as.well.as.some.aspects.of.production.process..It.should.be.expected.that. the.development.of. these.methods.will.subsequently. lead.to.the.creation.of.a.more.generalized.calculation.method.of.verifying.short.circuit.withstand.capability.than.the.one.in.Annex.A.

    This. chapter. presents. selected. computer-assisted. methods. of. analysis. of. short. circuit.withstand.capability.that.take.into.account.deformations,.the.structure.of.the.windings,.

    CONTENTS

    1.1. Introduction.............................................................................................................................31.2. Radial.Forces,.Stresses,.and.Deformations.........................................................................4

    1.2.1. Analytical.Method.of.Calculation............................................................................41.2.2. Numerical.Method.of.Calculation......................................................................... 111.2.3. Buckling.Stresses...................................................................................................... 16

    1.3. Axial.Forces,.Stresses,.and.Deformation........................................................................... 201.3.1. Axial.Winding.Vibration......................................................................................... 201.3.2. Critical.Axial.Forces................................................................................................. 26

    1.4. Conclusions............................................................................................................................ 27References........................................................................................................................................28

  • 4 Transformers: Analysis, Design, and Measurement

    and. the.physical.properties.of. the.winding.materials..The. results.obtained.using. these.methods.were.compared.with.the.available.test.results.and,.in.some.cases,.also.with.the.results.that.could.be.obtained.by.using.simplified.methods.

    1.2 Radial Forces, Stresses, and Deformations

    1.2.1 AnalyticalMethodofCalculation

    The.starting.point.in.the.analysis.of.withstand.capability.of.windings.against.radial.short.circuit.forces.is.the.coil.of.outer.winding.subjected.to.tensile.forces,.the.calculation.model.of.which.is.shown.in.Figure.1.1..Generally,.in.addition.to.the.discussed.winding,.there.can.also.be.other.parts.such.as.regulating.winding.or.bandage.that.increase.the.transformers.strength.to.withstand.radial.forces..Provided.the.coil.was.correctly.produced.and.there.are.no.gaps.between.its.conductors.and.the.outer.bandage,.stress.k.and.deformations.k.for.its.particular.conductors.(coils).can.be.calculated.with.(2n..2).set.of.equations.connected.with.the.conditions.of.static.equilibrium.[2]:

    .k

    k k k k

    c

    q p p RS

    =

    +

    ( )1 . (1.1a)

    Rk

    Rk

    qk

    qn

    q1 qk

    qk

    qk

    Pk

    PkPk1

    Pk1

    k n2 n1 n32

    2

    1

    1

    FIGURE1.1Electrodynamic.conductor.load.qk.and.interaction.on.its.adjacent.terns.and.their.insulation.for.stretched.coils:.1,.axial.spacers;.2,.bandage.

  • 5Selected Problems of Transformers Capability to Withstand Short Circuits

    . k k k k k kR R = + +1 1 . (1.1b)

    whereqk.represents.the.unitary.radial.electrodynamics.force.acting.on.k-th.conductor,.pkpk..1.represents.the.unitary.reaction.forces.coming.from.the.insulation.k.and.(k..1)Rk.represents.the.mean.radius.of.k-th.conductor,.kk.+.1.represents.the.relative.deformation.of.conductors.k.and.(k.+.1)k,.k.represents.the.relative.deformation.and.the.thickness.of.k-th.insulation

    In.addition,.Equation.1.1a.is.supplemented.by.the.boundary.conditions.of.the.outer.conduc-tors.applying.to.stresses.on.the.insulation.of.the.outer.conductor.p0.and.outer.bandage.pn..This.is.usually.based.on.the.assumption.that.the.conditions.are.as.follows:

    . p pn0 0= = . (1.2)

    Provided.the.mechanical.characteristics.(stresses..in.the.function.of.deformity.).are.lin-ear,.the.distribution.of.stresses.on.conductors.and.isolations.can.be.calculated.analytically;.however,.this.solution.has.no.practical.value.because.constructional.materials.of.windings.demonstrate. substantial. physical. nonlinearity. (Figure. 1.2).. Furthermore,. economic. con-siderations.as.well.as.dimensional.limitations.of.transformers.make.it.necessary.to.apply.stresses.that.are.exerted.also.in.the.nonlinear.parts.of.such.materials.

    For.practical.reasons,.the.analysis.has.to.take.into.account.stresses.and.deformities.of.the.nonlinear.character,.as.well.as.the.phenomenon.of.accumulation.of.deformities,.which.can.occur.in.exploitation.or.during.dynamic.tests.after.consecutive.short.circuits.that.can.lead.to.the.transformers.failure.or.its.negative.test.result..For.plastic.materials.such.as.Cu,.Al.the.phenomenon.of.accumulation.is.widely.known.and.can.be.described.using.the.fol-lowing.relationship,.which.is.also.illustrated.in.Figure.1.3.[2]:

    .i

    i

    IBA I

    =

    = 2

    1( ) . (1.3)

    wherei.represents.permanent.conductor.set.as.a.result.of.succeeding.stress.maxI.represents.multiple.of.the.conductor.loadingA,.B.represents.empirical.coefficients

    Comprehensive.investigations.show.that.the.coefficients.depend.largely.on.the.relationship.max/0,2.and.also.on.the.initial.hardness.of.the.conductors,.loading.(dynamic.or.static),.and,.to.a.lesser.extent,.on.the.temperature..Coefficient.A,.monotonically,.but.sharply,.increases.with.max.while.B..1.and.has.for.max..0.2.a.relatively.flat.maximum..A.few.approximate.values.of.A.and.B.(listed.in.Table.1.1.[2]).obtained.in.the.dynamic.load.tests,.all.of.which.had.20.impulses,.with.max.=.const..and.1020.ms.duration,.illustrate.quantitative.relation-ships.that.we.have.to.deal.with..The.specified.values.indicate.that.a.short.circuit.resulting.in.the.average.radial.stress.close.to.0.2.creates,.when.repeated,.a.risk.of.unacceptable.level.of.permanent.set.of.the.winding.

    Figure.1.4.explains.the.method.of.using.formula.1.1a.for.computations..The.coil.conduc-tors.interact.during.a.short.circuit,.as.described.earlier..As.a.result,.the.postshort.circuit.

  • 6 Transformers: Analysis, Design, and Measurement

    stresses.lead.to.(see.Figure.1.6).a.permanent.set.in.a.coil,.which.needs.to.be.included.when.calculating. the. cumulating. effect. in. a. winding.. The. points. 1. and. 2. correspond. to. the.mechanical.state.of.a.selected.coil.conductor.after.the.first.(1).or.second.(2).short.circuit,.whereas.12.and.22.represent.the.related.stresses.in.the.coil.conductors.

    The.chosen.results.of.calculations.obtained.by.using.the.program,. the.essential.algo-rithm.elements.of.which.have.been.presented.earlier,.are.shown.in.Figures.1.5.through.1.7..The.calculations.were.made.for.the.stretched.coil.of.winding.HV.of.a.GSU.transformer.of.great.power,.consisting.of.24.paper-insulated.Cu.conductors,.and.the.coefficient.of.filling.the.coil.with.copper.was.40%,.when.there.were.axial.cooling.ducts,.or.50%,.when.there.

    0.00(a)

    40.00

    80.00

    120.00

    (M

    pa)

    (0.1%)

    0.00(b) 5.00 10.00 15.00 20.00 25.000.00

    10.00

    20.00

    30.00

    40.00

    1

    2

    (%)

    (M

    Pa)

    FIGURE1.2Strain/stress.curves.for.(a).copper.conductor,.proof.stress.0.2.=.100.MPa,.and.(b).transformer1,.board;.2,.paper.

  • 7Selected Problems of Transformers Capability to Withstand Short Circuits

    (i = 3)

    (i = 10)

    i = 1, 2, ..., 10

    n

    FIGURE1.3Variation.of.the.conductor.permanent.set.at.repeated.tensile.stresses.of.same.maximum.value..Also.effect.of.increased.stresses.

    TABLE1.1

    Coefficients.Related.to.Formula.(1.3).for.a.Selected.Case

    max/0.2 A B

    0.7 0.025 0.51.0 0.41 1.01.1 1.0 0.9

    Source:. Kozowski,.M..and.Pewca,.W.,.J. Eur. Trans. Electr. Power (ETAP),.6(4),.259,.1996.

    22

    3

    12

    11

    E2 E E3E

    21

    E

    1 2 332

    1222

    k= 11

    FIGURE1.4Approximation.of.cumulating.effect.of.permanent.deformations.used.in.calculations.for.k-conductor.

  • 8 Transformers: Analysis, Design, and Measurement

    were.no.such.ducts..In.more.general.terms,.the.results.of.calculation.were.shown.in.rela-tive.units,.which.in.relation.to.stresses.means.referring.them.to.the.value.of.proof.stresses.0,2.of.conductor.material.or.average.stresses.m.of.the.coil,.calculated.in.a.classic.way,.that.is,.from.the.relation.given.as.follows:

    .m

    m

    c

    q Rs

    =

    0

    2. (1.4)

    0.0(a)

    0.2 0.4 0.6 0.8 1.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    4

    3

    2

    1XA

    0.2

    0.0(b)

    60

    40

    20

    0

    20

    40

    60

    0.2 0.4

    12

    34

    4

    m

    0.6 0.8

    x

    1.0A

    100(%)

    FIGURE1.5Distribution,.along.the.width.of.the.coil,.of.stresses.in.the.coil.conductors.for.different.ratios.m/0.2:.1,.0.353;.2,.0.9;.3,.1.0;.4,.1.1.(a).at.short.circuit.state.and.(b).after.short.circuit.state:.solid line,.coil.with.inner.axial.ducts;.dashed line,.without.axial.ducts.

    0.00.0

    0.4

    0.8

    1.2

    1.6

    1

    m0.2

    2

    0.5 1.0 1.5 2.0

    m

    FIGURE1.6Effect.of.the.m/0.2.ratio.on.the.coil.conductor.stress.difference./m.at.surge.current.(1).and.after.the.short.circuit.ceases.(2)..(Solid line,.coil.with.inner.axial.ducts;.dashed line,.without.axial.ducts).

  • 9Selected Problems of Transformers Capability to Withstand Short Circuits

    whereq0.is.the.maximum,.unitary.radial.load.for.the.inner.conductor.of.the.coilRm.is.the.average.radius.of.the.coilsc.is.the.cross.section.of.the.conductor

    The.increase.of.the.ratio.of.mean.tensile.stress.(m).in.the.coil.conductor.to.the.apparent.proof.stress.of. the.Cu.conductor. (0.2). results. in.a.more.even.distribution.of.stresses.().along.the.width.of.the.coil..In.consequence,.the.maximum.stress.rises.more.slowly.than.the.mean.one..It.is.accompanied.by.decreasing.increments.of.pressure.on.the.wire.insulation.(p).of.maximum.value.(about.2%.of.m).appearing.in.the.middle.of.the.width.of.the.coil..Local.pressure.increases.appear.at.axial.spacers,.which.determine.the.width.of.the.cooling.duct.and.are.caused.by.limited.filling.of.the.coil.circumference..The.calculations.show.the.insignificant.effect.of.inner.cooling.ducts.on.the.stress.distribution.

    The.mechanical.condition.of.the.coil,.following.the.first.short.circuit.fault,.is.illustrated.in.Figures.1.5.and.1.6..After.a.short.circuit.of.low.m/0.2.ratiohere.0.353,.curve.1the.stress.in.the.coil.disappears..Despite.uneven.distribution.of.the.stress..under.the.short.circuit.(Figure.1.5a,.curve.1),.the.maximum.stress,.appearing.in.an.inner.conductor,.results.in.no.plastic.strain.of.the.copper.conductor.and.leaves.no.permanent.deformations.of.the.coil.conductors.

    As.can.be.seen.in.Figure.1.5,.with.higher.values.of.the.m/0.2.ratio,.the.plastic.strains.appear.in.a.inner.conductors.of.the.coil.and.straighten.it,.leading.to.a.more.even.profile.of.the.stress.along.the.width.of.the.coil..However,.this.is.accompanied.by.permanent.sets.in.plastically.strained.conductors..In.consequence,.the.short.circuit.leaves.new,.differently.distributed.stresses:. Inner.conductors,.plastically.strained.during.the.short.circuit. fault,.are. compressed. by. outer. conductors,. elastically. strained. and. also. stretched,. tending. to.restore.their.original.dimensions..Stress.difference..of.coil.conductors,.already.left.after.the.first.fault,.is.significant.(Figure.1.5).

    0.00

    1

    1

    2

    2

    10th

    1st

    m

    (%)

    3

    4

    0.5 1.0 1.5 2.0

    0.2

    FIGURE1.7Strains.at. short.circuit. (solid lines).and.permanent.sets. (dotted lines).of. inner. (1).and.outer. (2).coil. conductors.shown.for.the.1st.(reference.designation.*).and.10th.short.circuits.(reference.designation.),.as.a.function.of.the.m/0.2.ratio.

  • 10 Transformers: Analysis, Design, and Measurement

    Figure.1.6.is.a.somewhat.different.presentation.of.the.phenomena.and.allows.their.quan-titative.evaluation..For.m/0.2..0.35.the.short.circuit.leaves.no.permanent.sets.in.coil.con-ductors..For.0.35..1,.both.the.dynamic.strain.and. the.permanent.set. still. increase.and.become.higher,.when.compared.with. the.first.short.circuit..The.difference.between.the.dynamic.strain.and.the.permanent.set.decreases.in.the.course.of.consecutive.short.circuits:.The.permanent.set.increases.faster.and.differs.slightly.only.after.the.10th.short.circuit.dynamic.strain..Due.to.the.cumulating.effect,.the.increase.of.permanent.set.is.bigger.after.the.10th.short.circuit.than.the.increase.of.dynamic.strain.after.the.first.short.circuit.

    The.coil.deformation.(illustrated.in.Figure.1.7). is.a.decisive.factor.for.the.transformer.short. circuit. withstand. capability.. The. appearance. of. the. deformation. leads. to. the. fol-lowing.two.kinds.of.danger:.disruption.of.wire.weld.connection.(due.to.dynamic.strain),.and. an. inadmissible. decrease. of. the. major. insulation. dielectric. strength.due. to. signifi-cant.widening.of.the.inner.oil.duct.at.the.outer.winding.(permanent.set)..Weld.failures.can.be.expected.at.1%.strain,.so.at.m.only.slightly.exceeding.0.2.(Figure.1.7)..Permanent.sets.of.this.kind.are.not.permitted.because.of.the.hazard.to.the.dielectric.strength.of.the.insulation.system..Such.a.permanent.set. level. in.large.power.transformers.(240420.kV).means.widening.of.the.first.cooling.duct,.the.one.that.is.close.to.the.winding,.by.as.much.as.68.mm,.up.to.1416.mm..This.would.result.in.a.decrease.of.the.dielectric.strength.to.85%.of.the.original.value..Such.a.transformer.should.be.also.rejected.after.a.short.circuit.test:.Its.posttest. impedance.voltage.increase.would.be.between.4%.and.5%.[2,3]..This.means.that.the.permanent.set.of.its.outer.winding.is.limited.by.the.required.dielectric.strength.of.major. insulation..Acceptable. lowering.by.5%.of.dielectric.strength.corre-sponds. to. a. permanent. set. of. about. 0.2%,. which,. considering. the. cumulating. effect,.requires.the.m/0.2.ratio.to.be.below.0.7.

    Summing. up. the. results. of. the. analysis. presented,. one. can. come. to. the. following.conclusions:

    . The.existence.of.plastic.deformations.of.inner.coil.conductors,.under.tensile.short.circuit.forces,.should.be.considered.as.a.rule.for.large.power.transformers.

    . Dynamic. plastic. strains. result. in. permanent. sets. of. conductors. and. leave. post-fault.stresses.in.the.coils.of.the.winding.

  • 11Selected Problems of Transformers Capability to Withstand Short Circuits

    . The.limit.of.deformations.of.a.winding.stretched.under.a.short.circuit. is.deter-mined.by.an.acceptable.decrease.in.the.dielectric.strength.of.major.insulation..The.decrease.is.caused.by.the.oil.axial.duct.at.the.outer.winding.becoming.danger-ously.wide.due.to.the.wire.permanent.set..The.permissible.value.can.be.estimated.to.be.0.2%..With.deformations.of.this.kind,.the.ability.of.wire.welds.to.withstand.a.short.circuit.is.still.sufficient,.provided.they.were.properly.made.

    . If.the.permanent.set.of.a.wire.is.to.stay.within.permissible.limits,.the.m/0.2.has.to.be.below.0.7.(provided.the.winding.was.properly.made)..Insufficient.compact-ness.and.rigidity.of.conductor.paper.insulation.and.insufficient.winding.process.means.uncontrolled.decrease.of.this.limit.

    . The.apparent.elastic.limit.0.2.of.a.wire.depends.on.the.conditions.in.which.the.winding.was.made.. It. is.not.possible. to.estimate. the.winding.strength.without.knowing.the.ultimate.value.of.0.2.

    The.analytical.calculation.method.presented.here.is.used.in.the.assessment.of.withstand.capability.of.outer.windings.subjected.to.radial.tensile.forces.and,.after.appropriate.modi-fications,.can.be.extended.to.inner.winding.compressed.by.short.circuit.forces..The.expe-rience.of.IEnOT.shows.that.because.of.the.complexity.of.phenomena.taking.place.in.the.compressed. windings,. the. numerical. method. proves. to. be. a. more. effective. method. of.analysis.in.this.case..It.is.also.a.more.general.method,.applicable.not.only.to.compressed.windings.but.also.to.stretched.ones,.regardless.of.the.shape.of.the.winding.

    1.2.2 NumericalMethodofCalculation

    In. the. numerical. method. applied. by. IEnOT,. the. coil. of. the. winding. in. the. core. trans-former.is.discretized.in.a.flat.configuration.with.finished.elements.in.a.manner.as.shown.in.Figure.1.8.

    P v

    W1

    W8

    W9

    W10W11 W12

    W13

    W14

    W2

    W3W4 W5

    W6

    A

    A

    4

    1

    6

    x

    z

    h

    h

    d

    d

    W7

    a*z.d

    PvPv

    Pv Pv

    Pv

    Pv

    5y

    u

    v

    W

    2

    5

    FIGURE1.8Discrete.model.of.coil.sector:.1,.coil.conductors;.2,.support.strips;.3,.curvilinear.elements.representing.coil.con-ductor;.4,.springy.elements.modeling.insulation;.5,.dimensions.of.coil.conductors;.6.

  • 12 Transformers: Analysis, Design, and Measurement

    It. is. possible. to. analyze. only. a. chosen. segment. of. the. coil. limited. by. the. axis. of..symmetryas.demonstrated.earlieror.its.whole.circumference,.regardless.of.the.shape.of. the.coil. itself..The.conductors.are.represented.by.curvilinear.plane.elements.and.the.insulation.of.the.coil.(distancing.axial.spacers,.bundle.insulation.on.the.conductors).with.springy.elements..These.elements.are.described.with.parameters.representing.their.real.dimensions.and.nonlinear.mechanical.characteristics.(compare.Figure.1.2).of.the.materi-als.from.which.they.were.made..The.radial.load.of.the.coil.can.be.continuous.or.concen-trated,.and.its.distribution.along.the.circumference.and.on.particular.conductors.in.the.radial.direction.can.be.of.any.value.or.direction.(stretching,.compressing,.circumferential.tension).. It. is.also.possible.to.load.the.coil.with.displacements.(the.so-called.kinematics.loading),.which.is.sometimes.useful.in.defining.mechanical.characteristics.of.the.coils.or.glued.conductors.CTC..The.algorithm.of.the.program.takes.into.account.for.such.gener-ally.defined.loading.conditions.the.possibility.of.bending.of.the.coil.conductors.occurring.between.support.strips,.which.makes.it.necessary.to.split.the.conductors.into.layers.(usu-ally.about.10,.with.the.radial.dimension.of.the.conductor.amounting.to.a.few.millimeter),.for.which.the.distribution.of.stresses.during.bending.in.each.layer.can.already.be.consid-ered.to.be.invariable.

    One. of. the. most. essential. characteristics. of. the. discussed. software,. which. bring. the.algorithm.of.calculation.close.to.real.conditions,.is.the.introduction.of.springy.elements.of.unilateral.constraints.(realized.by.the.appropriate.adjustment.of. their.characteristics,.for.example,.by.compressing.and.stretching).and.the.possibility.of.calculating.permanent.sets.after.the.first.short.circuit.(Figure.1.4the.loading.cycle.0-1-1)..Modeling.the.springy.elements.according.to.the.unilateral.constraints.also.makes.it.possible.to.include.the.fol-lowing.fact.in.the.analysis.of.withstand.capability:.Insulationin.case.of.typical.produc-tion.technology,.without.using.gluing.substancescan.transfer.only.radial.compressive.forces,.and.in.case.of.stretching.forces,.it.is.subject.to.layering..Of.course,.in.the.discussed.algorithm,.computer.calculations.are.carried.out.by.applying.the.iteration.method.with.an.appropriately.adjusted.step.of.load.increment.q..For.each.calculation.step,.the.lineariza-tion.of.incremental.equilibrium.equation.is.performed,.which.is.presented.in.the.follow-ing.matrix.form.[4]:

    . [ ( )]( ) ( ) ( ) ( )K K f qepi i i i+ =+ + 1 1 . (1.5a)

    whereKep(i) .is.the.elastic-plastic.stiffness.matrixK(i) ( ).is.the.stress.stiffness.matrixf(i.+.1).is.an.increment.of.generalized.displacements.vectorq(i.+.1).is.an.increment.of.loads.vector

    Matrix.Kep(i) .and.K(i) .are.calculated.on.the.basis.of.displacements.and.stresses,.which.are.calculated.at.the.beginning.of.the.(i.+.1)-th.step.

    The.incremental.equation.system.is.solved.according.to.the.variable.stiffness.method..The.total.displacement.vector.f(i).and.loads.vector.q(i).are.determined.by.the.accumula-tion.of.respective.vectors.increment.according.to.the.relationship:

    .f fi j

    j

    i( ) ( )

    =

    =

    1

    . (1.5b)

  • 13Selected Problems of Transformers Capability to Withstand Short Circuits

    .

    q qi j

    j

    i( ) ( )

    =

    =

    1

    . (1.5c)

    The.algorithm.of.the.computer.calculation.method.helps.to.establish,.in.a.known.way,.the.critical.load.qcr.occurring.during.a.loss.of.stability..If.the.so-called.proportional.load.q.is.used.for.the.i-th.step.of.calculation.and.critical.load.can.be.defined.with.the.relationship,

    . q qcri i( ) ( )

    = . (1.6a)

    where..represents.a.multiplier.of.the.comparative.load,.the.problem.of.initial.stability.on.i-th.step.of.calculation.can.be.expressed.as.follows:

    . [ ( )]( )( ) ( )K Kepi i

    = 0 . (1.6b)

    where..is.the.pattern.of.stability.loss..The.Equation.1.6.can.be.solved.by.Stodels.or.Lanczos.methods,.and.the.limiting.load.qcr.is.obtained.from.formula:

    .

    q qcr crj

    j

    n

    =

    =

    ( )1

    . (1.6c)

    where.n.is.the.step.of.calculation,.at.which.the.singularity.of.matrix.is.not.investigated.and.no.solution.for.Equation.1.5.is.obtained..There.are.also.other.known.methods.of.calculat-ing.the.critical.load.occurring.during.the.loss.of.stability;.however,.the.authors.experience.indicates.that.the.best.results.can.be.achieved.with.the.so-called.deflection.method,.the.practical.use.of.which.will.be.presented.in.Section.1.2.3.

    The.examples.of.uses.of. the.described.numerical.method.for.calculating.stresses.and.deformations.of.the.windings.subjected.to.radial.short.circuit.forces.are.shown.in.Figures.1.9.through.1.11.

    The. results. of. calculations. presented. in. Figures. 1.10. and. 1.11. also. seem. interesting..These. calculations.were. carried.out. for. the.Working.Group.WG19.12. [5],. in. connection.with. their. debate. concerning. calculating. stresses. in. the. conductors. of. layer. windings,.which.would.be.a.reliable.basis.for.the.assessment.of.strength.of.radial.short.circuit.forces.in.this.construction..There.was.still.concern.that.in.this.type.of.winding,.especially.for.units.of.the.largest.power,.the.existing.cooling.ducts.between.the.layers.may.significantly.impede.the.transfer.of.radial.forces.between.them.and.it.may.not.be.appropriate.to.rely.on.mean.stresses.in.the.assessment.of.withstand.capability.(calculated.with.the.formula.1.4.for.such.a.construction).

    Calculations.were.carried.out.for.a.certain.step-up.unit,.the.dimension.of.which.are.com-patible.with.the.power.of.approx..600.MVA,.provided.that.representatives.of.the.producer.spe-cializing.in.constructions.of.this.kind.accept.the.following.parameters.for.the.winding.HV:

    . The.number.of.layers.in.the.winding4,.each.wound.with.CTC.conductor.with.dimensions.21..(8.4..1.5).mm,.with.bundle.insulation.(paper).0.56.mm/side..Proof.stress.for.the.conductor.equals.0.2.=.210.MPa

    . The.inner.diameter.of.the.winding.is.1696.mm,.and.the.outer.1847.mm..The.thick-ness. of. the. layer. (the. same. as. radial. dimension. of. insulated. conductor. CTC).amounts.to.19.7.mm.and.the.axial.cooling.duct.up.to.6.mm

  • 14 Transformers: Analysis, Design, and Measurement

    2 mmW 1312

    W 342

    W245

    W 98

    W 50 W 197 W 246 W 1216

    FIGURE1.9Winding.deformation.of.the.distribution.transformer.with.rectangular.legs.at.three-phase.fault.

    N22

    (a)

    N32

    16mm69mm

    N232 N253 N925Y

    XZ

    N935

    0.4087E+02 (mm)

    N22

    (b)

    N32

    16.2 mm 51mmN925 Y

    XZ

    N935

    0.4123E+02 (mm)

    FIGURE1.10HV.layer.winding.deformation.of.large.power.GSU.Transformer,.caused.by.short.circuit.tensile.radial.forces.(black line,.the.winding.without.deformation;.gray line,.deformed.winding),.(a).at.the.amplitude.of.short.circuit.current.and.(b).after.short.circuit.state.

  • 15Selected Problems of Transformers Capability to Withstand Short Circuits

    . Mean.tensile.stresses.for.the.whole.winding.equal.m.=.282.MPa..These.data.are.characterized.by.a.high.value.of.mean.tensile.stresses.m.in.relation.to.proof.stress.0.2. of. the. coil. conductor. material. (relation. m/0.2.. 1.34),. which. basically. con-tradicts. the. recommendations. presented. in. the. summary. of. Section. 1.2.1.. Such.relations.of.stresses.were.intended.to.exaggerate.the.phenomenon.of.transferring.loads.by.the.neighboring.layers.of.the.winding,.in.order.to.obtain.clear.conclu-sions.of.calculations.

    Figure.1.10.demonstrates.that.considerable.radial.deformations.of.layers.take.place.in.the.winding,.and.in.particular.inner.layer.(approx..16.8.mm.in.short.circuit.condition.and.approx..16.2.mm.after.the.first.short.circuit),.which.refers.both.to.dynamic.deformation.taking.place.when.impact.short.circuit.current.flows.through.the.winding.and.permanent.(plastic).sets.remaining.in.the.winding.when.the.short.circuit.current.disappears..Moreoveras.Figure.1.10b.showswhen.the.short.circuit.current.disappears,.two.inner.layers.of.the.winding.concerned.are.buckled..This.is.caused.by.strongly.deformed.outer.layers.pressing.on.these.two.layers..Such.big.deformations.are.unacceptable.because.of.the.stress.exerted.on.the.main.insulation.system.[2,3].and.because.they.can.lead.to.a.mechanical.damage.of.the.insulation.arrangement.itself..Due.to.considerable.plastic.sets.occurring.after.the.first.circuit,.one.can.expecttaking.into.account.the.relation.(Equation.1.3)that.equally.large,.quickly.increas-ing.permanent.sets.will.occur.after.consecutive.short.circuits..In.the.light.of.these.results,.based.on.design.data.and.physical.properties.of.the.windings,.one.can.unmistakably.ascer-tain.that.the.winding.concerned.does.not.have.sufficient.withstand.capability.against.radial.short. circuit. forces.. The. obtained. result. confirms. the. conclusions. and. recommendations.

    600.00

    (M

    Pa)

    400.00

    200.00

    200.000 10 20 30 40

    Conductor no

    50

    0.00

    FIGURE1.11Stresses. in. HV. winding. conductors. of. large. power. GSU. Transformer,. caused. by. short. circuit. tensile. radial.forces;.,.the.amplitude.of.short.circuit.current;.,.after.short.circuit.state.result.of.simplified.calculation,.whose.deformation.is.ignored.

  • 16 Transformers: Analysis, Design, and Measurement

    presented.in.the.summary.of.Section.1.2.1..It.would.not.be.possible.to.draw.such.explicit.conclusions,. if.the.assessment.of.withstand.capability.of.the.winding.was.based.only.on.the. comparison. between. stresses. m. and. 0.2. and. do. not. take. in. account. deplacements..Although.stresses.in.the.discussed.case.significantly.exceed.stresses.0.2,.there.are.still.no.grounds.to.draw.conclusions.on.the.scale.of.risks,.and.it.is.not.possible.to.establish.the.maxi-mum.stresses.in.the.inner.layer.of.the.winding,.at.the.dissipating.gap.

    The.results.shown.in.Figure.1.11.give.an.answer.to.the.problem.presented.by.the.Working.Group..One.can.conclude.on.the.basis.of.their.findings.that.in.short.circuit.condition,.a.considerable.equalization.of.stress.distribution.on.the.layers.occurs.in.the.analyzed.wind-ing,.which.in.light.of.the.observations.presented.in.Section.1.2.1.confirms.that.plastic.sets.take.place,.as.illustrated.in.Figure.1.10;.for.such.a.large.assumed.relation.m/0.2.(approx..1.34).the.maximum.stresses.in.the.conductor.of.the.inner.layer.are.only.about.17%.higher.than.the.average.stresses.m.approved.by.the.designer.and.much. lower. than.the.maxi-mum.stresses.(approx..550.MPa).that.occur.in.a.nondeformed.coil..Relatively.low.values.of.stresses,.which.occur.after.the.short.circuit.current.disappears.in.relation.to.the.results.presented.in.Figure.1.5b.for.a.disc.coil.winding,.can.be.explained.by.a.buckling.of.two.inner.layers.as.well.as.probably.big.plastic.sets.of.the.layers.

    In.connection.with.the.aforementioned.numbers.concerning.the.distribution.of.stresses,.one. can. also. jump. into. a. misleading. conclusion. that. since. such. considerable. equaliza-tion. of. stresses. took. place. in. the. coil. and. the. theoretical. maximum. stresses. are. nearly.twice.as.great.as.the.calculated.ones,.withstand.capability.against.radial.forces.of.the.ana-lyzed.winding.seems.not.to.be.at.risk..The.danger.of.such.erroneous.interpretation.can.only.occur.when.the.assessment.of.withstand.capability.is.based.merely.on.the.values.of.stresses.in.a.simplified.way,.not.taking.into.account.the.deformation.of.windings.in.the.short.circuit.condition.and.when.that.short.circuit.disappears.

    1.2.3 BucklingStresses

    According.to.the.authors.experience,. the.best.results. in.calculating.buckling.stresseswhich.were.mentioned.earlierwere.achieved.with.the.deflection.method..Generally,.this.method.is.based.on.the.analyses.of.coil.deformation.(solving.only.statics,.Equation.1.5).in.the.function.of.increasing.load..The.purpose.of.the.method.is.to.find.the.calculation.step.from.which.the.deformations.of.the.winding.become.asymmetrical.and.quickly.increase,.and. in. case. of. further,. even. insignificant. load. increment,. the. shape. of. the. deformation.changes..As.numerical.tests.demonstrated,.this.process.has.its.periodicity,.and.after.the.first.critical.load.and.when.the.shape.of.the.coil.changes,.the.coil.becomes.more.fixed,.and.a.further.load.increment.makes.it.possible.to.calculate.the.second.buckling.pattern.and.the.corresponding.second.critical. load..Theoretically,. the.process.can.be.continued,.but.because.of.the.finite.exactness.of.calculations.and.the.numerical.dimensions.of.the.calcu-lation.model.of.the.coil,.sensible.results.are.usually.obtained.only.in.the.phase.between.the.second.and.the.third.critical.load..For.practical.reasons,.of.course,.only.the.first.critical.load.and.its.corresponding.buckling.pattern.are.essential.

    The. described. algorithm. of. calculating. critical. loads. is,. therefore,. entirely. consistent.with.the.general.theory.describing.the.phenomenon.of.the.loss.of.stability,.as.published.in.many.textbooks.on.the.stability.of.constructions..However,.the.deflection.method.can.be.successfully.applied.only.when,.just.as.it.was.shown.in.the.nonlinear.calculation.model.of.the.coil.presented.earlier,.it.uses,.among.other.things,.curvilinear.plane.elements,.taking.into.account.nonlinear.physical.properties.of.materials..As.it.is.known,.in.a.typical.linear.calculation.model.based.on.rectilinear.rod.and.springy.elements,.in.which.the.materials.

  • 17Selected Problems of Transformers Capability to Withstand Short Circuits

    have.linear.characteristics,.the.load.increment.does.not.permit.achieving.the.aforemen-tioned. condition. of. the. loss. of. stability.. In. such. a. model,. deformations. always. remain.linearly.dependent.on.the.load.

    The.results.obtained.with.use.of.the.deflection.method,.which.are.presented.in.the.fol-lowing,. for.coils.whose.models. in.scale.1:1.were.subjected. to.dynamic. tests. in.order. to.experimentally.establish.radial.critical.loads.at.a.loss.of.stability..However,.the.results.for.the.unsupported.circular.ring.of.rectangular.cross.section.will.be.shown.first..The.shape.of.the.ring.resembles.a.single.turn.of.a.coil.and.its.stability.is.theoretically.worked.out,.whereas.the.critical.load.cr.is.defined.with.the.relation:

    .cr

    E hR

    =

    4

    2

    . (1.7)

    whereE.is.the.modulus.of.elasticity.of.copperh.is.the.radial.dimension.of.the.conductorR.is.the.mean.ring.radius

    Confronting. the. results. of. computer. calculations. with. the. results. obtained. using. the.Equation. 1.7,. taking. into. account. the. buckling. patterns,. which. for. rings. are. commonly.known,.will.permit.assessing.the.possibilities.and.accuracy.of.the.method.applied.to.cal-culate. the. critical. load.. It. will. also. be. possible. to. assess. the. effect. of. simplifications. in.the. representation. of. the. coil. (1/4. of. the. circumference.or. the.whole. circumference).on.the.accuracy.of.calculations..For.analytic.and.computer.calculations,.the.following.equa-tion.was.used:.E.=.1.103..105.MPa,.h.=.3.68.mm,.R.=.171.5.mm;.the.results.of.calculations.are.shown.in.Figures.1.12.and.1.13.and.Table.1.2.

    The. obtained. results. of. the. numerical. test. for. unsupported. ring. confirm. the. correct-ness. of. the. presented. method. of. calculating. buckling. stresses,. both. in. relation. to. the.

    N98

    N50

    (a)

    Y

    XZ

    Step 110

    Step 105

    Step 111

    Step 80Step 105 Step 80

    Step 110

    Step 111N366

    Y

    Z X

    N310

    (b)

    R

    FIGURE1.12Deformations. of. the. ring. for. different. steps. of. radial. load. (gray line:. step. 80. . m.=.8.8.MPa,. step105..m.=.11.55.MPa,. step. 110. . m.=.12.1.MPa,. step. 111. . m.=.12.21.MPa;. black line:. unsupported. and. unloaded. ring)..(a). model. representing. a. quarter. of. the. circumference. of. the. ring. and. (b). model. representing. the. whole.circumference.of.the.ring.

  • 18 Transformers: Analysis, Design, and Measurement

    value. of. critical. stresses. themselves. and. to. the. buckling. pattern. (usually. presented. for.the.first.two.patterns)..For.understandable.reasons,.the.greatest.exactness.was.achieved.for.the.first.buckling.pattern.and.when.the.coil.was.represented.with.its.full.circumfer-ence..Representing.the.coil.with..of.the.circumference,.which.was.sometimes.necessary,.diminishes. the. size. of. the. calculation. model. and. the. size. of. collections. with. recorded.results,.and.also.reduces.the.time.of.calculations,.which.makes.the.calculations.less.reli-able.and.somewhat.overstates.the.calculated.critical.loads.

    The.aforementioned.numerical.test.is.supplemented.by.the.results.shown.in.Table.1.3.and. in. Figures. 1.14. and. 1.15,. referring. to. the. real. coils,. for. which. dynamic. tests. [3,6,7].were. carried. out.. Because. different. publications. often. refer. to. the. Fischers. formula. [8].when.discussing.the.phenomenon.of.the.loss.of.stability,.one.form.of.which.is.defined.by.Equation.1.8,.it.seems.appropriate.to.include.this.simplified.method.in.the.comparisons:

    .cr

    Ez

    hR

    =

    482

    2

    . (1.8)

    where.z.is.the.number.of.supports.on.winding.circumference.

    0.10

    0.05

    0.00N50

    N980.05

    0.10

    0.150.00(a) 5.00 10.00 15.00 20.00 25.00

    sr(MPa)

    R (m

    m)

    0.16

    0.12

    0.08

    N310

    N3660.04

    0.000.00(b) 5.00 10.00 15.00 20.00 25.00

    sr(MPa)

    R (m

    m)

    FIGURE1.13Radial.displacement.of.chosen.knots.of.the.calculation.ring.model.in.function.of.loading,.defined.with.average.compressive.stresses.m.(position.of.knots.on.the.ring.is.shown.in.Figure.1.12)..(a).model.representing.a.quarter.of.the.circumference.of.the.ring.and.(b).model.representing.the.whole.circumference.of.the.ring.

    TABLE1.2

    Critical.Load.kr.for.Unsupported.Ring

    Pattern of Buckling

    Value of Critical Load crr (MPa) Calculated According to

    Deflection Method Representing ( of the Circumference)

    The Whole Circumference

    Formula (1.7)

    1 14.96 11.55 11.02 15.18 13.31 11.03 No.data 15.07 No.data

  • 19Selected Problems of Transformers Capability to Withstand Short Circuits

    TABLE1.3

    Value.of.Buckling.Stresses.for.Selected.Models

    Symbol of Models

    Test Results in (MPa)

    Calculated Results in (MPa), According to

    Deflection Method Fischers Rule [2]MR32 74.4 70.4 31.7M16Ba 50.5 56.6 40.4Del.Vecc.1b 88.4 109.0 123.3Del.Vecc.2b 90.4 99.0 69.4

    Source:. Pewca,.W..(in.Polish),.Energetyka,.1,.25,.2002.a. Model.was.made.of.ctc.conductor.[6,7].b. Del.Vecchios.model.tests.[12].

    (a)

    Y

    XZ(b)

    FIGURE1.14Test.and.calculation.results.of.model.MR32..(From.Pewca,.W..[in.Polish],.Energetyka,.1,.25,.2002.).(a).Model.after.destructive.dynamic.test.and.(b).calculated.instability.form.(dotted line).for.inner.turn.of.coil.

    16 B

    (a)

    u=0.185 mm

    (b)

    u

    FIGURE1.15Test.and.calculation.results.of.model.M16B..(From.Pewca,.W..[in.Polish],.Energetyka,.1,.25,.2002;.Kozowski,.M..et.al.,.Selected.short-circuit.strength.problems.in.power.transformer,.CIGRE.Report.12-05,.18,.1980.).(a).model.after.destructive.dynamic.test.and.(b).calculated.instability.form.for.turn.of.coil.

  • 20 Transformers: Analysis, Design, and Measurement

    Summing. up. the. results. presented,. one. can. say. that. the. numerical. method. of. ana-lyzing. the. strength. of. windings. to. radial. short. circuit. forces. allows. bringing. the. cal-culation.model.of. the.coil. (winding).close.to.real.solutions,.by.taking.into.account.the.nonlinear. characteristics. of. construction. materials. and. specific. character. of. insulation.elements.transferring.not.only.compressive.forces.but.also.curvatures.of.conductors..The.algorithm.of.method.presented.is.universal.and.can.be.used.both.for.the.windings.com-pressed. by. radial. short. circuit. forces. and. for. the. stretched. ones.. It. allows. calculating.deformations.of.the.winding.subjected.to.short.circuit.condition.and.after.the.condition.disappears,.which.is.especially.important.for.the.proper.assessment.of.withstand.capa-bility.of.windings.

    It.should.be.emphasized.that.the.exactness.of.calculating.buckling.stress.is.considerable,.especially.when.the.analyzed.coil.of.the.winding.is.represented.with.the.full.circumfer-ence..When.simplified.models.are.applied.(i.e.,.representing..of.the.circumference).the.exactness.of.calculation.is.theoretically.worse,.yet.it.is.satisfactory.for.practical.solutions,.as.is.confirmed.with.short.circuit.tests.

    1.3 Axial Forces, Stresses, and Deformation

    1.3.1 AxialWindingVibration

    Reduced.stiffness.of.disk.windings.of.core-type.transformers.for.axial.direction.of.short.circuit. forces,. combined.with. the. risk.of. the.occurrence.of. resonance.phenomena,.war-rants. accurate. methods. to. be. applied. for. analyzing. short. circuit. withstand. capability..Additional.reasons.that.support.this.view.include.the.nonlinearity.of.the.characteristics.of.materials.and.time.variability.of.electrodynamic.forces.acting.on.the.coils.of.windings..A.typical.time.variability.of.electrodynamic.axial.component.force.acting.on.the.end.coil.of.the.winding.LV.of.a.unit.of.large.power.is.shown.in.Figure.1.16a.[9]..This.time.variability.is.characterized.by.the.existence.of. two.harmonics:.50.Hzexisting.in.a.period.of. time.when.a.unidirectional.component.of.short.circuit.current.flows.through.the.winding.and.harmonic.of.100.Hz.occurring.at.steady.state.of.short.circuit.current..Figure.1.16b,.on.the.other.hand,.shows.the.distribution.of.amplitudes.of.these.axial.forces.acting.on.particular.coils.of.this.winding.

    The.simplified.methods.of.analyzing.withstand.capability.of.the.winding.against.axial.forces.take.into.account.only.the.first.maximum.amplitude.of.electrodynamic.forces.for.each.coil,.approaching.the.problem.in.accordance.with.the.rules.of.static.method,.and.con-sidering.the.winding.as.not.deformed..Stresses.in.insulation.established.in.this.way.are.not.sufficiently.objective.data.for.a.reliable.assessment.of.real.short.circuit.risks.

    Time.variability.of.axial.short.circuit.forces.and.reduced.stiffness.of.the.windings.(cable.paper.and.pressboard.take.a.significant.part.in.the.height.of.these.windings).show.that.it.is.not.possible.to.ignore.the.vibrations.of.the.coils,.which.are.not.synchronous.in.every.point.of.the.winding..An.accurate.calculation.method.must.necessarily.include.in.the.process.of.vibration.also.the.forces.that.are.different.from.electrodynamic.forces.acting.on.the.coil.(see.Figure.1.17b).and.comprising.static.compressive.forces.

    The. computer. program. developed. in. IEnOT. for. analyzing. the. dynamic. strength. of.winding.to.axial.short.circuit.forces.takes.into.account.all.components.of.the.forces.as.well.as. the. earlier-discussed. quality. of. insulation. (see. Section. 1.2.2). permitting. transferring.

  • 21Selected Problems of Transformers Capability to Withstand Short Circuits

    only.compressive.forces.[9]..The.algorithm.of.this.program.is.based.on.the.winding.model.presented. in. Figure. 1.17. and. on. the. assumption. that. the. electrodynamic. forces. will. be.analyzed. in.a.flat.configuration,.which.allows.obtaining. the.exactness.of.calculation.of.axial. forces. that. is. satisfactory. for.practical. reasons. [9,10].. In. the.assumed.model. radial.spacers.are.represented.with.nonlinear.springy.elements.and.the.coils. themselves.with.point-concentrated.masses.

    Calculations. realized. with. the. program,. the. algorithm. of. which. is. presented. in. this.chapter,. begin. with. estimating. the. static. compressive. forces. and. their. distributions. on.every.winding..To.achieve.this.aim,.the.equation.of.the.static.balance.[10].is.used,.linear-ized.for.particular.calculation.steps:

    . K Z F S Ti i

    pr(i i i( ) ( )( ) ) = ++ 1 1+ . (1.9a)

    whereKi().is.the.matrix.of.stiffness.dependent.on.coil.displacements.Z(i.+.1).is.the.increment.of.displacement.vectorFpri( )+1 .is.the.vector.of.pressing.forcesSi.is.the.vector.of.flexibility.forcesTi.is.the.vector.of.friction.forces

    Time (s)0.00 0.04

    (a)0.08 0.12 0.1

    200.00

    160.00

    120.00

    80.00

    40.00

    0.00

    F e(kN)

    Coil no(b)100 120806040200

    200.00

    150.00

    100.00

    50.00

    0.00

    50.00

    100.00

    F e (k

    N)

    150.00

    FIGURE1.16Axial.electrodynamic.forces.acting.on.the.coils.of.winding.LV.of.large.power.GSU.transformer..(From.Pewca,.W..[in.Polish],.Energetyka,.11,.492,.1998.).(a).time.characteristic.of.a.force.acting.on.the.end.coil.and.(b).distribution.of.amplitudes.of.axial.force.per.the.winding.coils.

  • 22 Transformers: Analysis, Design, and Measurement

    The.input.data.establishing.the.distribution.of.a.force.pressing.on.particular.coils.com-prise:.a).the.assumed.characteristics.of.compressing.pressboard,.from.which.radial.spac-ers.were.made.and.characteristics.of.bundle.insulation.on.the.conductors.of.the.coil.(as.shown.in.Figure.1.2b),.and.b).the.percentage.of.compression.of.the.winding.insulation.on.the.height,.as.assumed.by.the.designer..Example.stress.distributions.in.insulation.com-ing.from.these.forces.for.a.transformer,.which.was.taken.into.consideration.earlier,.were.shown.in.Figure.1.18..These.calculations.were.realized.for.two.significantly.different.tech-nological.alternative.version,.namely.[9]:

    . 1..High.static.pressing.degree.of.the.insulation9%.of.its.height,.by.using.rigid.sup-ports.at. the.ends.of.winding.and.wound.coils.with. low.tension. (force.pressing.conductor.to.the.axial.distance.strips.about.2.6.kN)

    . 2..Limited.static.pressing.degree.of.the.insulationabout.7%.of.its.height,.less.rigid.ends.supports,.and.force.pressing.the.conductor.to.the.axial.strips.at.about.25.5.kN

    The.fact.that.compressive.static.forces.are.not.directly.assumed.in.the.analysis.presented,.but. are. calculated. from. constructional. data. of. the. winding. and. data. of. materials. and.

    Fn CnTn

    Tn1

    Ti

    T3

    T2

    T1

    Cn1

    Ci

    C3

    C2

    C1

    Fn1

    Fi

    F3

    F2

    F1 1

    2

    3

    i

    n1

    n

    k1

    k2

    k3

    k4

    ki

    ki+1

    kn+1

    kn1

    kn

    (a)

    Fi

    Si

    Si +1

    mi TiRiBi

    (b)

    FIGURE1.17Winding.model.for.dynamic.analysis..(From.Pewca,.W.[in.Polish],.Energetyka,.11,.492,.1998;.Borkowski,.W..et.al.,.Non-linear.analyse.of.dynamic.withstandability.of.transformer.winding.under.axial.short-circuit.forces,.Report of Eighth International, Symposium on Short-Circuit Currents in Power Systems,.pp..149154,.1998.).(a).base.diagram.of.coil.arrangement.and.(b).calculated.forces.acting.on.i-coil.end.insulation..mi,.mass.of.i-coil;.i,.coefficient.of.dry.friction;.ci,.viscous.friction.coefficient;.ki,.stiffness.of.insulation.element;.Fi,.axial.electrodynamics.force;.Ti,.dry.friction.force;.Ri,.viscous.friction.force;.Bi,.force.of.inertia;.Si,.Si.+.1;.reaction.force.of.i-.and.(i.+.1)-insulation.elements.

  • 23Selected Problems of Transformers Capability to Withstand Short Circuits

    production.process,.is.an.important.element.of.the.calculation.methods.discussed,.bring-ing. the. algorithm. close. to. real. solutions.. Another. essential. element. of. the. algorithm. is.the. inclusion. of. the. distribution. of. compressive. forces. on. the. coils. in. the. calculations..Experience.indicates.that.too.small.static.compressive.force.(or.its.diminishing.during.ser-vice).in.relation.to.axial.electrodynamic.forces.is.one.of.the.most.frequent.causes.of.trans-former.short.circuit.damages..Physically,.they.are.caused.in.such.cases.by.breaking.contact.between.the.coil.and.the.adjacent.radial.spacers. in. the.process.of. their.vibrations..This.initiates.the.so-called.Hammer.Effect,.deepening.the.axial.gaps.in.the.winding.and.initiat-ing.the.process.of.dynamic.destruction.of.the.winding.structures.(among.other.things,.the.radial.displacement.of.radial.spacers.can.happen)..Identifying.this.calculation.process.is.an.objective.element.of.the.assessment.of.short.circuit.withstand.capability.of.the.winding.against.axial.short.circuit.forces..To.confront.this,.the.assessment.of.short.circuit.strength.of.the.winding.only.on.the.basis.of.values.of.stresses.in.insulation.(mechanical.withstand.of.the.pressboard.and.cable.paper.to.compressive.stresses.is.considerable),.which.is.used.in.simplified.models,.does.not.seem.to.be.convincing.

    In.order. to. identify. the.moment.of.detachment.of.coils. from.radial.spacers,. for.every.calculation.step.and.for.every.springy.element.the.program.analyses.the.direction.of.force.Si.(see.the.markings.from.Figure.1.17b),.and.even.if.one.springy.element.a.stretching.force.occurs,.that.is.[10],

    . Si < 0 . (1.9b)

    The.calculations.are. interrupted,. for.example,.when. there. is.a. signal. that.a.destruction.process.is.beginning.in.the.winding.and.the.compressive.force.resulting.from.design.data.and.assumed.production.process. is. too.small.. If. this. force.can.be. further. increased. for.the.winding.(i.e.,.by.improving.with.technological.ways.the.stiffness.of.the.insulation.or.increasing.the.percentage.of.compression.of.the.winding).and.the.process.of.calculations.can.be.brought.to.an.end.in.the.assumed.time.period.of.short.circuit,.withstand.capability.of.the.winding,.from.the.point.of.view.of.the.static.compressive.force,.is.appropriate.

    Figure.1.19.illustrates.time.characteristic.of.the.forces.in.the.end-yoke.insulation.for.the.considered.unit.and.the.assumed.earlier.two.versions.of.its.production.process..For.ver-sion.1,.in.which.the.winding.is.strongly.compressed.(see.Figure.1.18),.there.is.no.risk.of.

    Coil no

    120.00

    100.00

    80.00

    60.00

    40.00

    20.00

    0.00

    2 1

    14.00 16.00 18.00 20.00 22.00 24.00 (MPa)

    26.00

    FIGURE1.18Stress.distribution.in.the.insulation.of.the.winding.at.static.pressing,.the.technology.covering.version.(1).and.(2)..(From.Pewca,.W..[in.Polish],.Energetyka,.11,.492,.1998.)

  • 24 Transformers: Analysis, Design, and Measurement

    detachment.of.the.end.insulation.from.the.winding.in.the.whole.analyzed.period.of.time..Such.a.risk.could.occur.in.case.of.variant.2,.in.the.initial.phase.of.a.short.circuit..However,.the. assumed. for. the. calculations. increased. friction. forces. on. axial. strips. stopped. the.movement.of.the.end.coil.downward.and.only.because.of.this.it.was.possible.to.avoid.its.detachment.from.the.yoke.insulation..The.presented.example.illustrates.how.significant.is.the.influence.of.technologies.on.short.circuit.withstand.capability.of.transformers,.which.in.quality.relations.is.well.known.

    Other.essential.parameters.that,.apart.from.stresses.in.insulation,.are.taken.into.account.in.the.assessment.of.short.circuit.strength.include.displacements.of.the.coils,.in.particu-lar.the.end.ones,.cooperating.with.the.end.compressive.insulation..The.algorithm.of.the.discussed. program. establishes. these. parameters. on. the. basis. of. known. calculations. in.mechanics,.linearized.for.particular.calculation.steps,.matrix.equations.[10]:

    . M Z C Z K Z F S Ted + + = +( ) ( ) . (1.10)

    whereM.is.the.matrix.of.inertiaC.is.the.matrix.of.dampingFed.is.the.vector.of.electrodynamic.forcesZ,.Z,.Z.is.the.vector.of.displacements.and.its.first.and.second.derivatives

    Example.results.of.calculating.displacements.of.end.coils.and.stresses.in.insulation,.which.were.obtained.with.the.discussed.method.for.the.assumed.earlier.versions.of.technologi-cal.solutions,.are.shown.in.Figures.1.20.and.1.21.

    1800.00

    1600.00

    1400.00

    1200.00

    1000.00

    2000.00

    2200.00

    2400.00

    S (kN)

    0.00(a)

    0.04 0.08 0.12 0.16Time (s)

    0.00

    500.00

    1000.00

    1500.00

    2000.00

    S (kN)

    0.00 0.05(b)

    0.10 0.15 0.20 0.25Time (s)

    FIGURE1.19Forces.in.end.insulation.of.the.winding.as.functions.of.time.for.versions.1.(a).and.2.(b).

  • 25Selected Problems of Transformers Capability to Withstand Short Circuits

    Calculation.results.presented.in.the.previous.figure.for.end.coils.also.confirm.the.essen-tial.influence.of.production.process.on.values.of.coil.displacements.in.short.circuit.con-dition.. During. a. strong. static. compression. of. the. winding. (version. 1). the. displacement.of.these.coils.are.slight,.and.it.should.be.predicted.that.they.will.not.have.a.destructive.effect.on.the.end.insulation.of.the.analyzed.winding..For.technological.version.2,.in.which.

    1.00

    0.00

    d (m

    m)

    1.00

    2.00

    4.00

    3.00

    5.000.00

    (a)0.04 0.08

    Time (s)0.12 0.16

    10.00

    5.00

    d (m

    m)

    0.00

    5.00

    10.00

    15.00

    20.000.00 0.05 0.10

    Time (s)(b)0.15 0.20 0.25

    FIGURE1.20Axial.displacement.of.end.coils.for.version.1.(a).and.2.(b)..(From.Pewca,.W..[in.Polish],.Energetyka,.11,.492,.1998.)

    50.00

    40.00

    30.00

    20.00

    10.00

    0.000.00 0.05 0.10 0.15 0.20 0.25

    Time (s)

    (M

    Pa)

    FIGURE1.21Pressure.in.radial.spacers.at.half.of.the.winding.height,.version.2..(From.Pewca,.W..[in.Polish],.Energetyka,.11,.492,.1998.)

  • 26 Transformers: Analysis, Design, and Measurement

    nearly.one-third.of.the.compressive.forces.were.diminished.(comp..Figure.1.18),.over.three-fold.increase.of.the.amplitude.of.vibrations.in.the.initial.phase.of.the.short.circuit.occurs..Although.the.absolute.value.of.displacement.of. the.end.coils.does.not.seem.to.be.criti-cal,.the.ultimate.assessment.of.short.circuit.strength.should.take.into.account.the.conse-quences.of.such.displacements.in.the.design.review.of.end.insulation..In.the.same.variant,.increased.stress.on.radial.spacers.should.also.be.expected.in.the.middle.of.the.height.of.the.winding,.which.is.documented.in.Figure.1.21.

    Summing. up. the. presented. basic. elements. of. the. algorithm. of. the. program. for. the.assessment.of.withstand.capability.against. axial. short. circuit. forces.and.obtained.with.this.method.results,.one.can.draw.the.following.conclusions:

    . Static.forces.compressing.the.winding.and.stiffness.of.radial.insulation.areapart.from.the.values.of.electrodynamics.forcesbasic.parameters,.which.have.an.effect.on.the.short.circuit.withstand.strength.of.the.winding.

    . Maintaining.constant.mechanical.contact.between.the.coils.of. the.winding.and.the.adjacent.radial.spacers.and.the.value.of.the.amplitudes.of.coil.vibrations,.in.particular.of.the.end.coils,.can.be.accepted.as.appropriate.criteria.for.the.assess-ment.of.short.circuit.withstand.capability.of.coil.windings.

    For.stresses.in.radial.spacers,.which.are.affected.by.the.aforementioned.factors,.it.is.dif-ficult.to.establish.precise.critical.values.based.on.the.physical.properties.of.materials..In.fact,.practice.shows.that.even.in.dynamically.damaged.windings,.radial.spacers.do.not.demonstrate.significant.signs.of.mechanical.spoil.(including.cases.when.they.were.dam-aged. by. arcing).. However,. the. values. of. these. stresses. are. useful. in. checking. whether.there.is.no.risk.of.the.coil.loss.stability.for.axial.direction,.which.is.connected.with.the.tilting.effect.

    1.3.2 CriticalAxialForces

    Axial.loading.of.a.winding,.due.to.short.circuit.forces,.can.be.destructive.for.the.coil,.espe-cially.because.of.their.unacceptable.tilting.effect..Critical.axial.load.at.which.the.effect.for.the.coil.occurs.is.difficult.to.determine.analytically.and.as.a.rule.requires.experimental.investigation.on.models..Figure.1.22.illustrates.a.special.arrangement.for.determining.this.critical.axial.load,.which.was.used.in.Institute.of.Power.Engineering.[3].

    Tests. were. performed. on. winding. models. with. different. coil. parameters,. and. their.results.permit.determining.empirical.coefficients.in.a.formula.for.the.tilting.critical.force.Fcr.referred.to.in.literature.[11].and.also.to.propose.a.new.formula.[3]:

    .F

    zD

    m b Acr 2 7 0 3. . . (1.11)

    wherez.is.the.number.of.terns.(conductors).in.a.coilD.is.the.coil.mean.diameterb.is.the.conductor.radial.dimensionA.is.the.radial.spacer.widthm.is.the.number.of.spacers.on.the.coil.girt

  • 27Selected Problems of Transformers Capability to Withstand Short Circuits

    The.static. tests.were.followed.by.dynamic.tests.on.coils.of. identical.design.and.dimen-sions..Specially.designed.arrangements.presented.on.Figure.1.23.were.used.in.these.tests..It.was.demonstrated.that.the.critical.axial.forces,.determined.statically.and.dynamically,.are.similar..The.difference.was.below.6%.and.only.in.one.case.reached.15%.

    1.4 Conclusions

    . 1..The. results.of. the.analysis.presented.proved. that,. regardless.of. the. type.of. the.winding.(coil,.layer).of.the.core-type.transformer,.the.average.stresses.in.the.coil.conductors.m.and.proof.stress.0.2.of. the.material. from.which.they.were.made.

    FIGURE1.22Arrangement.with.hydraulic.press.for.static.evaluation.of.critical.axial.forces.

    FIGURE1.23Arrangement.for.dynamic.evaluation.of.critical.axial.forces..Supply.coils.and.model.after.testing.

  • 28 Transformers: Analysis, Design, and Measurement

    are.the.most.essential.parameters.determining.the.withstand.capability.of.these.windings.against.radial.short.circuit.forces.

    . 2.. In.case.m..0.2,.a.phenomenon.of.cumulating.of.deformations.after.consecutive.stresses.can. take.place,. indicating. insufficient. strength.of. the.winding. to.with-stand.radial.tensile.short.circuit.forces..The.relation.of.stresses.which.should.be.considered.as.completely.safe.is.m/0.2..0.7.

    . 3..Simplified. methods. of. calculating. buckling. stresses. for. windings. subjected. to.radial. compressive. forces. do. not. permit. achieving. the. accuracy. of. calculations.that. is. satisfactory. for. design. purposes.. Much. better. results. are. obtained. with.numerical.methods,.which.take.into.account.deformations.and.nonlinear.physical.and.geometrical.properties.of.the.windings.

    . 4..The.criterion.of.permissible.stresses.in.insulation,.especially.when.they.are.calcu-lated.with.simplified.methods,.is.not.an.objective.and.sufficiently.precise.parameter.for.assessing.withstand.capability.of.the.windings.against.axial.short.circuit.forces.

    . 5..The.analysis.of.winding.strength.to.withstand.the.axial.component.of.short.circuit.forces.should.be.carried.out.taking.into.account.the.dynamics.of.the.phenomena.connected.with.time.variability.of.electrodynamic.force,.nonlinearity.of.physical.materials,. and. the. occurring. deformations.. The. basic. criteria. of. the. assessment.of.withstand.capability.include.the.following:.(1).the.correctness.of.adjusting.the.static.compressive.force.eliminating.the.hammer.effect;.(2).value.of.maximum.amplitude.of.axial.deformation.of.the.winding,.which.can.be.accepted.for.a.given.system.of.compressing.the.winding;.and.(3).stresses.in.insulation.radial.spacers.are.smaller.than.the.critical.ones.causing.tilting.effect.

    . 6..Applying. appropriate. numerical. calculation. methods. in. the. analysis. permits.making.a.correct.assessment.of.short.circuit.withstand.capability.of.the.windings.based.on.the.aforementioned.criteria.and.taking.into.account.essential.design.and.technological.solutions.

    References

    . 1.. CIGRE.WG,.12.06.(1982).Final.Report.of.WG.06.of.Study.Committee.12.(Transformers),.Electra,.No.82.

    . 2.. Kozowski.M,.Pewca.W.(1996).Short-circuit.performance.of.a.stretched.transformer.winding.with.regard.to.its.actual.mechanical.characteristics..Journal of European Transactions on Electrical Power (ETAP),.6(4),.259265.

    . 3.. Kozowski.M,.Pewca.W.(1994).Improvement.in.estimation.criteria.of.transformer.short-circuit.withstand.capability..Archiwum Elektrotechniki,.XII(3),.577590.

    . 4.. Borkowski.W,.Pewca.W,.Szymczyk.E,.Nieczorek.M.(1996).Numerical.analysis.of.short-circuit.withstandability.of.transformer.windings.under.radial.forces..Seventh International Symposium on Short-Circuit Currents in Power Systems,.Warsaw,.Poland,.Report.2.12,.pp..16.

    . 5.. Fyvie.J.(2002).The.short.circuit.performance.of.power.transformer..The.Final.Report.of.WG12.19,.Electra.25,.205.

    . 6.. Pewca.W.(in.Polish,.2002).Loss.of.stability.and.buckling.stresses.for.transformer.inner.wind-ings..Energetyka,.1,.2531.

    . 7.. Kozowski. M,. Pewca. W,. Marciniak. M,. Weretynski. W. (1980). Selected. short-circuit. strength.problems.in.power.transformer..CIGRE.Report.12-05,.pp..18.

  • 29Selected Problems of Transformers Capability to Withstand Short Circuits

    . 8.. Fischer. E. (1952). Die. Festichkeit. der. inneren. Roehre. von. Transformatorenwicklungen..Elektrotechnische Zeitschrift,.73.

    . 9.. Pewca. W. (in. Polish,. 1998). Influence. the. clamping. forces. and. winding. support. stiffness. on.winding.short-circuit.axial.force.results..Energetyka,.11,.492496.

    . 10.. Borkowski.W,.Pewca.W.(1998).Non-linear.analyse.of.dynamic.withstandability.of.transformer.winding. under. axial. short-circuit. forces.. Report of Eighth International Symposium on Short-Circuit Currents in Power Systems,.Brussels,.Belgium,.pp..149154.

    . 11.. Hiraiishi.K.(1971).Mechanical.strength.of.transformer.windings.under.short-circuit.conditions..IEEE Transactions,.Pas-90,.23902391.

    . 12.. Del.Vecchio.RM,.Poulin.B,.Anuja.R.(1999).Radial.buckling.strength.calculation.and.test.com-parison.for.core.form.transformers..CIGRE Tran