14_root locus analysis.pdf

9
Root Locus Analysis of Parameter Variations Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 Effects of parameter variations on modes of motion Root locus analysis Evans! rules for construction Application to longitudinal dynamic models Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html Characteristic Equation : A Critical Component of the Response!s Laplace Transform sI ! F [ ] !1 = Adj sI ! F ( ) sI ! F (nxn) Characteristic equation defines the modes of motion sI ! F = "( s ) = s n + a n !1 s n !1 + ... + a 1 s + a 0 = s ! # 1 ( ) s ! # 2 ( ) ... ( ) s ! # n ( ) = 0 !x( s ) = sI " F [ ] "1 !x(0) + G !u( s ) + L!w( s ) [ ] Recall : s is a complex variable s = ! + j" Eigenvalues (or Roots) of the Dynamic System !( s ) = s " # 1 ( ) s " # 2 ( ) ... ( ) s " # n ( ) = 0 ! = cos "1 # Real roots are confined to the real axis represent convergent or divergent modes time constant, ! = –1/" Complex roots occur only in complex-conjugate pairs represent oscillatory modes natural frequency, # n , and damping ratio, $, as shown s Plane = ! + j" ( ) Plane Roots are solutions of the characteristic equation Example : Longitudinal Characteristic Equation ! Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = s 4 + D V + L " V N # M q ( ) s 3 + g # D " ( ) L V V N + D V L " V N # M q ( ) # M q L " V N # M " $ % & ( ) s 2 + M q D " # g ( ) L V V N # D V L " V N $ % & ( ) + D " M V # D V M " { } s + gM V L " V N # M " L V V N ( ) = 0 ! Lon ( s ) = s 2 + 2 "# n s + # n 2 ( ) Ph s 2 + 2 "# n s + # n 2 ( ) SP Typically factors into oscillatory phugoid and short-period modes with L q = D q = 0

Upload: anonymous-ry7aem

Post on 09-Nov-2015

253 views

Category:

Documents


3 download

TRANSCRIPT

  • Root Locus Analysis ofParameter Variations

    Robert Stengel, Aircraft Flight Dynamics

    MAE 331, 2010

    Effects of parameter variationson modes of motion

    Root locus analysis

    Evans! rules for construction

    Application to longitudinal

    dynamic models

    Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Characteristic Equation: A Critical

    Component of the Response!s

    Laplace Transform

    sI ! F[ ]!1=Adj sI ! F( )

    sI ! F(n x n)

    Characteristic equation defines the modes of motion

    sI ! F = "(s) = sn+ a

    n!1sn!1

    + ...+ a1s + a

    0

    = s ! #1( ) s ! #2( ) ...( ) s ! #n( ) = 0

    !x(s) = sI " F[ ]"1!x(0) +G!u(s) + L!w(s)[ ]

    Recall: s is a complex variable s = ! + j"

    Eigenvalues (or Roots) ofthe Dynamic System

    !(s) = s " #1( ) s " #2( ) ...( ) s " #n( ) = 0

    ! = cos"1#

    Real roots

    are confined to the real axis

    represent convergent or divergent modes

    time constant, ! = 1/"

    Complex roots

    occur only in complex-conjugate pairs

    represent oscillatory modes

    natural frequency, #n, and damping ratio,$, as shown s Plane = ! + j"( ) Plane

    Roots are solutions of thecharacteristic equation

    Example: LongitudinalCharacteristic Equation

    !Lon(s) = s

    4+ a

    3s3+ a

    2s2+ a

    1s + a

    0

    = s4+ D

    V+L"VN

    # Mq( )s3

    + g # D"( )LV

    VN

    + DV

    L"VN

    # Mq( ) # Mq L" V

    N

    # M"$

    %&'

    ()s2

    + Mq

    D" # g( )LV

    VN

    # DV

    L"VN

    $%&

    '()+ D"MV # DVM"{ }s

    + g MV

    L"VN

    # M"LV

    VN

    ( ) = 0

    !Lon(s) = s

    2+ 2"#

    ns +#

    n

    2( )Ph

    s2+ 2"#

    ns +#

    n

    2( )SP

    Typically factors into oscillatory phugoid and short-period modes

    with Lq = Dq = 0

  • Evanss Rules forRoot Locus Analysis

    Root Locus Analysis ofParametric Effects on

    Aircraft Dynamics

    Parametric variations altereigenvalues of F

    Graphical technique forfinding the roots

    Locus: the set of all points whoselocation is determined by stated

    conditions

    s Plane

    Example: How do the roots vary whenwe change pitch-rate damping, Mq?

    !Lon(s) = s

    4+ D

    V+L"VN

    # Mq( )s3

    + g # D"( )LV

    VN

    + DV

    L"VN

    # Mq( ) # Mq L" V

    N

    # M"$

    %&'

    ()s2

    + Mq

    D" # g( )LV

    VN

    # DV

    L"VN

    $%&

    '()+ D"MV # DVM"{ }s

    + g MV

    L"VN

    # M"LV

    VN

    ( ) = 0

    Short-Period Roots

    with Mq = 0

    Phugoid Roots

    with Mq = 0

    Effect of Parameter

    Variations on Root

    Location

    Let root locus gain = k = ai (just a notation change)

    Option 1: Vary k and calculate roots for each new value

    Option 2: Apply Evans!s Rules of Root Locus Construction

    Walter R. Evans

    !Lon(s) = s

    4+ a

    3s3+ a

    2s2+ a

    1s + a

    0

    = s " #1( ) s " #2( ) s " #3( ) s " #4( ) = s " #1( ) s " #1

    *( ) s " #3( ) s " #3*( )

    = s2+ 2$

    P%

    nPs +%

    nP

    2( ) s2 + 2$SP%nSP s +%nSP2( ) = 0

  • Effect of a0 Variation onLongitudinal Root Location

    Example: k = a0

    where

    d(s) = s4+ a

    3s3+ a

    2s2+ a

    1s

    = s ! " '1( ) s ! " '2( ) s ! " '3( ) s ! " '4( )

    n(s) = 1

    !Lon(s) = s

    4+ a

    3s3+ a

    2s2+ a

    1s"# $% + k[ ] & d(s) + kn(s)

    = s ' (1( ) s ' (2( ) s ' (3( ) s ' (4( ) = 0

    d s( ) : Polynomial in s

    n s( ) : Polynomial in s

    Example: k = a1

    where

    d(s) = s4+ a

    3s3+ a

    2s2+ a

    0

    = s ! " '1( ) s ! " '2( ) s ! " '3( ) s ! " '4( )

    n(s) = s

    !Lon(s) = s

    4+ a

    3s3+ a

    2s2+ ks + a

    0" d(s) + kn(s)

    = s # $1( ) s # $2( ) s # $3( ) s # $4( ) = 0

    Effect of a1 Variation onLongitudinal Root Location

    Three Equivalent Equations

    for Defining Roots

    1+ kn(s)

    d(s)= 0

    kn(s)

    d(s)= !1 = (1)e! j" (rad ) = (1)e! j180(deg)

    d(s) + k n(s) = 0

    Longitudinal Equation Example

    Original 4th-order polynomial

    !Lon(s) = s

    4+ 2.57s

    3+ 9.68s

    2+ 0.202s + 0.145

    = s2+ 2 0.0678( )0.124s + 0.124( )

    2"#

    $% s

    2+ 2 0.411( )3.1s + 3.1( )

    2"#

    $% = 0

    !Lon(s) = s

    4+ a

    3s3+ a

    2s2+ a

    1s + a

    0

    = s " #1( ) s " #2( ) s " #3( ) s " #4( ) = s " #1( ) s " #1

    *( ) s " #3( ) s " #3*( )

    = s2+ 2$

    P%

    nPs +%

    nP

    2( ) s2 + 2$SP%nSP s +%nSP2( ) = 0

    Typical flight condition

  • Example: Effect of a0 Variation

    !(s) = s4 + a3s3+ a2s

    2+ a1s + a0

    = s4+ a3s

    3+ a2s

    2+ a1s( ) + k

    = s s3+ a3s

    2+ a2s + a1( ) + k

    = s s + 0.21( ) s2 + 2.55s + 9.62"# $% + k

    k

    s s + 0.21( ) s2 + 2.55s + 9.62!" #$= %1

    Example: k = a0

    Original 4th-order polynomial

    !Lon(s) = s

    4+ 2.57s

    3+ 9.68s

    2+ 0.202s + 0.145 = 0

    ks

    s2 ! 0.00041s + 0.015"# $% s

    2+ 2.57s + 9.67"# $%

    = !1

    Example: k = a1

    !(s) = s4 + a3s3+ a2s

    2+ a1s + a0

    = s4+ a3s

    3+ a2s

    2+ ks + a0

    = s4+ a3s

    3+ a2s

    2+ a0( ) + ks

    = s2 " 0.00041s + 0.015#$ %& s

    2+ 2.57s + 9.67#$ %& + ks

    Example: Effect of a1 Variation

    The Root Locus

    Criterion All points on the locus of roots must satisfy the equation

    k[n(s)/d(s)] = 1

    Phase angle(1) = 180 deg

    k = a0 : k

    n(s)

    d(s)= k

    1

    s4+ a

    3s3+ a

    2s2+ a

    1s= !1

    k = a1 : k

    n(s)

    d(s)= k

    s

    s4+ a

    3s3+ a

    2s2+ a

    0

    = !1

    Number of roots = 4

    Number of zeros = 0

    (n q) = 4

    Number of roots = 4

    Number of zeros = 1

    (n q) = 3

    Number of roots (or poles) of the denominator = n

    Number of zeros of the numerator = q

    Spirule

    Origins of Roots (for k = 0)

    !(s) = d(s) + kn(s)k"0

    # "## d(s)

    Origins of the roots are the Poles of d(s)

  • Destinations of Roots (for k -> ")

    q roots go to the zeros of n(s)

    d(s) + kn(s)

    k=d(s)

    k+ n(s)

    k!"# !## n(s)

    No zeros when k = a0 One zero at origin when k = a1

    Destinations of Roots (for k -> ")

    d(s) + kn(s)

    n(s)=d(s)

    n(s)+ k

    k!"# !## s

    n$q( ) R! "

    sn$q( )

    = Re$ j180

    !" or Re$ j360

    ! $"

    s = Re$ j180 n$q( )

    !" or Re$ j360 n$q( )

    ! $"

    (n q) roots go to infinite radius from the origin

    4 roots to infinite radius 3 roots to infinite radius

    +R

    R

    (n q) Roots Approach Asymptotes

    as k > "

    !(rad) =" + 2m"

    n # q, m = 0,1,...,(n # q) #1

    !(rad) =2m"

    n # q, m = 0,1,...,(n # q) #1

    Asymptote angles for positive k

    Asymptote angles for negative k

    Origin of Asymptotes =

    Center of Gravity

    "c.g." =

    !"i # ! z jj=1

    q

    $i=1

    n

    $

    n # q

  • Root Locus on Real Axis Locus on real axis

    k > 0: Any segment with odd numberof poles and zeros to the right

    k < 0: Any segment with even numberof poles and zeros to the right

    First Example: k = a0k

    s s + 0.21( ) s2 + 2.55s + 9.62!" #$= %1

    Second Example: k = a1ks

    s2 ! 0.00041s + 0.015"# $% s

    2+ 2.57s + 9.67"# $%

    = !1

    Summary of Root

    Locus Concepts

    Origins

    of Roots

    Destinations

    of Roots

    Center

    of Gravity

    Locus on

    Real Axis

  • Root Locus Analysis ofSimplified Longitudinal Modes

    Approximate Phugoid Model

    Second-order equation

    !!xPh =! !V! !"

    #

    $%%

    &

    '(()

    *DV *g

    LVVN

    0

    #

    $

    %%%

    &

    '

    (((

    !V!"

    #

    $%%

    &

    '((+

    T+T

    L+TVN

    #

    $

    %%%

    &

    '

    (((!+T

    Characteristic polynomial

    sI ! FPh = det sI ! FPh( ) " #(s) = s2+ DVs + gLV /VN

    = s2+ 2$%ns +%n

    2

    gLV/V

    N, D

    V

    Parameters

    !(s) = s2+ D

    Vs( ) + k

    = s s + DV( ) + k

    k = gLV/VN

    Effect of LV or 1/VN Variation on

    Approximate Phugoid Roots

    Change indamped naturalfrequency

    !n1"# 2

    Effect of DV Variation on

    Approximate Phugoid Roots

    k = DV

    !(s) = s2+ gLV /VN( ) + ks

    = s + j gLV /VN( ) s " j gLV /VN( ) + ks

    Change indamping ratio

    !

  • Approximate Short-Period Model

    Approximate Short-Period Equation (Lq = 0)

    Characteristic polynomial

    Parameters

    !!xSP =! !q

    ! !"

    #

    $%%

    &

    '(()

    Mq M"

    1 *L"VN

    #

    $

    %%%

    &

    '

    (((

    !q

    !"

    #

    $%%

    &

    '((+

    M+E

    *L+EVN

    #

    $

    %%%

    &

    '

    (((

    !+E

    !(s) = s2 +L"

    VN

    # Mq

    $

    %&'

    ()s # M" + Mq

    L"

    VN

    $

    %&'

    ()

    = s2+ 2*+

    ns ++

    n

    2

    M!, M

    q,

    L!

    VN

    Effect of M% on ApproximateShort-Period Roots

    k = M%

    !(s) = s2 +L"

    VN# Mq

    $

    %&'

    ()s # Mq

    L"

    VN

    $

    %&'

    ()# k = 0

    = s +L"

    VN

    $

    %&'

    ()s # Mq( ) # k = 0

    Change indamped naturalfrequency

    Effect of Mq on ApproximateShort-Period Roots

    !(s) = s2 +L"

    VN

    s # M" # k s +L"

    VN

    $%&

    '()

    = s #L"

    2VN

    +L"

    2VN

    $%&

    '()

    2

    + M"

    *

    +

    ,,

    -

    .

    //

    012

    32

    452

    62s #

    L"

    2VN

    #L"

    2VN

    $%&

    '()

    2

    + M"

    *

    +

    ,,

    -

    .

    //

    012

    32

    452

    62# k s +

    L"

    VN

    $%&

    '()= 0

    k = Mq

    Change primarilyin damping ratio

    Effect of L%/VN on Approximate

    Short-Period Roots

    !(s) = s2 " Mqs " M# + k s " Mq( )

    = s +Mq

    2"

    Mq

    2

    $%&

    '()

    2

    + M#

    *

    +

    ,,

    -

    .

    //

    012

    32

    452

    62s +

    Mq

    2"

    Mq

    2

    $%&

    '()

    2

    + M#

    *

    +

    ,,

    -

    .

    //

    012

    32

    452

    62+ k s " Mq( ) = 0

    k = L%/VN

    Change primarilyin damping ratio

  • Example: How do the roots vary whenwe change pitch-rate damping, Mq?

    !Lon(s) = s

    4+ D

    V+L"VN

    ( )s3 + g # D"( )LV VN

    + DV

    L"VN

    ( ) # M"$%&'

    ()s2

    + D"MV # DVM"{ }s + g MVL"VN

    # M"LV

    VN

    ( )# M

    qs3 # D

    VM

    q( ) + MqL"VN

    $%&

    '()s2+ M

    qD" # g( )

    LV

    VN

    # DV

    L"VN

    $%&

    '()s = 0

    !Lon (s) = d s( ) " Mq s3+ DV +

    L#VN

    $%&

    '()s2 " D# " g( )

    LVVN

    " DVL#VN

    $%&

    '()s{ }

    = d s( ) " Mqs s2+ DV +

    L#VN

    $%&

    '()s " D# " g( )

    LVVN

    " DVL#VN

    $%&

    '(){ }

    = d s( ) + kn s( ) = 0

    kn(s)

    d(s)= !1

    Separate Mq terms in the characteristic polynomial

    Group Mq terms in the characteristic polynomial

    Factor terms that are multiplied by Mq to find the 3 zeros 2 zeros near origin similar to approximate phugoid roots, effectively

    canceling Mq effect on them

    Next Time:Transfer Functions andFrequency Response