16.684 experimental cdio capstone course 1 s t u f f a t e l l i t e e s t b e d n t e t h e r e d o...

62
16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

Upload: ada-holt

Post on 24-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course 1

ST

UFF

a t e l l i t e

e s t b e d

n t e t h e r e d

o r m a t i o n

l y i n g

f o r

Page 2: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

2

Trade Analysis & Requirements ReviewTrade Analysis & Requirements Review

The STUFF16.684 Experimental CDIO Capstone Course

February 25, 1999

Page 3: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, AC, JAW 3

Presentation OutlinePresentation Outline

Program Objective and Motivations Subsystems

– Propulsion– Power and Avionics– Metrology– Communications and Software– Structures

Design Concept Presentation Conclusions

Page 4: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, AC, JAW 4

Program ObjectiveProgram Objective

To develop a testbed that demonstrates formation flying algorithms between multiple autonomous satellites with six degrees of freedom, in a microgravity environment

Page 5: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, AC, JAW 5

MotivationMotivation

Demand for spacecraft to perform autonomous formation flying missions is increasing– Smaller – Simpler– Cheaper

Current testbeds do not allow full modeling of dynamics related to formation flying

Page 6: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, AC, JAW 6

Justification for FlightJustification for FlightTest

EnviromentSimulation

ofDynamics

DOF ExperimentDuration

Cost Comments

SSSpppaaaccceee(((iiinnn ooorrrbbbiiittt)))

666 UUUnnnllliiimmmiiittteeeddd $$$$$$$$$$$$$$$PPPrrrooohhhiiibbbiiitttiiivvveeelllyyyEEExxxpppeeennnsssiiivvveee

SSShhhuuuttttttllleeePPPaaayyyllloooaaaddd

666 LLLooonnnggg $$$$$$$$$$$$ HHHiiiggghhh CCCooosssttt

SSShhhuuuttttttllleeeMMMiiiddddddeeeccckkk

666 LLLooonnnggg $$$$$$$$$EEExxxccceeelllllleeennnttt

dddyyynnnaaammmiiicccsss aaatttrrreeeaaasssooonnnaaabbbllleee cccooosssttt

KKKCCC --- 111333555 666 222000 --- 333000 ssseeecccsss $$$$$$GGGooooooddd dddyyynnnaaammmiiicccsss

aaattt lllooowww tttooommmooodddeeerrraaattteee cccooosssttt

AAAiiirrr TTTaaabbbllleee 555 UUUnnnllliiimmmiiittteeeddd $$$ OOOnnnlllyyy 222 –––DDD

NNNeeeuuutttrrraaalllBBBuuuoooyyyaaannncccyyy

TTTaaannnkkk 666 UUUnnnllliiimmmiiittteeeddd $$$

WWWaaattteeerrr VVViiissscccooosssiiitttyyyDDDyyynnnaaammmiiicccsssPPPrrrooobbbllleeemmmsss

CCCooommmpppuuuttteeerrrSSSiiimmmuuulllaaatttiiiooonnn

666 UUUnnnllliiimmmiiittteeeddd $$$DDDiiiffffffiiicccuuulllttt tttooo mmmooodddeeelllEEEnnnvvviiirrrooonnnmmmeeennntttaaalll

eeeffffffeeeccctttsss

HHHeeellliiiuuummmBBBaaalllllloooooonnnsss

444///666 UUUnnnllliiimmmiiittteeeddd $$$

PPPrrrooopppuuulllsssiiiooonnnPPPrrrooobbbllleeemmmsssSSSpppeeeeeeddd ooofffRRReeessspppooonnnssseee

Page 7: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, AC, DRF 7

Specific Science ObjectivesSpecific Science Objectives

1. Develop a set of multiple distinct satellites that interact to maintain commanded position, orientation, and direction

2. Allow for the interchange of control algorithms, data acquisition and analysis, and a truth measure

3. Demonstrate key formation flying maneuvers

4. Demonstrate autonomy and status reporting

5. Ensure the implementation of control algorithms is adaptable to future formation flying missions

6. Allow for testbed operation on KC-135, Shuttle middeck, and ISS

Page 8: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

14

PropulsionPropulsion

Dan Feller

Presenter

Page 9: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 15

Propulsion RequirementsPropulsion Requirements

Safety– Non-toxic byproducts– Temperatures not to exceed

range (TBD)– Non-touch hazard

Propellant– Propellant supply sufficient to

last at least 20 seconds.

Control – System must provide for 6 DOF– System must provide constant

performance throughout flight duration.

Thrust– Large ISP (TBD)

Page 10: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 16

Propulsion OptionsPropulsion Options Station Keeping / Attitude

– Compressed Gas• Highly Traceable, Cost Effective, Off-the-Shelf Components

– Fans/Propellers• Simple, Cost Effective but ...

– Micro Engines and Rockets• Technology not yet operational

Attitude Control– Reaction Wheels

• large, heavy, large size– Control Moment Gyros (CMGs)

• large size– Magnetic Torquers

• large size, long time to develop, large power demand

Page 11: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 17

Propulsion MetricsPropulsion Metrics

Safety:– Toxicity

– Thermal Hazard

– Touch Hazard

– Fracture Hazard

Impulse Bit(Smallest quanta of thrust)

Traceability

Cost Efficiency

– ISP, Mass ratio

– ISP, Volume ratio

Power Consumption Ease of Replacement Time to Develop

Page 12: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 18

Propulsion DownselectPropulsion Downselect

Prop SystemS

afet

y

Imp

uls

e b

it

Tra

cea

bili

ty

Co

st

Po

wer

Co

ns

um

pti

on

Eff

icie

ncy

Eas

e o

fR

ep

lace

men

t

Tim

e to

De

velo

p

TOTALWeighting 22% 13% 8% 3% 7% 22% 4% 20% 100%

CompressedGas

4 5 5 5 5 4 5 4 4.3

Fans / Propellers 4 2 1 5 2 2 4 5 3.1

Reaction Wheels 5 3 5 1 3 2 1 2 3.0

KEY: Desirability of option due to applicable Metric is:Very High- 5 High- 4 Medium- 3 Low- 2 Very Low- 1

Page 13: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 19

Compressed Gas OptionsCompressed Gas Options

CO2 (Liquid or Gas)

– Readily Available, Easy Containment, Adequate Thrust, Toxic

N2 / Air (Liquid or Gas)

– High Thrust, Non-Toxic, Difficult Containment

Onboard Compressor– Heavy, High Power Consumption, Low Thrust

Page 14: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 20

Compressed Gas DownselectCompressed Gas Downselect

Prop System

Saf

ety

Tra

ceab

ility

Co

st

Po

wer

Co

nsu

mp

tio

n

Eff

icie

ncy

Tim

e to

Dev

elo

p

TOTAL

Weighting 25% 17% 3% 15% 22% 18% 100%

CO2 (gas) 3 5 5 5 2 5 3.8

CO2 (liquid) 3 5 5 5 4 5 4.3

Air / N2 (gas) 5 5 3 5 2 5 4.3

Air / N2 (liquid) 4 5 2 4 5 4 4.3

OnboardCompressor

5 1 4 2 1 5 3.0

Page 15: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, DRF, BMP 21

Propulsion BudgetPropulsion Budget

Sub-system demands:– Power: 2W– Volume: 1.5 liter– Mass: 3 kg– Cost: $3000

Sub-system provides:– Thrust: TBD

Page 16: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

22

StructuresStructures

Dan Feller

Presenter

Page 17: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, AC, DRF, JES 23

Structures RequirementsStructures Requirements Structural integrity

– Must survive Shuttle launch and landing loads

– Must survive a drop of 4 feet in 2-g

Satisfaction of mass and volume constraints– Container requirement

• Mass: 60lbs = 27kg• Dimensions: Max. 9 in. = 22 cm diameter (middeck locker)

– Single satellite should be less than 7 kg

– Structure should be ~10% of total satellite mass (0.7 kg)

– Structure should provide easy accessibility to internal components

Must be manufacturable and safe under crew handling

Page 18: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, DRF, JES 24

Structures OptionsStructures Options Shape

– Cube – Sphere– Polyhedron

Assembly– Truss– Shell (no internal

truss)– Hybrid (a truss

structure with paneling)

Materials– Alloys and metals– Composites– Plastics and

polycarbonates

Page 19: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, DRF, JES 25

Structures CriteriaStructures Criteria Integrity

– Internal and external load carriage

Safety– Fracture toughness (structure cannot shatter)– Sharp edges & corners

Feasibility– Manufacturing – Internal accessibility– Cost

Page 20: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, DRF, JES 26

Shape DownselectShape Downselect

Integrity Safety Feasibility TOTAL30% 30% 40% 100%

Cube 4 2 5 3.8

Sphere 5 5 1 3.4

Polyhedron 4 4 4 4

Page 21: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, DRF, JES 27

Assembly DownselectAssembly Downselect

Integrity Safety Feasibility TOTAL

30% 30% 40% 100%

Truss 3 4 5 4.1

Shell 3 4 3 3.3

Hybrid 4 4 4 4

Page 22: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, DRF, JES 28

Materials DownselectMaterials Downselect

Integrity Safety Feasibility TOTAL

30% 30% 40% 100%

Metals &Alloys 4 3 5 4.1Composites 5 3 3 3.6Plastics 3 4 4 3.7

Page 23: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course DAC, DRF, JES 29

Structures BudgetStructures Budget

Mass– TBD, pending estimates of other sub-systems

Volume– TBD, but must fit within a STS mid-deck

locker, i.e. greatest dimension < 9 in.

Cost– TBD, pending allowance notification

Page 24: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

30

Power and AvionicsPower and Avionics

Chad Brodel

Presenter

Page 25: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 31

Power and Avionics RequirementsPower and Avionics Requirements

Total power should be approximately 18 W– Total Volts and Amps TBD

All hardware must be contained in individual satellite

Data storage must be adequate Components must be compatible with KC-

135, Shuttle, and ISS environments System should be traceable to existing

satellites

Page 26: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 32

Power DistributionPower Distribution

Page 27: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 33

Power OptionsPower Options

Battery Power– Non-rechargeable batteries

• Alkaline• Carbon Zinc• Lithium• Silver Oxide• Zinc Air• Silver Zinc

– Rechargeable• Nickel Cadmium• Nickel Metal Hydride

Solar Cells

Page 28: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 34

Power CriteriaPower Criteria Energy Density

– By mass– By volume

Size– Weight– Volume

Cost Safety

Number of Batteries for 12V

Operating Temperature Range

Capacity Approximate Lifetime

Page 29: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 35

Power DownselectPower DownselectB

atte

ry T

ype

Ene

rgy

Den

sity

(by

mas

s)

Ene

rgy

Den

sity

(by

vol.)

Tot

al W

eigh

t

Tot

al V

olum

e

Cos

t

Vol

ts

Safe

ty

No.

Bat

teri

es fo

r12

V

Tem

p. R

ange

(ope

rati

ng)

Cap

acit

y

App

roxi

mat

eL

ifet

ime

Tot

al

Non-rechargeable 10% 10% 10% 8% 5% 10% 10% 12.5% 2.5% 10% 12% 100%Alkaline 3 3 3 4 3 5 4 4 4 3 3 3.03

Carbon Zinc 3 3 4 5 2 5 4 4 3 3 3 3.135Lithium 3 4 4 4 4 4 3 4 5 5 5 3.645

Silver Oxide 4 4 5 5 4 2 4 2 3 2 1 2.945Zinc Air 5 5 4 4 4 5 1 4 3 5 5 3.695

Silver Zinc ? ? ? ? ? ? ? ? ? ? ?

RechargeableNiCad 2 3 2 2 4 2 3 2 4 3 3 2.37NiMH 2 4 2 2 4 2 4 2 3 5 4 2.865

Page 30: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 36

Power RecommendationsPower Recommendations

Batteries– Non-rechargeable: Lithium

• Lifetime approximately 40 minutes

– Rechargeable: NiMH• Lifetime approximately 30 minutes

Solar cells should be considered

Page 31: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 37

Power BudgetPower Budget

Sub-system demands:– Weight : 300 g– Volume : 250 cm

3

– Cost : TBDSub-system provides:

– 18 W– Voltage and Amps TBD

Page 32: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 38

Specific Avionics RequirementsSpecific Avionics Requirements

Sufficient data storage capacityVolume and weight TBDSystem must be compatible with

communications, propulsion, and metrology

Low power drain

Page 33: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course JAW, SEC 39

Avionics OptionsAvionics Options

Build Custom ProcessorsPurchase Processors

– Commercial Processor Options• Tattletale TFX - 11• Tattletale 5F/5F - LCD• Spectrum INDY• Crickets

Page 34: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

40

Communication and SoftwareCommunication and Software

Chad Brodel

Presenter

Page 35: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 41

Communication & Software Communication & Software

Satellite to Satellite (STS) – Real time– Send, receive, and temporarily store data– Compatible with KC-135 / Shuttle systems– Must be traceable to existing satellite

technology Satellite to Ground (STG)

– Does not have to be real time– Data must be recorded for post-flight

analysis– Must be compatible with KC-135 /

Shuttle systems

• Communication Requirements:

Page 36: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 42

Software RequirementsSoftware Requirements

Software is the interface between input (metrology) and output (propulsion)

Requirements:– Must have common programming language– Must be flexible to allow execution of complex

maneuvers– Must develop efficient code compiling techniques

Page 37: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 43

Communication Methodology OptionsCommunication Methodology Options

All equal authority– Satellites interact to decide how to execute array

maneuver

Master / Slave– One satellite gives commands to all others

Hierarchy / Command Chain– Satellites ranked in authority– Easy command transition in case of failure

Page 38: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 44

Communication Methodology SelectionCommunication Methodology Selection Hierarchy / Command chain ensures no confusion

– Satellites numbered 1-3: one control stream– No. 1 Satellite

• Receives control algorithm from ground

• Determines each satellite’s position in array

• Sends commands to other satellites

• Sends own health status info to ground

– Other Satellites• Communicate position, velocity and acceleration data to No. 1

• Sends own health status data to ground

• If No. 1 fails, each satellite will shift up in hierarchy

Page 39: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 45

Data Transfer OptionsData Transfer OptionsDownload Data:

– Continuously• Larger power requirement• Uses up bandwidth

– Post Flight• Possibility of losing on-board data • Long download time• Larger on-board memory cache required

– At regular intervals• Efficient combination of options• Our recommendation

Page 40: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 46

Po

wer

Ran

ge

Inte

rfer

enc

e

Acc

ura

cy

Ban

dw

idth

# o

f Sen

sors

Co

st

TO

TA

L

Notes

Weighting 15% 15% 20% 20% 10% 10% 10% 100%

RF(radio ethernet)

2 5 2 5 5 5 2 3.65 A,F

IR 3 2 3 4 4 2 3 2.60 C

Ultrasonic 4 4 2 3 3 3 3 2.80 B,D,E

A – may interfere with KC-135 or shuttle systemsB – may interfere with metrologyC – only works with sensors in direct line of sightD – not traceable for use in spaceE – possibly damaging to other onboard experimentsF – relatively slow rate of transfer

Communication DownselectCommunication Downselect

Page 41: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 47

Communication Hardware SelectionCommunication Hardware Selection

Best Option (STS, STG): RF – Excellent range– Low power requirement– Reasonable bandwidth and accuracy– Single sensor– Cost effective– Possibility of interference on KC-135, Shuttle

middeck

Page 42: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course GPB, CSB, SLC 48

Budgets ConstraintsBudgets Constraints

Power – Communications sensors and receivers ~ 2 Watts each

(1 RF STG and 1 RF STS per satellite)

Mass – Communication sensors and receivers ~ 8 grams per satellite

Volume– Sensors relatively flat / surface mounted (small)

Page 43: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

49

MetrologyMetrology

Fernando Perez

Presenter

Page 44: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 50

Metrology OverviewMetrology Overview

Two subsystems– Navigation metrology

• Real-time position and attitude determination• On-board navigation system• Accurate

– Truth measure• Verification of position and attitude• Probably some sort of off-board camera or

ranging system

Page 45: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 51

Navigation Metrology RequirementsNavigation Metrology Requirements

Real time--10 Hz Accuracy

– Position to 1 cm (TBR)– Attitude to 1º (TBR)

Must meet space shuttle and KC-135 interface, interference, & safety requirements

Setup in 20 minutes (TBR)

Interface with other subsystems– Communications– Avionics– Power

• Onboard = 2 W (TBR)

• Off-board = 10 W (TBR)

– Structures• Mass = 0.3 kg (TBR)

• Volume = 20 mL (TBR)

Page 46: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 52

Navigation Metrology OptionsNavigation Metrology Options

Position– IR/Ultrasound– Ultrasonic Ranging– Gyros/

Accelerometers– Synchronized

clock/RF/IR

Attitude– Gyros/

Accelerometers– IR/Ultrasound– Pure IR

Page 47: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 53

Navigation Metrology CriteriaNavigation Metrology Criteria

Metrics– Complexity– Cost– Accuracy

Constraints– Onboard Power– Volume– Real time– Mass– Safety– Interference

Page 48: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 54

POSITION

Complexity Cost Accuracy TOTAL Constraints30% 30% 40% 100%

IR/Ultrasound 3 3 4 3.4 Line of sightUltrasonic Ranging 2 4 1 2.2 Line of sight, accuracyGyros/Accelerometers 2 2 1 1.6 Cost, power, volume, computational power, may

affect satellite dynamicsSynch Clock/RF/IR signal 1 1 5 2.6 Cost

ATTITUDE

Complexity Cost Accuracy TOTAL Constraints30% 30% 40% 100%

Gyros/Accelerometers 3 2 4 3.1 Cost, power, volume, may affect satellite dynamicsIR/Ultrasound 2 3 4 3.1 Distance between sensors (size of flyer)Pure IR 1 1 5 2.6 Distance between sensors (size of flyer)

Navigation Metrology DownselectNavigation Metrology Downselect

Note: Power, Volume, Safety, and Interference were considered on a binary scale and are listed as constraints where the subsystem requirements were not met

Page 49: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 55

Truth Measure Metrology RequirementsTruth Measure Metrology Requirements

Accuracy– Position to 1 cm (TBR)– Attitude to 1º (TBR)

Must meet space shuttle and KC-135 interface, interference, & safety requirements

Interface with other subsystems (not an onboard system)

Off-board requirements– Power = 2 W (TBR)– Structures

• Mass = 20 kg (TBR)• Volume = 5000 mL

(TBR)

Page 50: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 56

Truth Measure Metrology OptionsTruth Measure Metrology Options

Position– External fixed cameras– Onboard cameras– External tracking

cameras– Informed tracking

cameras with rangefinders

– Radar ranging– Reverse IR/Ultrasound

Attitude– External fixed cameras– Onboard cameras– Reverse IR/Ultrasound

Page 51: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 57

Truth Measure Metrology CriteriaTruth Measure Metrology Criteria

Metrics– Complexity– Cost– Accuracy

Constraints– Onboard power– Off-board power– Onboard volume– Off-board volume– Mass– Safety– Interference

Page 52: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 58

Truth Measure Metrology DownselectTruth Measure Metrology DownselectPOSITION

Complexity Cost Accuracy TOTAL Constraints40% 30% 30% 100%

External fixed cameras (3) 4 4 2 3.4 Size of test area, may not be real timeOnboard cameras 2 2 2 2.0 Volume, weight, power, not real timeExternal tracking cameras (9) 2 2 3 2.3 Size of test area, tracking systemInformed tracking cameras/Rangefinders 3 3 4 3.3 Size of test area, camera control systemRadar ranging 3 3 4 3.3 Safety, test area, interferenceReverse IR/Ultrasound 2 3 5 3.2 Experimental bias

ATTITUDE

Complexity Cost Accuracy TOTAL Constraints40% 30% 30% 100%

External cameras 4 4 2 3.4 Size of test areaOnboard cameras 2 2 3 3.3 Volume, mass, not real timeReverse IR/Ultrasound 2 3 5 3.2 Distance between sensors, experimental bias

Note: Power, Volume, Safety, and Interference were considered on a binary scale and are listed as constraints where the subsystem requirements were not met

Page 53: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 59

Metrology SelectionsMetrology Selections

Navigation Metrology– IR/Ultrasound for

both position and attitude

• Accurate• Inexpensive• Meets power, mass,

and volume requirements

Truth Measure Metrology– External fixed

cameras for both position and attitude

• Could be made real-time

• Off-board system does not require onboard power, mass, or volume

Page 54: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course AC, SYC, SLJ, FP 60

Metrology BudgetsMetrology Budgets

Note: Although separate downselects were performed for attitude and position determination, the same solution emerged for both parts of each metrology subsystem

Power Mass Volume

Onboard Offboard Onboard Off-board Onboard Off-board

NavigationMetrology –IR/Ultrasound

1800mW

6175 mW 24 g 16 g 8 mL 6 mL

Truth MeasureMetrology –ExternalCameras

N/A 7800 mW N/A 30 g N/A 29 mL

TotalOnboardPower

Total Off-boardPower

TotalOnboard

Mass

Total Off-boardMass

TotalOnboardVolume

Total Off-board Volume

1800mW

13,975mW

24 g 46 g 8 mL 35 mL

Page 55: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

61

Design Concept PresentationDesign Concept Presentation& Conclusion& Conclusion

Stephanie Chen

Presenter

Page 56: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course SLC, SEC 62

Summary of ConceptSummary of Concept

Propulsion– Compressed Gas

• Liquid CO2 or N2/Air

Structure– Polyhedral truss and shell assembly– Metals and alloys

Page 57: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course SLC, SEC 63

Summary of Concept (cont.)Summary of Concept (cont.)

Power– Battery Power

• Lithium, NiMH

Avionics– TATTLETALE processor

Page 58: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course SLC, SEC 64

Summary of Concept (cont.)Summary of Concept (cont.)

Communication and Software– RF (Radio Ethernet)– Hierarchy of satellites

Metrology– Navigation

• IR/ultrasound -- measures position and attitude

– Truth Measure• External fixed cameras

Page 59: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course SLC, SEC 65

Budget per SatelliteBudget per SatelliteDistributedMass (kg)

NeededMass (kg)

DistributedPower (W)

NeededPower (W)

Propulsion 2 3 10 2

Structure 0.7 TBD 0 0

Power/Avionics 2 0.27 4 4

Comm/Software 0.3 0.008 2 4

Metrology 0.3 0.024 2 1.8

Total 5.3 3.3 18 11.8

Margin 76% 47% 43% 37%

Page 60: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course SLC, SEC 66

Preparation for PDRPreparation for PDR

Finalize Design– Set subsystem architecture– Research hardware components– Analyze subsystem integration– Identify and consult experts

Prepare Documentation– Compile hardware specs– Validate design

Page 61: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course SLC, SEC 67

ConclusionsConclusions

Subsystems– Preliminary designs investigated– Component research underway

Satellite Testbed– Designed to be flown on KC-135 and

shuttle middeck– Technology traceable to future satellite

missions

Page 62: 16.684 Experimental CDIO Capstone Course 1 S T U F F a t e l l i t e e s t b e d n t e t h e r e d o r m a t i o n l y i n g f o r

16.684 Experimental CDIO Capstone Course 68

THE END!THE END!