17-9 june 2003inverse problem in engineering symposium topic fouling probe development for tubular...

15
7-9 June 2003 Inverse Problem in engineering Symposium 1 Topic FOULING PROBE DEVELOPMENT FOR TUBULAR HEAT EXCHANGERS: A first step Laetitia PEREZ P. TOCHON B. LADEVIE UMR CNRS 2392 J.C. BATSALE UMR CNRS 8508

Upload: evangeline-gray

Post on 13-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

7-9 June 2003 Inverse Problem in engineering Symposium 1

Topic

FOULING PROBE DEVELOPMENT FOR TUBULAR HEAT EXCHANGERS:

A first step

Laetitia PEREZ

P. TOCHONB. LADEVIE

UMR CNRS 2392J.C. BATSALE

UMR CNRS 8508

7-9 June 2003 Inverse Problem in engineering Symposium 2

Overview

1. Industrial context

2. The Probe

3. Direct model

- theoretical sensitivity analysis

4. Experimental device

5. Experimental results

- experimental sensitivity analysis

6. Conclusions

7-9 June 2003 Inverse Problem in engineering Symposium 3

Industrial context

- heat exchangers in the power and process industries

- performance degradation

- thermal resistance increase

- pressure drop increase

- heat coefficient decrease

7-9 June 2003 Inverse Problem in engineering Symposium 4

Industrial context

Economic problems:

- oversizing equipment

- high maintenance costs

- energy expense

It is necessary to:

- detect the onset of fouling

- follow its development over time

Effectiveness of heat exchangers optimization

7-9 June 2003 Inverse Problem in engineering Symposium 5

The Probe

probeExchanger parts

TeflonReheater

Stainless steel

Transient heatflux

Recording of the temperature evolution Thermocouple

probeExchanger parts

TeflonReheater

Stainless steel

Transient heatflux

Recording of the temperature evolution Thermocouple

7-9 June 2003 Inverse Problem in engineering Symposium 6

Direct model

2 2 2

2 2 2 2

1 1 1T T T T T

r r r r x z a t

33

, , , if 0 otherwise 0

T r x z tr r z b

r

6

66 6

¨

, , , where air air air

r r

T r x z tr r h x S T S r L

r

0

, , ,0 0

z

T r x z tz

dz

, , , 0z L T r x L t

0 0 , , , 0r r T r x z t

even function in T x

0 00 , , ,0 where is the steady state temperaturet T r x z T T

Transient heat equation in cylindrical coordinates:

Boundary conditions:hair

hwater

r

zb

Cylinder axis

r0

r1

r2

r3r4

r5

r6

L

Exchanger part

Symetrie axis

hair

hwater

r

zb

Cylinder axis

r0

r1

r2

r3r4

r5

r6

L

Exchanger part

Symetrie axis

Stainless steel

Teflon

Reheater (sensor)

Stainless steel

Teflon

Reheater (sensor)

7-9 June 2003 Inverse Problem in engineering Symposium 7

Direct model

0 0 0

, , , , , , cos cos

12with where ,

L ptn n

n

r k p T r x z t z kx e dzdxdt

nn k

L

2 2

22 2

, , , , , ,1, , , 0n n

n n

d r k t d r k t k pr k t

dr r dr r a

0 0 0

*

*

, , , cos cos

, , , 0 for and

sin,0, , for n and 0

b ptn n

n

nn

n

r k p z kx e dzdxdt

r k p n k

br p k

p

,

, , , , , ,

, , , , , ,in outin out

n n

n nr rr r

r k p r k pA B

r k p r k pC D

7-9 June 2003 Inverse Problem in engineering Symposium 8

Direct model

1

1 1 23 3

1 1 2

,0, , ,0, ,air airn n

air air

C D h S Ar p r p

A B h S B

3 30

2, , , ,0, , cos

N

n nn

T r x z p r p zL

Finally, the temperature in the Laplace-Fourier space is:

The temperature in the real space is:

Too many approximations hard to check

Harsh industrial conditionsDirect model

7-9 June 2003 Inverse Problem in engineering Symposium 9

Sensitivity analysis

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

3

31

, 0 ,

1, 0 ,

N

nn

T r z t

T r z tN

3

31

, 0 ,

1, 0 ,

a ira ir

N

nn

T r z th

h

T r z tN

3

31

, 0 ,

1, 0,

pp

N

nn

T r z tC

C

T r z tN

t (s )

, , , ,i

ii

i

T r x z tX t

7-9 June 2003 Inverse Problem in engineering Symposium 10

Experimental device

Air at 323 K

with particles

Cooling water

AirFoulant particles generator

Heat exchanger parts and probe

Industrial water

sewer

Air at 323 K

with particles

Cooling water

AirFoulant particles generator

Heat exchanger parts and probe

Industrial water

sewer

7-9 June 2003 Inverse Problem in engineering Symposium 11

Experimental results

In clean conditions:

t (s)

Exp

erim

enta

l tem

pera

ture

s(°

C)

100 200 300 400 500 600 700 800 900 10008.5

9

9.5

10

Increase of air flow rate 50 Nm3/h

60 Nm3/h 70 Nm3/h 80 Nm3/h 90 Nm3/h 100 Nm3/h

t (s)

Exp

erim

enta

l tem

pera

ture

s(°

C)

100 200 300 400 500 600 700 800 900 10008.5

9

9.5

10

Increase of air flow rate 50 Nm3/h

60 Nm3/h 70 Nm3/h 80 Nm3/h 90 Nm3/h 100 Nm3/h

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

t ( s )

e x p 3

e x p 31

, 0 , ,

1, 0 , ,

e r i m e n t a ln o r m N

e r i m e n t a ln

T r z t QT Q

T r z t QN

n o r m n o r mi jT Q T Q

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

t ( s )

e x p 3

e x p 31

, 0 , ,

1, 0 , ,

e r i m e n t a ln o r m N

e r i m e n t a ln

T r z t QT Q

T r z t QN

n o r m n o r mi jT Q T Q

7-9 June 2003 Inverse Problem in engineering Symposium 12

Experimental sensitivity analysis

3, 0, .airT r z t f h g t

3 0, 0, .air airair

fT r z t f h h g t

h

1

3

32 1

1

, 0,

1. , 0,

T T

air

N

n nNn

nn

f h g t g t g t T r z t

g t T r z tg t

The temperature response can be written by:

For a little heat transfer coefficient variation:

the signal amplitude variation can be calculated by:

7-9 June 2003 Inverse Problem in engineering Symposium 13

12cov

T

air Tf h g t g t

40 50 60 70 80 90 100 1109.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

Standard deviationin considering only the steady state (t>100s)

Standard deviation in considering allthe signal

Q (Nm3/h)

f(h

air)

40 50 60 70 80 90 100 1109.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

Standard deviationin considering only the steady state (t>100s)

Standard deviation in considering allthe signal

Q (Nm3/h)

f(h

air)

Experimental sensitivity analysis

7-9 June 2003 Inverse Problem in engineering Symposium 14

Experimental results

In fouled conditions:

Cooling water

Air flow

with particles

Deposit pattern around the probe

- Fouling detection after 22h

- Fouling thickness after 78h : efouling = 2 mm

t = 22 ht = 35 ht = 40 ht = 70 ht = 78 h

0 100 200 300 400 500 600 700 800 900 1000

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Growing fouling

0norm fouling norm foulingT e T e

t (s)

7-9 June 2003 Inverse Problem in engineering Symposium 15

Conclusions

- Fouling probe development

-direct model :

-sensitivity analysis

-experimental device :

-experimental sensitivity analysis

f(hair)

f(efouling)