19640016504_1964016504

Upload: stephen-lim

Post on 06-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 19640016504_1964016504

    1/14

    N A S A

    b n04mNInzI-

    T E CHN I C A L N O T E TN D-2395--

    STRESS-INTENSITY FACTORS FOR ASINGLE-EDGE-NOTCH TENSION SPECIMENBY BOUNDARY COLLOCATIONOF A STRESS FUNCTIONby Bernard Gross, John E. Srawley,an d W il liam F. Brown, Jr.Lewis Research CenterCleueland, OhioN A T I O N A L A E R O NA U T IC S A N D S PA CE A D M I N I S T R A T I O N W A S H I N G T O N , D . C . A U G U S T 1 9 6 4

  • 8/2/2019 19640016504_1964016504

    2/14

    TECH LIBRARY KAFB. NMIIIIIIIIlllIIIIIllllIll111

    STRESS-INTENSITY FACTORS FOR A SINGLE-EDGE-NOTCH TENSIONSPECIMEN BY BOUNDARY COLLOCATION O F A STRESS FUNCTION

    By Bernard Gross , John E . Srawley,and William F . Brown, J r .Lewis Research CenterCleveland, Ohio

    NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONFo r sa le b y the Offi ce of Tech nic al Services, Department of Commerce,

    Washington, D.C. 20230 -- Pr ice $0.50

  • 8/2/2019 19640016504_1964016504

    3/14

    STRESS-INTENSITY FACTORS FOR A S1NGL;E-EDGE-NOTCH TENSIONSPECIMEN BY BOUNDARY COLLOCATION OF A STRESS FUNCT I ON

    by Bernard Gross, John E. Srawley,and W i l l i a m F. Brown, Jr.Lewis Research Center

    SUMMARYA boundary va lue col loc a t ion procedure appl ied t o th e W i l l i a m s s t r e s s

    func t ion w a s employed t o d e te rm in e t h e e l a s t i c s t r e s s d i s t r i b u t i o n i n t h e im -m ediate v i c i n i t y of t h e t i p of an edge c rack in a f ini te-width specimen sub-jec ted t o uni form t e n s i l e loading. This typ e of s ingle-edge-notch spec imen i sp a r t i c u l a r l y s u i t a b l e f o r de te rm in a ti on of p la n e s t r a i n f r a c t u r e to ug hn es sva lues . The ana ly t i ca l r e su l t s a r e expres sed i n such a way t h a t t h e s t r e s si n t e n s i t y fa c t o r may be determined from known c ond itio ns of specimen geometryand loading.A s t h e c rack leng th dec reased , t h e r e s u l t s ob ta ined by th e co l loca t ionprocedure approached those derived from a closed so lu t ion f o r an edge crack ina sem i - in f in i t e p l a t e . Over a range of r a t i o s of crack length t o specimenwidth between 0.15 and 0.40 t h e c o l l o c a t io n s o l u t i o n y ie ld e d r e s u l t s i n v e ry

    good agreement with those derived from experimental compliance measurements.

    INTRODUCTIONA method f o r c a l c u l a t in g t h e s t r e s s d i s t r i b u t i o n i n a t e s t specimen con-t a i n i n g a single-edge crack (sharp notch) and subjec ted t o a u ni fo rm t e n s i l eload i s d e sc r ib e d h e r ei n . The r e s u l t s a r e p a r t i c u l a r l y u s e f u l i n de te rm in in gs t r e s s i n t e n s i t y f a c to r s K f o r given con diti ons of load and geometry andth ere fo re permit t h e use of t h e s ingle-edge-notch specimen i n f ra c t ur e tough-n e s s t e s t i n g .The ASTM Sp ec ia l Committee on F ra c tu re T es ti ng of High St re ng th Me ta ll icM ate r i a l s i s sued a se r i e s of r epor t s desc r ib ing r ecen t developments i n f r a c t u r et ou gh ne ss t e s t i n g ( r e f s . 1 o 4 ) . It has been shown t h a t th e magnitude of t h ee l a s t i c s t r e s s f i e l d i n t h e i mmediate v i c i n i t y of a crack but beyond the crackt i p p l a s t i c zone may be chara c ter ize d by a single parameter K , t h e s t r e s si n t e n s i t y f a c t or ( r e f s . 1 and 5 ) . For any given material a c h a r a c t e r i s t i cva lue K,t o th e onset of r ap id f r ac tu re . L ike o the r m echanica l p rope r t i e s , K, i sof t h e s t r e s s i n t e n s i t y f a c t o r i s assumed t o ex is t t h a t corresponds

  • 8/2/2019 19640016504_1964016504

    4/14

    d ep en den t on t h e s t r a in r a t e , t h e t e mp e ra tur e , an d t h e t e s t i n g d i r e c t i o n . I nth e c a s e of s h e e t and p l a t e m a te r i a l s it i s a l so dependent on th e th ickne ss .The va lu e of may be dete rmi ned from t e s t s on specimens containing sharpnotches or c ra ck s, p ro vide d t h a t s u i t a b l e e x pr e s sio n s a re a v a i l a b l e t h a t g i vet h e s t r e s s i n t e n s i t y f a c t o r i n terms of t h e specimen geometry and ap pli ed lo ad sa t f r a c t u r e i n s t a b i l i t y .K,

    Approximate solutions for K exi s t i n c l o s e d f o r m f o r a number of speci-men desi gns s ymm etrically notched wi th re spe ct to t h e t e n s i l e l o ad a x i s( r e f s . 5 t o 9 ) . The single-edge-notch tension specimen appears to be more ef-f i c ie n t , however, than symmetr ica l ly notched specimens with resp ect both to t h emater ia l and t o t h e l o a d in g c a p a c i t y re q u i re d ( r e f . 10). For h i s r ea so n, t h esingle-ed ge-notc h specimen may be of con side rabl e importance i n t h e determina-t i o n of K,s e c t i o n s a r e an inheren t requi rement of th e t e s t . Recen t, ve ry ca re fu l exper i -mental compliance measurements on th e s ingle-edg e-notch specimen (r e f . 10) pro-v i d e v a l u es of s t r a i n e n er gy r e l e a s e r a t e s as a f u n c t i o n of c r a ck l e n g th f romw'hich values of K may be derived. An a n a l y t i c a l s o l u t i o n i s desirable, how-ever, as an independent check on t h e exp erim enta l procedure; it a l s o h as t h eadvantage th a t t h e in f luence o f c e r ta in geomet r ica l pa ramete rs, such as t h er a t i o o f h e ig ht t o wi dt hte di ou s experimen tal measurements. Furthermore, t h e method of obta inin g ana n a l y t i c a l s o l u ti o n i s a p p l i c a b l e to a l l combinations of bending and tensiona p pl ie d t o a single-edge-notch specimen.

    f o r pl a n e s t r a in c r a c k p r op a ga t io n where r e l a t i v e l y l a r g e c r o s s

    V/W, may be r ap id ly determined without re so r t to

    An a n a l y t i c a l s o l u t i o n t o t h e s t r e s s d i s t r i b u t i o n i n t h e s i ng le -e dg e-notch tens ion specimen i s obta ined here in by a boundary value col locat ion pro-c ed ur e a p p l i e d t o t h e W i l l i a m s s t r e s s f u nc t io n ( r e f . ll), which i s known tos a t i s f y t h e boundary con d i t ions a long an edge c rack .t h a t p e r m i ts e x pr e ss io n of s t r e s s i n t e n s i t y f a c t o r s i n terms of t h e measuredqu an t i t i es of load and specimen dimensions. In addi t ion, t h e inf lu enc e of t h eend e f f e c t on t h e s t r e s s i n t e n s i t y f a c t o r i s determined. The end ef fe ct de-r i v e s from t h e f i n i t e d i s t a n c e b etw een t h e c r a c k a nd t h e u ni fo rm ly l oa de dboundary, expres sed as V/W. A comparison i s made between t h e pres ent an al yt i-c a l r e su l t s and a c losed s o lu t io n ob ta ined by Wiggleswor th ( r e f . 1 2 ) f o r anedge c ra c k i n a s e m i - i n f i n i t e p l a t e .t er ms of t h e s t r e s s i n t e n s i t y f a c t o r i s compared with experimental results ob-t a i n e d b y o t h e r i n v e s t i g a t o r s f o r t h i s specimen w it h s t r a i n e ne rg y r e l e a s e r a t e(compliance measurement ) experiments.

    The r e s u l t s a r e i n a form

    F i n a ll y , t h e c o l l o c a ti o n s o lu t i o n i n

    SYMBOLSa crack len gth i n s ingle-edge-notch specimen, in .

    c o e f f i c i e n t s o f W i l l i a m s s t r e s s f u nc t io ndnE Young' s modulus, p s i

    s t r a in e ne rg y r e l e a s e r a t e w i th c r a c k e xt en sion ; o r c r a c k e x te n s ionforce , in . - lb / sq i n .99

    2

  • 8/2/2019 19640016504_1964016504

    5/14

    K

    vWx,Y

    s t r e s s i n t e n s i t y f a c to r of e l a s t i c s t r e s sf i e l d i n v i c i n i t y of b o rd er o f c r a ck ,p s iload pe r un i t t h ickness , l b / in .a n g ul a r p o s i t i o n c o o r d in a te s r e f e r r e d t o

    c ra ck t i pdi s ta nc e (he igh t ) between crack p lane andloc a t io n of un iform s t r e s s , i n .specimen width, i n .coord inate axes wi th o r ig in a t c r ack t i p ,p a r a l l e l and pe rpend icu la r , r e spec t ive ly ,t o c ra ck p l an eu ni fo rm t e n s i l e s t r e s s a p p l i ed t o specimen,

    p s is t r e s s i n x- and y-di rec t ions , p s i0yJ *xy

    X s t r e s s f u n ct i on

    uo - 10,oOO psi

    o0 - 10,oOO psiFigure 1. - Specimen geometryand loading assumed forcollocation solution.

    METHODThe method of ana lys i s c on s is t s i n f ind ing a s t r e s s f u n ct i on X s a t i s f y -

    ing th e biharmonic equat ionnumber of s ta ti o n s along t h e boun darie s of t h e single -edge -notc h specimen showni n f i g u re 1. For t h e present purposes use i s made of t h e W i l l i a m s s t r e s s f un c-t i o n ( r e f . 11)w i t h t h e c o r r e c t i o n o f a t y p o g r a ph i c a l e r r o r i n t h a t r e f e re n c e :

    $X = 0 and th e boundary condi t ions a t a f i n i t e

    m

    2n - 3[- os (n - ;)e + 2n + c os ( n + $4n=l, 2, . ..

    + ( -1) d 2nrn+1[- os (n - i cos(n +Because of symmetry (fig. 1) on ly even t e rm s o f t h e s t r e s s fun c t ion a r e con-s idered . The s t re ss es in te rms of X o b ta in e d b y p a r t i a l d i f f e r e n t i a t i o n a r eas fo l lows:

    3

  • 8/2/2019 19640016504_1964016504

    6/14

    2- a2x - a2x 2 a2x s i n e cos e + ax s i n ea y - - - - c o s 8 - 2 ZEF r z rax2 a,ax s i n e cos 0 a% s in20+ 2 -!---z r a02 r 2

    The Wil l i ams s t r e s s f u n c t io n i s an Airy s t r e s s funct ion, which, bes id es s a t i s -fy i ng t h e biharmonic equation, a l s o s a t i s f i e s t h e bo un dar y c on d i t i o n s a lo ng t h ecrack surface , namely, th a t th e normal and shear ing s t re ss es be zero . Thus,when 8 = %T equa t ions (1)and ( 2 ) g iv eboundary requirements on th e s t r e s s func t ion f o r t h e specimen having th e geom-e t r y a nd t r a c t i o n s shown i n f i g u r e 1 a r e as fo l lows :

    cry = 0, rxy = 0. The remaining

    Along boundary A -,B:axx = o a = O

    Along boundary B -,C:

    Along boundary C -+ D:

    Because of symmetry with respect t o t h e crack plane ( f i g . 1)o n ly h a l f t h especimen need be considered.For t h e purpose of determining t h e s t r e s s i n t e n s i t y f a c t o r as def ined in

    d l of t h ere fe rence 13, which c h a r a c t e r i z e s t h e s t r e s s d i s t r i b u t i o n i n t h e imm ediateneighborhood of th e crack t i p ( r --* 0) , o n ly t h e f i r s t c o e f f i c i e n t4

  • 8/2/2019 19640016504_1964016504

    7/14

    W i l l i a m s s t r e s s f un c ti on i s n e ce ss ar y, s i n c e t h i s t e rm i s dominant. A s shownl a t e r , d l i s p ro p or ti on al t o t h e s t r e s s i n t e n s i t y f a c t o r K. Values of d las w e l l as of t h e o th e r c o e f f i c i e n t s a r e o b t a in e d b y s a t i s f y in g t h e b ou nd arycondi t ions (eq .given boundary f o r a specimen with t h e geometry shown i n fi g u re 1 h a t i ss u b j e c te d t o a uniform s t r e s s of 10 ,000 p s i ac t i ng a t a d i s t a n c ecrack plane. Computat ions were made f o r sev era l r a t i o s of crack length t ospecimen wid th a / W between 0.04 and 0.5 and f o r va lues o f V/W ranging from0 .5 t o 1 . 5 .

    ( 3 ) ) a t a f i n i t e number o f s t a t io n s equa l ly spaced a long aV from the

    The co l loca t ion p rocedure req u i res a matr ix so l u t io n of twice as manyequat ions as t h e number of boundary s ta t i o n s se le cte d f o r each combination oft h e independent va r ia ble s . This problem w a s programed f o r a d i g i t a l c om puterw i th t h e u s e of double p rec i s ion a r i thmet ic (16 s i g n i f i c a n t f i g u r e s ) .I n t h i s sol ut io n, t h e number of boundary s ta t i o n s i s i nc re a se d u n t i l t h e

    f i r s t m a t r ix c o e f f i c i e n t d l c on ve rg es t o a s u f f i c i e n t l y s t a b l e v al ue . F ig -u r e 2, f o r example, shows t h e f i r s t m a t r ix c o e f f i c i e n t as a f u n c t i o n of t h e

    Ratio of height to width atwhich uniform loadingis assumed to occur,$1..6059~ 23

    Number of boundary stationsFigure 2. - First matrix coefficient as function of number of boundary stations.Tensile stress applied to specimen, 10,OOO psi: specimen width, 1 nch; ratioof crack length to specimen width, 1/3.

    number of boundary s t a -t o n s f o r c o n f ig u r a t io n sw i th s e v e r a l V/W r a t i o sa t a va lue o f a/w of1/3. T h e v a r i a t i o n i nt h e f i r s t m a t r ix c o e f f i -c i e n t i s not more than+1 pe rc en t when t h e num-ber of boundary s ta t ionsi s inc reased from11 t o 23.

    The s t ress - func t ionva lues a t 50 s t a t i o n salong t h e boundary werecomputed f o r se ve ra lgeometries with a l l dncoef f ic ien t s . Theseval ues were i n goodagreement wi t h th e pre-scr ibe d value s . Thes t r e s s - f u n c t i o n d e r i v a -t i v e no rm al t o t h e bound-ar y, however, showed pe r-t u r b a t i o n s n e a r t h ecor ner s of th e specimen.The effect of t h i s v a r i a t i o n i n t er ms o f s t r e s s d i s t r i b u t i o n t hr ou gh ou t t h especimen could be determined only by ad di t i on al computat ion. This add i t i on ale f f o r t d i d no t a pp ear j u s t i f i e d s i n c e t h e f i r s t m a t r ix c o e f f i c i e n t w a s , f o rp r a c t i c a l p urp oses, i n s e n s i t i v e t o t h e s e p e r t u r b at i o n s .

    5

  • 8/2/2019 19640016504_1964016504

    8/14

    RESULTSS t r e s s I n t e n s i t y F a c to r s

    The s t r e s s i n t e n s i t y f a c t o re f f i c i e n t of t h e W i l l i a m s s t r e s s f u n c ti o n . The e x pr e ss i on f o r t h e s t r e s s i nt h e y - d i r e c t i o n i n t h e im mediate v i c i n i t y of t h e c ra c k t i p i s obta ined f romt h e dominant term as Tollows:

    K may be der ived i n terms of t h e f i r s t co-

    82+ s i n - s i n

    The expr ess ion f o r ISs t r e s s a n a l y s i s , i s as f o l l o w s :

    g ive n i n r e f e r e n c e 1, based on t h e Westergaard crackY

    2 2 30)8cos (1 + s i n - s i n -IS = -JS

    (4 )

    Thus

    Ratio of crack length to specimen width, alWFigure 3. - Collocation results of a plot of dimensionlessparameter against ratio of crack length to specimenwidth in single-edge-notch specimen.

    A s shown i n f i g u re 2, s m a l l o s c i l l a t i o n ssometimes occur i n th e f i r s t matr ix co-e f f i c i e n t . For t h i s r ea so n s t r e s sin te ns i t y fa c t o r s were computed wi thva lues of dl averaged from 1 1 t o 23boundary points .For purposes o f f r ac tu re toughnesst e s t i n g t h e r e s u l t s o f t h e c o l lo c a t io n

    procedure are convenient ly expressed int h e form of a dimensionless parameterinvolving K and th e measured qu an t i t i e sa s a fu nc ti on of a/W ( r e f . 10). Thus,

    where P i s t h e l o ad p er u n i t t h i c k n e s s .A s d i sc u ss e d l a t e r , t h i s form i s u s e f u lf o r a comparison o f t h e an a l y t ic a l r e -s u l t s with exper imenta l compliance cal i -b r a t i o n d a t a . A curve der ived f romequa t ion (3 ) r e l a t i n g K ~ W / P ~ o a/wi s g i ve n i n f i g u r e 3.t o any V/W v a lu e g r e a t e r t h a n a b o u t0.8 ( s e e f i g . 4 ) .

    This curve app l ies

    6

  • 8/2/2019 19640016504_1964016504

    9/14

    Infl uen ce of End Ef fe ct sA s an a i d t o opt imizing t h e specimen des ign , ca lc ula t ion s were made t oshow how cl os e t h e assumed po si ti on of t h e uniformly loaded boundary could bet o t h e c ra c k p la n e w ith ou t a f f e c t in g t h e s t r e s s i n t e n s i t y f a c t o r .va lue of t h e pos i t io n , of course , i s a funct ion of the specimen width,and express ing the f i r s t m a t r i x c o e f f i c i e n t as a f u n c t io n of t h e r a t i o ofh e ig h t t o w id th ( s e e f i g . 1, p. 3 ) i s convenient f o r var iou s va lues of a/w.According t o f ig u r e 4, t h e f i r s t matrix c o e f f i c i e n t a t0.15 and 0 .5 i s e s s e n t i a l l y c o ns ta nt f o r r a t i o s of h ei gh t t o w id thg r e a t e r t h a n a bo ut 0.8.

    For a givena / W

    a / W ra t ios be tweenV/W

    -3, 000.5 . 7 .9 1.1 1.3Ratio of height to width, V IW

    Figure 4. - First ma trix coefficient as function of ratio of height to width for variousratios of crack length to specimen width. Tensile stress applied to specimen,10,OOO psi: specimen width, 1 nch.

    I n a p ra c t ic a l t e s t specimen t h e means by which load i s app l i ed in t roducesnonuniformly s t r es se d regions a t t h e ends of t h e specimen. The actual specimenle ng th must t he re fo re exceed th e minimum len gt h determined from fig ur e 4.t h e c a s e of a pin-loaded specimen, f o r example, t h e optimum r a t i o of t o t a ll e n g t h t o w id th i s about 4 ( re f . 10).I n

    7

  • 8/2/2019 19640016504_1964016504

    10/14

    DISCUSSION OF RESULTSComparison with Wigglesworth Solution .

    A check on t h e va l i d i t y o f t h e p resen t so lu t ion can be ob ta ined by com-par i son w i th th a t r epor ted by Wigglesworth ( re f . 1 2 ) f o r an edge c rack i n asem i- i nf in i te p la t e . These two sol ut i on s should converge as t h e c r a c k l e n g t ht e n d s t o z ero . I n t h e M e d i a t e v i c i n i t y of t h e c ra ck t h e f i r s t t e rm of th eWigglesworth so lu ti on predominates, and 5 may be ex pre ssed i n terms of thecoordin ate sys tem shown i n f ig u re 1 (p . 3 ) as fo l lows:

    This equation may be compared with t h e corresponding express ion obt aine d by th epr es en t met hod:

    + s i n - s i n -2e2 25 = Jr (4 )where the f i r s t m a t r i x c o e f f i c i e n t dl depends on 50 and t h e specimen dimen-s io n s . The r e s p e c t i v e v a lu e s of i n a ny d i r e c t i o n n e ar t h e c r a c k t i p maybe compared by cons ider ing a single-ed ge-notch specimen of un it width. For t h esame uniform stress i n b o th ca se s. t h e r a t i o of 577 obta ined f rom theWigglesworth solution (eq. ( 8 ) ) t o t h a t computed f$om equ ati on ( 4 ) should ap-

    \\

    8

    \\

    \\

    \\

    8Crack length, .Figure 5. - Comparison of stress ratios in immediate vicinity of crack tip obtained by collocation

    solution and solution of reference 12.proach 1 as t h e c r a c k l e n g th d e c r e a s e s .i n accordance wi th th i s behav ior . The r e s u l t s p r e se n t e d i n f i g u r e 5 a r e

    Comparison with Experimental ResultsTwo experimental compliance ca li br at io ns of sin gle-edg e-notch specimens

    8

  • 8/2/2019 19640016504_1964016504

    11/14

    11111111111111111111II I 11 I II II I I I I II I I 1111 I 1111111111~11111~11

    l oa de d i n t e n s io n a r e a v a i l a b l e f o r c om pariso n, t h e e a r l i e r by S u l l i v a n( r e f . 1 4 ) and a more re ce nt one by Srawley, Jo ne s, and Gross ( r e f . 1 0 ) . Thedesign of t h e specimen of r efe ren ce 1 4 w a s loaded through pins separa ted by adis tance le s s than twice th e width, which in t roduced la r ge end e f f ec t s t ha ta r e not accounted f o r i n t h e ana l y t i ca l so lu t ion . The spec imen used in re fe r -ence 10 w a s of s u f f i c i e n t l e n g th t h a t end e f f e c t s were n e g l ig ib l e , s i n c e t h ecompliance measurements were made over a gage length of 8 inches on a specimen3 inches wide that w a s loaded through pins 10 inches ap ar t . The suf f ic ien cy oft h i s gage length w a s es t abl ish ed by pre l imina ry exper iments . For t h i s reasonb e t t e r agreem ent w i th t h e a n a ly t i c a l r e s u l t s i s t o be expec ted from t he exper i -ments of r e f e r e n c e 10 than f rom tho se of refer ence 1 4 . Furthermore, as d i s -cussed in refe renc e 10, t h o s e d a t a a r e e x pe ct ed t o b e more p r e c i s e t h a n t h eda ta of re fe ren ce 1 4 because of di ff er en ce s i n specimen s i z e and measurementtechniques .

    The experimental compliance procedure gives r e s u l ts i n terms of t h e s t r a i ne n e r g y r e l e a s e r a t e g.9For t h e purposes of comparing th e an a ly t ic a l wi th th e exper imenta l r e su l t s th emost reasona ble procedure appears t o be a conversion on t h e p la ne s t r e s s b a s i s .Thus,

    The corre ct procedure fo r conver t ing th es e values oft o s t r e s s i n t e n s i t y f a c t o r s i s n ot y et c om p le te ly s e t t l e d ( s e e r e f . 10).

    o r i n terms of exper imenta l ly measured qua nt i t ie s ,

    I L

    where i s determined by experimental compliance procedures and P i s t h eload per unit specimen thickness.Rat io o fc r ack l en g tht o specimenwidth,

    a/wI

    0.05.10.1 5.20. 25.3 0.35. 40. 4 5.50

    Dimens o n l e s paramet e r,K2W/P2

    Fxperiment a1r e s u l t sRef. 10

    0.314.556.816

    1.1801 . 7 3 52 . 5 7 13.7755.4367 . 6 4 110.477

    Ref. 1 40.35

    . 651.001 . 4 01 . 9 72 .804 . 2 06 . 1 88 . 9 0

    1 2 . 5 0

    Col loca t ionr e s u l t s

    0.204.445.7581.180

    1.7682.6033.8135.596

    12.399a. 276

    The comparison between e xp er i-mental and ana ly t ica l r e s u l t s i sshown i n t h e t ab le . A s might beexpected from the foregoing discus-s io n of th e compliance ca l i br a t io nexper iments, th e re su l t s g iven i nre fe rence 1 4 are cons i s ten t ly h igh-e r t h a n e i t h e r t h o s e o b ta ine d b yth e p r e se n t c o l l o c a t i o n s o lu t i o n o rt h o s e r e p o r t e d i n r e f e r e n ce 10. I nco nt ra st , ve ry good agreement be-tw een t h e a n a ly t i c a l s o lu t i o n a ndt h e da ta of re fe rence 10 i s notedf o r v a l u es of a / W between 0.15and 0.40. The differences betweenth e s e two s e t s of r e s u l t s a t t h elower values of a / W are probablya s s oc i a te d w i th u n c e r t a in t i e s i n

    9

  • 8/2/2019 19640016504_1964016504

    12/14

    I I1 I

    t h e lower range of th e exper imenta l data. For h e a / W values above 0.4, d i f -fe rences due to bending of t h e ex peri men tal compliance specimen, which are nottaken in to accoun t by th e an a l y t ic a l so lu t ion , become impor tan t . Th is bend ingd e c r e a s e s t h e e c c e n t r i c i t y o f l o a d in g w i th r e s p e c t to t h e uncracked sec t ion ,and th e compliance f o r a given slot l e n g th i s t h e re f o re s l i g h t l y l e s s t h a n i fno bending took place.

    SUMMARY OF RESULTSThe r e s u l t s o f a n a n a l y t i c a l in v e s t i g a t i o n of t h e s t ress i n t e n s i t y f ac -

    tors for a s ingle-edge-notch te ns io n specimen obta ine d by a boundary v alu eco l loca t ion p rocedure app l ied to t h e W i l l i a m s s t ress f u n c t i o n are as fo l lows:1. The v a lu e s o f t h e s t r e s s i n t e n s i t y f a c to r were i nd ep en de nt o f t h e d i s -tan ce between th e uniformly loaded cross sec t io n and th e no tch p lane p rov idedt h a t t h i s d i s ta n ce was g r e a t e r t h a n 8 0 p e r ce n t of the wid th .2. A t s m a l l r a t i o s o f c r a ck l e n g th to specimen wid th th e p resen t re su l t swere i n good agreement w it h a c losed so lu t ion ob ta ined fo r an edge c rack in as e m i - i n f i n i t e p l a t e .3. When t h e a na ly t i ca l r e su l t s were expressed i n app ropr ia te d imension-l e s s form, ve ry good agreement was obta ined wi th comparab le re su l t s ob ta inedfrom a h ig h ly a c c u r a t e e x p e rim en tal s t r a i n e ne rg y r e l e a s e r a t e de te rmina t ion .

    L e w i s Research CenterNat iona l Aerona utics and Space Administrat ionCleveland, Ohio, May 5, 1964

    REFERENCES1. ASTM Sp ec ia l Committee: Fr ac tu re Te st in g of High-Stren gth Sheet M ate ria ls,p t . 11. ASTM Bull . 244, Feb. 1960, pp. 18-28.2. ASTM S p e c i a l Committee: The Slow Growth and Rapid Prop agat ion of Cracks.M ate ria ls Res. and Standards, v ol. 1, no. 5, May 1961, pp, 389-393.3. ASTM S p e c i a l Committee: F r a c tu r e T e st in g of High-Strength Sheet Materials.Materials Res. and Standard s, v ol . 1, no. 11, Nov. 1961, pp. 877-885.4. ASTM Sp eci a l Co mi t te e : Progress i n Measur ing Fra ctu re Toughness and UsingFr ac tu re Mechanics. Ma ter ial s Res. and Standards, vol. 4, no. 3,Mar. 1964, pp. 107-119.5. Irwin, G. R.: Analysis of St re ss es and Str a i ns Near th e End of a CrackTravers ing a P la te . Jo ur . Appl. Mech., v ol . 24, no. 3, Sept. 1957,pp. 361-364.

    10

  • 8/2/2019 19640016504_1964016504

    13/14

    6. Sneddon, I. N.: The Dis t r ibut ion of St re ss i n t h e Neighbourhood of a Cracki n an E la st ic So lid . Proc. Roy. SOC. (London), Ser. A, vol . 187,no. 1099, Oct. 22, 1946, pp. 229-260.7. Mendelson, Alexander, and Spero, Samuel W. : E l a s t i c S t r e s s D i s t r i b u ti o n i na Fini te-Width Orthotro pic Pl a t e Conta ining a Crack. NASA TN D-2260,1964.8. Bowie, Oscar L.: Rectangular Tensile Sheet with Symmetric Edge Cracks.TR-63-22, Army M a te r ia l s R e s . Agency, Oct. 1963.9. Irwin, G. R . : Crack-Ekdension Force for a Part-Through Crack i n a P la t e .. Jour. Appl. Mech. (T rans . ASME), ser. E, vol. 29, no. 4, Dec. 1962,pp. 651-654.

    10. Srawley, John E. , Jones, Melvin H., and Gross, Bernard: ExperimentalDetermination of t h e Dependence of Crack Exte nsio n Force on Crack Lengthfor a Single-Edge-Notch Te ns io n Specimen. NASA TN D-2396, 1964.

    11. W i l l i a m s , M. L. : On t h e S t re ss Dis t r ibu t ion a t the Base of a Sta t ionaryCrack. Jo ur . Appl. Mech., vo l . 24, no. 1, M a r . 1957, pp. 109-114.1 2 . Wigglesworth, L. A. : S t r e s s D i s tr i b u t i o n i n a Notched P la te . Mathematika,

    V O ~ . 4, 1957, pp. 76-96.13. Irwin, G. R . : Fracture . Vol . V I - E l a s t i c i t y and P l a s t i c i t y . E ncyclo -pedia of Phys., S. Fliigge, ed. , Springer-Verlag (Berlin), 1958,pp. 551-590.14. Sul l ivan, A. M . : N ew Specimen Design f o r Pl ane -St rai n Fr ac tu re ToughnessTes t s . Mate r ia l s R e s . and Standards, vo l. 4, no. 1, Jan. 1964,pp. 20-24.

    NASA-Langley, 1964 E-2488 11

  • 8/2/2019 19640016504_1964016504

    14/14

    T he aeroiiautical atid space act iv iti e~ f th e Un ited States shall beconducted so as to contribiite . . . to the expansioii of hzimaiz knowl-edge of phenomeiia in the atmosphere and space. Th e Administratiot2shall provide fo r the widest practicable aizd appropriate disseminationof inform atioii conceriiing its activities and th e resrilts thereof.

    -NATIONALERONAUTICSN D S P A C E ACT O F 1958

    N AS A SCIENTIFIC A N D TECHNICAL PUBLICATIONSTECHNICAL REPORTS:important, complete, and a lasting contribution to existing knowledge.TECHNICAL NOTES:of importance as a contribution to existing knowledge.TECHNICAL MEMORANDUMS: Information receiving limited distri-bution because of preliminary data, security classification, or othe r reasons.CONTRACTOR REPORTS: Technical information generated in con-nection with a NASA contract or gran t and released under NASA auspices.TECHNICAL TRANSLATIONS: Information published in a foreignlanguage considered to merit NASA distribution in English.TECHNICAL REPRINTS: Information derived from NASA activitiesand initially published in the form of journa l articles.SPECIAL PUBLICATIONS: Information derived from or of value toNASA activities but not necessarily reporting the results of individualNASA-programmed scientific efforts. Publications include conferenceproceedings, monographs, data compilations, handbooks, sourcebooks,and special bibliographies.

    Scientific and technical information considered

    Information less broad in scope but nevertheless

    Detai ls on the avai labi l i ty of these publications may be obtained from:

    SCIENTIFIC AND TECHNICAL INFORMATION DIVISIONNAT IONAL AERONAUTICS AN D SPACE ADMINISTRATION

    Washington, D.C. 20546