1984_(steverson) kinetics of the amylase system of saccharomycopsis fibuliger

6
7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 1/6  inetics of the amylase system of a char o m c o p si s f i b uliger E. Malone Steverson, Roger A. Korus, Wudneh Admassu and Richard C. Heimsch~ Department of Chemical Engineering and tDepartment of Bacteriology and Biochemistry, University of Idaho, Moscow, Idaho 83843, USA (Received 5 March 1984; revised 12 September 1984) The extracellular amylases produced by Saccharomycopsis fibuliger have been studied with the intent of identifying the kinetic mechanism and product distribution, and modelling the production of D-glucose during starch hydrolysis. High performance liquid chromatography was effectively used to separate and quantify the product oligomers released, t~-Amylase rapidly hydrolysed the long substrate chains into smaller oligomers which became the substrate for glucoamylase in the production of D-glucose. The formation of a rate limiting substrate occurred late in the reaction. Glucoamylase and a-amylase rates were fitted to Michaelis-Menten models with D-glucose inhibition included. Keywords: Kinetics; Saccharomycopsis fibuliger; amylase; starch Introduction An extracellular amylolytic enzyme system in Saccharomy- copsis {Endomycopsis fibuliger was first reported in 1944 and it was determined that the dominant enzyme was t~-amylase) Recent papers have reported the presence of saccharifying and dextrinizing activity with the gluco- amylase and a-amylase enzymes produced.2,a The enzyme complex exhibited a strong debrartching activity, and no transglucosidase activity was detected,a Purified gluco- amylase from S. fibuliger produced up to 95% hydrolysis of soluble starch and amylopectin.2,a Maltose and malto- triose were hydrolysed less rapidly than higher molecular weight oligomers.3 S. fibuliger has been examined for the production of single cell protein by continuous culture. 4 Cell yields from a potato starch substrate were diminished by a limit dextrin which was not hydrolysed by the amylases of S fibuliger. Also, S. fibuliger has been used in continuous culture with Zymomonas mobilis for the production of ethanol, and limit dextrins in the form of oligosaccharides were produced, The purpose of this study was to investigate the kinetics of starch hydrolysis by the extracellular amylase complex produced by S. fibuliger by determining oligo- saccharide concentrations as functions of reaction parameters. Materials and methods Saccharomycopsis fibuliger was cultured batchwise in a Microferm MF 105 continuous fermenter (New Brunswick Scientific Co., USA) on potato extract medium as reported previously. 6 When the amylolytic activity reached 1.20 unitsm1-1 (one unit is equivalent to one micromole of D glucose released from Analar starch per minute), 2.3 litre *Approved by the Director of the Idaho Agricultural Experiment Station as Research Paper no. 8453. of culture was removed, centrifuged to remove cells, passed through a Seitz grade C5 clarifying filter (Republic Filter Corp., USA), and filter sterilized through a 0.3/am cellulose acetate membrane filter (Gelman Instrument Co., USA). The crude enzyme solution was stored at -60 C in 80 ml portions. Before use, enzyme was placed overnight in a freezer at -50C and then thawed at 50C. Reducing sugar was measured using 3,5-dinitrosalicylic acid (DNS) reagent.7 D-Glucose solutions were used to calibrate reducing sugar measurements. Enzyme substrates were Analar starch (BDH Chemicals Ltd, Poole, England) containing 22% amylose and 78% minor pectin, purified amylose (Sigma Chemical Co., St Louis, USA, type III), purified potato amylopectin (Sigma) and maltose (Sigma, grade 1). The substrates were dissolved in 0.02M sodium acetate buffer, pH 4.8, by boiling and stirring until clear. These were filtered through Whatman no. 4 filter paper (Whatman Ltd, USA) and autoclaved at 121°C for 30 min in culture bottles. All substrates containing amylose (amylose and Analar starch) were used within 2 h of preparation to minimize retrogradation. Carbohydrate analysis was done with a Beckman high performance liquid chromatography (h.p.l.c.) system con- sisting of a model ll0A pump, model 210 injection valve and model 156 refractive index (RI) detector. A Hewlett- Packard model 3390A integrator and a Supelcosil LC-NH2 aminopropylsilyl column (Supelco, Inc., USA) were used. The mobile phase consisted of acetonitrile-water (70:30). The flow rate was 1 ml rain -t at ambient temperature. D-Glucose, maltose, and maltotriose were used as standards. Initial rate experiments to determine the kinetic para- meters for the S. fibuliger amylase complex were performed in accordance with the design procedure of Cleland.a Amylase activity was determined by release of D-glucose from Analar starch and amylopectin as measured by DNS reagent.7'9 For these experiments, substrate solutions containing 1.125, 2.25, 4.5 and 9.0m gm l -I of Analar 0141 0229/84/120549 06 03.00 © 1984 Butterworth & Co. (Publishers) Ltd Enzyme Microb. Technol., 1984, vol. 6, December 549

Upload: micky-amekan

Post on 12-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 1/6

  inetics o f the am ylase sys tem of

a c h a r om c o p si s f i b u l i g er

E. Malone Steverson , Rog er A. Korus, W udneh Adm assu and Richard C. Heimsch~

D e p a r t m e n t o f C h e m i c a l E n g i n ee r in g a n d t D e p a r t m e n t o f B a c te r io l o g y a n d B io c h e m i s t ry , U n i v er si ty

o f Id a h o , M o s c o w , I d a h o 8 3 8 4 3 , U S A

(Rece ived 5 March 1984; rev i sed 12 September 1984)

The ex t race l lu lar amy lases produced by Saccharomycopsi s f ibu l ige r have been s tud ied wi th the

in ten t o f i den t i f y ing the k ine t i c mechani sm an d produc t d i s tr ibu t ion , and mode l l ing the produ c t ion

of D-g lucose dur ing s tarch hydro lys i s. H igh per formance l iqu id chroma tography was e f f ec t i ve ly used

to separate an d qu ant i fy the pr od uct ol igomers released, t~-Amylase rapidly hyd rolys ed the long

subs t ra te chains in to smal l e r o l igomers which became the subs t ra te for g lucoamylase in the produ c t ion

o f D-glucose. The form atio n o f a rate l imi t ing subs trate occurred late in the react ion. Glucoa mylase

and a-amylase ra te s were f i t t ed to Mich ae l i s -M enten mode l s wi th D-g lucose inh ib i t ion inc luded .

Keywords: Kinetics;Saccharomycopsis fibuliger;amylase; starch

Introduc t ion

A n e x t r a ce l l u la r a m y l o l y t i c e n z y m e sy s t e m i n Saccharomy-

c o p s is { E n d o m y c o p s i s f i b u l i g e r was f i r s t r epor t ed in 1944

a n d i t w a s d e t e r m i n e d t h a t t h e d o m i n a n t e n z y m e w a s

t~ -amylase ) Recent pape rs have repor t ed the presence of

saccha r i fy ing and dex t r in i z ing ac t iv i ty w i th the g luco-

a m y l a se a n d a - a m y l a se e n z y m e s p r o d u c e d .2 , a T h e e n z y m e

com plex exhib i t ed a s t rong debra r t ch ing ac t iv i ty , and no

t ransg lucos idase ac t iv i ty was de t ec t ed ,a Puri f ied gluco-

a m y l a se f r o m S. f ibul iger p r o d u c e d u p t o 9 5 % h y d r o l y s i s

of so lub le s t a rch and amylopec t in .2 ,a Mal tose and ma l to-

t r iose were hydro lysed l e ss rap id ly than h ighe r molecu la r

we ight o l igomers .3

S. f ibul iger h a s b e e n e x a m i n e d f o r th e p r o d u c t i o n o f

s ing le ce l l p ro t e in by cont inuous cu l tu re .4 Ce ll y i e lds f rom

a pota to s t a rch subs t ra t e were d imin i shed by a l imi t dex t r in

w h i c h w a s n o t h y d r o l y se d b y t h e a m y l a ses o f S fibuliger.

Also , S. f ibul iger h a s b e e n u se d i n c o n t i n u o u s c u l t u r e w i t h

Z y m o m o n a s m o b i l i s f o r t h e p r o d u c t i o n o f e t h a n o l , a n d

l imi t de x t r ins in the form o f o ligosaccha r ides were

prod uced , Th e purpose o f t h i s s tudy was to inves tiga t e

the k ine t i c s o f s t a rch hydro ly s i s by the ex t race l lu l a r amylase

c o m p l e x p r o d u c e d b y

S. f ibul iger

by de te rmin ing o l igo-

sa c c h ar i d e c o n c e n t r a t i o n s a s fu n c t i o n s o f r e a c t i o n

paramete rs .

Mater ia ls and m ethod s

Saccharomycops i s f i bu l iger was cu l tu red ba tchwise in a

M i c r o f e r m M F 1 0 5 c o n t i n u o u s f e r m e n t e r ( N e w B r u n sw i c k

S c i e n ti f ic C o . , U S A ) o n p o t a t o e x t r a c t m e d i u m a s r e p o r t e d

prev ious ly .6 Wh en the a my lo ly t i c ac t iv i ty reached 1 .20

u n i t sm 1 - 1 ( o n e u n i t is eq u i v a le n t to o n e m i c r o m o l e o f

D glucose re l eased f rom Ana la r s t a rch pe r minu te ) , 2 .3 l i tr e

*Approved by the D irector o f the Idaho Agricultural Experiment

Station as Research Paper no. 84 53.

of c u l tu re was rem oved , cen t r i fuged to rem ove ce ll s , passed

throu gh a Se i t z g rade C5 c l a r i fy ing f i l te r (Rep ubl i c F i l t e r

Corp . , U SA) , and f i l t e r s t e r il i zed th roug h a 0 .3 / am ce l lu lose

a c e t a t e m e m b r a n e f i l t e r ( G e l m a n I n s t r u m e n t C o . , U S A ) .

T h e c r u d e e n z y m e so lu t i o n w a s s t o r e d a t - 6 0 C i n 8 0 m l

por t ions . Before use , enzyme was p l aced ove rn igh t i n a

f r e e z e r a t - 5 0 C a n d t h e n t h a w e d a t 5 0 C .

Reduc ing suga r was measured us ing 3 ,5-d in i t rosa l i cy l i c

ac id (DNS) reagent .7 D-Glucose solut ions were used to

ca l ib ra t e reduc ing suga r measurement s . Enzyme subs t ra t e s

were Ana la r s t a rch (BDH Chemica l s L td , Poole , England)

conta in ing 22% am ylose and 78% min or pec t in , pur i f i ed

amylose (S igma Chemica l Co . , S t Loui s , USA, type I I I ) ,

p u r i f i e d p o t a t o a m y l o p e c t i n ( S i g m a ) a n d m a l t o se ( S i g m a ,

grade 1) . The subs t ra t e s were d i sso lved in 0 .02M sodium

ace ta t e buf fe r , pH 4 .8 , by bo i l ing and s t i r r ing un t i l c l ea r .

T h e se w e r e f i l t er e d t h r o u g h W h a t m a n n o . 4 f i l te r p a p e r

( W h a t m a n L t d , U S A ) a n d a u t o c l a v e d a t 1 2 1 ° C f o r 3 0 m i n

in cu l tu re bo t t l e s . A l l subs t ra t e s conta in ing amylose

(amy lose and Ana la r s t a rch) were used wi th in 2 h o f

prepa ra t ion to min imize re t rograda t ion .

C a r b o h y d r a t e a n a l y s i s w a s d o n e w i t h a B e c k m a n h i g h

p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h y ( h . p . l . c . ) sy s t e m c o n -

s is ti ng o f a mode l l l 0 A pum p, mode l 210 in j ec t ion va lve

a n d m o d e l 1 5 6 r e f r a c ti v e i n d e x ( R I ) d e t e c t o r . A H e w l e t t -

Packa rd mode l 3390A in t egra tor and a Supe lcos i l LC-NH 2

a m i n o p r o p y l s i l y l c o l u m n ( S u p e l c o , I n c . , U S A ) w e r e u se d .

T h e m o b i l e p h a se c o n s i s t e d o f a c e t o n i t r i l e - w a t e r ( 7 0 : 3 0 ) .

The f low ra t e was 1 ml ra in - t a t amb ien t t em pera tur e .

D-Glucose , ma l tose , an d m a l to t r iose w ere used a s s t anda rds .

In i t i a l r a t e expe r iment s t o de t e rmine the k ine t i c pa ra -

m e t e r s f o r t h e S. f ibul iger a m y l a se c o m p l e x w e re p e r f o r m e d

i n a c c o r d a n c e w i t h t h e d e s i g n p r o c e d u r e o f C l e l a n d .a

Amylase ac t iv i ty was de t e rmined by re l ease of D-g lucose

f r o m A n a l a r s t a r ch a n d a m y l o p e c t i n a s m e a su r e d b y D N S

reagent .7 '9 For these expe r iment s , subs t ra t e so lu t ions

c o n t a in i n g 1 . 1 25 , 2 . 2 5 , 4 . 5 a n d 9 . 0 m g m l - I o f A n a l a r

0141

0229 / 8 4 / 1 20549 06

0 3 . 0 0

© 1984 B u t te r wo rth & C o . (P u bl ish ers ) L td E n z ym e M i cr o b . T ec h n o l . , 198 4 , vo l . 6 , D ec em b er 5 49

Page 2: 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 2/6

Papers

s t a r c h o r a m y l o p e c t i n d i s s o l v e d i n 0 . 0 2 M s o d i u m a c e t a t e

b u f f e r , p H 4 . 8 , w e r e p r e p a r e d . A d d i t i o n a l t e s t s u b s t r a t e s

w e r e p r e p a r e d b y d i ss o lv i n g 2 . 0 a n d 4 . 0 m g D - g lu c o se

m 1- 1 in the above s ta r ch so lu t ions . The in i t i a l r a te expe r i -

m e n t s w e r e p e r f o r m e d b y a d d in g 0 .5 m l c r u d e e n z y m e

( 0 . 6 u n i t s ) t o 0 . 5 m l t e s t s u b s t r a t e a n d i n c u b a t i n g t h e

r e a c t i o n m i x t u r e f o r 5 . 0 m i n a t 3 2 C . A f t e r t h e 5 r a i n

i n c u b a t io n , e n z y m a t i c a c t iv i t y w a s s t o p p e d b y a d d i n g

1 . 0 m l D N S r e a g e n t t o t h e r e a c t i o n t u b e s . W e i g h t g a i n

b y w a t e r a d d i t i o n d u r i n g s t a r c h h y d r o l y s i s w a s i n c l u d e d

in r a te ca lcu la t ions . T im e cour se r eac t ions wer e ca r r i ed

out a t 32°C in s te r il i zed 100 m l f l a sks wi th in i t ia l enzy m e

c o n c e n t r a t i o n s o f 0 . 6 2 u n i ts m l - ~. T h e i n i ti a l s t a r c h c o n -

c e n t r a t i o n s w e r e d e t e r m i n e d b y a c id h y d r o l y s i s ) °

e s u l t s a n d d i s c u s s i o n

a Am ylase activity

S i n ce t h e a m y l o l y t i c sy s t e m p r o d u c e d b y S . f i b u l i g e r

c o n t a i n s b o t h a - a m y l a s e a n d g l u c o a m y l a s e , i n i ti a l r a t e

e x p e r i m e n t s t h a t e s t i m a t e t h e k i n e t i c p a r a m e t e r s f o r e a c h

e n z y m e w e r e d e s ig n e d w h e r e t h e r e a c t i o n r a t e i s g i v e n b y :

d P v m S

- - 1 )

d t S + K i n ( 1 + P / K i )

w h e r e : P = p r o d u c t ( r e d u c i n g s u g ar o r D - g l uc o s e, m g m l - 1 ) ,

vm = m a x i m u m r a te ( m g p r o d u c t m 1 - 1 m i n - 1 ) , S = s t a rc h

c o n c e n tr a ti o n ( m g m l - ~ ) , K m = M i c h a e l i s c o n s ta n t ( m g

m l - ~ ) a n d K i = i n h i b i t o r c o n s t a n t ( m g m l - 1 ) .

a - A m y l a s e i s k n o w n t o h y d r o l y s e t h e l i n ea r p o r t i o n s o f

s u b s t r a te c h a i n s a t r a n d o m w i t h t h e f o r m a t i o n o f p o l y -

s a c c h a r i d e s w i t h v a r y i n g d e g r e e s o f p o l y m e r i z a t i o n .7 T h i s

a c t i o n i n c re a s e s t h e n u m b e r o f a v a il a b le r e d u c in g e n d s ,

and the D NS p r oce dur e i s we l l su i t ed f o r in i t ia l k ine t ic

r a t e s t u d ie s f o r a - a m y l a s e , w A m y l a s e p r o d u c e s D - g lu co se

o n l y w h e n h y d r o l y s i n g s h o r t c h a i n o l i g o m e r s an d h a s t h e

h ighes t a f f in i ty f o r long cha ins . 7 ' 11 Ther e f or e , D- g lucose

p r o d u c t i o n b y a - a m y l a s e o n l y o c c u r s l a t e i n t h e h y d r o l y s i s

w h e n s m a l l o l i g o m e r s d o m i n a t e . P r e l i m i n a r y e x p e r i m e n t s

o n t h e h y d r o l y s i s o f s t a r c h b y t h e e n z y m e s p r o d u c e d b y

S . f i b u l i g e r showed a l inea r inc r ease in r educ ing power f o r

a p e r i o d o f ~ 1 0 m i n o n A n a l ar s t a rc h c o n c e n t r a t io n s u p

to 25 m g m l - ~. A lso , in the f i r s t 5 m in , l e s s tha n 0 . 5 m g

D- glucose m l - ~ was p r odu ced . S ince D- g lucose is the o n ly

p r o d u c t o f s t a r c h h y d r o l y s i s b y g l u c o a m y l a s e , t h e c h a n g e

i n t h e r e d u c i n g p o w e r o f t h e s u b s t r a t e i n t h e f ir s t 5 m i n o f

h y d r o l y s i s i s a l m o s t e n t i re l y d u e t o t h e a c t i o n o f a - a m y l a s e .

E s t i m a t e s o f K i n , vm a n d K i w e r e o b t a i n e d b y n o n - l i n e a r

" u

/

/ ®

. /

/

, , i J t i i , I I

- o ~ a - o . a - o . 4 - 0 . 2 o

o 2 0 4

o . a o . a i , o

I / S

F i g u r e 1 D o u b l e r e c i p ro c a l p l o t o f

S f i b u l i g e r

a m y l a s e i n i t i a l r a t e

d a t a f o r : o , A n a l a r s t a r c h ; a n d o , A n a l a r s t a r ch s u p p l e m e n t e d w i t h

2 . 0 g I - ~ a n d z x, 4 . 0 g I - ~ D - g l u c o s e . ( C i r c l e d p o i n t s w e r e n o t i n c l u d e d

i n d a t a a n a l y s i s )

6

I

4

2

- 0 . 4 - 0 . 2 0

/

/

/ ®

/

/

J

s~j

. / /

I ®

I Y

I I I

o l a 0 : 4 o , e o l e I o

I / S

F i g u r e 2 D o u b l e r e c i p r o c a l p l o t o f

S f i b u / i g e r

a m y l a s e i n i t i a l r a t e

d a t a f o r : o , a m y l o p e c t i n ; a n d D , a m y l o p e c t i n s u p p l e m e n t e d w i t h

2 . 0 g I - = a n d A , 4 . 0 g I - ~ D - g l u c o s e . ( C i r c l e d p o i n t s w e r e n o t i n c l u d e d

i n d a t a a n a l y s i s )

T a b l e 1 K i n e t i c p a r a m e t e r s o f a - a m y l a s e f r o m

S f i b u l i g e r

l ) m

( m g r e d u c i n g K i

K m s u g a r ( r a g D - g l u c o s e

S u b s t r a t e ( r a g m 1 - 1 ) m 1 - 1 m i n - 1 ) m 1 - 1 )

A n a l a r s t a r c h 1 . 3 7 ± 0 . 3 9 a 1 . 2 0 + 0 . 1 0 a 1 . 8 9 + - 0 . 5 2 a

A m y l o s e 2 . 4 2 ± 0 . 4 9 a 1 . 4 0 ± 0 . 3 0 a -

A m y l o p e c t i n 2 . 5 8 -+ 0 . 6 4 0 . 9 9 + 0 . 1 0 a 1 . 7 8 -+ 0 . 2 8 a

a 9 5 c o n f i d en c e interval

T a b l e 2 K i n e t i c p a r a m e t e r s o f g l u c o a m y l a s e from

S. fibu/iger

V m

K m r a g D - g l u c o s e

S u b s t r a t e ( r a g m l - ] ) m 1 - 1 r n i n - t )

A n a l a r s t a rc h 0 . 3 4 ± 0 . 1 1 a 0 . 0 1 9 + 0 . 0 0 1 a

A m y l o s e 0 . 4 9 ± 0 . 2 0 a 0 . 0 1 6 ± 0 . 0 0 2 a

A m y l o p e c t i n 0 . 3 6 ± 0 . 1 8 a 0 . 0 1 6 ± 0 . 0 0 2 a

M a l t o s e 0 . 8 0 -+ 0 . 1 6 a 0 . 0 1 7 ± 0 . 0 0 1 a

a 9 5 c o n f i d e n c e i n t e rv a l

r egr es s ion of in i t i a l r a te da ta

F i g u r e s 1

a n d 2 ) a n d a r e

s h o w n i n T a b l e 1 . D a t a p o i n t s f o r S = 1 .1 m g m 1 - 1 w e r e

n o t i n c l u d e d i n p a r a m e t e r e s t i m a t i o n s f o r K i , s o t h e K i

e s t i m a t e s a r e o n l y v a l i d f o r S ~ 2 m g m 1 -1 .

Glucoamylase

P r e l i m i n a r y e x p e r i m e n t s s t u d y i n g D - g lu c o se p r o d u c t i o n

w i t h t i m e a t i n it i al s u b s t r a t e c o n c e n t r a t i o n s o f 2 . 2 5 m g m1 -1

i n d i c a t e d a l i n e a r i n c r ea s e i n D -g l u co s e f o r 1 2 0 r a i n b e f o r e

t h e r a t e s t a r t e d t o d e c l in e . S i n c e g l u c o a m y l a s e p r o d u c e s

D- g lucose a s i t s so le p r oduc t in s ta r ch hydr o lys i s and

a - a m y l a s e o n l y p r o d u c e s D - g lu c o se l a t e i n t h e r e a c t i o n ,

t h i s p r o d u c t i o n i s a l m o s t e n t i r e l y d u e t o g l u c o a m y l a s e .

As a r e su l t , in i ti a l r a te s tud ies wher e D- g lucose p r o du c t io n

r a t e w a s m e a s u r e d c a n b e u s e d t o e s t i m a t e K m a n d u m f o r

g l u c o a m y l a s e T a b l e 2 ) .

T h e v a l u e e s t i m a t e d f o r K m o n t h e s u b s t r a t e m a l t o s e

i n d i c a te s t h a t t h e a f f i n i t y o f g l u c o a m y l a s e f o r t h i s s u b s t r a te

i s l e s s than f o r the s ta r ch subs t r a te s . These and o the r

r e su l t s 12 '13 ind ica te a d ec r eased a f f in i ty o f g luco am y lase

f o r t h e s h o r t e r o l i g o m e r s . O u r d e t e r m i n a t i o n s o f K m f o r

s t a r c h s u b s t r a te s a r e i n c lo s e a g r e e m e n t w i t h d a t a o n

5 5 0 E n z y m e M i c r o b . T e c h n o l . , 1 9 8 4 , v o l , 6 , D e c e m b e r

Page 3: 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 3/6

6()0 860 10100 12100 14'00

T i m e ( M i n u t e s )

2 . 1 -

1 , 8 -

1 . 5 -

1.2-

o.g-

o.5-

0.3-

o.o-

o 2 6 0 4 ~ o

200 4( )0

600 800 10 '0 0 12w00 1400

T i m e ( M i n u t e s )

m

0

m

0.7

0.6.

0,5 '

0.4.

0.3.

0.2.

0.1,

0.0.

0

Am ylase system k/net ics: E M Steverson et a l

E

CIJ

E

c

:o

@

¢ 4

O

0

_=

9

¢ P

e.

0

0 .7 -

0.6

0 ,5 -

0.4-

CO

(1. 0.3-

0.2-

i

0.1-

0.0-

0

0,25 -

0.20 -

0.15,

14")

a .

0 O . l O

0 . 0 5

0.00,

2 0 0 4 ~ o e o o 8 0 0 i o o o 1 2 o o 1 4 o o

T i m e ( M i n u t e s )

0 2( )0 4; 0 5( )0 800 10 '00 12 '00 14 '00

T i m e ( M i n u t e s )

a .

C)

0,25-

0.20-

¢O

O .

O

0.15-

o -ii

0 O0 ~ - - -- : •

i . - i i

0 200 460 600 800 1000

T i m e ( M i n u t e s )

1 2 o o 1 4 o o

0.125,

0.100.

0.075.

0.050.

0.025,

0.00.

0

2 6 0 4 ~ 0 5 6 0 s 6 0 1 0 0 0 I i 0 0 1 4 0 0

T l me M l n u tea )

2.5-

2,0-

¢)

_=

¢0 1.5-

O~

._c

O 1,0-

1=

a)

n- o.5-

0 ,0 .

0 200 4 ( )0 c oo 8c 10 10 '00 12 '0o 14 '00

T i m e ( M i n u t e s )

F i g u r e 3 C o n c e n t r a t i o n s o f o l i g o m e r s a n d r e d u c i n g s u g ar d u r in g t h e h y d r o l y s i s o f a m y l o s e w i t h a n in i t i a l c o n c e n t r a t i o n o f 2 . 5 m g m l - j b y

t h e S . f i b u l i g e r a m y l a s e s y s t e m a t p H 4 . 8 a n d 3 2 ° C

E n z y m e M i c r o b . T e c h n o l . , 19 8 4 , v o h 6 , D e c e m b e r 5 5 1

Page 4: 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 4/6

  a p e r s

0,) 3'

0

0

:~ 2

0 2 ~ 0 4 ~ 0 3 ~ 0 1 ; 0 0 1 = 0 0 1 4 .0 0

T i m e M i n u t e s )

1.0-

o .8 -

( I) 0.6-

0

. . ,

0 . 4 -

0.2 -

0 .0 -

0

2 ~ o 4 6 o 5 ~ o 8 ~ o l O O O

1 = o o 1 4 o o

T i m e ( M i n u t e s )

E

E

v

C

0

o

0

U

c

0

(,,3

0,8 ¸

0 . 8

0.7

0 . 6

03 0 .5 -

O.

0 .4 -

0.3 -

0 .2 -

0 .1 -

0 .0 .

0.21

0 . 1 8

0 , 1 5

0 . 1 2

u3

a .

o.oo

0.05

0.03

0 .00

2 ~ 0 4 ~ 0 8 ~ 0 8 ~ 0 1 0 . 0 0

1 = 0 0 1 4 0 0

T i m e ( M i n u t e s )

200 4 ( )0 5 ( )0 800 10 '0 0 12 '0 0 14 '00

Time Minutes)

2 ~ o 4 ~ o 5 ; o 8 ; 0 lO O O 1 2 o o 1 4 o o

T i m e ( M i n u t e s )

0 .4

0 . 3 -

(1. 0,2-

£3

0 . 1 -

0.0 -

; 2 ;0 4 ;0 8 ;0 8 0 0 1 0 00 1 = ' 0 0 1 2 00

T i m e ( M i n u t e s )

0 .125

0 .100-

(D 0.075

a .

£3

0.050-

0 .025-

0 .0 0 0 .

a .

C~

0.125

0 . 1 0 0

0.075

0.050

0 .0 2 5

0 .0 0 0

5 ¸

m 4

0~

>

O) 3.

(3

0 2,

n -

1

2 ~ 0 4 ~ 0 8 6 0 8 ~ 0 1 0 0 0 1 2 0 0 1 4 0 0 0 2 ~ 0 , ,, ,~ 0 5 ~ 0 e ~ o 1 0 ~ 0 l = o o 1 4 ~ 0

T i m e ( M i n u t e s ) T i m e ( M i n u t e e )

F i g u r e 4 C o n c e n t r a t i o n s o f o l i g o m e r s a n d r e d u c i n g s u g a r d u r i n g t h e h y d r o l y s i s o f a m y l o p e c t i n w i t h a n in i t ia l c o n c e n t r a t i o n o f 5 . 9 m g m l -~ b y

t h e S . f i u l i g e r a m y l a s e s y s te m a t p H 4 . 8 a n d 3 2 ° C

5 5 2 E n z y m e M i c r o b . T e c h n o l . , 1 9 8 4 , v o l . 6 , D e c e m b e r

Page 5: 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 5/6

su b s t r a t e s w i t h d e g r e e s o f g l u c o se p o l y m e r i z a t i o n f r o m 3

to 10 .12 The va lues of Km repo r t ed for so lub le s t a rch a re

cons ide rab ly low er , a Thi s i nd ica t e s t h a t t he subs t ra t e fo r

g lucoamylase ac t iv i ty in our expe r iment s was shor t cha in

o l ig o m e r s w i t h d e g r e e o f p o l y m e r i z a t i o n ( D P ) < 1 0 , r a t h e r

than long cha in s t a rch molecu les . Our s tud ies were on an

e n z y m e c o m p l e x c o n t a i n i n g b o t h a - a m y l a se a n d g l u c o -

amylase , whereas o the r re su l ts 12 '13 re f l ec t t he ac t ion of

pur i f i ed g lucoamylase . The ve ry rap id and ea r ly ac t ion of

a - a m y l ase r e d u c e d t h e l o n g c h a in s o f a m y l a se a n d a m y l o -

pec t in in to much shor t e r o l igomers . These shor t o l igomers

w e r e d o m i n a n t e a r ly i n t h e h y d r o l y s i s an d w e r e t h e p r i m a r y

subs t ra t e s fo r g lucoamylase . T he K m va lues repor t ed he re

for s t a rch subs t ra t e s a re mo re ind ica tive of t he a f f in i ty o f

g lucoamylase for sho r t cha in o l igomers .

The ~ 'rn va lues e s t ima ted on the va r ious subs t ra t e s

ind ica t e tha t t he ra t e o f D-g lucose prod uc t io n is i ndepen-

den t o f t he subs t ra t e . Thi s cont ra s t s w i th prev ious re su l ts

which showed a pos i t i ve cor re l a t ion be tween reac t ion ra t e

a n d t h e d e g r ee o f p o l y m e r i z a t i o n o f t h e su b s t r a te ,a'12-14

T h e l a ck o f a g r e e m e n t p r o b a b l y r e f le c t s t h e d i f f e r e n c e

b e t w e e n h y d r o l y s i s b y p u r i f i e d g l u c o a m y l a se a n d h y d r o -

l y si s b y a n a m y l o l y t i c c o m p l e x c o n t a i n i n g b o t h g l u c o am y l a se

and a -amylase .

T i m e c o u r s e r e a c ti o n s

Analyses of t ime course samples us ing h .p . l . c , p rov ided

p r o d u c t d i s t r i b u t i o n p r o f i l e s o f s t a r c h h y d r o l y sa t e s

versus

t ime . The hydro lys i s o f so lub le s t a rch amylose and amylo-

p e c t i n b y t h e a m y l o l y t i c sy s t e m o f

S. f ibuliger

was s tud ied

b y f o l lo w i n g t h e r e l a ti v e a m o u n t s o f t h e o l ig o m e r s d e t e c t e d

( D P 1 - 8 ) a n d t h e r e d u c in g p o w e r f o r 2 4 h .

A p lo t o f reduc ing va lue and re l a tive am oun t s o f D-g lucose

and o l igomers

versus

t i m e f o r t h e h y d r o l y s i s o f a m y l a se i s

sh o w n i n

Figure 3.

A f t e r 2 4 h , 7 6 % o f t h e t o t a l su b s t r a te

had been hydro lysed to D-g lucose , a l lowing for t he we ight

g a in d u r i n g h y d r o l y s i s b y t h e a d d i t i o n o f w a t e r . T h e r e d u c -

ing va lue a f t e r 24 h was 88% of the to t a l r edu c ing va lue

( o n a c id h y d r o l y s e d su b s t ra t e ), i n d i ca t in g t h a t - 8 8 % o f

the av ai lable a-( 1,4)-gluco sidic linkages had b een h yd roly sed .

A p l o t o f r e d u c i n g v a l u e s a n d t h e r e l a t i v e a m o u n t s o f

D-glucose and ol igomers versus t i m e f o r t h e h y d r o l y s i s o f

a m y l o p e c t i n i s sh o w n i n

Figure 4.

T h e c o n c e n t r a t i o n s o f

D P 4 , D P 5 , D P 6 a n d D P 7 w e n t t h r o u g h a n e a r l y m a x i -

m u m , d e c l i n e d a n d t h e n i n c re a se d. T h e c o n c e n t r a t i o n s o f

DP 6 and DP 7 dec reased to sma ll am oun t s a f t e r 24 h , bu t

t h e c o n c e n t r a t i o n s o f D P 4 a n d D P 5 r e m a i n e d h ig h .

A p p r o x i m a t e l y 7 0 % o f t h e t o t a l su b s t r a te h a d b e e n h y d r o -

lysed to D-g lucose a f t e r 2 4 h of hydro lys i s . The reduc ing

va lue a t 24 h in to the rea c t ion ind ica t ed th a t 83% of the

a - (1 ,4) l i nkages ava il ab le had been h ydro lysed .

The produc t d i s t r ibu t ions of t he th ree d i f fe ren t sub-

s t ra t e s a l l showed the rap id form a t ion o f smal l cha in

o l igomers ea r ly in the hydro lys i s which i s cha rac t e r i s t i c

o f t h e a c t i o n o f a - a m y l a se . T h e se o l ig o m e r s b e c a m e t h e

subs t ra t e fo r t he g lucoamylase enzym e presen t i n the

a m y l o l y t i c sy s t e m . L a t e r i n t h e r e a c t i o n t h e d o m i n a n t

o l i g o m e r s w e r e m a l t o se a n d m a l t o t r i o se , w h i c h w e r e

h y d r o l y se d s l o w ly d u e t o t h e l o w e r a f f i n i ty o f g l u c o a m y l a se

for t hese shor t o l igomers , a -Amylase , when work ing on

branched subs t ra t e s , f i r s t hydro lysed the pe r iphe ra l l i nea r

cha ins and then the l i nea r sec t ions be tween branch po in t s .

T h e p r o d u c t s o f t h e h y d r o l y s i s b e t w e e n b r a n c h p o i n t s

were shor t o l igomers w i th an a - ( l ,6 ) l i nkage a t t he non-

reduc ing end ( see

Figure 5).

Since g lucoamylase was an exo-

e n z y m e t h a t w o r k e d o n l y f r o m t h e n o n - r e d u c i n g e n d , t h e

A m y l a s e s y s t e m k i n e t i c s : E 114 S t e v e r s o n e t a l

Par t i a l l y degrade d • _ -~ = - - - - e e - - = - - _ - = -=

branched substrate

a - A m y l a s e h y d r o ly s e s ( I - 4 ) li n k a g e • . - ¢ e e +

of chain between bronchpoints - ¢ e = _ _ _ e -=

l g l u c ~ m y l s e

e

Ra te l im i t i ng de x t r i n s ~ ~ . ~ . - - + ~=- = . - - ÷ 14o -

• Glucoseunit

- - ( I - 4 ) Linkage

( I - 6 ) Linkage

e Reducing end

F i g u r e 5 S c h e m a t i c r e p r e s e n t a t i o n o f t h e f o r m a t i o n o f a r a te

l i m i t i n g s u b s t r a te d u r i n g t h e h y d r o l y s i s o f a m y l o p e c t i n

T a b l e 3 K i n e t i c p a r a m e t e r s f o r D g l u c o s e p r o d u c t i o n

k o

k o pb ( r a g m l i

S u b s t r a t e ( m i n - 1) ( m g / m l ) ( m g m l - l ) m i n - 1)

A n a l a r 0 . 0 0 1 9 - + 0 . 0 0 0 1 a 1 0 9 . 2 0 . 0 1 9 0

s t a r c h

A m y l a s e 0 . 0 0 9 8 ~ 0 . 0 0 0 6 a 2 . 5 2 .1 0 . 0 2 4 5

A m y l o - 0 . 0 0 3 1 + 0 . 0 0 0 2 a 5 . 9 4 . 5 0 . 0 1 8 3

p e c t i n

a 9 5 % c o n f i d e n c e i n t e rv a l

b D - G l u c o s e c o n c e n t r a t i o n a f t e r 2 4 h

a - ( l , 4 ) l i n k a g e s i n t h e se p r o d u c t s w e r e n o t i m m e d i a t e l y

avai lab le for hydro lys i s . The ra t e o f hyd ro lys i s o f a - ( l ,6 )

l inkages b y g lucoamylase was ve ry low re l a t ive to th e ra t e

on a - ( l ,4 ) l i nkages a so these p rodu c t s were ra t e limi t ing

subs t ra t e s , and th ey remained in the hydro lysa t e un t i l t he i r

a - ( l ,6 ) l i nkage was hy dro ly sed . Seve ra l work e rs have ind i-

ca t ed the presence of limi t dex t r ins when

S. f ibuliger

a m y l a se s w e r e u se d f o r s t a r ch h y d r o l y s i s in c o n t i n u o u s

processes , ' 6 ' l s The DP 4 , DP 5 and DP 6 o l igomers f rom

t h e h y d r o l y s i s o f a m y l o p e c t i n c o r r e sp o n d e d t o t h e se r a t e

l imi t ing dextr ins.

G lucot ransfe rase ac t iv i ty was obse rved dur ing the hyd ro-

lys i s o f ma l tose . Wi th an in i t i a l ma l tose concent ra t ion of

2 0 m g m l - ~, m a l t o t r i o se ( D P 3 ) c o n c e n t r a t i o n r e a c h e d

1 . 0 m g m 1 - 1 w h e n m a l t o se a n d g lu c o se c o n c e n t r a t i o n s

w e r e a p p r o x i m a t e l y 9 . 5 m g m 1 -1 . T h e m a l t o t r i o se c o n c e n -

t ra t ion then dec l ined s lowly wi th t ime .

T i m e c o u r s e m o d e l l i n g o l D - g l u c o s e p r o d u c t i o n

Time ~ourse d a t a fo r D-g lucose produ c t ion

Figures 3

and 4) were f i t t ed to equa t ion (1) and to the f i r s t -o rde r

k ine t i c ra t e express ion

d P /d t = k S

(2)

us ing non- l inea r regress ion of t he in t egra t ed equa t ions for

pa ramete r e s t ima t ions . The in i t i a l r a t e expe r iment s on the

f o u r su b s t r a te s t e s t e d sh o w e d t h a t t h e p r o d u c t i o n o f

D-glucose f rom s t a rch by the am ylo ly t i c sys t em of

S. f ibuliger

w a s w e l l d e sc r i b e d b y M i c h a e l i s - M e n t e n

kine t i c s . However , equa t ion (1) d id no t g ive a good f i t

w i t h t i m e c o u r se d a t a f o r a t h r e e p a r a m e t e r m o d e l . T h e

D-glucose da t a were be t t e r mo de l l ed by e qua t io n (2) .

D u r i n g t h e t i m e c o u r se e x p e r i m e n t s , e n z y m e a c t i v i t y

w a s m e a su r e d a s a f u n c t i o n o f t i m e o n e n z y m e su b j e c te d

to s imi l a r condi t ions in a cont ro l r eac tor (enzyme wi thout

subs t ra t e ). Th e ac t iv i ty o f t he enz ym e dec reased wi th a

f i r s t -o rde r deca y cons t an t o f 2 .9 × 10 -4 min -1 . Thi s ac t iv i ty

E n z y m e M i c r o b . T e c h n o l . 1 9 8 4 v o l . 6 D e c e m b e r 5 5 3

Page 6: 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

7/23/2019 1984_(Steverson) Kinetics of the Amylase System of Saccharomycopsis Fibuliger

http://slidepdf.com/reader/full/1984steverson-kinetics-of-the-amylase-system-of-saccharomycopsis-fibuliger 6/6

  apers

c h a n g e w a s n o t i n c l u d e d i n d e t e r m i n a t i o n s o f t h e f i r s t-

o r d e r r a t e c o n s t a n t s , k . V a l u e s d e t e r m i n e d f o r k a r e s h o w n

in Table 3. T h e i n i t i al r a t e s o f s t a r c h h y d r o l y s i s , kS o,

a r e s i m i l ar t o t h e m a x i m a l r a t e s, v m , d e t e r m i n e d f r o m

i n i t i a l r a t e d a t a Table 2).

onc lu s i on s

T h e h y d r o l y s i s o f st a r c h b y t h e e x t r a c e l l u l a r e n z y m e s

p r o d u c e d b y S. fibuliger f o l l o w e d M i c h a e l i s - M e n t e n

k i n e t i c s w i t h o - g l u c o s e i n h i b i t i o n , a n d h . p . l . c , w a s a n

e x c e l l e n t a n a l y t i c a l te c h n i q u e f o r s t u d y i n g t h e s e r e a c t i o n s .

T h e a c t i o n o f a - a m y l a se w a s v e r y r a p i d a nd d o m i n a n t i n

t h e e a r l y s t a g e s o f h y d r o l y s i s , p r o d u c i n g s h o r t o l i g o m e r s

w h i c h b e c a m e t h e s u b s t r a t e f o r g h c o a m y l a s e . R a t e li m i t -

i n g d e x t r in s w e r e p r o d u c e d w h e n b r a n c h e d s u b s t ra t e s

w e r e h y d r o l y s e d . T h e s e d e x t r i n s w e r e h y d r o l y s e d v e r y

s l o w l y p r o b a b l y d u e t o t h e p r e s e n c e o f a n o r - 1 ,6 ) l i n k a g e

o n t h e i r n o n - r e d u c i n g e n d .

cknowledgements

T h i s m a t e r i a l i s b a s e d u p o n w o r k s u p p o r t e d b y t h e

N a t i o n a l S c i e n c e F o u n d a t i o n u n d e r G r a n t n o . C P E - 8 1 0 -

8 1 0 4 7 0 9 .

Re f e r enc e s

1 Wickerham, L . J . Lockwood, L . B. , Pe t t i john , O. G. and

Ward , G. E . Z Bacteriol. 1 94 4 , 4 8 , 4 1 3 -4 2 7

2 Ueda, S. and Saha, B. C. Enzyme Microb. Technol. 1983, 5,

1 9 6 - 1 9 8

3 Sukhumavasi, J . , Ka to, K. and Harada, T. J .

Ferment. Technol.

1 9 7 5 , 5 3 , 5 5 9 - 5 6 5

4 Adm assu, W., Koru s, R. A. and Heimsch, R. C.

Biotechnol.

Bioeng. 1983 , 25 , 2641-2651

5 Dostfilik, M. and H ~iggstr/Sm, M. H. Eur. J. Appl. Microbiol.

Biotechnol. 1 9 8 3 , 1 7 , 2 6 9 -2 7 4

6 Adm assu, W., Koru s, R. A., Heimsch, R. C. and Lemm el, S. A.

Biotechnol. Bioeng.

1981 , 23 , 2361-2371

7 Bernfield , P. Adv. Enzymol. 1 9 5 1 , 1 2 , 3 7 9 - 4 2 7

8 Cle land , W. W.Adv.

Enzymol.

1967 , 29 , 1 -32

9 Beta Amylase, Worth ing ton Enzyme Manua l , Worth ing ton

Biochemica ls , F reeh o ld , NJ , 1977, pp . 177 -17 8

10 Pitt , S. J . and Whelan, W. J. J. Sci. Food Agric. 1951, 2,

2 2 4 - 2 2 8

11 Henriksn~s, H. and LOvgren, T.

Biotechnol. Bioeng.

1978, 20,

1 3 0 3 - 1 3 0 7

12 Lee, D. D., Lee, G. K., ReiUy, P. J . and Lee, Y. Y.

Biotechnol.

Bioeng. 1980 , 22 , 1 -17

13 Kus unoki, K. , Kawak ami, K., Shiraishi, F. , Ka to, K. and Kai,

M. Biotechnol. Bioeng. 1982 , 24 , 347-354

14 Ono , S. , Hirom i, K. and Zinbo , M. J . Biochem. 1964, 55,

3 1 5 - 3 2 0

15 Lem mel, S. A., Heimsch, R. C. and Korus, R. A. Appl. Environ.

Microbiol.

1980 , 39 , 387-393

5 5 4 E n z y m e M i c r o b . T e c h n o l . 1 9 8 4 v o l . 6 D e c e m b e r