1d numerical approach to model the flow over a piano key weir (pkw).pdf

Upload: nacera-benslimane

Post on 02-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    1/11

    http://www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A

    PIANO KEY WEIR (PKW)

    S. Erpicum, O.Machiels, P. Archambeau, B. Dewals*, M. Pirotton

    Research unit HACH, Department ArGEnCo, University of Liege (Belgium)*F.R.S.-FNRS Belgian National Fund for Scientific Research

    email: [email protected]

    4th June 2010

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    2/11

    http://www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Beside physical modeling(EDF, EPFL, Ulg...) and 3D numerical modeling

    (EDF), attend to developed a simplified model

    Piano Key Weir (PKW) = a new type of free weir first time devised by Lemprire

    (2001) to improve the design of a labyrinth weir

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    3/11

    http://www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Main goals of the simplified model:

    - to help in identify the most relevant geometrical parameters regarding release capacity

    - to assess their pertinent range of variation

    Modeling of the inlet and the outlet as 1D channels

    - possibly interacting by exchange of mass and momentum along the lateral crest,

    - linked by an upstream reservoir.

    Inlet bottom

    Outlet bottom

    Lateral crestPossible exchange of

    mass and momentum

    Downstream

    steep slope

    channels

    Usptreamreservoir

    B

    P

    c d

    Flow

    Plane view

    Elevation

    x

    xoutlet

    xinlet

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    4/11

    http://www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Cross-section averaged equations of mass and momentum conservation

    Assumption : velocities normal to the main flow direction

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    5/11

    http://www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Bottom slope term discretized in agreement with the FVS (water at rest)

    Bottom friction with Mannings formula and modified hydraulic radius

    Exchange discharge on the basis of a simple water depth difference over the crest

    level and a discharge coefficient

    1 1cos cos2

    i b bi i ib

    i

    z zzg gx x

    2

    b

    4 3

    xgn u u

    R

    min( , )s bR

    L h z z

    , ,max 0, max 0,b in in s b out out sH z h z z h z

    32 sgnlq g H H

    ,l in l q q

    ,l out l q q

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    6/11

    http://www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Reservoir = two special twin 1D finite volumes, with distinct discharges but a single cross

    section value

    Upstream global discharge = only boundary condition (Fr>1 downstreamno BC)

    Explicit RK time integration scheme with CFL number condition

    Reservoir 1 2 N

    Outlet

    Inlet

    Lateral crestQUp QR,out

    Finite volume surface

    Finite volume node

    x x

    QR,in

    RQout,1

    Qin,1

    out,1

    in,1

    Solver written in Visual Basic (Excel VBA environment)

    Convergence criteria regarding discharge value (transient flow computation)

    Typical time step of 5 mm, for standard PKW scale model 50-cm long and 10-cm wide less

    than 2 min of computation time on a standard desktop

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    7/11

    http:/

    /www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model Conclusions

    Numerical model: 5mm space step

    =.385 (thick crest)

    n=.011s/m1/3 (PVC)

    =1 (full exchange of mass and momentum)

    Outlet axis inclination=49.7

    q=.055m/s to .55m/s with step of .001m/s

    Applications

    Comparison of the numerical results with experimental data from scale model studies

    Scale model (Machiels et al., 2009): P=.525m, B=.63m

    c=d=.18m

    a=b=.18m

    q=.013m/s to .47m/s

    32w

    T

    QC

    W gH

    Comparison of non dimensional release efficiency

    curve (Cw-H/P)

    2T

    a bwith W n

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    8/11http:/

    /www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Comparison of the numerical results with experimental data from scale model studies

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Cw

    H/P

    Experimental results

    Numerical results

    Numerical results +/-10%

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    9/11http:/

    /www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction Modeling principles Math/num model ConclusionsApplications

    Comparison of the numerical results with experimental data from scale model studies

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0.000

    0.005

    0.010

    0.015

    0.020

    0 0.2 0.4 0.6 0.8 1

    Fr[-]

    Q[m/s

    ]

    x [m]

    Q - Inlet

    Q - Outlet

    Fr - Inlet

    Fr - Outlet

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.2 0.4 0.6 0.8 1

    Elevation[m]

    x [m]

    Channels bottom

    Free surface level in the inlet

    Free surface level in the outlet

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0 0.2 0.4 0.6 0.8 1

    Fr[-]

    Q[m/s]

    x [m]

    Q - Inlet

    Q - Outlet

    Fr - Inlet

    Fr - Outlet

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.2 0.4 0.6 0.8 1

    Elevation[m]

    x [m]

    Channels bottom

    Free surface level in the inlet

    Free surface level in the outlet

    q=.50m/s

    q=.11m/s

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    10/11http:/

    /www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction

    Comparison with experimental data shows a 10% accuracy to predict the release capacity of

    a PKW geometry

    Development of a simplified numerical model of the flow over a PKW

    using a separated 1D modeling of the inlet and the outlet

    with a common upstream reservoir

    and possible interaction along the lateral crest (exchange of mass and momentum)

    Physical modeling results

    Numerical models ValidationLinking strategy ConclusionsApplications

  • 7/27/2019 1D NUMERICAL APPROACH TO MODEL THE FLOW OVER A PIANO KEY WEIR (PKW).pdf

    11/11http:/

    /www.hach.u

    lg.ac.be

    Sophia Antipolis, France

    2 - 4 juin / 2 4 June

    Introduction

    Comparison with other

    experimental data (EDF,

    Univ Biskra)

    Modification of the reservoir flow model (energy conservation instead of momentum)

    Modification of the outlet space step (exchange with the inlet in terms of free surface level

    difference)

    =0 in the outlet (no gain in momentum),=1 in the inlet (full lost of momentum)

    Additional developments (to be published soon)

    Numerical models ValidationLinking strategy ConclusionsApplications

    0.5

    1.0

    1.5

    2.0

    2.5

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    C

    w

    Exp 1 (ULg-HACH, 2009) Exp 2 (EDF-LNHE, 2003)

    Exp 3 (Univ Biskra, 2006) Exp 4 (ULg-HACH, 2008)

    Num 1 Num 2

    Num 3 Num 4

    Confirmation of the

    solver potential