1norah ali al- moneef example : sketch the path and calculate the acceleration. e=2000 n/c, and v =...

107
1 Norah Ali Al- moneef

Upload: shauna-fowler

Post on 19-Dec-2015

271 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

1Norah Ali Al- moneef

Page 2: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example: Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right)

2Norah Ali Al- moneef

Page 3: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example

A wire carries a current of 25 A. What is the magnetic field 10 cm from this wire?

B = oI / 2r B = (4 X 10-7 T m/A)(25A) (2)(0.10 m)B = 5.0 X 10-5 T

3Norah Ali Al- moneef

Page 4: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

i1

i2

i3

ds

i4

)( 3210loop

iiisdB

Thumb rule for sign; ignore i4

Ampere’s law: Closed Ampere’s law: Closed Loops Loops

4Norah Ali Al- moneef

Page 5: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

5Norah Ali Al- moneef

Page 6: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example

A 10 cm long solenoid has a total of 400 turns of wire and carries a current of 2.0 A. Calculate the magnetic field inside the solenoid.

n = 400 turns/0.10 m = 4000 m-1

B = onI

B = (4 X 10-7 T m/A)(4000m-1)(2.0 A)B = 0.01 T

6Norah Ali Al- moneef

Page 7: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

B

P

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

B

P v

Sample Problem: Sketch the path and calculate the acceleration. B = 2.0 T, and v = 2,000 m/s (for figure on the right).

7Norah Ali Al- moneef

Page 8: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Magnetic Force

• What can be concluded about the sign of the charge of each particle?

1

2

3

positive

neutral

negative

8Norah Ali Al- moneef

Page 9: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

ExampleAn electron travels at 2.0 X 107 m/s in a plane perpendicular to a

0.010-T magnetic field. Describe its path.

Path is circular (right-hand rule, palm positive)F = m v2/rqvB = mv2/rr = mv /qB

r = mv / qBr = (9.1 X 10-31 kg)(2.0 X 107 m/s )

(1.6 X 10-19 C)(0.010 T)r = 0.011 m

9Norah Ali Al- moneef

Page 10: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• Sample Problem: A wire carries a current of 2.40 Amperes through a uniform magnetic field B=1.6 k Tesla. What is the force on a 0.75 meter long section of the wire if the current moves in the +x direction?

10Norah Ali Al- moneef

Page 11: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• Sample problem: How much current must be flowing through a horizontal 20.0 meter long wire to suspended in a 5.0 T magnetic field if the wire has a mass of 0.20 kg?

• If the current is flowing north, in what direction must be the magnetic field?

11Norah Ali Al- moneef

Page 12: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example

What is the force on a wire carrying 30 A through a length of 12 cm? The magnetic field is 0.90 T and the angle is 60o.

F = IlBsinF = (30A)(0.12 m)(0.90 T)sin60o

F = 2.8 N into the page

12Norah Ali Al- moneef

Page 13: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

ExampleTwo parallel wires have currents of I1 and I2 in exactly the same direction. Define the magnitude and direction of the force they exert on each other.

13Norah Ali Al- moneef

Page 14: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

ExampleA loop of wire carries 0.245 A and is placed in a magnetic

field. The loop is 10.0 cm wide and experiences a force of 3.48 X 10-2 N downward (on top of gravity). What is the strength of the magnetic field?

F = IlBsinF = IlBsin90o

F = IlB(1) F = IlBB = F

IlB = 3.48 X 10-2 N = 1.42 T

(0.245 A)(0.100m)

14Norah Ali Al- moneef

Page 15: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

15

Example• A magnetic pole face has a rectangular section

having dimensions 200 mm by 100 mm. If the total flux emerging from the pole is 150 μ Wb. Calculate the B.

Solution:• Φ = 150 μ Wb = 150 x 10-6 Wb• c.s.a = 200 x 100 = 20000 mm2 = 20000 x 10-6 m2

B = Φ/A = 150 x 10-6/20000 x 10-6 = 0.0075 T or 7.5mT

Norah Ali Al- moneef

Page 16: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Force Between Two Parallel Currents

• Force on I2 from I1

– RHR Force towards I1

• Force on I1 from I2

– RHR Force towards I2

• Magnetic forces attract two parallel currents

I1I2

0 1 0 1 22 2 1 2 2 2

I I IF I B L I L L

r r

I1I2

0 2 0 1 21 1 2 1 2 2

I I IF I B L I L L

r r

16Norah Ali Al- moneef

Page 17: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Force Between Two Anti-Parallel Currents

• Force on I2 from I1

– RHR Force away from I1

• Force on I1 from I2

– RHR Force away from I2

• Magnetic forces repel two antiparallel currents

I1I2I1I2

0 1 0 1 22 2 1 2 2 2

I I IF I B L I L L

r r

0 2 0 1 21 1 2 1 2 2

I I IF I B L I L L

r r

17Norah Ali Al- moneef

Page 18: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Parallel Currents (cont.)

• Look at them edge on to see B fields more clearly

Antiparallel: repel

FF

Parallel: attract

F F

B

BB

B

2 1

2

2

2

1

11

18Norah Ali Al- moneef

Page 19: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

ExampleTwo wires in a 2.0 m long cord are 3.0 mm apart.

If they carry a dc current of 8.0 A, calculate the force between the wires.

F = o I1I2 l

2 LF = (4 X 10-7 T m/A)(8.0A)(8.0A)(2.0m)

(2(3.0 X 10-3 m)F = 8.5 X 10-3 N

19Norah Ali Al- moneef

Page 20: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

ExampleThe top wire carries a current of 80 A. How much

current must the lower wire carry in order to leviate if it is 20 cm below the first and has a mass of 0.12 g/m?F = o l I1I2

2 Lmg = o l I1I2

2 L

Solve for I2

I2 = 15 A20Norah Ali Al- moneef

Page 21: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example: Use Ampere’s Law to derive the magnetic field a distance r from the center of a wire of radius R carrying current Io, where r<R.

Io

r

B

R21Norah Ali Al- moneef

Page 22: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• Formula found from Ampere’s law– i = current– n = turns / meter

– B ~ constant inside solenoid– B ~ zero outside solenoid– Most accurate when L>>R

• Example: i = 100A, n = 10 turns/cmn = 1000 turns / m

0B in

7 34 10 100 10 0.13TB

22Norah Ali Al- moneef

Page 23: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Sample problem: Using Ampere’s Law, show that the magnetic field inside a solenoid has magnitude B = oIon

23Norah Ali Al- moneef

Page 24: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

example: Use Ampere’s Law to derive the magnetic field at various spots around the Toroid.

24Norah Ali Al- moneef

Page 25: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

25

Example• Find the magnetic field in which the flux in

0.1m2 is 800μWb.

• Solution B = Φ/A = 800μWb/0.1m2 = 8000μT

Norah Ali Al- moneef

Page 26: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example1. In an area of 2 m2 there are 6 field lines each representing a flux

of 1 Wb. What is the flux density?

B = Φ / A = (6 x 1) / 2 = 3 T

2. A magnetic field has a magnitude of 0.0078 T and is uniform over a circular surface that has radius of 0.10 m. The field is orientated at an angle of of θ= 25o with respect to the surface. What is the flux through the surface?

Φ = BA cos θ= 0.0078 x (π x 0.12) cos 75 = 1 x 10-4 Wb

26Norah Ali Al- moneef

Page 27: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example

In a coil of 3 m2 and 4 turns there are 12 field lines each representing a flux of 2 Wb. What is the flux density?

B = Φ / AN = (12 X 2) / (3 X 4) = 2 T

27Norah Ali Al- moneef

Page 28: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• We have observed that force is exerted on a charge by either and E field or a B field (when charge is moving):

• Consequences of the Lorentz Force:– A B field can exert a force on an electric current (moving charge)– A changing B-field (such as a moving magnet) will exert a magnetic force on

a static charge, producing an electric current → this is called electromagnetic induction

• Faraday’s contribution to this observation:– For a closed loop, a current is induced when:1. The B-field through the loop changes2. The area (A) of the loop changes3. The orientation of B and A changes

on a charge {together this is the Lorentz Force}F = qE + qv B

q

v

N

S

B

F

q

v

N

S

B

F

• A current is induced ONLY when any or all of the above are changing

• The magnitude of the induced current depends on the rate of change of 1-3

Moving charge

Moving magnet28

Page 29: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Magnetic Flux• Faraday referred to changes in B field, area and orientation as

changes in magnetic flux inside the closed loop• The formal definition of magnetic flux (B(analogous to

electric flux)

When B is uniform over A, this becomes:

• Magnetic flux is a measure of the # of B field lines within a closed area (or in this case a loop or coil of wire)

• Changes in B, A and/or change the magnetic fluxFaraday’s Law: changing magnetic flux induces electromotive

force (& thus current) in a closed wire loop

B = B dA

A

B

B = BA cos

29Norah Ali Al- moneef

Page 30: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

In a series of experiments Michael Faraday in England

and Joseph Henry in the US were able to generate

electric currents without the use of batteries

Below we describe some of the

Faraday's experiments

se experiments that

helped formulate whats is known as "Faraday's law

of induction"

The circuit shown in the figure consists of a wire loop connected to a sensitive

ammeter (known as a "galvanometer"). If we approach the loop with a permanent

magnet we see a current being registered by the galvanometer. The results can be

summarized as follows:

A current appears only if there is relative motion between the magnet and the loop

Faster motion results in a larger current

If we

1.

2.

3. reverse the direction of motion or the polarity of the magnet, the current

reverses sign and flows in the opposite direction.

The current generated is known as " "; the emf that appears induced current

is known as " "; the whole effect is called " "induced emf induction 30Norah Ali Al- moneef

Page 31: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

In the figure we show a second type of experiment

in which current is induced in loop 2 when the

switch S in loop 1 is either closed or opened. When

the current in loop 1 is constant no induced current

is observed in loop 2. The conclusion is that the

magnetic field in an induction experiment can be

generated either by a permanent magnet or by an

electric current in a coil.

loop 1loop 2

Faraday summarized the results of his experiments in what is known as

" "Faraday's law of induction

An emf is induced in a loop when the number of magnetic field lines that

pass through the loop is changing

31Norah Ali Al- moneef

Page 32: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

32Norah Ali Al- moneef

Page 33: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

33Norah Ali Al- moneef

Page 34: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

N S

magnet motion

Bar magnet approaches the loop

with the north pole facing the loop.

2. Opposition to flux change

Example a :

B

As the bar magnet approaches the loop the magnet field points towards the left

and its magnitude increases with time at the location of the loop. Thus the magnitude

of the loop magnetic flux also

B

increases. The induced current flows in the

(CCW) direction so that the induced magnetic field opposes

the magnet field . The net field . The induced current is t

i

net i

B

B B B B

counterclockwise

B B

hus trying

to from increasing. Remember it was the increase in that generated

the induced current in the first place.

prevent

34Norah Ali Al- moneef

Page 35: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

N S

magnet motion

Bar magnet moves away from the loop

with north pole facing the loop.

2. Opposition to flux change

Example b :

B

As the bar magnet moves away from the loop the magnet field points towards the left

and its magnitude decreases with time at the location of the loop. Thus the magnitude

of the loop magnetic flux

B

also decreases. The induced current flows in the

(CW) direction so that the induced magnetic field adds to

the magnet field . The net field . The induced current is thus

i

net i

B

B B B B

clockwise

B B

trying

to from decreasing. Remember it was the decrease in that generated

the induced current in the first place.

prevent

35Norah Ali Al- moneef

Page 36: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

S N

magnet motion

Bar magnet approaches the loop

with south pole facing the loop.

2. Opposition to flux change

Example c :

B

As the bar magnet approaches the loop the magnet field points towards the right

and its magnitude increases with time at the location of the loop. Thus the magnitude

of the loop magnetic flux als

B

o increases. The induced current flows in the

(CW) direction so that the induced magnetic field opposes

the magnet field . The net field . The induced current is thus try

i

net i

B

B B B B

clockwise

B B

ing

to from increasing. Remember it was the increase in that generated

the induced current in the first place.

prevent

36Norah Ali Al- moneef

Page 37: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

S N

magnet motion

Bar magnet moves away from the loop

with south pole facing the loop.

2. Opposition to flux change

Example d :

As the bar magnet moves away from the loop the magnet field points towards the

right and its magnitude decreases with time at the location of the loop. Thus

the magnitude of the loop magnetic flux

B

B also decreases. The induced current

flows in the (CCW) direction so that the induced magnetic field

adds to the magnet field . The net field . The induced cur

i

net i

B

B B B B

counterclockwise

B B

rent is thus

trying to from decreasing. Remember it was the decrease in that

generated the induced current in the first place.

prevent

37Norah Ali Al- moneef

Page 38: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Induced Current• The next part of the story is that a changing

magnetic field produces an electric current in a loop surrounding the field– called electromagnetic induction, or Faraday’s Law

38Norah Ali Al- moneef

Page 39: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• (a) A bar magnet is moved to the right toward a stationary loop of wire. As the magnet moves, the magnetic flux increases with time

• (b) The induced current produces a flux to the left to counteract the increasing external flux to the right

39Norah Ali Al- moneef

Page 40: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

N S

Faraday’s Experiment - 1:

G

NS

G G

G

NS N S

NSN S

40Norah Ali Al- moneef

Page 41: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Observe:

i) the relative motion between the coil and the magnet

ii) the induced polarities of magnetism in the coil

iii) the direction of current through the galvanometer and hence the

deflection in the galvanometer

iv) that the induced current (e.m.f) is available only as long as there is

relative motion between the coil and the magnet

Note: i) coil can be moved by fixing the magnet

ii) both the coil and magnet can be moved (towards each other or

away from each other) i.e. there must be a relative velocity between

them

iii) magnetic flux linked with the coil changes relative to the positions

of the coil and the magnet

iv) current and hence the deflection is large if the relative velocity

between the coil and the magnet and hence the rate of change of

flux across the coil is more 41Norah Ali Al- moneef

Page 42: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

E

N S NS

Faraday’s Experiment - 2:

N S

K

N S

When the primary circuit is closed current grows from zero to maximum value.

During this period, changing current induces changing magnetic flux across the primary coil.

This changing magnetic flux is linked across the secondary coil and induces e.m.f (current) in the secondary coil.

Induced e.m.f (current) and hence deflection in galvanometer lasts only as long as the current in the primary coil and hence the magnetic flux in the secondary coil change.

P S

S

K G

P

E G

42Norah Ali Al- moneef

Page 43: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

When the primary circuit is open current decreases from maximum value to zero.

During this period changing current induces changing magnetic flux across the primary coil.

This changing magnetic flux is linked across the secondary coil and induces current (e.m.f) in the secondary coil.

However, note that the direction of current in the secondary coil is reversed and hence the deflection in the galvanometer is opposite to the previous case.

Faraday’s Laws of Electromagnetic Induction:

I Law:

Whenever there is a change in the magnetic flux linked with a circuit, an emf and hence a current is induced in the circuit. However, it lasts only so long as the magnetic flux is changing.

II Law:The magnitude of the induced emf is directly proportional to the rate of change of magnetic flux linked with a circuit.

ε α dΦ / dt

ε = (Φ2 – Φ1) / t43Norah Ali Al- moneef

Page 44: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

44Norah Ali Al- moneef

Page 45: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Lenz’s law

Lenz’s Law: The induced emf or current always tends to oppose or cancel the change that caused it.

45Norah Ali Al- moneef

Page 46: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Currents (I) induced in a wire loop.

46Norah Ali Al- moneef

Page 47: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Faraday’s Law and Electromagnetic Induction• The instantaneous emf induced in a circuit equals

the time rate of change of magnetic flux through the circuit

• If a circuit contains N tightly wound loops and the flux through each loop changes by ΔΦ during an interval Δt, the average emf induced is given by Faraday’s Law:

tN B

47Norah Ali Al- moneef

Page 48: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Faraday’s Law and Lenz’ Law

• The minus sign is included because of the polarity of the emf. The induced emf in the coil gives rise to a current whose magnetic field OPPOSES ( Lenz’s law) the change in magnetic flux that produced it

48Norah Ali Al- moneef

Page 49: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Faraday’s Law• Calculates induced emf due to changing magnetic flux.• Unit of Flux: Weber (Wb = Tm2) B B A

• Changing the flux B = BAcos()– a) Change B– b) Change A– c) Change

Induced Potential

d dB=A cos

dt dtB

d dA=B cos

dt dtB

d cosd

=BAdt dt

B

dt

)d(AB.cos

dt

dBA

dt

dV . B NNNdlE

•The number of loops (N) in the coilNote: magnetic flux changes when either the magnetic field (B), the area (A) or the orientation (cos ) of the loop changes

49Norah Ali Al- moneef

Page 50: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

How can we change the flux?

• Change flux by:– Change area– Change angle– Change field

Bd

dtemf

50Norah Ali Al- moneef

Page 51: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Changing Area

A loop of wire (N=10) contracts from 0.03 m2 to 0.01 m2 in 0.5 s, where B is 0.5 T and is 0o (Rloop is 1 ).

dA-NB cos

dt

1) What is the induced in the loop?2) What is the induced current in the loop? 51Norah Ali Al- moneef

Page 52: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Changing Orientation

A loop of wire (N=10) rotates from 0o to 90o in 1.5 s, B is 0.5 T and A is 0.02 m2 (Rloop is 2 ).

1) What is the induced in the loop?2) What is the induced current in the loop?

( )

( )

d cos-NAB

dt

d cos ωt-NAB

r

dt

o

52Norah Ali Al- moneef

Page 53: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Faraday’s Law of Induction

Faraday’s Law: The instantaneous voltage in a circuit (w/ N loops) equals the rate of change of magnetic flux through the circuit:

if

if

ttN

tNV

The minus sign indicates the direction of the induced voltage. To calculate the magnitude:

if

if

ttN

tNV

53Norah Ali Al- moneef

Page 54: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Lenz’s Law• When the magnetic flux changes within a loop of wire, the induced

current resists the changing flux• The direction of the induced current always produces a magnetic

field that resists the change in magnetic flux (blue arrows)

• Review the previous examples and determine the direction of the current

B

Magnetic flux, B

B

Increasing B

i

B

Increasing B

i

54Norah Ali Al- moneef

Page 55: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

There are three possibilities to produce an emf

1) Time-varying magnetic field=-N[(A cos)(B/t)+

2) Time-varying loop area +(B cos )(A/t)+

3) Turning of the loop (generator) +BA([cos]/t)]

55Norah Ali Al- moneef

Page 56: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

A UHF television loop antenna has a diameter of 11 cm. The magnetic field of a TV signal is normal to the plane of the loop and, at one instant of time, its magnitude is changing at the rate 0.16 T/s. The magnetic field is uniform. What emf is induced in the antenna?

clok wise is

page theinto is

mV -1.52 4

)11.0(14.3 16.0

4

)11.0(14.3

2

).(

2

22

2

22

I

B

md

rA

dt

ABd

dt

d

ind

ind

ind

ind

Example

56Norah Ali Al- moneef

Page 57: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

The magnetic flux through the loop shown in Fig increases according to the relation B = 6.0t 2 + 7.0t, where B is in

milliwebers and t is in seconds. (a) What is the magnitude of the emf induced in the loop when t = 2.0 s? (b) What is the direction of the current through R?

left the toisresistor hrough tI

clock wise I

page theinto B

growing

page ofout B direction

mV 10-3

s 2 at t

Wb/s10)712( mWb/s 712)76(

ind

ind

3

32

dt

d

ttdt

ttd

dt

ddt

dind

example

57Norah Ali Al- moneef

Page 58: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

V101.1 -2

5.0 10-4.5

sec 2 T 5.0)

2-2-

2

tBadt

dBr

dt

dBA

dt

d

V101.1 2

5.0 104.5

sec 2 T 5.0)

2-2-

tBc

The magnetic field through a single loop of wire, 12 cm in radius and of 8.5 resistance, changes with time as shown in the figure. Calculate the emf in the loop as a function of time. Consider the time intervals (a) t = 0 to t = 2.0 s, (b) t = 2.0 s to t = 4.0 s, (c) t = 4.0 s to t = 6.0 s. The (uniform) magnetic field is perpendicular to the plane of the loop.

example

0

sec 2 T 0)

tBb

58Norah Ali Al- moneef

Page 59: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

/ 4.1

4

101.1

V 101.1 101.1 10 R

101.1

4)105.2(

10.01068.1 2)

2

2

23

3

3 2

8

stesladdt

dBdt

dBA

dt

d

I

A

r

A

lRa

Aloop

indind

Example A uniform magnetic field is normal to the plane of a circular loop 10 cm in diameter and made of copper wire (of diameter 2.5 mm). (a) Calculate the resistance of the wire. (see copper resistivity in table) (b) At what rate must the magnetic field change with time if an induced current of 10 A is to appear in the loop?

59Norah Ali Al- moneef

Page 60: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

: In the figure a 120-turn coil of radius 1.8 cm and resistance 5.3 is placed outside a solenoid like that in the figure . The solenoid current drops from 1.5 A to zero in time interval Δt = 25 ms, what current appears in the coil while the solenoid current is being changed?

example

60Norah Ali Al- moneef

Page 61: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

0 2 4 6 8t (s)

0.5

1.0

B (T)

example: What is the current produced in a loop of radius 16 cm and resistance 8.5 at different times shown below? Assume the loop has an orientation in which it receives maximum magnetic flux.

61Norah Ali Al- moneef

Page 62: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

62

Example• Find the emf in a

coil of 200 turns when there is a change of flux of 30 mWb linking it in 40 ms.

• Solution

• Δϕ = 30 x 10-3 Wb• Δt = 40 x 10-3 s

dt

dNE

3

3

1040

1030

x

xNE

Induced emf, EInduced emf, E

VE 150

Norah Ali Al- moneef

Page 63: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

example: A 50 turn rectangular coil of dimensions 5.0 cm x 10.0 cm is allowed to fall from a position where B = 0 to a new position where B = 0.500 T and is directed perpendicular to the plane of the coil. Calculate the magnitude of the average emf if this occurs in 0.250 seconds.

63Norah Ali Al- moneef

Page 64: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• : The magnetic field is increasing at a rate of 4.0 mT/s. What is the direction of the current in the wire loop?

example

64Norah Ali Al- moneef

Page 65: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• The magnetic field is increasing at a rate of 4.0 mT/s. What is the direction of the current in the wire loop?

example

65Norah Ali Al- moneef

Page 66: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• The magnetic field is decreasing at a rate of 4.0 mT/s. The radius of the loop is 3.0 m, and the resistance is 4 . What is the magnitude and direction of the current?

dt

)d(AB.cos

dt

dBA

dt

dV . B NNNdlE

example

66Norah Ali Al- moneef

Page 67: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

example

• B decreases by 3.00 mT/s in a circular region of radius r =5.00 cm. What is the EMF around the loop?

x x

x x x x

x x x x

x x

externalB

V 003.005.0 2

2

t

Br

Page 68: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example• A flat circular coil of 600 turns and with a mean radius of 1.5 cm is connected

between the terminals of an ammeter. The total resistance of the coil and the ammeter is 0.5 Ω. The plane of the coil is placed at right angles to a uniform magnetic field of magnetic flux density 0.34 T. The coil is removed from the magnetic field in a time of 60 ms. Calculate the magnitude of :

a) the average induced emf across the ends of the coil

magnetic flux linkage = NΦ = BAN Initial magnetic flux linkage = 600 x 0.34 x (π x 0.0152) = 0.144 WbAfter the coil is removed from the magnetic field, B = 0 therefore final magnetic flux linkage = 0.ε = - (d N Φ / dt) = (0 – 0.144) / 60 x 10-3 = 2.4 V

b) the average induced current in the coil

I = ε / R = 2.4 / 0.5 = 4.8 A

68Norah Ali Al- moneef

Page 69: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example• A flat coil of 680 turns and mean cross-sectional area 4.5 x 10-4 m2 is placed in

a region of uniform magnetic field of flux density 580 μT. Initially, the plane of the coil is at right angles to the magnetic field. Calculate the mean induced ε across the ends of the coil when:

a) the coil is withdrawn from the region of field in a time of 60 ms.Initial magnetic flux linkage = NΦ = BAN = 680 x 580 μ x (4.5 x 10-4) = 1.77 x 10-4 WbFinal magnetic flux linkage = 0.ε = - (d N Φ / dt ) = (0 – 1.77 x 10-4) / 60 x 10-3 = 3.0 mV

b) the coil is rotated through 90o in a time of 60 ms.Final magnetic flux linkage = 0, therefore ε = 3.0 mV

c) the direction of the field is reversed in a time of 30 ms.Initial flux = 1.77 x 10-4 WbFinal flux = -1.77 x 10-4 Wb ε = - (d N Φ / dt) = (-1.77 x 10-4 -1.77 x 10-4 ) / 30 x 10-3 = 12 mV

69Norah Ali Al- moneef

Page 70: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Norah Ali Al- moneef 70

example

• A 0.25 T magnetic field is perpendicular to a circular loop of wire with 50 turns and a radius 15 cm.

• The magnetic field is reduced to zero in 0.12 s.• What is the magnitude of the induced EMF?• Flux = BA = (B)(r2) = (0.25 T)(0.15m)2 = 0.0176 T·m2

• Rate of change of flux = t• fiBA = 0.0176 T·m2

• EMF = N t = 0.0176 T·m2 )/(0.12 s) • EMF = 7.35 T·m2 /s• T·m2 /s = [N / (A·m)] (m2/s) =(N·m)/(A·s) = J/C =V• EMF = 7.35 V

Page 71: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

31.2 Motional emf• A straight conductor of length ℓ moves

perpendicularly with constant velocity through a uniform field

• The electrons in the conductor experience a magnetic force– F = q v B

• The electrons tend to move to the lower end of the conductor

ℓℓ

• As the negative charges accumulate at the base, a net positive charge exists at the upper end of the conductor

• As a result of this charge separation, an electric field is produced in the conductor

• Charges build up at the ends of the conductor until the downward magnetic force is balanced by the upward electric force

• There is a potential difference between the upper and lower ends of the conductor

71Norah Ali Al- moneef

Page 72: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Charges stop moving when:

E BF F

qE qvB

VvB

V vB

72Norah Ali Al- moneef

Page 73: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• Electron holes continue to move up, but only until FE down equals FB up, at which charge separation ceases.

• As long as the wire keeps moving, there will be a charge separation.

• The magnetic force is doing work to maintain that charge separation.

For a wire of length L, moving in a direction perpendicular to an external B field:Charges stop moving when:

E BF F qE qvB

VvB

V vB

73Norah Ali Al- moneef

Page 74: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Motional emf, cont.V =Eℓ F=qvB

V=Bℓv, voltage across the conductor – If the motion is reversed, the polarity of the

potential difference is also reversed

FF==qEqE==qq ( (VV//ℓℓ ) ) ==qvBqvB

74Norah Ali Al- moneef

Page 75: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• A conducting bar sliding with v along two conducting rails under the action of an applied force Fapp. The magnetic force Fm opposes the motion, and a counterclockwise current is induced.

Magnitude of the Motional emf

vBt

xB

t

xBAB

B

B

75Norah Ali Al- moneef

Page 76: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• Once there is a current flowing through the wire, charges move in 2 directions.– They all move right with

the moving wire.– Current moves up.

• Yet another magnetic force generated, this time to the left.

76Norah Ali Al- moneef

Page 77: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Motional emf• The emf due to the charge separation exists

whether or not the loop is closed (battery analogy).• If there is a closed loop:

I = vLB/R• The induced current is due to magnetic forces on

moving charges.

77Norah Ali Al- moneef

Page 78: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• As the bar moves to the right, the magnetic flux through the circuit increases with time because the area of the loop increases

• The induced current must be in a direction such that it opposes the change in the external magnetic flux

78Norah Ali Al- moneef

Page 79: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

79Norah Ali Al- moneef

Page 80: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Magnetic force (F = IL x B) due to the induced current is toward the left, opposite to velocity v.

80Norah Ali Al- moneef

Page 81: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• This magnetic force opposes the original velocity of the moving wire.

• The moving wire will slow down and stop.

• Need a constant Fpull to the right to make the contraption work.

• To keep the wire at constant speed, and continue the emf and current Fpull = Fmag

F = ILBFpull = Fmag = ILB

I = vLB/RF = vL2B2/R

81Norah Ali Al- moneef

Page 82: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Fpull = Fmag

Wpull = Wmag

The rate at which work is done on the circuit equals the power dissipated by the circuit:

P = I2R = v2L2B2/R

82Norah Ali Al- moneef

Page 83: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Linear Generator with Faraday’s Law Area x

B B dA B A B x

Bd dB x

dt dt

dxB B v

dt

By Lenz’s Law, what is the direction of current?B v

IR

83Norah Ali Al- moneef

Page 84: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Motional emf in a Circuit, cont.• The changing magnetic

flux through the loop and the corresponding induced emf in the bar result from the change in area of the loop

• The induced, motional emf, acts like a battery in the circuit

R

vBIvB

and

84Norah Ali Al- moneef

Page 85: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Lenz’ Law, Bar Example, cont

• The flux due to the external field is increasing into the page

• The flux due to the induced current must be out of the page

• Therefore the current must be counterclockwise when the bar moves to the right

85Norah Ali Al- moneef

Page 86: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Lenz’ Law, Bar Example, final

• The bar is moving toward the left

• The magnetic flux through the loop is decreasing with time

• The induced current must be clockwise to to produce its own flux into the page

86Norah Ali Al- moneef

Page 87: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Force & Magnetic InductionWhat about the force applied by the hand to keep the rail moving?• The moving rail induces an electric current and also produces power

to drive the current:

P = .i = (5 V)(2.5 A) = 12.5 W• The power (rate of work performed) comes from the effort of the

hand to push the rail– Since v is constant, the magnetic field exerts a resistive force on the rail:

The force of the hand can be determined from the power:

Net hand B hand BF = F + F = 0 or F = F

hand hand

PP = F v F =

v

hand Bms

12.5 WF = = 12.5 N =F

10

BF

handF

87Norah Ali Al- moneef

Page 88: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Power moving the bar

bar

B vF I B B

R

2 2 2B v B vP B v

R R

2 2 2 2 2 22

2

B v B vP I R R

R R

Same result!

88Norah Ali Al- moneef

Page 89: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example:Rod and rail have negligible resistance but the bulb has a resistance of 96 B=0.80 T, v=5.0 m/s and ℓℓ =1.6 m.

Calculate (a) emf in the rod, (b) induced current (c) power delivered to the bulb and (d) the energy used by the bulb in 60 s.

(a) =vBℓ =(5.0 m/s)(0.80 T)(1.6 m)=6.4 V(b) I=/RI=(6.4V)/(96 )=0.067 A(c) P=IP=I=(6.4 V)(0.067 A)=0.43 W(d) E=PtE=(0.43 W)(60 s)=26 J (=26 Ws)

89Norah Ali Al- moneef

Page 90: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Operating a light bulb with motional EMFConsider a rectangular loop placed within a

magnetic field, with a moveable rail (Rloop= 2 ).

B = 0.5 Tv = 10 m/sL = 1.0 m

Questions:1) What is the induced in the loop?2) What is the induced current in the loop?3) What is the direction of the current?

90Norah Ali Al- moneef

Page 91: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• A conducting rectangular loop moves with constant velocity v in the +x direction through a region of constant magnetic field B in the -z direction as shown.– What is the direction of the induced current in

the loop?

(a) ccw (b) cw (c) no induced current• A conducting rectangular loop moves with constant velocity v in the -y direction and a constant current I flows in the +x direction as shown.

• What is the direction of the induced current in the loop?

1A

X X X X X X X X X X X XX X X X X X X X X X X XX X X X X X X X X X X XX X X X X X X X X X X X

v

x

y

(a) ccw (b) cw (c) no induced current

1B v

I

x

y

91Norah Ali Al- moneef

Page 92: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• A conducting rectangular loop moves with constant velocity v in the +x direction through a region of constant magnetic field B in the -z direction as shown.– What is the direction of the induced current in

the loop?

• There is a non-zero flux B passing through the loop since B is perpendicular to the area of the loop.• Since the velocity of the loop and the magnetic field are CONSTANT, however, this flux DOES NOT CHANGE IN TIME.• Therefore, there is NO emf induced in the loop; NO current will flow!!

(c) no induced current(a) ccw (b) cw

1A

X X X X X X X X X X X XX X X X X X X X X X X XX X X X X X X X X X X XX X X X X X X X X X X X

v

x

y

92Norah Ali Al- moneef

Page 93: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

• A conducting rectangular loop moves with constant velocity v in the +x direction through a region of constant magnetic field B in the -z direction as shown.– What is the direction of the induced current in

the loop?

y

• The flux through this loop DOES change in time since the loop is moving from a region of higher magnetic field to a region of lower field.• Therefore, by Lenz’ Law, an emf will be induced which will oppose the change of flux.• The current i is induced in the clockwise direction to restore the flux.

(a) ccw (b) cw (c) no induced current• A conducting rectangular loop moves with constant velocity v in the -y direction and a constant current I flows in the +x direction as shown.

• What is the direction of the induced current in the loop?

X X X X X X X X X X X XX X X X X X X X X X X XX X X X X X X X X X X XX X X X X X X X X X X X

v

x

(a) ccw (b) cw (c) no induced current

v

I

x

y i

93Norah Ali Al- moneef

Page 94: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

94

Ans. 4.05 V, 2.03 A.

Example: A coil is wrapped with 200 turns of wire on the perimeter of a square frame of side 18 cm. The total resistance of the coil is 2Ω . B is the plane of the coil and changes linearly from 0 to 0.5 T in 0.80 seconds. Find the emf in the coil while the field is changing. What is the induced current?

Norah Ali Al- moneef

Page 95: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Another example: a bar magnet is moved to the left/ right toward a stationary loop of wire.

95Norah Ali Al- moneef

Page 96: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

96

Example Induced EMF, Induced Current.

• A solenoid (similar to one used for a class demonstration) has a diameter of 10 cm, a length of 10 cm, and contains 3500 windings with a total resistance of 60 Ohm.

• The solenoid is connected in a simple loop, modeled above.• Initially, the solenoid is embedded in a magnetic field of

0.100 T, parallel to the axis of the solenoid, as shown.• This external field is reduced to zero in 0.10 sec.• During this 0.1 sec, what is the EMF in the coil, what is the

current in the circuit, and what is the direction and magnitude of the magnetic field in the solenoid generated by this current?

Norah Ali Al- moneef

Page 97: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

97

Flux & induced EMF

• First, what is the initial flux?– Let us chose current flowing around the circuit in the clockwise

direction to be positive. Such a current would generate a magnetic field pointing up in the solenoid (and pointing down outside the solenoid). Thus the initial flux is positive.

– Flux in one winding of solenoid • = (Area)(Magnetic Field) = r2 B = 3.14 (0.05m)2 (0.100 T).• = 7.85e-4 T m2

• fie4 Tm2 • t = 0.100 sec• EMF = N (/t) = (3500)(7.85e-3 T m2/s) = 27.5 V

Norah Ali Al- moneef

Page 98: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

98

Induced Current

• EMF in loop = 27.5 V– Changing flux acts just like a battery

• EMF – IR = 0• I = EMF/R = (27.5 V) / 60 =0.458 A

I

Norah Ali Al- moneef

Page 99: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

example: In the figure, a long rectangular conducting loop, of width L, resistance R, and

mass m, is hung in a horizontal, uniform magnetic field B that is directed into the page and that exists only above line aa. The loop is then dropped; during its fall, it accelerates until it reaches a certain terminal speed vt. Ignoring air drag, find that terminal speed.

99Norah Ali Al- moneef

Page 100: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

A metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end, as shown in the figure. A magnetic field B = 0.350 T points out of the page. (a) If the rails are separated by 25.0 cm and the speed of the rod is 55.0 cm/s, what emf is generated? (b) If the rod has a resistance of 18.0 and the rails and connector have negligible resistance, what is the current in the rod? (c) At what rate is energy being transferred to thermal energy?

mW 10 1.3R Ior p ) c

clock wise 0027.0

18 R is loopfor resistance total) b

V0lt 05.025.055.035.0

d

Lx A A

4-2

2

ind

R

AR

I

BLVdt

dxBL

dt

B

example:

100Norah Ali Al- moneef

Page 101: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

How much current flows through the resistor? How much power is dissipated by the resistor?

B = 0.15 T

v = 2 m/s

50 cm3

example

Counter clock wise ( direction)

Page 102: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Norah Ali Al- moneef 102

Page 103: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Norah Ali Al- moneef 103

Page 104: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Norah Ali Al- moneef 104

Page 105: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Norah Ali Al- moneef 105

Page 106: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

Example

An airplane travels at 1000 km/hr in a region where the earth’s magnetic field is 5 X 10-5T (vertical). What is the potential difference between the wing tips if they are 70 m apart?

1000 km/hr = 280 m/s ε = Blv ε = (5 X 10-5T )(70 m)(280 m/s) = 1.0 V

Page 107: 1Norah Ali Al- moneef  Example : Sketch the path and calculate the acceleration. E=2000 N/C, and v = 2,000 m/s (figure on the right) 2Norah Ali Al-

ExampleBlood contains charged ions. A blood vessel is 2.0 mm in

diameter, the magnetic field is 0.080 T, and the blood meter registers a voltage of 0.10 mV. What is the flow velocity of the blood?

E = Blvv = E /Blv = (1.0 X 10-4 V) (0.080 T)(0.0020m)

v = 0.63 m/s