1um cmos process baseline electrical test summary

110
D.K. Brown Georgia Tech Microelectronics Resea rch Center 1 1um CMOS Process Baseline Electrical Test Summary Georgia Tech Microelectronics Research Center

Upload: garrett-herrera

Post on 31-Dec-2015

53 views

Category:

Documents


12 download

DESCRIPTION

1um CMOS Process Baseline Electrical Test Summary. Georgia Tech Microelectronics Research Center. Summary Package Outline. Overall Summary - pages 3 - 8 Front End Summary - pages 9 - 65 test structure description and methodology theoretical expected value measured value results - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 1

1um CMOS Process BaselineElectrical Test Summary

Georgia Tech

Microelectronics Research Center

Page 2: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 2

Summary Package Outline

• Overall Summary - pages 3 - 8

• Front End Summary - pages 9 - 65– test structure description and methodology

– theoretical expected value

– measured value results

• Back End Summary - pages 66 - 110– test structure description and methodology

– theoretical expected value

– measured value results

Page 3: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 3

CMOS Baseline summary

• Overall Summary of CMOS baseline– NMOS transistor yield is 30% for 3um < L < 25um. Below 3um yield falls to 20% due to

punch-thru.– PMOS transistor yield is 25% for 3um < L < 25um. Below 3um yield falls to 5% due to

punch-thru.– Many front end parameters have median values close to target however standard

deviation is high as can be seen in % pass on summary page or in the raw data throughout the presentation.

– Contact parameters are the most off target and would be the first area to address in improving the CMOS line. (Contact experiment has since been completed. See separate presentation summary for results).

• What is the baseline?– The baseline consists of 5 batches with a total of 37 wafers. Each batch was processed

individually and separately between 2001 - 2003 timeframe in the MiRC cleanroom.– Batch 6 showed the best overall performance across all parameters and notably had a

60% NMOS transistor yield and 70% PMOS transistor yield.

Page 4: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 4

Front & Back End Summary

Contact parameters are the parameters which are most off target, followed by field oxide thickness, NMOS threshold voltage, and M1 serpentine Resistance.

Page 5: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 5

Overall Transistor Yield

0

0.05

0.1

0.15

0.2

0.25

0.3

PM

OS

% p

ass

0 5 10 15 20 25 30

L

5

10

50

W

0.15

0.2

0.25

0.3

0.35

% p

ass

0 5 10 15 20 25 30

L

5

10

50

W

NMOS PMOS

Note that transistor yield shows a dependency on channel length. For channel lengths = 3um and greater yield is fairly constant. For channel lengths 2um and lower, the yield degrades due to punchthru.

Transistor Yield is defined as threshold voltage, saturation current, and off current all being in control limits for a given die. The % of good die on a wafer can then be calculated and averaged over all of the batches.

Page 6: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 6

NMOS & PMOS Off Current (A)W=10 m, L=varying, Log10 scale

LOG

10(S

ourc

e Le

akag

e C

urre

nt)

-9

-8

-7

-6

-5

-4

-3

-2

-1

1 1.3 1.5 2 3 5 10 25

L

LOG

10(S

ourc

e Le

akag

e C

urre

nt)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

1 1.3 1.5 2 3 5 10 25

L

punch-thru

Below channel length of 3um, the OFF state current increases rapidly. The current shown is the current from the source due to the bias at the drain. Therefore it is punch-thru. (This data is from batch 6 wafer 6 and is typical of the baseline.)

NMOS PMOS

Page 7: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 7

NMOS & PMOS IDS VS. VDS CURVESW/L = 10um/3um

0.00

0.25

0.50

0.75

1.00

1.25

1.50ID

S (

mA

)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

VDS

1

2

3

4

5

6

abs(VGS)

PMOS NMOS

IDS vs. VDS curves are shown from one of the better performing batches (Batch 6 wafer 1) from a W/L = 10um/ 3um transistor.At, VDS=VGS=5V, NMOS and PMOS saturation current is 1.14mA and 0.35mA respectively.Normalizing for transistor width (W=10um), NMOS and PMOS saturation currents are 0.114mA/um and 0.035mA/um respectively.

Page 8: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 8

Subthreshold Slope and Drain InducedBarrier Lowering (DIBL)

1e-8

1e-7

1e-6

1e-5

1e-4

LO

G S

CA

LE

IDS

.00 .20 .40 .60 .80 1.00

VGS

0.1

5

VDS

1e-9

1e-8

1e-7

1e-6

1e-5

abs(

ID)

-2.4 -2.2 -2 -1.8 -1.6 -1.4

VGS

-5

-0.1

VDS

PMOS NMOS

Sub-threshold curves are shown from one of the better performing batches (Batch 6 wafer 1).NMOS and PMOS sub-threshold slopes are both 150mV/decade.

NMOS and PMOS DIBL are 10mV/V and 20mV/V respectively.

Page 9: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 9

Front End Parameter Summary

• Front End Parameters which are analyzed in this presentation are listed below and are covered on slides 7-61.

– N+, P+, Poly sheet resistance– Poly CD– Poly COMB leakage– Poly serpentine resistance– NMOS & PMOS gate oxide thickness– N-Well & P-Well field oxide thickness– NMOS & PMOS

• Threshold Voltage• Saturation & Linear current• Off current

Page 10: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 10

N+ Sheet Resistance Structure

1

2 4 6 8 10

3 5 7 9

“wide” structure (216.5 m long x 4.5 m wide)

Van der pauw structure

There are two N+ sheet resistance measurements made. One is made on the “wide” structure, the other is made on the Van der pauw structure. A maximum current of 100mA is forced (IF) between pads 9 and 1 with an applied 1V, and a voltage drop is measured (VM) at

pads given in the table below.

IFH IFL VMH VML Calc

Wide 9 1 6 3 RS = {(VMH - VML ) / IFH} / (216.5/4.5)

Van der pauw 9 1 4 2 RS = {(VMH - VML ) / IFH} * ( / ln 2 )

Page 11: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 11

N+ Sheet Resistance Theoretical Value

The N+S/D As Implant has a dose of 5.74E19/cm3 and a junction depth of 1.6um after 1 hour of annealing at 950C.

Arsenic Diffusion

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1.E+19

1.E+20

1.E+21

1.E+22

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

depth (cm)

do

se (

cm-3

)

As N+S/D (t=1sec)

As N+S/D (t=1hr)

B11 Vt (t=1sec)

B11 Vt (t=1hr)

p- substrate

p- substrate + Vt(1hr)

xj=1.6um

Page 12: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 12

N+ Sheet Resistance Theoretical Value

= q(nn + pp)

for N-type material,

qnn

1/{(1.6E-19 C)(5.74E19 cm-3 )(~23* cm2/V-s)}

4.7E-3 cm

Rs = / xj

1/

For N+S/D, a 5E15, 160keV As implant is used, and a 1 hr anneal at 950C is performed

Therefore n = 5.74E19 cm-3 and xj = 1.6m

= (4.7E-3 cm) / (1.6E-4 cm)

Rs = 29.6 / �*P.M.Rousseau, et.al., ”A Model for Mobility Degradation in Highly Doped Arsenic Layers”, IEEE Transactions on Electron Devices, vol. 43, p.2025, 1996.

Page 13: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 13

VD

P: N

+ sh

eet r

ho (

Ohm

s/sq

)

0

20

40

60

80

100

120

140

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M4 M7

3 4 5 6 8

wafer within batch

N+ Sheet Resistance (/) Measured ValueVan der Pauw Method, Target = 30 /

VD

P: N

+ sh

eet r

ho (

Ohm

s/sq

)

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

0 to 150 / Scale

Target = 30 / �

Page 14: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 14

WID

E: N

+ sh

eet r

ho (

Ohm

s/sq

)

0

20

40

60

80

100

120

140

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M4 M7

3 4 5 6 8

wafer within batch

N+ Sheet Resistance (/) Measured Value Wide structure method, Target = 30 /

WID

E: N

+ sh

eet r

ho (

Ohm

s/sq

)

1e-1

1e+1

1e+3

1e+5

1e+7

1e+9

1e+118e+11

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

0 to 150/Scale

Target =

30 /

Page 15: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 15

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

1e+14

VD

P: N

+ sh

eet r

ho (

Ohm

s/sq

)

1e-4 1e-2 1e+0 1e+2 1e+4 1e+6 1e+8 1e+10 1e+12 1e+14

WIDE: N+ sheet rho (Ohms/sq)

3

4

5

6

8

batch

N+ Sheet Resistance (/) Measured ValueVan der pauw Method compared to Wide Method

Unity line

The Van der pauw method data seems aberrant as it is several orders of magnitude higher than the Wide method and it appears to get worse with higher resistance values. It seems that the Wide method is more accurate as it produces more values closer to the theoretical target. In either case, both methods show there are many die with excessively high sheet resistance.

Theoretical

Target = 30 /

Page 16: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 16

N+ Sheet Resistance (/ ) Measured ValueSummary

Mean = 47.8 / Target = 30 / Average % Pass = 63%

Using the Wide Method data, the mean of all the wafer medians is 47.8 /, excluding wafers with values marked in red.Using a LCL = 3 and UCL = 150, the average % of good die for a given wafer is 61% (no wafers excluded).

Page 17: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 17

P+ Sheet Resistance Structure

1

2 4 6 8 10

3 5 7 9

“wide” structure (217 m long x 4.5 m wide)

Van der pauw structure

There are two P+ sheet resistance measurements made. One is made on the “wide” structure, the other is made on the Van der pauw structure. A maximum current of 100mA is forced (IF) between pads 9 and 1 with an applied 1V, and a voltage drop is measured (VM) at

pads given in the table below.

IFH IFL VMH VML Calc

Wide 9 1 6 3 RS = {(VMH - VML ) / IFH} / (217/4.5)

Van der pauw 9 1 4 2 RS = {(VMH - VML ) / IFH} * ( / ln 2 )

Page 18: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 18

P+ Sheet Resistance Theoretical Value

= q(nn + pp)

for P-type material,

qpp

1/{(1.6E-19 C)(4.6E20 cm-3 )(~35* cm2/V-s)}

3.9E-4 cm

Rs = / xj

1/

For P+S/D, a 5E15, 30keV B11 implant is used,Therefore n = Cp = 4.6E20 cm-3 and xj = 0.100m

= (3.9E-4 cm) / (1E-5 cm)

Rs = 39 / �*G.Masetti, et.al., ”Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon”, IEEE Transactions on Electron Devices, vol. 30, p.764, 1983.

Page 19: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 19

P+ Sheet Resistance (/)Van der Pauw Method, Target = 39 /

VD

P: P

+ sh

eet r

ho (

Ohm

s/sq

)

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

0 to 120 /

Scale

VD

P: P

+ sh

eet r

ho (

Ohm

s/sq

)

0102030405060708090

100110120

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Target = 39 /

Page 20: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 20

P+ Sheet Resistance (/)Wide structure method, Target = 39 /

WID

E: P

+ sh

eet r

ho (

Ohm

s/sq

)

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

WID

E: P

+ sh

eet r

ho (

Ohm

s/sq

)

0102030405060708090

100110120

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

0 to 120 /

Scale

Target = 39 /

Page 21: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 21

P+ Sheet Resistance (/) Measured ValueVan der pauw Method compared to Wide Method

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

1e+14

VD

P: P

+ sh

eet r

ho (

Ohm

s/sq

)

1e-4 1e-2 1e+0 1e+2 1e+4 1e+6 1e+8 1e+10 1e+12 1e+14

WIDE: P+ sheet rho (Ohms/sq)

3

4

5

6

8

batch

Unity line

Theoretical Target = 39 /

The Van der pauw method data seems aberrant as it is several orders of magnitude higher than the Wide method and it appears to get worse with higher resistance values. It seems that the Wide method is more accurate as it produces more values closer to the theoretical target. In either case, both methods show there are many die with excessively high sheet resistance.

Page 22: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 22

P+ Sheet Resistance (/) Measured ValueSummary

Mean = 49.3 /Target = 39 /Average % Pass = 48%

Using the Wide Method data, the mean of all the wafer medians is 49.3 /, excluding wafers with values marked in red.Using a LCL = 3 and UCL = 120, the average % of good die for a given wafer is 48% (no wafers excluded).

Page 23: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 23

Poly Sheet Resistance Structure

1

2 4 6 8 10

3 5 7 9

“wide” structure (217 m long x 6 m wide)

Van der pauw structure

“narrow 1 CD” structure (202.5 m long x 2 m wide)

“narrow 2 CD” structure (245 m long x 2 m wide)

IFH IFL VMH VML Calc

Wide 9 1 6 3 RS = {(VMH - VML ) / IFH} / (217/4.5)

Van der pauw

9 1 4 2 RS = {(VMH - VML ) / IFH} * ( / ln 2 )

Narrow 1 CD

9 1 7 5 CD = (202.5* RSWIDE) / {(VMH - VML ) / IFH}

Narrow 2 CD

9 1 10 8 CD = (245*RSWIDE) / {(VMH - VML ) / IFH}

“narrow 1 CD”

“narrow 2 CD”

Page 24: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 24

Poly Sheet Resistance Theoretical Value

Rs = 49 / �

Page 25: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 25

Poly Sheet Resistance (/)Van der Pauw Method, Target = 49 /

VD

P: P

L sh

eet r

ho (

Ohm

s/sq

)

1e-1

1e+1

1e+3

1e+5

1e+7

1e+9

1e+11

1e+13

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

VD

P: P

L sh

eet r

ho (

Ohm

s/sq

)

0

20

40

60

80

100

120

140

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

0 to 150 /

Scale

Target = 49 /

Page 26: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 26

Poly Sheet Resistance (/)Wide structure method, Target = 49 /

WID

E: P

L sh

eet r

ho (

Ohm

s/sq

)

1e-1

1e+1

1e+3

1e+5

1e+7

1e+9

1e+11

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

WID

E: P

L sh

eet r

ho (

Ohm

s/sq

)

0

20

40

60

80

100

120

140

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

0 to 150 /

Scale

Target = 49 /

Page 27: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 27

Poly Sheet Resistance (/) Measured ValueVan der pauw Method compared to Wide Method

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

VD

P: P

L sh

eet r

ho (

Ohm

s/sq

)

1e-4 1e-3 1e-2 1e-1 1e+01e+1 1e+21e+31e+4 1e+51e+61e+7 1e+81e+9 1e+11 1e+13

WIDE: PL sheet rho (Ohms/sq)

3

4

5

6

8

batchUnity line

Theoretical Target = 49 /

The Van der pauw method data seems aberrant as it is several orders of magnitude higher than the Wide method and it appears to get worse with higher resistance values. It seems that the Wide method is more accurate as it produces more values closer to the theoretical target. In either case, both methods show there are many die with excessively high sheet resistance.

Page 28: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 28

Poly Sheet Resistance (/) Measured ValueSummary

Mean = 44.3 /Target = 49 /Average % Pass = 53%

Using the Wide Method data, the mean of all the wafer medians is 44.3 /, excluding those wafers with values marked in red.Using a LCL = 3 and UCL = 150, the average % of good die for a given wafer is 53% (no wafers excluded).

Page 29: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 29

Poly CD Narrow #1 & #2 (m)Target = 2m

CD

PLN

AR

R1

(um

)

1e-41e-3

1e-21e-1

1e+01e+1

1e+21e+3

1e+41e+51e+6

1e+7

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

3

4

5

6

8

batchC

DP

LNA

RR

2 (u

m)

1e-41e-3

1e-11e+0

1e+2

1e+41e+5

1e+71e+8

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

Full Scale

Page 30: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 30

Poly CD Narrow #1 & #2 (m)Target = 2m

CD

PLN

AR

R1

(um

)

0

1

2

3

4

5

6

7

8

9

10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

3

4

5

6

8

batch

CD

PLN

AR

R2

(um

)

0

1

2

3

4

5

6

7

8

9

10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

0 to 10mScale

0 to 10mScale

Page 31: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 31

0

1

2

3

4

5

6

7

8

9

10

CD

PLN

AR

R2

(um

)

0 1 2 3 4 5 6 7 8 9 10

CDPLNARR1 (um)

3

4

5

6

8

batch

Poly CD Narrow #1 & #2 comparison

Unity line

Target = 2 m

There does not appear to be a printing bias between CD Narrow 1 & 2.

Page 32: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 32

Poly CD Narrow Summary

Mean = 3.4 mTarget = 2 mAverage % Pass = 56%

The mean of all the wafer medians is 3.4 m, excluding those wafers with values marked in red.Using a LCL = 0.1 m and UCL = 6 m, the average % of good die for a given wafer is 56% (no wafers excluded).

Page 33: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 33

Poly COMB & Serpentine Structure

1 3 5 7 9

2 4 6 8 10

COMB & Serpentine #1 COMB & Serpentine #2

(duplicate of #1)

serpentineleftcomb

right comb

Poly CD = 2mSpace = 2mserpentine length = 6,764m

Page 34: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 34

Poly COMB & SerpentineParameter Hi Lo Conditions Unit Valid Hi Valid Lo

RPLSERP1 1 6 Force 1V. Measure I. Calculate R. Compliance = 0.1A

Ohms Inf 10

IPLCOMB1U 3 1, 6 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

IPLCOMB1L 4 1, 6 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

RPLSERP2 5 10 Force 1V. Measure I. Calculate R. Compliance = 0.1A

Ohms Inf 10

IPLCOMB2U 7 5, 10 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

IPLCOMB2L 8 5, 10 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

The serpentine poly line is connected to pad 5 & 10 on structure #2 and pad 1 & 6 on structure #1. The purpose of the serpentine structure is to measure its resistance and monitor for “opens” due to incomplete patterning. The serpentine is long and winding in order to make it susceptible to lithography and etch patterning problems.

A poly comb lies on either side of the serpentine poly. The comb is electrically isolated from the serpentine line. The purpose of the comb is to measure leakage current between it and the poly serpentine and monitor for “shorts”. Shorts would be caused by remaining poly electrically connecting the comb to the poly serpentine line. On structure #2, pads 7 & 9 connect to the comb to the left of the serpentine and pad 8 connects to the comb to the right of the serpentine. On the structure #1, pad 3 connects to the comb on the left of the serpentine, and pads 2 & 4 connect to the comb on the right of the serpentine.

Page 35: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 35

Poly COMB leakage (A)Target = 1E-12 A

A good die from Batch 3, Wafer 4 was compared to a bad die from Batch 5 wafer 4. The findings are presented on the next slide.

IPLC

OM

B1L

1e-15

1e-13

1e-11

1e-9

1e-7

1e-5

1e-3

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

3

4

5

6

8

batch

Page 36: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 36

Poly COMB Good vs. Bad comparison

BADGOODBatch 3, wafer 4, die (5,8) Batch 5, wafer 4, die (4,6)

Space visible betweenPoly lines.

Space not visible between Poly lines. Lines are shorted together. CONCLUSION: Polysilicon lithography either underdeveloped or underexposed. Not a problem with Etching.

Page 37: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 37

Poly COMB Summary

Mean = 1.3E-12 ATarget = 1E-12 AAverage % Pass = 66%

The mean of all the wafer medians is 1.3E-12A, excluding those wafers with values marked in red.Using a LCL = 0 and UCL = 1E-9, the average % of good die for a given wafer is 66% (not excluding any wafers).

Page 38: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 38

Poly Serpentine Resistance ()Target = 166 k

RP

LSE

RP

1

1e+21e+31e+41e+51e+61e+71e+81e+9

1e+101e+111e+121e+131e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

Poly CD = 2mserpentine length = 6,764m

6,764m /2m = 3,382 �

3,382 * (49 � /) = 166k

Target = 166k

Page 39: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 39

Poly Serpentine Resistance () Summary

Median = 184 kTarget = 166 kAverage % Pass = 33%

The median of all the wafer medians is 184 k, excluding wafers whose values are marked in red.Using a LCL = 16 k and UCL = 497 k , the average % of good die for a given wafer is 47% (not excluding any wafers).

Page 40: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 40

Gate & Field Oxide Structure

1 3 5 7 9

2 4 6 8 10

Gate S D Well Calc

NMOS Gate Oxide 5 3 4 10 Capacitance is measured at +/-5VDC (inversion/accumulation) with 25mVAC @ 100kHz. Thickness is calculated using C=A/t.

P-Well Field Oxide 6 7 8 10 “

PMOS Gate Oxide* 5 3 4 10 “

N-Well Field Oxide* 6 7 8 10 “

*The PMOS Gate & N-Well Field structures are in a row adjacent to the row shown above with an identical layout except for it is in an N-Well region and the S/D diffusion is P+.

100 m x 100 m

Page 41: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 41

NMOS Inversion Gate Oxide Thickness (Å)Target = 300 Å

TIN

GO

X

1e+2

1e+36e+2

4e+2

2e+2

1e+46e+3

4e+3

2e+3

2e+4

3e+4

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9

3 4 5 6

wafer within batch

3

4

5

6

batch

TIN

GO

X

200

300

400

500

600

700

800

900

1000

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9

3 4 5 6

wafer within batch

Full Scale

200 to 1000 ÅScale

Page 42: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 42

NMOS Inversion Gate Oxide Thickness Summary

Mean = 320 ÅTarget = 300 ÅAverage % Pass = 37%

The mean of all the wafer medians is 320 Å, excluding the wafers with values in red.Using a LCL = 200 Å and UCL = 400 Å, the average % of good die for a given wafer is 37%, not excluding any wafers.

Page 43: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 43

PMOS Inversion Gate Oxide Thickness (Å)Target = 300 Å

TIP

GO

X

1e+2

1e+36e+2

4e+2

2e+2

1e+46e+3

4e+3

2e+3

2e+4

3e+4

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9

3 4 5 6

wafer within batch

TIP

GO

X

200

300

400

500

600

700

800

900

1000

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9

3 4 5 6

wafer within batch

Full Scale

200 to 1000 ÅScale

Page 44: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 44

PMOS Inversion Gate Oxide Thickness Summary

Mean = 304 ÅTarget = 300 ÅAverage % Pass = 22%

The mean of all the wafer medians is 304 Å, excluding the wafers with values in red.Using a LCL = 200 Å and UCL = 400 Å, the average % of good die for a given wafer is 22%, not excluding any wafers.

Page 45: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 45

N and P-Well Accumulation Field Oxide Thickness (Å)Target = 6500 Å

TAN

FO

X

1e+3

1e+4

7e+3

5e+3

3e+3

2e+3

2e+4

3e+4

4e+4

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9

3 4 5 6

wafer within batch

P-Well

N-Well

TAP

FO

X

1e+3

1e+46e+3

4e+3

2e+3

1e+5

6e+4

4e+4

2e+4

2e+5

11 13 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9

3 4 5 6

wafer within batch

6500 ÅTarget

6500 ÅTarget

Page 46: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 46

N-Well Accumulation Field Oxide Thickness Summary

Mean = 2689 ÅTarget = 6500 ÅAverage % Pass = 2%

The mean of all the wafer medians is 2689 Å, excluding the wafers with values in red.Using a LCL = 5500 Å and UCL = 7500 Å, the average % of good die for a given wafer is 2%, not excluding any wafers.

Page 47: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 47

P-Well Accumulation Field Oxide Thickness Summary

Mean = 3173 ÅTarget = 6500 ÅAverage % Pass = 6%

The mean of all the wafer medians is 3173 Å, excluding the wafers with values in red.Using a LCL = 5500 Å and UCL = 7500 Å, the average % of good die for a given wafer is 6%, not excluding any wafers.

Page 48: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 48

Transistor Structure

1 3 5 7 9

2 4 6 8 10

All NMOS & PMOS transistors have the same basic layout as above for W= 5, 10, & 50 um.

Each row contains a unique L. Shown above is L = 25m. The variations of L are 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

So there are 2 (NMOS/PMOS) x 8(various L) = 16 rows. In each row there are 3 transistors, so there are 3 x 16 = 48 unique transistors.

Page 49: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 49

NMOS & PMOS Threshold Voltage (V)W=5 m, L=varying*

NM

OS

Vt

-3

-2

-1

0

1

2

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

PM

OS

Vt

-4

-3

-2

-1

0

1

2

3

4

3 11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.5 2 3 25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

1

1

24 25 3 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 50: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 50

NMOS & PMOS Threshold Voltage (V)W=10 m, L=varying*

NM

OS

Vt

-3

-2

-1

0

1

2

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3 2 3 5 10

25 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

PM

OS

Vt

-4

-3

-2

-1

0

1

2

3

4

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 51: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 51

NMOS & PMOS Threshold Voltage (V)W=50 m, L=varying*

NM

OS

Vt

-3

-2

-1

0

1

2

11

.31

.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3 2 3 10

25 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25 1

1.3

1.5 2 3 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

PM

OS

Vt

-4

-3

-2

-1

0

1

2

3

4

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3 2 3 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 52: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 52

NMOS Vt value and % Pass by Channel Width/Length

-0.2

-0.1

0

0.1

0.2

0.3

0.4

NM

OS

Vt

Med

ian

valu

e

0 5 10 15 20 25 30

L

5

10

50

W

0.4

0.45

0.5

0.55

0.6

0.65

0.7

NM

OS

Vt

% p

ass

0 5 10 15 20 25 30

L

5

10

50

W

Yield degrades below L=3m

W=50m is offset towards 0

Mean = 147 mVTarget = 0.7 VAverage % Pass = 55%

The mean of all the wafer medians is 147 mV, excluding the wafers with values in red.Using a LCL = 0V and UCL = 3V, the average % of good die for a given wafer is 55%, not excluding any wafers.

Page 53: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 53

PMOS Vt value and % Pass by Channel Width/Length

-1.2

-1

-0.8

-0.6

-0.4

-0.2

PM

OS

Vt

Med

ian

valu

e

0 5 10 15 20 25 30

L

5

10

50

W

0.35

0.4

0.45

0.5

0.55

0.6

0.65

PM

OS

Vt

% p

ass

0 5 10 15 20 25 30

L

5

10

50

W

Yield degrades below L=3m

Mean = -608 mVTarget = -0.7VAverage % Pass = 48%

The mean of all the wafer medians is -608 mV.Using a LCL = -3V and UCL = 0V, the average % of good die for a given wafer is 48%. No wafers were excluded in either calculation.

Page 54: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 54

NMOS & PMOS Saturation Current (A)W=5 m, L=varying*, Log10 scale

NM

OS

ID

SA

T

-12-11-10-9-8-7-6-5-4-3-2-10

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

PM

OS

ID

SA

T

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 55: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 55

NMOS & PMOS Saturation Current (A) W=10 m, L=varying*, Log10 scale

NM

OS

ID

SA

T

-14

-12

-10

-8

-6

-4

-2

0

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

3

4

5

6

8

batch

PM

OS

ID

SA

T

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 56: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 56

NMOS & PMOS Saturation Current (A) W=50 m, L=varying*, Log10 scale

NM

OS

ID

SA

T

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

PM

OS

ID

SA

T

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 57: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 57

NMOS IDsat value and % Pass by Channel Width/Length

-5

-4.5

-4

-3.5

-3

-2.5

NM

OS

Med

ian(

Log(

abs(

IDsa

t))

0 5 10 15 20 25 30

L

5

10

50

W

0.7

0.75

0.8

0.85

0.9

NM

OS

% p

ass

0 5 10 15 20 25 30

L 2

5

10

50

W

A % Pass was calculated using a LCL of 1E-6A.

Page 58: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 58

PMOS IDsat value and % Pass by Channel Width/Length

-4.5

-4

-3.5

-3

-2.5

-2

PM

OS

Med

ian(

Log(

abs(

IDsa

t))

0 5 10 15 20 25 30

L

5

10

50

W

0.75

0.8

0.85

0.9

PM

OS

% p

ass

0 5 10 15 20 25 30

L 2

5

10

50

W

A % Pass was calculated using a LCL of 1E-6A.

Page 59: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 59

NMOS & PMOS Off Current (A)W=5 m, L=varying*, Log10 scale

NM

OS

Dra

in L

ea

kag

e

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 6 7 8 wafer

3 4 5 6 8 batch

PM

OS

Dra

in L

eaka

ge

-14

-12

-10

-8

-6

-4

-2

0

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 6 7 8 wafer

3 4 5 6 8 batch

3

4

5

6

8

batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 60: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 60

NMOS & PMOS Off Current (A)W=10 m, L=varying*, Log10 scale

NM

OS

Dra

in L

ea

kag

e

-12-11-10-9-8-7-6-5-4-3-2-10

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 6 7 8 wafer

3 4 5 6 8 batch

PM

OS

Dra

in L

ea

kag

e

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 6 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 61: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 61

NMOS & PMOS Off Current (A)W=50 m, L=varying*, Log10 scale

NM

OS

Dra

in L

ea

kag

e

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 6 7 8 wafer

3 4 5 6 8 batch

PM

OS

Dra

in L

ea

kag

e

-13

-11

-9

-7

-5

-3

-1

11

.31

.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25 1

1.3

1.5 2 3 5 10

25

L

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 6 7 8 wafer

3 4 5 6 8 batch

*For each wafer L varies from left to right in the following order: 1, 1.3, 1.5, 2, 3, 5, 10, 25 m.

Page 62: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 62

NMOS IOFF value and % Pass by Channel Width/Length

-10

-9

-8

-7

-6

-5

-4

-3

Med

ian(

Log1

0(ab

s(LD

)))

0 5 10 15 20 25 30

L

5

10

50

W

0.4

0.5

0.6

0.7

0.8

NM

OS

%p

ass

0 5 10 15 20 25 30

L

5

10

50

W

A % Pass was calculated using an UCL of 1E-6A.

Page 63: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 63

PMOS IOFF value and % Pass by Channel Width/Length

-7

-6

-5

-4

-3

-2

Med

ian(

Log1

0(ab

s(LD

)))

0 5 10 15 20 25 30

L

5

10

50

W

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

%pa

ss

0 5 10 15 20 25 30

L

5

10

50

W

A % Pass was calculated using an UCL of 1E-6A.

Page 64: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 64

Overall Transistor Yield

0

0.05

0.1

0.15

0.2

0.25

0.3

PM

OS

% p

ass

0 5 10 15 20 25 30

L

5

10

50

W

0.15

0.2

0.25

0.3

0.35

% p

ass

0 5 10 15 20 25 30

L

5

10

50

W

NMOS PMOS

Overall Transistor Yield was calculated by requiring each die to pass the control limits for Vt, Idsat, and Ioff simultaneously.

Page 65: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 65

W=10m Transistor Yield by Batch

NMOS

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%pa

ss

0 5 10 15 20 25

L

3

4

5

6

8

batch

PMOS

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%pa

ss

0 5 10 15 20 25

L

3

4

5

6

8

batch

Page 66: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 66

Back End Parameter Summary

• Back End Parameters which are analyzed in this presentation are listed below and are covered on slides 63-106.

– N+, P+, Poly, single contact resistance

– N+, P+, Poly contact chain resistance

– Single VIA1 and chain VIA1 resistance

– M1 and M2 sheet resistance and CD’s

– M1 comb leakage and serpentine resistance

Page 67: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 67

N+ Contact Resistance Structure

1 3 5 7 9

2 4 6 8 10

IFH IFL VMH VML Calc

N+ Contact Resistance 1

9 1 3 2 R = (VMH - VML ) / IFH

N+ Contact Resistance 2

9 1 5 4 R = (VMH - VML ) / IFH

N+ Contact Resistance 3

9 1 7 6 R = (VMH - VML ) / IFH

N+ Contact Resistance 4

9 1 10 8 R = (VMH - VML ) / IFH

3m x 3m contact

Page 68: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 68

N+/P+ Contact Resistance Theoretical Value

DB NBc e

TqA

kR /)

**(

3

2*4**

h

kqmA

)(

)()(

2

2

cmA

cmRr cc

using ND=6E20cm-3 and B=0.72*

281.1 cmERc 289 cmEA

Then rc = 0.1 is the target N+ and Poly contact resistance. (Since Poly has

similar sheet resistance as N+, the Schottky Barrier height and doping is assumed to be close to the same and therefore the Poly Contact resistance is also assumed to be close to the same.)

*W.R.Runyan, K.E.Bean, Semiconductor Integrated Circuit Processing Technology, 1st edition, p.522-524, 1990.

using NA=4.6E20cm-3 and B=0.58*

Then rc = 1 is the target P+ contact resistance.

Page 69: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 69

N+ Contact Resistance ()Target = 0.1

RN

+CO

N1

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

N+ Contact Resistance is very high.

Page 70: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 70

N+ Contact Resistance Value and % Pass

Mean = 2E9 Target = 0.1 Average % Pass = 8%

The mean of all the wafer medians is 2E9 .Using a LCL = 0.001 and UCL = 100, the average % of good die for a given wafer is 8%.

Page 71: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 71

N+ Contact Chain Structure

1 3 5 7 9

2 4 6 8 10

VH, IH VL, IL Calc

N+ Contact Chain Resistance 1 1 2 R = (VH - VL ) / IH

N+ Contact Chain Resistance 2 3 4 R = (VH - VL ) / IH

N+ Contact Chain Resistance 3 5 6 R = (VH - VL ) / IH

N+ Contact Chain Resistance 4 7 8 R = (VH - VL ) / IH

N+ Contact Chain Resistance 5 9 10 R = (VH - VL ) / IH

104 contacts

There are 104 contacts, 100.2 squares of N+ diffusion, and 77.8 squares of M1. Using the theoretical values of N+ contact resistance, N+ sheet resistance and M1 sheet resistance found elsewhere in this document the theoretical target value for N+ contact chain is 5.0k.

Page 72: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 72

N+ Contact Chain Resistance ()Target = 5k

RN

+CC

1

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+117e+11

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

3

4

5

6

8

batch

Page 73: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 73

N+ Contact Chain Resistance Value and % Pass

Mean = 6E10 Target = 5 kAverage % Pass = 28%

The mean of all the wafer medians is 6E10 .Using a LCL = 1k and UCL = 100k , the average % of good die for a given wafer is 28%.

Page 74: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 74

P+ Contact Resistance Structure

1 3 5 7 9

2 4 6 8 10

IFH IFL VMH VML Calc

P+ Contact Resistance 1

9 1 3 2 R = (VMH - VML ) / IFH

P+ Contact Resistance 2

9 1 5 4 R = (VMH - VML ) / IFH

P+ Contact Resistance 3

9 1 7 6 R = (VMH - VML ) / IFH

P+ Contact Resistance 4

9 1 10 8 R = (VMH - VML ) / IFH

Page 75: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 75

P+ Contact Resistance ()Target = 1

P+ Contact Resistance is very high.

RP

+CO

N1

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Page 76: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 76

P+ Contact Resistance Value & % Pass

Mean = 6E8 Target = 1Average % Pass = 15%

The mean of all the wafer medians is 6E8 .Using a LCL = 0.1 and UCL = 100 , the average % of good die for a given wafer is 15%.

Page 77: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 77

P+ Contact Chain Structure

1 3 5 7 9

2 4 6 8 10

VH, IH VL, IL Calc

P+ Contact Chain Resistance 1 1 2 R = (VH - VL ) / IH

P+ Contact Chain Resistance 2 3 4 R = (VH - VL ) / IH

P+ Contact Chain Resistance 3 5 6 R = (VH - VL ) / IH

P+ Contact Chain Resistance 4 7 8 R = (VH - VL ) / IH

P+ Contact Chain Resistance 5 9 10 R = (VH - VL ) / IH

There are 104 contacts, 100.2 squares of P+ diffusion, and 77.8 squares of M1. Using the theoretical values of P+ contact resistance, P+ sheet resistance and M1 sheet resistance found elsewhere in this document the theoretical target value for N+ contact chain is 4.0k.

Page 78: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 78

P+ Contact Chain Resistance ()Target = 4 k

RP

+CC

1

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+116e+11

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

Page 79: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 79

P+ Contact Chain Resistance Value and % Pass

Mean = 5.3E10 Target = 4 kAverage % Pass = 52%

The mean of all the wafer medians is 5E10 .Using a LCL = 1k and UCL = 100k , the average % of good die for a given wafer is 52%.

Page 80: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 80

Poly Contact Resistance Structure

1 3 5 7 9

2 4 6 8 10

IFH IFL VMH VML Calc

Poly Contact Resistance 1

9 1 3 2 R = (VMH - VML ) / IFH

Poly Contact Resistance 2

9 1 5 4 R = (VMH - VML ) / IFH

Poly Contact Resistance 3

9 1 7 6 R = (VMH - VML ) / IFH

Poly Contact Resistance 4

9 1 10 8 R = (VMH - VML ) / IFH

Page 81: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 81

Poly Contact Resistance ()Target = 0.1

RP

LCO

N1

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

3

4

5

6

8

batch

Page 82: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 82

Poly Contact Resistance Value and % Pass

Mean = 2.4E10 Target = 0.1Average % Pass = 11%

The mean of all the wafer medians is 2.4E10 .Using a LCL = 0.1 and UCL = 100 , the average % of good die for a given wafer is 11%.

Page 83: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 83

Poly Contact Chain Structure

1 3 5 7 9

2 4 6 8 10

VH, IH VL, IL Calc

Poly Contact Chain Resistance 1 1 2 R = (VH - VL ) / IH

Poly Contact Chain Resistance 2 3 4 R = (VH - VL ) / IH

Poly Contact Chain Resistance 3 5 6 R = (VH - VL ) / IH

Poly Contact Chain Resistance 4 7 8 R = (VH - VL ) / IH

Poly Contact Chain Resistance 5 9 10 R = (VH - VL ) / IH

There are 104 contacts, 100.2 squares of Poly, and 77.8 squares of M1. Using the theoretical values of Poly contact resistance, Poly sheet resistance and M1 sheet resistance found elsewhere in this document the theoretical target value for Poly contact chain is 4.9k.

Page 84: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 84

Poly Contact Chain Resistance ()Target = 4.9 k

RP

LCC

1

1e+11e+21e+31e+41e+51e+61e+71e+81e+9

1e+101e+111e+12

7e+12

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

Page 85: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 85

Poly Contact Chain Resistance Value and % Pass

Mean = 1.3E11 Target = 4.9kAverage % Pass = 22%

The mean of all the wafer medians is 1.3E11 .Using a LCL = 1k and UCL = 100 k, the average % of good die for a given wafer is 22%.

Page 86: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 86

M1 Sheet Resistance Structure

1 3 5 7 9

2 4 6 8 10

“wide” structure (215 m long x 9 m wide)

Van der pauw structure

“narrow 1 CD”

“narrow 2 CD”

IFH IFL VMH VML Calc

Wide 9 1 6 3 RS = {(VMH - VML ) / IFH} / (217/4.5)

Van der pauw

9 1 4 2 RS = {(VMH - VML ) / IFH} * ( / ln 2 )

Narrow 1 CD

9 1 7 5 CD = (203* RSWIDE) / {(VMH - VML ) / IFH}

Narrow 2 CD

9 1 10 8 CD = (244*RSWIDE) / {(VMH - VML ) / IFH}

“narrow 1 CD” structure (203 m long x 3 m wide)

“narrow 2 CD” structure (244 m long x 3 m wide)

Page 87: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 87

M1 & M2 Sheet Resistance Theoretical Value

3.4E-6 cm*

Rs = / xj

= (3.4E-6 cm) / (6000 E-8 cm)

Rs = 56.7 m/ for M1�

*W.R.Runyan, K.E.Bean, Semiconductor Integrated Circuit Processing Technology, 1st edition, p.535, 1990.

For Aluminum with 1% Silicon, the resistivity is

for M2, xj = 8000Åso Rs = 42.5 m/ �

Page 88: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 88

M1 Sheet Resistance (m/ �)Van der Pauw Method, Target = 56.7 m/�

VD

P: M

1 sh

eet r

ho (

mO

hms/

sq)

30

40

50

60

70

80

90

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

VD

P: M

1 sh

eet r

ho (

mO

hms/

sq)

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

30 to 90 m/ �Scale

Page 89: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 89

M1 Sheet Resistance (m/ �)Wide Structure Method, Target = 56.7 m/�

WID

E: M

1 sh

eet r

ho (

mO

hms/

sq)

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

WID

E: M

1 sh

eet r

ho (

mO

hms/

sq)

30

40

50

60

70

80

90

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

30 to 90 m/ �Scale

Page 90: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 90

M1 VDP Sheet Resistance Value and % Pass

Mean = 57.2 m/�Target = 56.7 m/�Average % Pass = 70%

The mean of all the wafer medians is 57.2 m/, �excluding the wafers with values in red.Using a LCL = 10 m/ � and UCL = 100 m/ � , the average % of good die for a given wafer is 70%, not excluding any wafers.

Page 91: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 91

M1 CD Narrow #1 & #2 (m)Target = 3m

CD

M1N

AR

R1

(um

)

0

1

2

3

4

5

6

7

8

9

10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

CD

M1N

AR

R2

(um

)

0

1

2

3

4

5

6

7

8

9

10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Page 92: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 92

M1 CD Value and % Pass

Mean = 4.1 mTarget = 3 m Average % Pass = 47%

The mean of all the wafer medians is 4.1 m, excluding the wafers with values in red.Using a LCL = 1 m and UCL = 5.5 m , the average % of good die for a given wafer is 47%, not excluding any wafers.

Page 93: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 93

M1 COMB/SERP Structure

1 3 5 7 9

2 4 6 8 10

serpentineleftcomb

right comb

COMB & Serpentine #1

COMB & Serpentine #2 (duplicate of #1)

M1 CD = 3mSpace = 3mserpentine length = 4,504m

Page 94: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 94

M1 COMB/SERP

Parameter Hi Lo Conditions Unit Valid Hi Valid Lo

RM1SERP1 1 6 Force 1V. Measure I. Calculate R. Compliance = 0.1A

Ohms Inf 10

IM1COMB1U 3 1, 6 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

IM1COMB1L 4 1, 6 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

RM1SERP2 5 10 Force 1V. Measure I. Calculate R. Compliance = 0.1A

Ohms Inf 10

IM1COMB2U 7 5, 10 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

IM1COMB2L 8 5, 10 Force 1V. Measure I. Compliance = 0.1A

Amps 0.1 1E-12

Page 95: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 95

M1 COMB leakage (A) Target = 1E-12A

IM1C

OM

B1L

1e-15

1e-13

1e-11

1e-9

1e-7

1e-5

1e-3

1e-1

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

Page 96: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 96

M1 COMB leakage Value and % Pass

Mean = 1E-12ATarget = 1E-12AAverage % Pass = 82%

The median of all the wafer medians is 1E-12A.Using a LCL = 0 and UCL = 1E-9, the average % of good die for a given wafer is 82%.

Page 97: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 97

M1 Serpentine Resistance ()Target = 85

RM

1SE

RP

1

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

RM

1SE

RP

1

10

30

50

70

90

110

130

150

170

190

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

Full Scale

10 to 200 Scale

Page 98: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 98

M1 Serpentine Resistance Value and %Pass

Mean = 200 Target = 85 Average % Pass = 63%

The mean of all the wafer medians is 200 , excluding the wafers with values in red.Using a LCL = 10 and UCL = 450 , the average % of good die for a given wafer is 63%, not excluding any wafers.

Page 99: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 99

M2 Sheet Resistance Structure

1 3 5 7 9

2 4 6 8 10

“wide” structure (216 m long x 9 m wide)

Van der pauw structure

“narrow 1 CD”

“narrow 2 CD”

“narrow 1 CD” structure (203 m long x 3 m wide)

“narrow 2 CD” structure (244 m long x 3 m wide)

IFH IFL VMH VML Calc

Wide 9 1 6 3 RS = {(VMH - VML ) / IFH} / (217/4.5)

Van der pauw

9 1 4 2 RS = {(VMH - VML ) / IFH} * ( / ln 2 )

Narrow 1 CD

9 1 7 5 CD = (203* RSWIDE) / {(VMH - VML ) / IFH}

Narrow 2 CD

9 1 10 8 CD = (244*RSWIDE) / {(VMH - VML ) / IFH}

Page 100: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 100

M2 Sheet Resistance (m/ �)Van der Pauw Method, Target = 42.5 m/�

VD

P: M

2 sh

eet r

ho (

mO

hms/

sq)

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

1e+16

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

VD

P: M

2 sh

eet r

ho (

mO

hms/

sq)

30

40

50

60

70

80

90

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

30 to 90 m/ �Scale

Batch 4 & 5 did not receive M2 processing

Batch 4 & 5 did not receive M2 processing

Page 101: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 101

M2 Sheet Resistance (m/ �)Wide Structure Method, Target = 42.5 m/�

WID

E: M

2 sh

eet r

ho (

mO

hms/

sq)

1e-4

1e-2

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

WID

E: M

2 sh

eet r

ho (

mO

hms/

sq)

30

40

50

60

70

80

90

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Full Scale

30 to 90 m/ �Scale

Batch 4 & 5 did not receive M2 processing

Batch 4 & 5 did not receive M2 processing

Page 102: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 102

M2 VDP Sheet Resistance Value and % Pass

Mean = 45.8 m/ �Target = 42.5 m/ �Average % Pass = 92%

The mean of all the wafer medians is 45.8 m/, �excluding batch 4 &5.Using a LCL = 10 m/ � and UCL = 100 m/ �, the average % of good die for a given wafer is 92%, excluding batch 4 &5.

Batch 4 & 5 did not receive M2 processing

Page 103: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 103

M2 CD Narrow #1 & #2 (m)Target = 3m

CD

M2N

AR

R1

(um

)

0

1

2

3

4

5

6

7

8

9

10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

CD

M2N

AR

R2

(um

)

0

1

2

3

4

5

6

7

8

9

10

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Batch 4 & 5 did not receive M2 processing

Batch 4 & 5 did not receive M2 processing

Page 104: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 104

M2 CD Narrow #1 Value and % Pass

Mean = 3.0 m

Target = 3 m

Average % Pass = 54%

The mean of all the wafer medians is 3.0 m, excluding the wafers with values in red.Using a LCL = 1 m and UCL = 5.5 m , the average % of good die for a given wafer is 54%, excluding batch 4 & 5 only.

Batch 4 & 5 did not receive M2 processing

Page 105: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 105

M2 to M1 Via Structure

1 3 5 7 9

2 4 6 8 10

IFH IFL VMH VML Calc

VIA Resistance 1

9 1 3 2 R = (VMH - VML ) / IFH

VIA Resistance 2

9 1 5 4 R = (VMH - VML ) / IFH

VIA Resistance 3

9 1 7 6 R = (VMH - VML ) / IFH

VIA Resistance 4

9 1 10 8 R = (VMH - VML ) / IFH

M2 M1

Page 106: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 106

M2 to M1 Via Resistance ()Target = 0.1

RM

1CO

N1

1e-1

1e+1

1e+3

1e+5

1e+7

1e+9

1e+11

1e+13

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

3

4

5

6

8

batch

Batch 4 & 5 did not receive M2 processing

RM

1CO

N1

0

5

10

15

20

11 13 16 24 25 3 4 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M2 M7

3 4 5 6 8

wafer within batch

Batch 4 & 5 did not receive M2 processing

Full Scale

0 to 20 Scale

Page 107: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 107

M2 to M1 Via Resistance ()

Mean = 13.7 Target = 0.1 Average % Pass = 53%

The mean of all the wafer medians is 13.7 , excluding the wafers with values in red.Using a LCL = 0.1 and UCL = 100 , the average % of good die for a given wafer is 53%, excluding batch 4 & 5 only.

Batch 4 & 5 did not receive M2 processing

Page 108: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 108

M2 to M1 Via Chain Resistance Structure

1 3 5 7 9

2 4 6 8 10

VH, IH VL, IL Calc

Via Chain Resistance 1 1 2 R = (VH - VL ) / IH

Via Chain Resistance 2 3 4 R = (VH - VL ) / IH

Via Chain Resistance 3 5 6 R = (VH - VL ) / IH

Via Chain Resistance 4 7 8 R = (VH - VL ) / IH

Via Chain Resistance 5 9 10 R = (VH - VL ) / IH

There are 104 VIA’s, 77.8 squares of M1, and 104 squares of M2. Using the theoretical values of VIA resistance, M1 & M2 sheet resistance found elsewhere in this document the theoretical target value for VIA chain is 19.

Page 109: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 109

M2 to M1 Via Chain Resistance ()Target = 19

RM

1CC

1

1e+0

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

11 24 25 3 10 16 21 4 6 10 11 2 3 4 5 6 7 9 1 12 2 5 6 7 8 9 1 2 3 6 7 8 M7

3 4 5 6 8

wafer within batch

Page 110: 1um CMOS Process Baseline Electrical Test Summary

D.K. Brown Georgia Tech Microelectronics Research Center 110

M2 to M1 Via Chain Resistance Value and % Pass

Mean = 4E11 Target = 19 Average % Pass = 0.4%

The mean of all the wafer medians is 13.7 , excluding the wafers with values in red.Using a LCL = 0.1 and UCL = 100 , the average % of good die for a given wafer is 53%, excluding batch 4 & 5 only.